CV-SALTS Consideration of Resolution to Extend Completion Date of Central Valley Salt and Nutrient Management Plan to 2016

6 December 2013

Central Valley Water Board Meeting

Slide 1

Agenda

Basis of Resolution

- Recycled Water Policy
 - ✓ Requirements
 - ✓ Deadlines
- > CV-SALTS
 - Progress to Date
 - Policy
 - Technical
 - ✓ Budget/Timeline

Consideration of Resolution

Recycled Water Policy (Resolution 2009-0011, as amended in Resolution 2013-0003)

<u>GOAL</u>: Increase recycled water use from municipal wastewater

<u>OBJECTIVE</u>: Establish criteria for permitting recycled water projects

<u>APPROACH</u>: Develop Salt and Nutrient Management Plans (SNMPs) which facilitate recycled water project permitting

Central Valley Water Board Meeting

Recycled Water Policy

Includes requirement for SNMPs in <u>all</u> groundwater basins

> SNMP to include:

- ✓ Salt/nutrient source identification
- ✓ Fate/transport of analysis
- Assimilative capacity/ loading estimates by basin/sub-basin
- Water recycling & stormwater recharge/use goals & objectives
- Implementation measures to manage salt and nutrient loadings on a sustainable basis
- Basin/sub-basin Monitoring Plan
- Constituents of emerging concern monitoring
- Anti-degradation analysis (Resolution 68-16)

Recycled Water Policy

Timeline

14 May 2014: SNMP Submitted to Regional Water Board

2-yr extension if Regional Water Board finds substantial progress

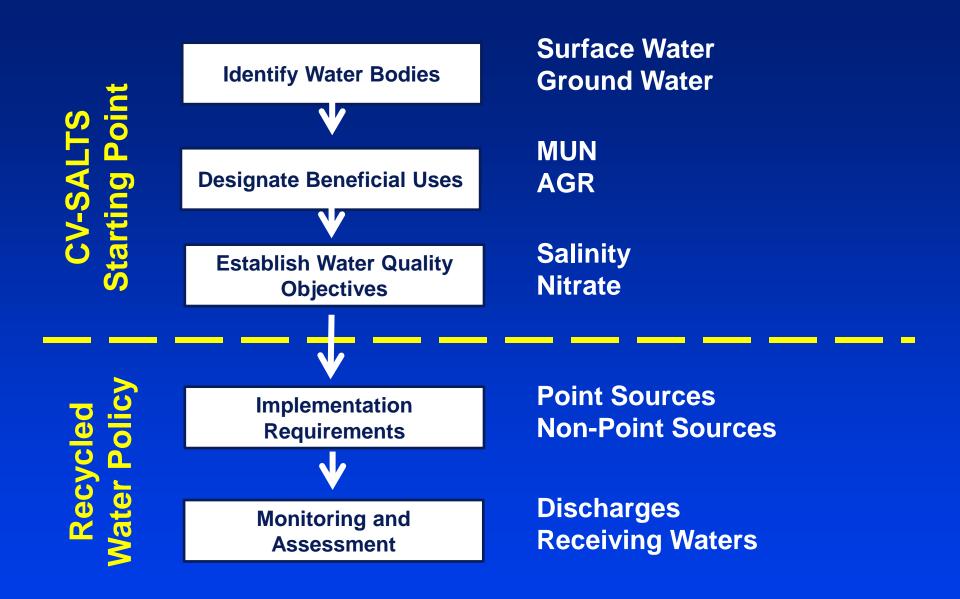
Within 1-year: Regional Water Board considers SNMP for adoption as a Basin Plan Amendment

Becomes Basis for Future Salt/Nutrient Regulation

SNMP Status

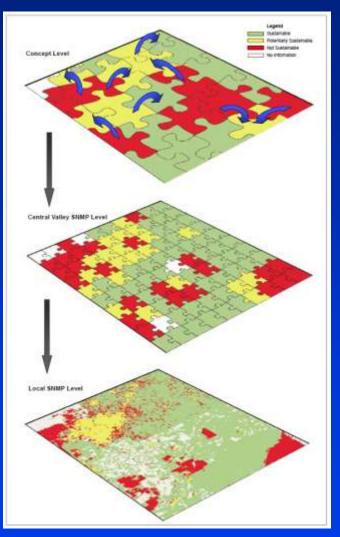
- Locally Driven
- Funded thru IRWMP
- Approximately 25% on schedule
- Remaining evaluating time extension
- Central Valley utilizing unique approach: CV-SALTS

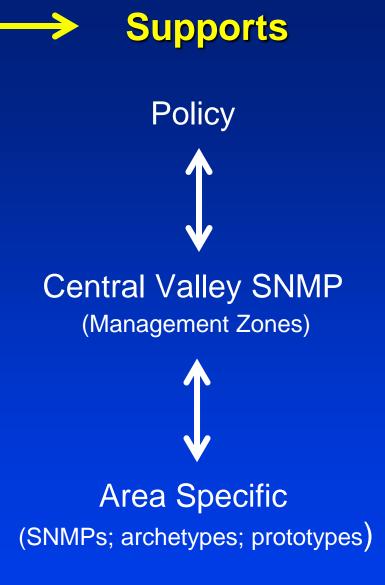
6 December 2013



Collaborative stakeholder process to develop a comprehensive Salt and Nitrate Management Plan (SNMP)

 Components will satisfy Recycled Water Policy requirements

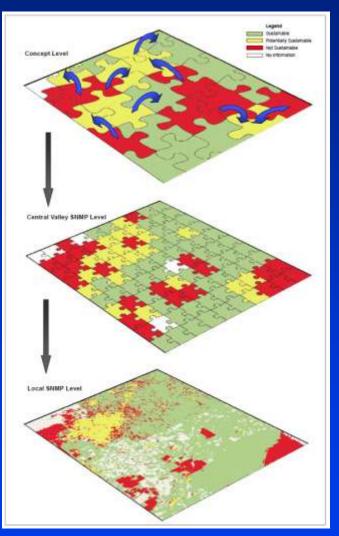

6 December 2013

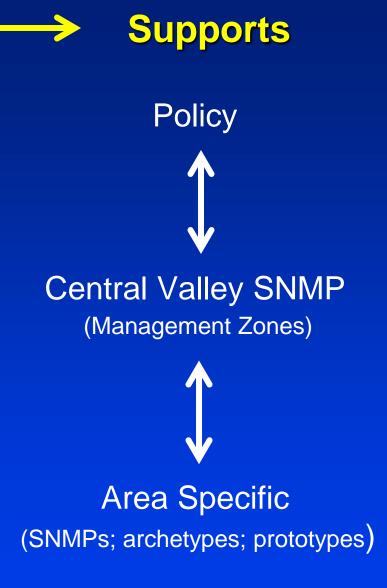

Central Valley Water Board Meeting

Central Valley Water Board Meeting

Conceptual Model (Technical Approach)

6 December 2013


Central Valley Water Board Meeting


Slide 9

Policy Discussions

Category	Completed	Ongoing
Water Bodies		 Evaluate groundwater sub-basins or surface water sub-segments/categories to increase regulatory flexibility and facilitate Management Zone implementation
Standards (Beneficial Uses & Water Quality Objectives)	 Application of SMCLs to protect MUN Conceptual regulatory framework for protection of AGR use 	 Complete decision tree for interpreting AGR narrative water quality objective Surface water and groundwater distinctions as related to protection of AGR use Appropriate application of Sources of Drinking Water Policy
Assessment	 Principles for calculating background water quality and assimilative capacity 	Refine based on technical findingsPlanning horizon
Implementation	 Developed Management Zone concept Discussed potential alternative compliance strategies 	 Develop SNMP water recycling and stormwater recharge/use goals and objectives Maximum Benefit Guidance Drought considerations

Conceptual Model (Technical Approach)

6 December 2013

Central Valley Water Board Meeting

Slide 11

CV-SALTS Technical Project Activities

Richard Meyerhoff – CDM Smith Vicki Kretsinger – Luhdorff & Scalmanini

Technical Presentation Overview

- Technical Projects Overview
 - Technical Project Relation to SNMP Requirements
- Conceptual Model Development
 - Initial Conceptual Model
 - Phase II Conceptual Model Next Steps
- Strategic Salt Accumulation Land and Transport Study (SSALTS)
 - Phase 1 Salinity Characterization
 - Phases 2 and 3 Overview Next Steps
- Developments in Agriculture Zone Mapping
- Closing Coordinating Policy and Technical Activities

SNMP Development – Technical Project Support

Required	SNMP Elements	Primary Technical Project Support					
Salt and Nitrate Characterization	Source Identification Loading Estimates Fate and Transport Assimilative Capacity	 Initial Conceptual Model (Complete) Phase II Conceptual Model (Complete in 2014) 					
Monitoring Plan	Salt, nutrients, constituents of concern Constituents of emerging concern	 Phase III Conceptual Model (Complete in 2015) 					
Antidegradation Analysis		 Phase II Conceptual Model – Develop background water quality calculation methods (Complete in 2014) Phase III Conceptual Model – Complete antidegradation analysis (Complete in 2015) 					
		14					

SNMP Development – Technical Project Support

Required SNMP Elements	Primary Technical Project Support			
Implementation Measures to Manage Salt/Nitrate Loading on a Sustainable Basis	 Strategic Salt Accumulation Land and Transport Study (SSALTS) - (Phase 1 complete; complete Phases 2 & 3 in 2014) Post-SSALTS Implementation Planning (Complete in 2015) 			
Water Recycling & Stormwater Recharge/Use Goals and Objectives	Policy Committee Activity			
Salt & Nitrate Management Plan	 Phase II Conceptual Model - Preliminary draft with completed technical elements (Complete in 2014) Refine SNMP as other projects completed, including SSALTS and Phase III Conceptual Model (Complete in 2016) 			
Control Valloy Water Board Monting: 6 Decor	mbor 2012 15			

Technical Area	Primary Activities	SNMP Support	2012	2013	2014	2015	2016
Conceptual Model Development	Initial Conceptual Model	 Source identification Assimilative capacity Loading estimates 		\rightarrow		4. 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	Phase 2	 Source and loading refinement Background water quality/ assimilative capacity calculation methods Management zone study 			\rightarrow		
	Phase 3	 Antidegradation analysis Monitoring plan Economics analysis 		2 			Prepare Final
Data	GIS – Phase 2	Baseline database		\rightarrow			
Development	Agriculture Zone Mapping	AGR implementation tools					
Beneficial Use Studies	Tulare Lake Bed MUN Archetype	MUN implementation tools		45	\rightarrow		
	MUN Beneficial Use in Agriculturally Dominated Water Bodies Archetype	MUN implementation tools		\rightarrow		SNMP	
Water Quality Objectives	Salinity-related Effects on Agricultural Irrigation Uses Salinity Effects on MUN-related Uses of Water	 Evaluation of science behind establishment of salinity related objectives 					
	Stock Watering Study						
	Aquatic Life Study		1				
Implementation Planning	Strategic Salt Accumulation Land and Transport Study (SSALTS) Post- SSALTS Implementation Planning	 SNMP implementation measures to manage salt on a sustainable basis 	_			\rightarrow	
Lower San Joaquin River Committee	Technical Analyses (salt loading characterization, modeling)	Coordination with CV-SALTS SNMP					
	Basin Planning Activities (WQOs, SED, economics, monitoring, implementation)	development activities to ensure consistency			16		

Technical Review Process

- Technical Advisory Committee Meets monthly to discuss technical issues/provide comment on technical deliverables
- Project Committee Designated ad hoc committee to provide more frequent/detailed reviews of selected technical products, e.g., Conceptual Model deliverables.
 Special thanks to:
 - Central Valley Regional Water Quality Board Staff Clay Rodgers , Rob Busby and Jeanne Chilcott
 - CV-SALTS Participants David Cory, Debbie Webster, Nigel Quinn and Roger Reynolds
 - Outside Volunteers Thomas Harter (UC Davis) and Randy Hanson (USGS)

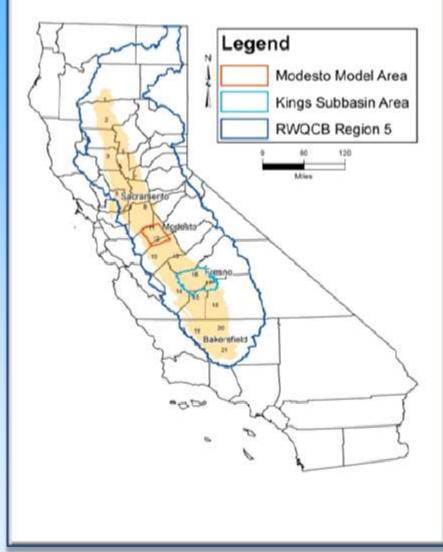
CONCEPTUAL MODEL DEVELOPMENT

Technical Area	Primary Activities	SNMP Support	2012	2013	2014	2015	2016
Conceptual Model Development	Initial Conceptual Model	 Source identification Assimilative capacity Loading estimates 					Prepare Final
	Phase 2	 Source and loading refinement Background water quality/ assimilative capacity calculation methods Management zone study 			\supset	>	
	Phase 3	 Antidegradation analysis Monitoring plan Economics analysis 				\longrightarrow	
Data	GIS – Phase 2	Baseline database	T	\rightarrow			
Development	Agriculture Zone Mapping	AGR implementation tools					
Beneficial Use Studies	Tulare Lake Bed MUN Archetype	MUN implementation tools	<u>ti</u> – 77		\rightarrow		
	MUN Beneficial Use in Agriculturally Dominated Water Bodies Archetype	MUN implementation tools	\rightarrow		SNMP		
Water Quality Objectives	Salinity-related Effects on Agricultural Irrigation Uses Salinity Effects on MUN-related Uses of Water	 Evaluation of science behind establishment of salinity related objectives 					
	Stock Watering Study		1				
	Aquatic Life Study		1				
Implementation Planning	Strategic Salt Accumulation Land and Transport Study (SSALTS) Post- SSALTS Implementation Planning	 SNMP implementation measures to manage salt on a sustainable basis 	_			\rightarrow	
Lower San Joaquin River Committee	Technical Analyses (salt loading characterization, modeling)	Coordination with CV-SALTS SNMP					
	Basin Planning Activities (WQOs, SED, economics, monitoring, implementation)	development activities to ensure consistency			19		

CV-SALTS

Initial Conceptual Model (ICM)

Central Valley Water Board December 6, 2013


Vicki Kretsinger Grabert, LSCE

Larry Walker Associates Team LWA TEAM MEMBERS

- 1 Larry Walker Associates
- 2 Kennedy/Jenks
- 3 Carollo Engineers
- 4 PlanTierra
- 5 Luhdorff and Scalmanini
- 6 Systech Water Resources

Presentation Outline

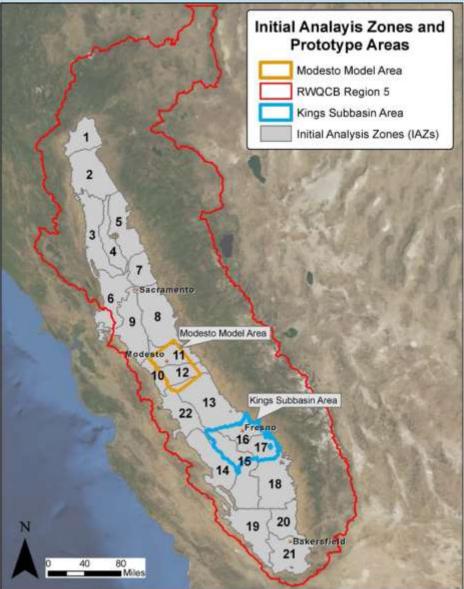
- Phases I and II
- Issue and Analysis Tools
- Central Valley-wide Analysis (Coarse Scale)
- Refined Scale Analysis (Modesto Area and Kings Subbasin)
- Transbasin Significance of Salt and NO₃
- Summary

Conceptual Model Development – Phases I & II

Key Elements	Phase I (ICM)	Phase II (Potential Tasks)
Ambient GW Quality	Coarse scale analysis (Initial Analysis Zones – IAZs); higher resolution in 2 focus areas	Develop final methodology; apply to example areas (higher resolution)
Assimilative Capacity (existing and projected)	Preliminary coarse scale analysis in IAZs; higher resolution in 2 focus areas	Develop final methodology; test on example areas (higher resolution)
Salt and Nitrate Transport	Coarse scale analysis	High resolution analysis (Archetype Area; existing vs. future scenarios)
Management Area	Default to IAZs (CVHM/DWR water balance regions)	Guidance for Management Zone Concept
SNMP (Local Development)	"Proof of concept" tools; flow & transport models for incorporation	Draft guidance for technical elements of local SNMPs
GW Monitoring Central Valley Water Board Mee	Preliminarily assess data gaps	Data distribution needs; inform Phase III 22

Issue: Salt and NO₃ Occurrence, Transport, and Management

Salt and NO₃ Accumulation


- What is ambient WQ (current condition)?
- Where are salt and NO₃ in balance/accumulating/depleting?
- Where are priority areas?
- What is potential assimilative capacity?

Analysis Tools

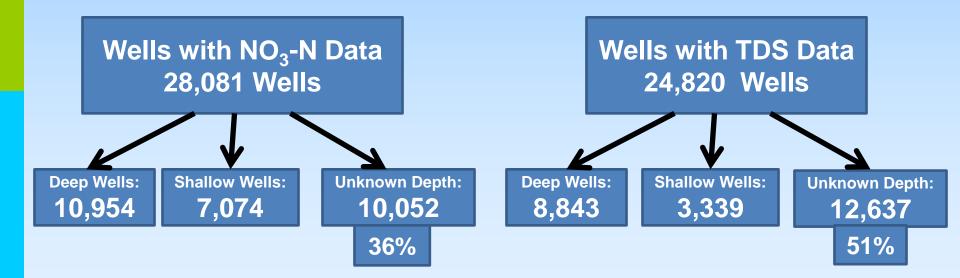
- Data
 - Hydrologic
 - Land Use
 - Coverage
 - Limitations
- Models
 - Central Valley: SW and GW; Salt and NO₃ Transport; Aggregate Scale; 20 Year Simulation
 - Stanislaus/Merced and Kings Subbasin: GW Flow and Salt and NO₃ Transport; Refined Grid

Initial Analysis Zones and Prototype Areas

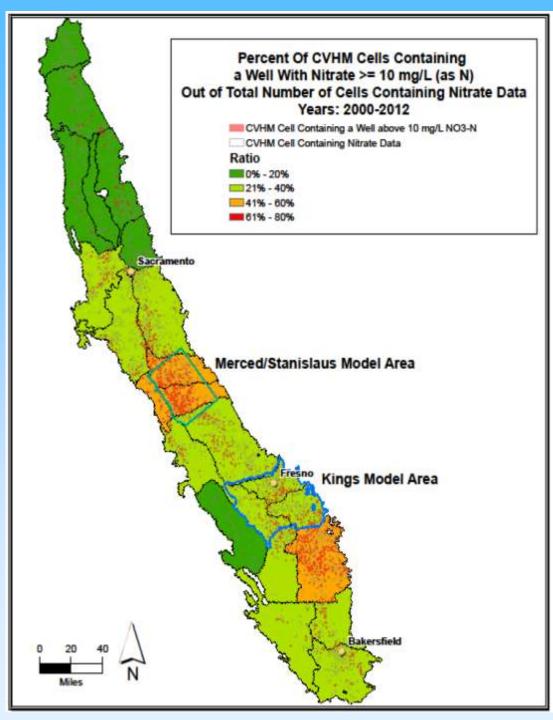

- 21 CVHM Subregions (Plus One Divided)
- ICM Task 6: 22 IAZs
- Existing WARMF Coverage
- Task 7 Prototype Areas
 - Modesto
 - Kings Subbasin

Groundwater Quality Data: All Wells with Salt and Nitrate Data

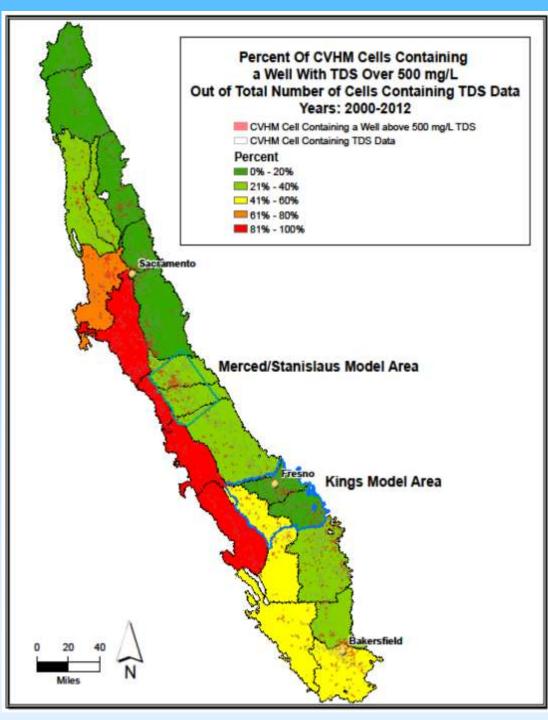
Full dataset =


- 50,478 wells
- 33,305 wells in IAZs

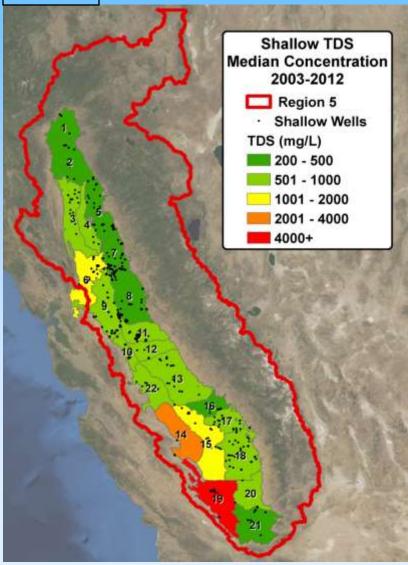
Well Data Characterization

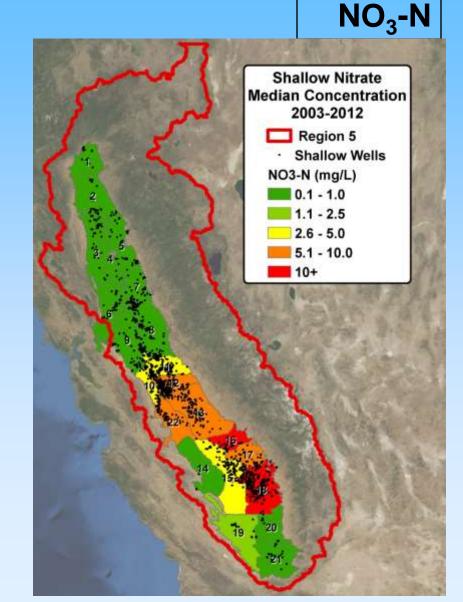

Issues

- Many wells do not have readily available construction information
- Many wells not characterized with respect to their completion in the aquifer system


Percent of CVHM Cells with a Well with NO₃-N > MCL

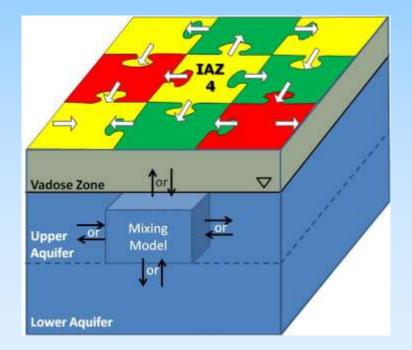
 Warmer colors represent greater % of wells in 1-mile² cells with NO₃-N > 10 mg/L


Percent of CVHM Cells with a Well with TDS > 500 mg/L


Warmer colors
 represent greater %
 of wells in 1-mile²
 cells with TDS > 500
 mg/L

Ambient Shallow GW Quality - Median CVHM Cell Concentration (Shallow Wells 2003-2012)

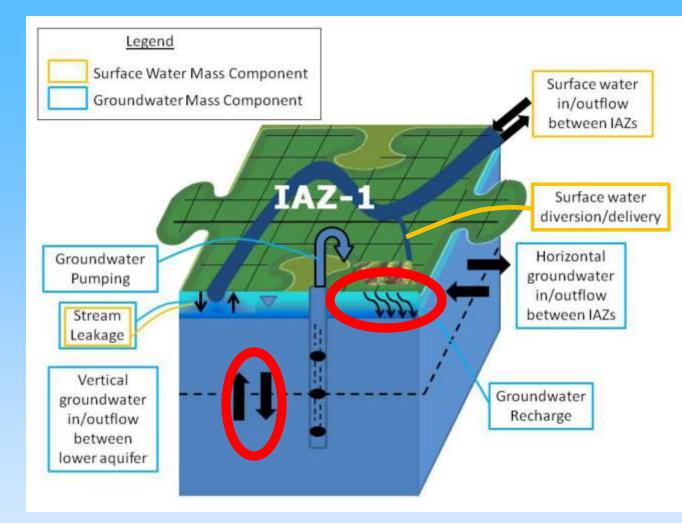
TDS


Methodology

WARMF Output

- Watershed Analysis Risk Management Framework
- Computes water balance and chemical mass balance, including chemical & physical processes and loading

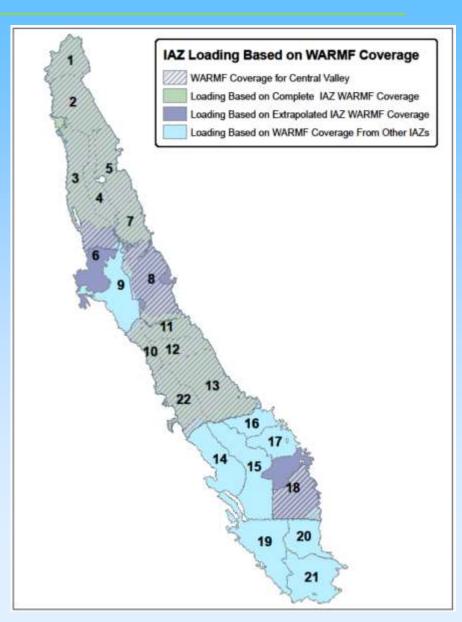
CVHM Output


- USGS Central Valley Hydrologic Model
- Estimates water budget components (GW pumping, ag demands, SW deliveries, etc.)

22 IAZs: All of Central Valley

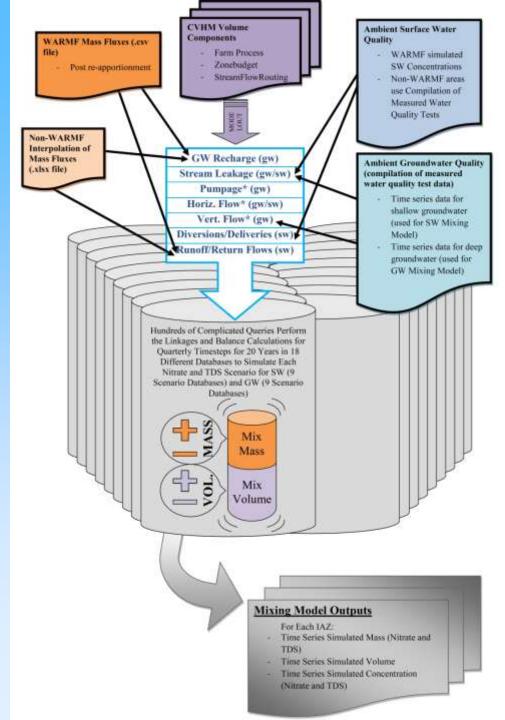
ICM: Task 6 Aggregate Scale

"Shallow" IAZ Volume: 20-Yr Vertical Travel Time

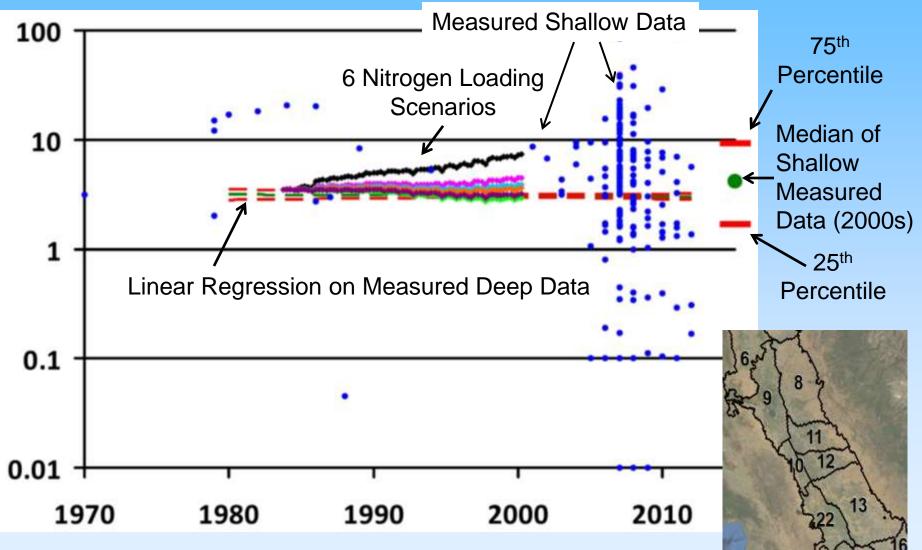


Major Components of Mass Load Transfer:

- 1) Recharge to Groundwater
- 2) Vertical Flow to Deeper Aquifer

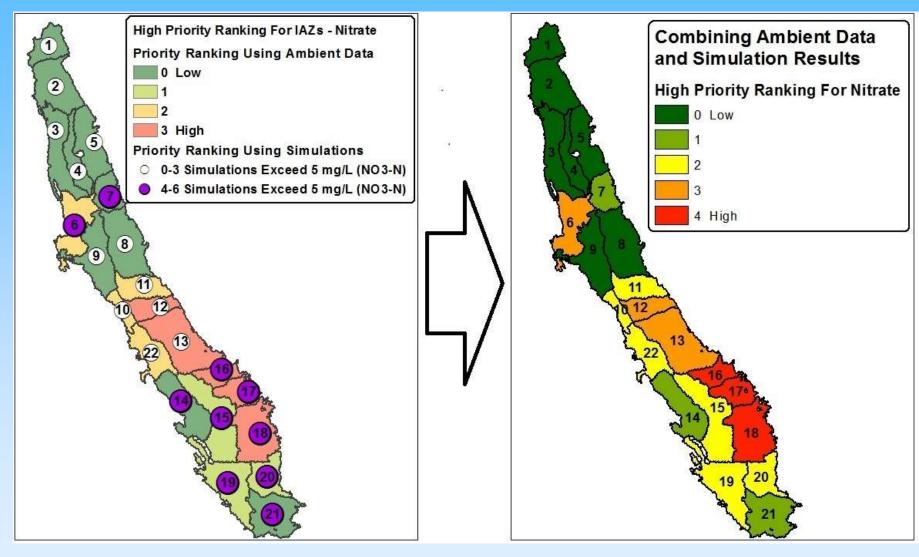

NO₃ and Salt Loading Scenarios

- Developed From Original Loading Inputs
- 6 Nitrogen Scenarios
 - High, moderate, and low nitrogen use efficiency (NUE)
 - 90%, 75%, & 60% of low NUE
- 3 Salinity Scenarios
 - 50%, 100%, & 200% of original inputs

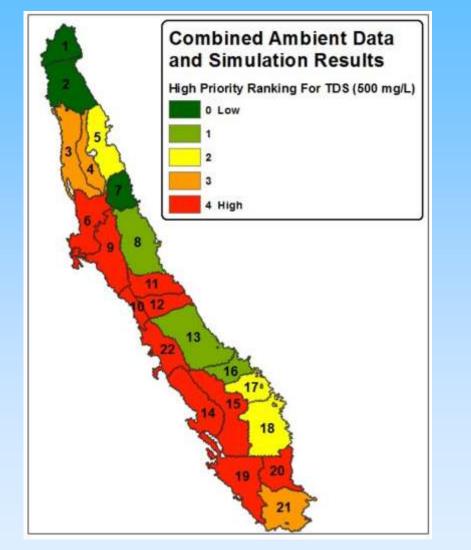


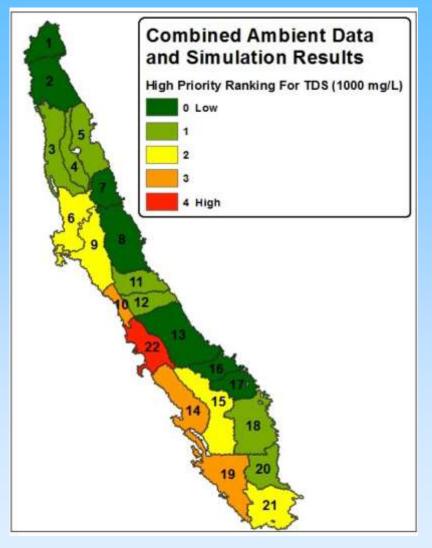
Central Valley Database Mixing Model

- Hundreds of Complex Queries
- Quarterly Timesteps
- 20 Years
- 18 different databases for SW & GW scenarios
- Salt and NO₃-N



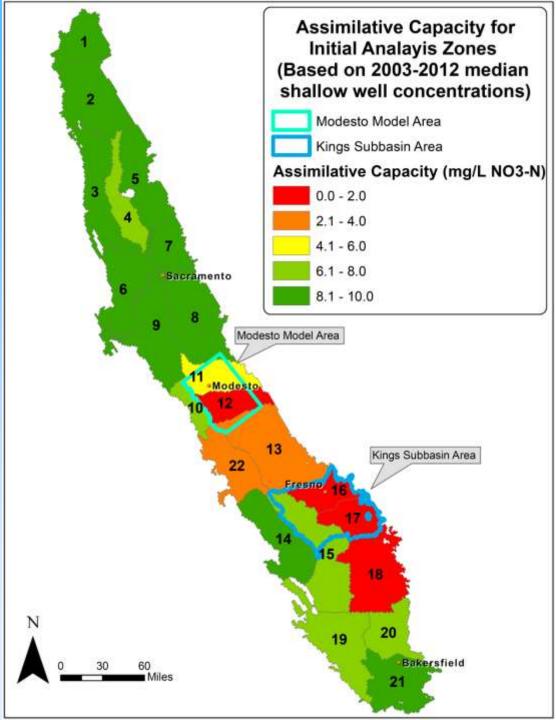
Example Results – Modesto Area IAZ-11 NO₃-N


Central Valley Water Board Meeting: 6 December 2013


IAZ Prioritization for NO₃-N (10 mg/L)

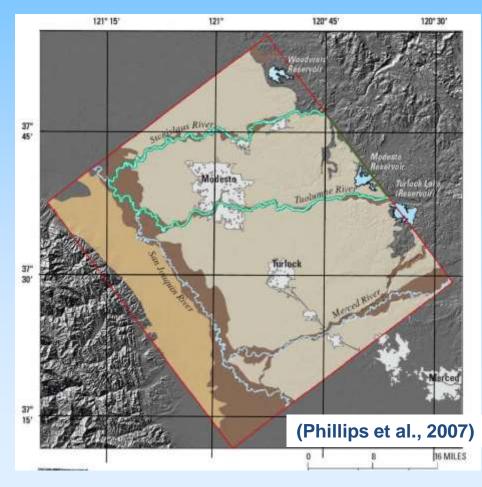
3 IAZs exceed Ranking Criteria for NO₃-N

IAZ Prioritization for TDS (500 & 1000 mg/L)

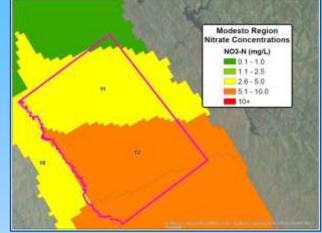

Many IAZs exceed Ranking Criteria for TDS at 500 mg/L

Shallow Assimilative Capacity: NO₃-N (10 mg/L) And TDS at 500, 700 and 1000 mg/L

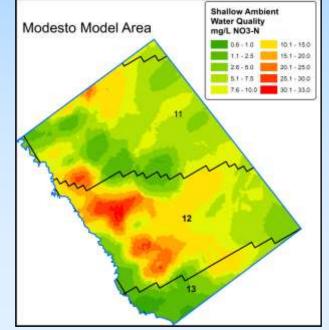
		Nitrate			TDS				
			nt Data NO3-N)	Assimilative Capacity	Ambient Data (mg/L)		Assimilative Capacity		
	IAZ	Shallow Median (2003-2012)	Estimated Deep (2003)	10 mg/L NO3-N Threshold	Shallow Median (2003-2012)	Estimated Deep (2003)	500 mg/L Threshold	700 mg/L Threshold	1000 mg/L Threshold
ey	1	0.1	0.8	9.9	370	158	130	330	630
Northern Central Valley	2	0.6	1.4	9.4	201	223	300	500	800
tra	3	0.9	1.5	9.1	583	381	0	117	417
Cent	4	2.8	0.2	7.2	761	363	0	0	240
E	5	0.4	0.9	9.6	329	281	171	371	671
the	6	0.6	2.0	9.4	1060	461	0	0	0
Noi	7	0.7	1.1	9.3	398	241	103	303	603
Ň	8	1.2	1.1	8.8	438	226	62	262	562
alle	9	0.4	0.5	9.6	961	560	0	0	40
Middle Central Valley	10	2.7	4.2	7.3	842	911	0	0	159
	11	4.9	3.2	5.1	565	273	0	135	435
	12	10.4	3.0	0.0	825	267	0	0	175
Ippi	13	6.1	2.2	4.0	648	236	0	53	353
Σ	22	7.4	1.9	2.6	1160	645	0	0	0
×	14	0.4	1.0	9.6	3375	966	0	0	0
alle	15	3.0	0.4	7.0	1000	337	0	0	0
Southern Central Valley	16	11.1	3.1	0.0	575	218	0	125	425
	17	8.5	2.9	1.5	520	199	0	180	480
	18	10.7	3.0	0.0	598	213	0	102	402
	19	3.3	1.1	6.7	11300	397	0	0	0
	20	3.4	2.0	6.6	870	309	0	0	130
Š	21	0.2	1.5	9.8	335	262	165	365	665


Preliminary Assimilative Capacity: NO₃-N

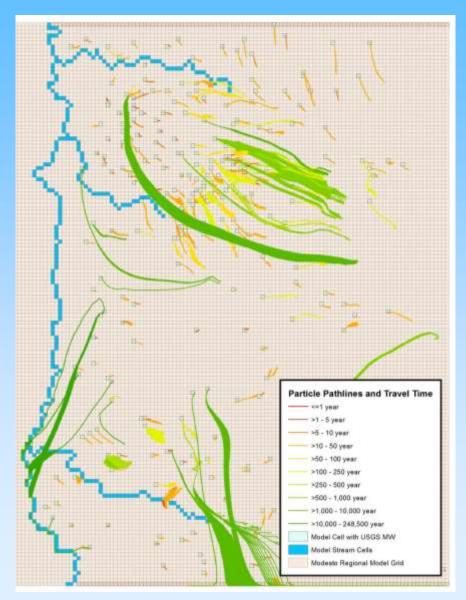
Relative to NO₃-N at 10 mg/L

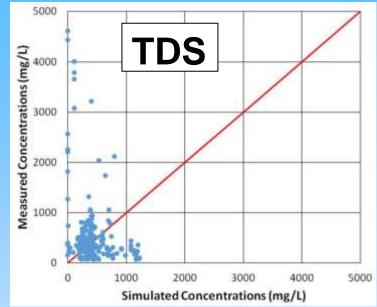

USGS Modesto Regional Model

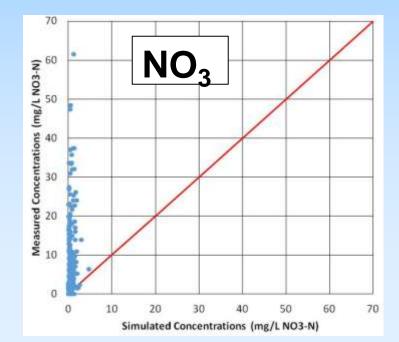
- 1/4 mi² cell
- Local level prototypeUtilize MODPATH-OBS



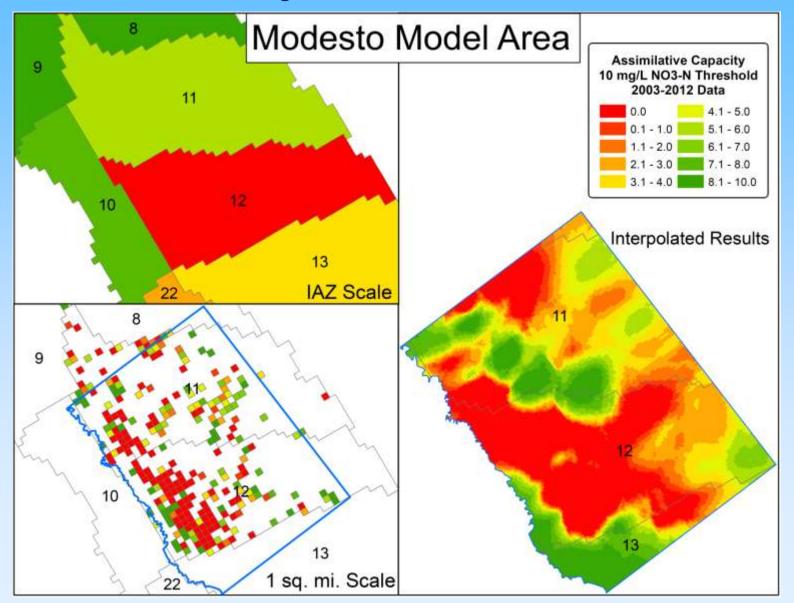
Central Valley Water Board Meeting: 6 December 2013


NO₃ – Aggregate Scale

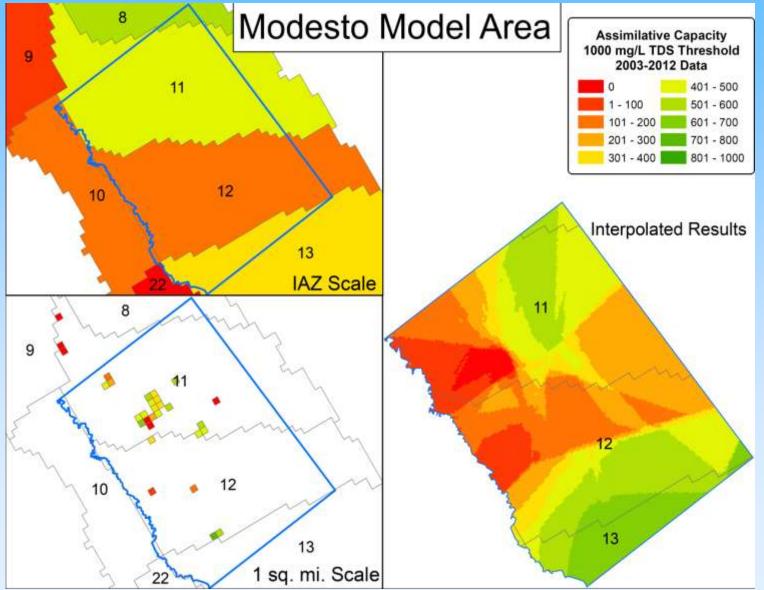

NO₃ – Finer Resolution



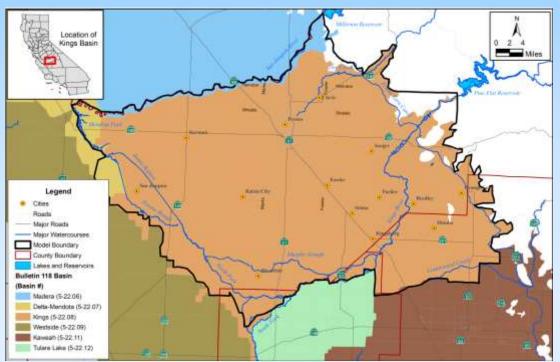
Modesto Regional Model Simulation Results



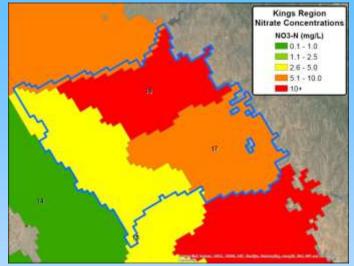
USGS Observation Wells



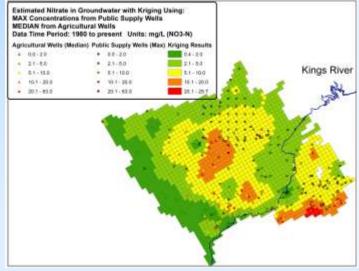
Modesto Regional Model: Assimilative Capacity NO₃-N 10 mg/L



Modesto Regional Model: Assimilative Capacity TDS 1000 mg/L


Kings Subbasin

- CVHM (Subregions 16, 17, & part of 15); Similar to IGSM
- 1 mi² cell
- SNMP Master Plan Prototype; Proof of Concept
- GW Flow plus Salt & NO₃ Transport



Central Valley Water Board Meeting: 6 December 2013

NO₃ – Aggregate Scale



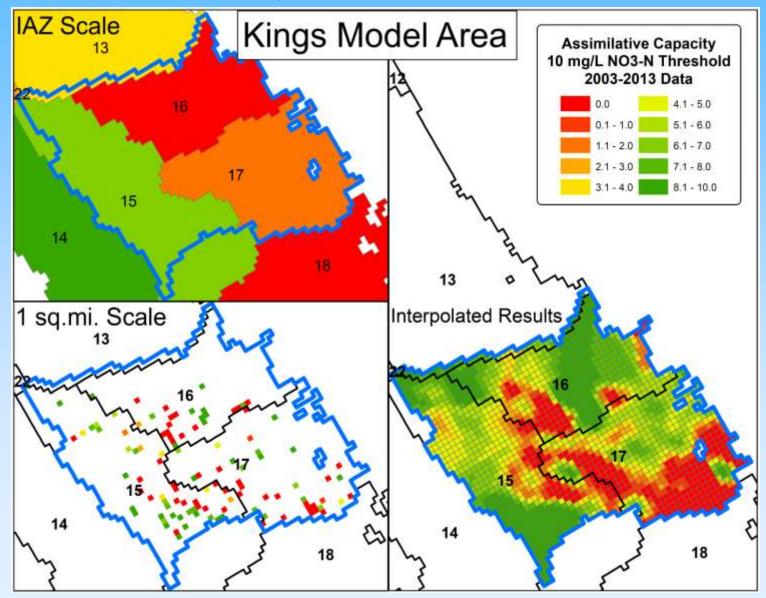
NO₃ – Finer Resolution

1984

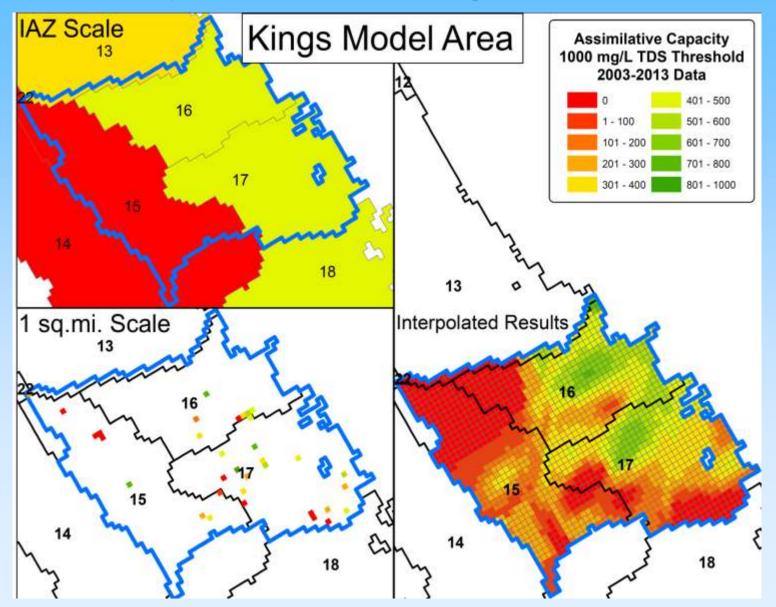
2004

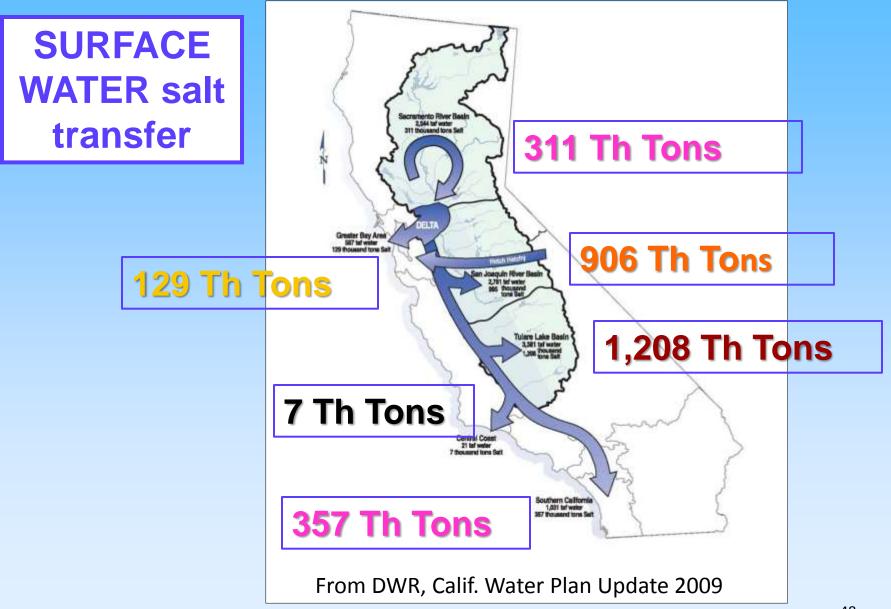
20-Yr Simulated GW Quality Changes (1984-2004)

Layer 2


Layer 3

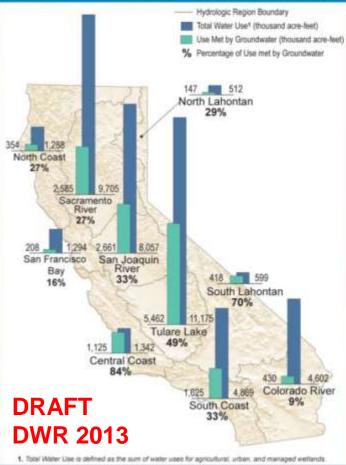
Layer 6


Nitrate (mg/L as N)


Kings Subbasin Model: Assimilative Capacity NO₃-N 10 mg/L

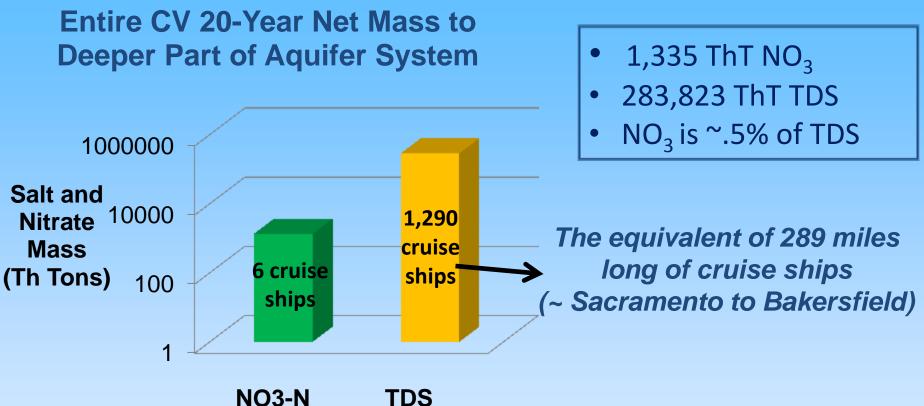
Kings Subbasin Model: Assimilative Capacity TDS 1000 mg/L

Salt – Transbasin Transport Per Year


DWR Water Plan Update 2013 - Draft GW Content on GW Use

5.x.2 Groundwater Use

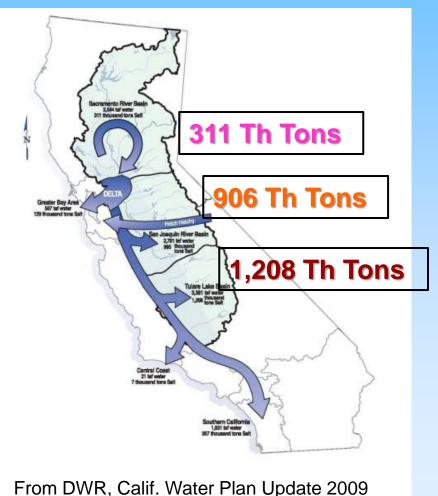
- By HR, Planning Area, & County
- By Use: Ag, Urban, MW


Tables, Maps, Figures

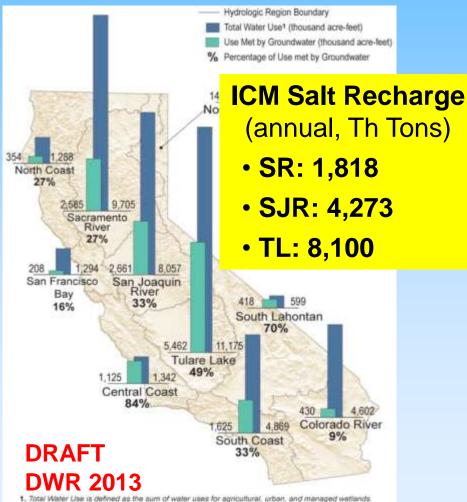
Statewide Groundwater Use Reporting

How Many Cruise Ships....

NO₃-N


Includes:

- 1 applied water (SW/GW)
- 2 nutrients + amendments
- 3 ambient shallow mass


Transbasin Significance of Salt

Surface Water Transbasin Movement (annual)

Central Valley Water Board Meeting: 6 December 2013

Annual GW Use & Deeper Aquifer Salt Recharge Mass

Lessons Learned from ICM – Part 1

- Groundwater Quality Data
 - Limited in some IAZs (spatial and temporal)
 - Well construction data usually not publicly accessible
 - Linkage relative to aquifer system usually hindered due to well data issue
 - ID high priority areas with <u>little to no</u> assimilative capacity
- Modeling Work: Fate of Salt and Nitrate
 - IAZ scale mixing model analysis good for low resolution determination
 - Salt and Nitrate Major Components = recharge to water table & vertical flow to deeper aquifer

Lessons Learned from ICM – Part 2

- Smaller-Scale Analysis
 - Prototype Areas: Modesto and Kings
 - Uncertainty in estimated recharge concentrations
 - Proof-of-concept tools
 - Flow and transport models
 - More detailed fate and transport results
 - Finer scale of analysis needed to characterize ambient conditions and assimilative capacity
 - Benchmark Study entire Central Valley Floor
 - Includes SW loading, existing GW quality, surface mass loading (applied water, fertilizers and amendments)
 - Enormous masses of salt and nitrate are moving deeper and deeper over time (e.g., 1,290 cruise ships worth of salt over 20 years)

Conceptual Model Development – Phases I & II

Key Elements	Phase I (ICM)	Phase II (Potential Tasks)			
Ambient GW Quality	Coarse scale analysis (Initial Analysis Zones – IAZs); higher resolution in 2 focus areas	Develop final methodology; apply to example areas (higher resolution)			
Assimilative Capacity (existing and projected)	Preliminary coarse scale analysis in IAZs; higher resolution in 2 focus areas	Develop final methodology; test on example areas (higher resolution)			
Salt and Nitrate Transport	Coarse scale analysis	High resolution analysis (Archetype Area; existing vs. future scenarios)			
Management Area	Default to IAZs (CVHM/DWR water balance regions)	Guidance for Management Zone Concept			
SNMP (Local Development)	"Proof of concept" tools; flow & transport models for incorporation	Draft guidance for technical elements of local SNMPs			
GW Monitoring Central Valley Water Board Mee	Preliminarily assess data gaps	Data distribution needs; inform Phase III 54			

Questions?

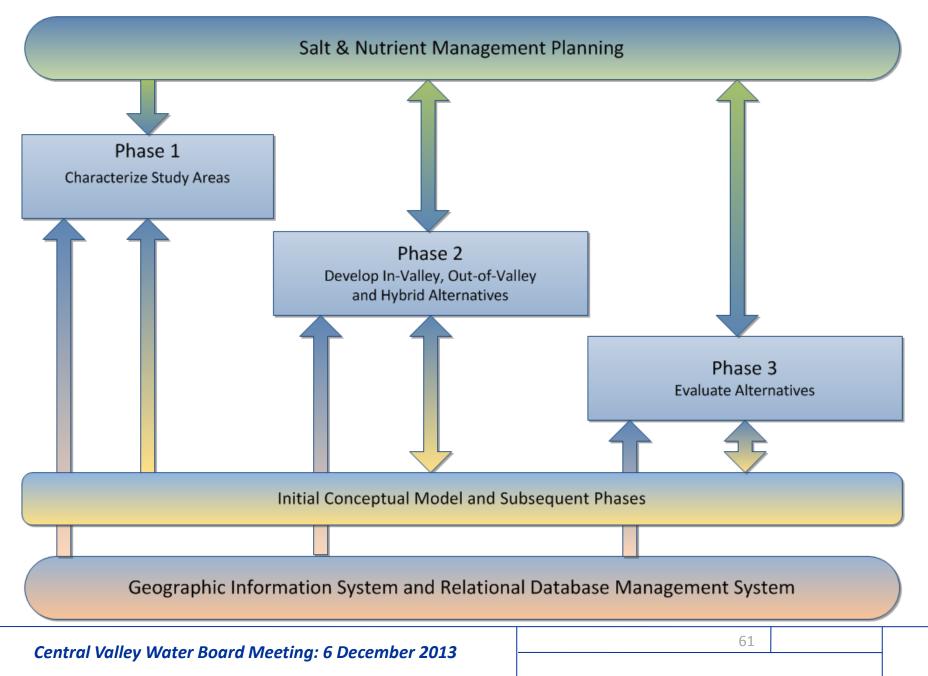
Photo Credits: Gary Pitzer, Water Education Foundation, Oct. 2009

STRATEGIC SALT ACCUMULATION LAND AND TRANSPORT STUDY (SSALTS)

Technical Area	Primary Activities	SNMP Support	2012	2013	2014	2015	2016	
	Initial Conceptual Model	 Source identification Assimilative capacity Loading estimates 		\rightarrow	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	6 3 3 4 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		
Conceptual Model Development	Phase 2	 Source and loading refinement Background water quality/ assimilative capacity calculation methods Management zone study 			\rightarrow			
	Phase 3	 Antidegradation analysis Monitoring plan Economics analysis 		- - - - - - - - - - - - - - - - - - -		\rightarrow		
Data	GIS – Phase 2	Baseline database	î.	\rightarrow				
Development	Agriculture Zone Mapping	AGR implementation tools	ļ					
	Tulare Lake Bed MUN Archetype	MUN implementation tools	te //	10	\rightarrow		Prepare Final	
Beneficial Use Studies	MUN Beneficial Use in Agriculturally Dominated Water Bodies Archetype	MUN implementation tools			\rightarrow	9 9 9 9	SNMP	
Water Quality	Salinity-related Effects on Agricultural Irrigation Uses Salinity Effects on MUN-related Uses of Water	 Evaluation of science behind establishment of salinity related 						
Objectives	Stock Watering Study	objectives		\rightarrow				
	Aquatic Life Study		1					
Implementation	Strategic Salt Accumulation Land and Transport Study (SSALTS)	SNMP implementation measures to						
Planning	Post SSALTS Implementation Planning	manage salt on a sustainable basis				\rightarrow		
Lower San	Technical Analyses (salt loading characterization, modeling)	Coordination with CV-SALTS SNMP			\rightarrow			
Joaquin River Committee	Basin Planning Activities (WQOs, SED, economics, monitoring, implementation)	development activities to ensure consistency			57			

SNMP Requirements Addressed by CV-SALTS

Required SNMP Elements	Primary Technical Project Support						
Salt and Nitrate Characterization - Source ID, Loading Estimates, Fate & Transport, Assimilative Capacity	Conceptual Model Project						
Monitoring Plan - Salt, nutrients, constituents of emerging concern	Conceptual Model Project						
Antidegradation Analysis	Conceptual Model Project						
Implementation Measures to Manage Salt/Nitrate Loading on a Sustainable Basis	 SSALTS - Phase 1 complete; complete Phases 2 & 3 in 2014 Post-SSALTS Implementation Planning (Complete in 2015) 						
Water Recycling & Stormwater Recharge/Use Goals and Objectives	Policy Committee Activity						
Salt & Nitrate Management Plan	Conceptual Model ProjectLater Refinements						
Control Valley Water Board Mosting, C.D.	58						

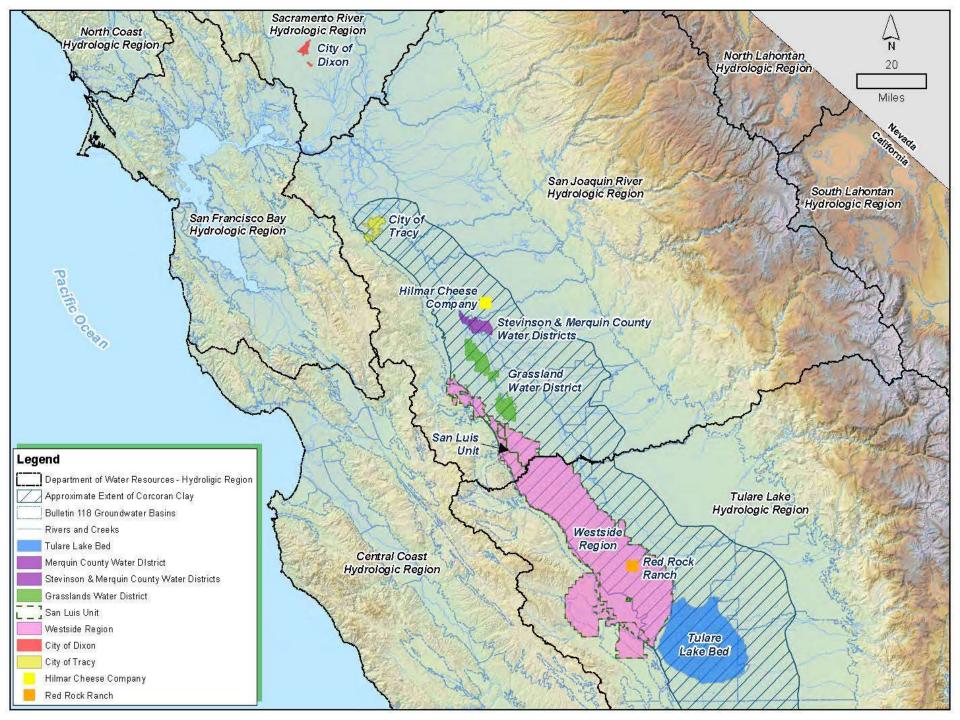

SSALTS – How Do We Dispose of the Salt?

- SSALTS project focuses on sustainable salt management by evaluating the following general questions:
 - Given that salt accumulation is occurring, how is salt being managed now?
 - How will we dispose of salt in the future in a manner that is sustainable?
 - Once we identify the "how", what policy and regulatory actions are required to put the "how" into practice through implementation of the SNMP?

SSALTS – Phased Project

- Phase 1 Characterize Existing Salt Accumulation Study Areas
 - Identify representative Study Areas
 - Characterize study areas to establish baseline information
 - Perform screening-level analysis of sustainability
- Phase 2 Develop Potential Long-term Salt Management Strategies
 - In-valley alternatives
 - Out-of-valley alternatives, and
 - Hybrid alternatives (combination of in-valley and out-of-valley)
- Phase 3 Evaluate Potential Salt Disposal Implementation Alternatives
 - Develop and apply feasibility criteria (e.g., regulatory, institutional, economic, technological, etc.)
 - Identify and prioritize acceptable salt disposal alternatives for potential incorporation into Central Valley SNMP

SSALTS Phases



Salt Management – Current Practices

- Phase 1 evaluated how salt is currently being managed in the Central Valley through the characterization of selected study areas
- Analysis focused on comparisons of existing disposal practices and an evaluation of the sustainability of these practices considering a number of planning factors
- Findings provide the foundation for development of alternatives in Phase 2 and analysis of these alternatives in Phase 3

Phase 1 Study Areas

Study Area	Central Valley Planning Area	Representative Area or Sector
City of Dixon	Sacramento River Basin	Municipal
City of Tracy	San Joaquin River Basin	Municipal
Hilmar Cheese	San Joaquin River Basin	Industrial
Industrial Food Processing Facilities	Central Valley	Industrial
Red Rocks Ranch	Tulare Lake Basin	Agriculture
Grassland Water District	San Joaquin River Basin	Agriculture
Stevinson Water District	San Joaquin River Basin	Agriculture
Tulare Lake Bed	Tulare Lake Basin	Agriculture
Westside Regional Drainage Plan	San Joaquin River Basin	Agriculture
San Luis Unit Ocean Disposal	San Joaquin River Basin	Agriculture

Study Area Sustainability Analysis to Inform Subsequent Project Phases

- Seven factors considered in the Study Area sustainability analysis
- Factor scoring primarily qualitative
 - Relative scores more important than absolute scores findings tell us what is or is not working
 - Reveals information regarding potential obstacles and opportunities for salt management
- Baseline information provides input to alternatives development
 - Consider differences across sectors (e.g., municipal, industrial, agriculture)
 - Consider potential regional differences what may be sustainable in one geographic area may not be in another

Sustainability Analysis Factors

Factor	4 - High	1 - Low			
<i>Implementability</i> of the salt disposal method	Utilizes proven technologies and is readily implementable	Salt disposal method is not working or utilizes unproven technologies			
Salt <i>capacity</i> of the disposal method	Project's salt disposal load was not limited by the disposal method	Salt disposal method has a capacity less than the salt disposal load			
Regulatory challenges	Project is readily permittable and is able to meet current regulatory requirements	Project faces considerable regulatory challenges - now or in the 50-year planning horizon			
<i>Institutional</i> requirements	 Bias toward fewer entities involved – unless part of a group with strong governance structure Bias also given toward, in some cases, public sector project proponents with known or secure funding sources 	Group of small, underfunded individual stakeholders			
		66			

Sustainability Analysis Factors (cont.) **1 - Low** 4 - High Factor Capital and operation and Projects with lower Projects with higher anticipated maintenance *costs* anticipated costs costs Reasonable potential for Potential *environmental* Little to no anticipated significant environmental issues environmental issues issues to arise Reasonable public Public acceptance Little to no public acceptance acceptance

Central Valley Water Board Meeting: 6 December 2013

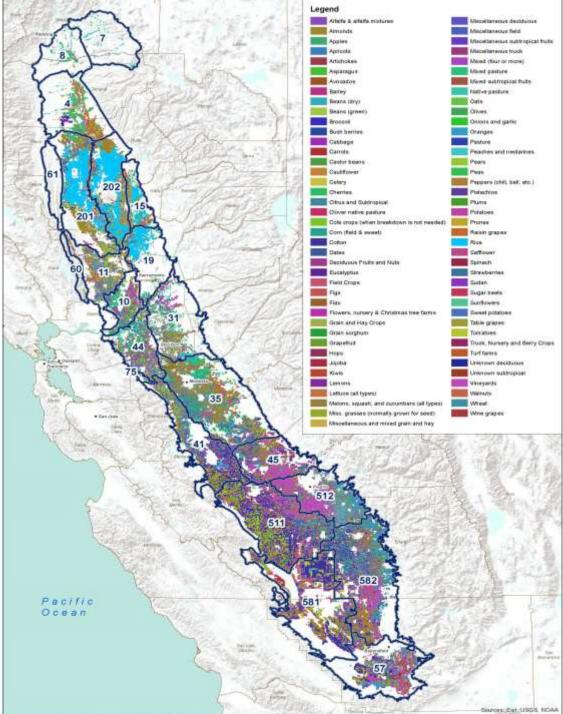
67

SSALTS - Next Steps

- Phase 2 Develop and Characterize Salt Disposal Alternatives – In-Valley, Out-of-Valley, Hybrid or Combination
 - Use knowledge gained in Phase 1
 - Eliminate potential alternatives not deemed feasible
 - Describe institutional, economic or regulatory considerations or barriers that could affect implementation
- Phase 3 Evaluate Potential Salt Disposal Alternatives to Identify Acceptable Alternatives for Implementation
 - Develop feasibility evaluation criteria
 - Perform screening level feasibility analysis
 - Develop prioritized list of salt disposal alternatives to support SNMP development

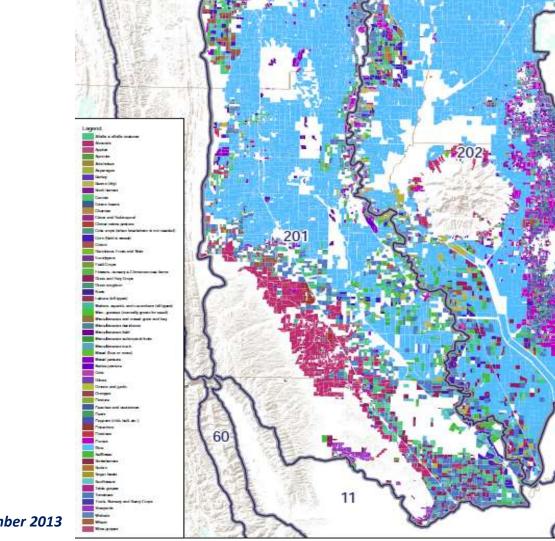
AGRICULTURAL ZONE MAPPING

Technical Area	Primary Activities	SNMP Support	2012	2013	2014	2015	2016	
	Initial Conceptual Model	 Source identification Assimilative capacity Loading estimates 	L					
Conceptual Model Development	Phase 2	 Source and loading refinement Background water quality/ assimilative capacity calculation methods Management zone study 			\rightarrow			
	Phase 3	 Antidegradation analysis Monitoring plan Economics analysis 				\rightarrow		
Data	GIS - Phase 2	Baseline database	-	\rightarrow				
Development	Agriculture Zone Mapping	AGR implementation tools			\rightarrow	>		
	Tulare Lake Bed MUN Archetype	 MON implementation tools 	S. 14	85	\rightarrow		Prepare Final	
Beneficial Use Studies	MUN Beneficial Use in Agriculturally Dominated Water Bodies Archetype	rally Dominated Water			\rightarrow		SNMP	
	Salinity-related Effects on Agricultural Irrigation Uses							
Water Quality	Salinity Effects on MUN-related Uses of Water	 Evaluation of science behind establishment of salinity related objectives 	\rightarrow					
Objectives	Stock Watering Study							
	Aquatic Life Study			\rightarrow				
Implementation	Strategic Salt Accumulation Land and Transport Study (SSALTS)	SNMP implementation measures to	-		\rightarrow			
Planning	Post- SSALTS Implementation Planning	manage salt on a sustainable basis				\rightarrow		
Lower San	Technical Analyses (salt loading characterization, modeling)	Coordination with CV-SALTS SNMP						
Joaquin River Committee	Basin Planning Activities (WQOs, SED, economics, monitoring, implementation)	development activities to ensure consistency			70			


Agricultural Zone Mapping Project

- Compiled additional GIS-related information to provide support to policy discussions regarding AGR protection (agricultural irrigation)
 - Crop cover and salt sensitivity
 - Irrigation sources
 - Climate

- Soils
- Applied water quality
- Hydrography
- Currently evaluating use of compiled data to potentially delineate mapped areas based on crop salinity thresholds

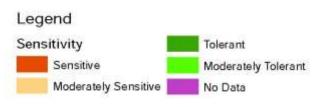

Agricultural Zone Mapping Project

- Crop diversity in the Central Valley
- 81 categories of crops represented in this figure

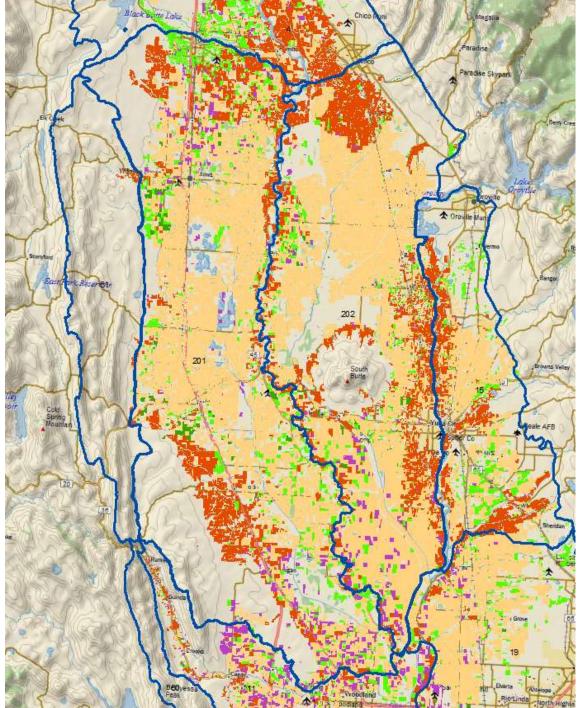
Agricultural Zone Mapping Project

- Portion of
 Sacramento
 River Valley
- Dominated by Almonds, Walnuts and Rice

15

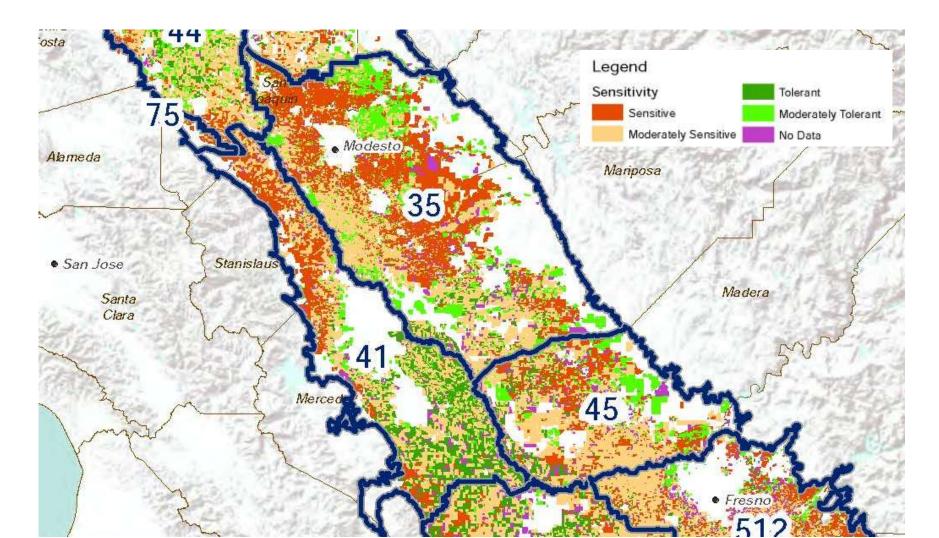

19

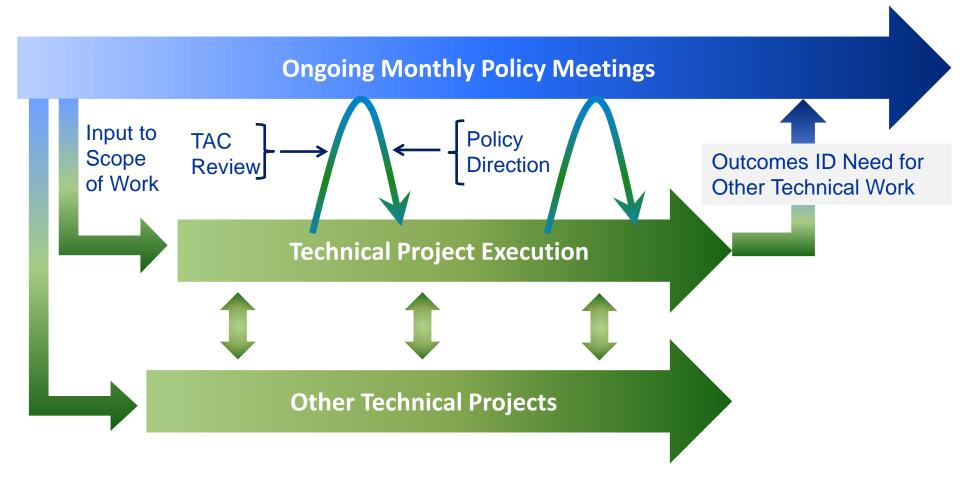
Sources: East, USGS, NOAA


Agricultural Zone Mapping Project

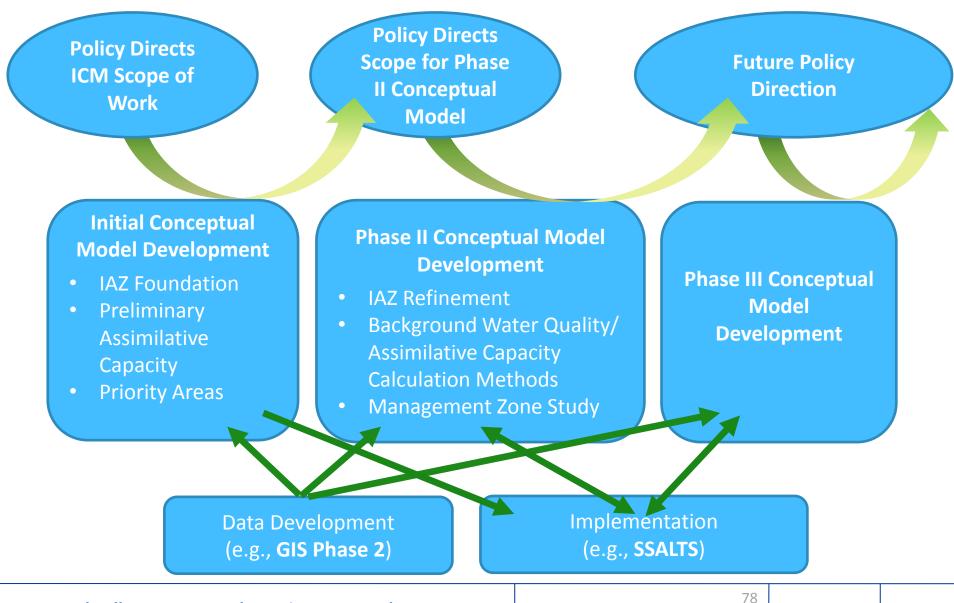
- Portion of Sacramento River Valley
- Crop sensitivity based on salt tolerance (literature)

Crop salinity tolerance classes (USDA, Ayers & Westcot, etc.)




Agricultural Zone Mapping Project

- Area in Central Valley between Modesto and Fresno
- Crop sensitivity based on salt tolerance (literature)



TECHNICAL WRAP-UP

Nexus Between Policy & Technical Work

Policy & Technical Nexus in Action

Technical Area	Primary Activities	SNMP Support	2012	2013	2014	7015	2016
	Initial Conceptual Model	 Source identification Assimilative capacity Loading estimates 		\rightarrow			
Conceptual Model Development	Phase 2	 Source and loading refinement Background water quality/ assimilative capacity calculation methods Management zone study 			\rightarrow		
	Phase 3	 Antidegradation analysis Monitoring plan Economics analysis 					
Data	GIS – Phase 2	Baseline database	Ť	\rightarrow			
Development	Agriculture Zone Mapping	AGR implementation tools					
	Tulare Lake Bed MUN Archetype	MUN implementation tools	1 - 0	45			Prepare Final
Beneficial Use Studies Tulare Lake Bed MUN Archetype MUN Beneficial Use in Agriculturally Dominated Water Bodies Archetype Salinity-related Effects on	MUN implementation tools	1				SNMP	
	Salinity-related Effects on Agricultural Irrigation Uses						1
Water Quality	Salinity Effects on MUN-related Uses of Water	Evaluation of science behind establishment of salinity related	\rightarrow				1
Objectives	Stock Watering Study	objectives		\rightarrow]
	Aquatic Life Study		1				1
Implementation Planning	Strategic Salt Accumulation Land and Transport Study (SSALTS) Post- SSALTS Implementation Planning	 SNMP implementation measures to manage salt on a sustainable basis 	-				
Lower San	Technical Analyses (salt loading characterization, modeling)	Coordination with CV-SALTS SNMP					
Joaquin River Committee	Basin Planning Activities (WQOs, SED, economics, monitoring, implementation)	development activities to ensure consistency					

Stakeholder Commitment BUDGET AND TIMELINE

Central Valley Salinity Coalition Members

- California Cotton Growers and Ginners Association*
- California League of Food Processors*
- California Rice Commission*
- California Association of Sanitation Agen cies*
- Central Valley Clean Water Association*
- City of Davis*
- City of Manteca*
- City of Modesto*
- City of Stockton*
- City of Tracy*
- City of Vacaville*
- City of Fresno*
- County of San Joaquin*
- Dairy CARES /Western **United Dairymen***
- **Discovery Bay CSD**

- East San Joaquin Water Quality Coalition*
- Pacific Water Quality Association •
- Sacramento Regional County Sanitation District*
- San Joaquin River Group Authority* ٠
- San Joaquin Valley Drainage Authority* •
- South San Joaquin Water Quality • Coalition*
- Stockton East Water District*
- The Wine Institute* •
- Tulare Lake Drainage and Water • Districts*
- Western Plant Health Association*
- Westlands Water District*
- * Denotes Board Member

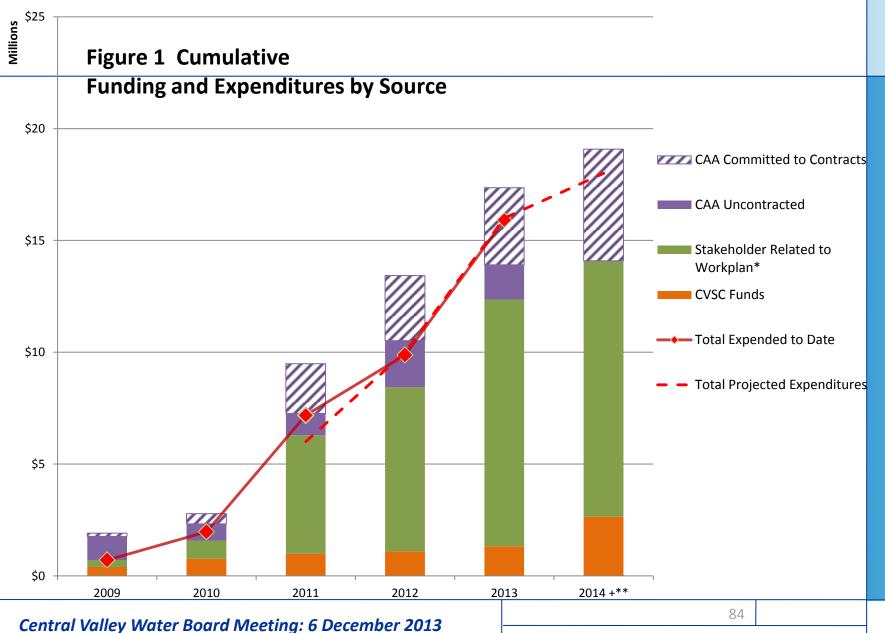
Budget from Packet

Amended Approved 7/9/13

	2012 Approved Workplan	Contracted Amount	Current Estimate	CAA Obligation	Projected Available Balance	Total Funding	CVSC Obligation	Stake holders & Grants
					\$5,765,000			
SJVDA Contracts Administrative Oversight*	\$0	\$401,262	\$401,262	\$401,262	\$5,363,738	\$401,262		
Program Management and Development					\$5,363,738	\$0		
Program Mgt/Facilitation thru 2/11 to 1/13	\$600,000	\$667,756	\$667,756	\$667,756		\$667,756		
Program Mgt. and Facilitation (3/13 to 3/16)	\$600,000	\$600,000	\$600,000	\$0	\$4,695,982	\$600,000	\$600,000	
Maintaining mtg minutes and website	\$160,000		\$110,000	\$80,000	\$4,615,982	\$110,000	\$30,000	
Prior Implementation LWA Pilot Salt Study			\$585,000		\$4,615,982	\$585,000	\$585,000	
Prior Implementation & future Outreach Efforts	\$900,000		\$50,000	\$50,000	\$4,565,982	\$50,000		
Basin Planning Support	\$90,000	\$104,789	\$104,789	\$104,789	\$4,461,193	\$104,789		
Policy Discussions on BU and WQO 2/13 - 1/15	\$140,000	\$75,000	\$215,000	\$75,000	\$4,386,193	\$215,000	\$140,000	
Technical Project Management	\$500,000		\$982,713	\$0	\$4,386,193	\$0		
EKI Technical Project Management (closed)		\$111,915	\$111,915	\$111,915	\$4,274,278	\$111,915		
LSJR Interim Committee Mgr. (thru 09/2012)		\$50,000	\$32,000	\$32,000	\$4,242,278	\$32,000		
CV-SALTS CDM Smith TPM thru 10/31/13		\$296,098	\$296,098	\$296,098	\$3,946,180	\$296,098		
CV-SALTS CDM Smith TPM thru 10/31/15 **			\$264,000	\$0	\$3,946,180	\$264,000	\$264,000	
LSJR Committee Manager*		\$213,085	\$278,700	\$278,700	\$3,667,480	\$278,700		
Conceptual Model					\$3,667,480			
Phase I -approach, data, model (completed)	\$200,000	\$473,918	\$495,918	\$495,918	\$3,171,562	\$495,918		
Phase II (\$575K)* Estimated cost and topics					\$3,171,562			
Prioritization & Refine Model from Phase 1	\$150,000	\$25,000	\$50,000	\$50,000	\$3,121,562	\$50,000		
Potential Implementation Archetypes	\$100,000		\$150,000	\$150,000	\$2,971,562	\$150,000		
Background WQ Assimilative Capacity	\$100,000		\$125,000	\$125,000	\$2,846,562	\$125,000		
Effectiveness/Sustainability Demonstration	\$150,000		\$125,000	\$125,000	\$2,721,562	\$125,000		
Prepare CV SNMP Element Documentation	\$200,000		\$125,000	\$125,000		\$125,000		
Phase III (\$500K)* Estimated cost and topics			, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, ,,	\$2,596,562	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Surveillance and Implementation §13242	\$100,000		\$100,000	\$100,000	.,,,	\$100,000		
Conduct Economic Analysis	\$300,000		\$300,000	\$300,000		\$300,000		
Perform Antidegradation Analysis	\$125,000		\$100,000	\$100,000		\$100,000		
Technical Studies	<i><i><i>q</i>120,000</i></i>		<i>φ100/000</i>	<i><i>φ</i>100/000</i>	\$2,096,562	<i>\</i> 100,000		
BUOS Part I (completed)	\$0	\$49,982	\$49,982	\$49,982	.,,,	\$49,982		
BUOS Update with GIS Layers	\$50,000	\$100,004	\$100,004	\$100,004	. , ,	\$100,004		
Ag Water Quality Zoning Map	\$100,000	\$120,000	\$240,000	\$120,000	\$1,826,576	\$240,000	\$55,000	\$65,000
Stock Watering*	\$29,000	\$29,000	\$29,000	\$120,000	\$1,826,576	\$29,000	. ,	\$29,000
Aquatic Life	<i>\</i>	\$31,500	\$31,500	\$31,500		\$31,500		<i>\</i> 25)000
Groundwater Archetype (Tulare)	\$600,000	\$100,000	\$300,000	\$100.000		\$300.000		\$200,000
MUN POTW Archetype	\$1,000,000	\$300,000	\$300,000	\$110,000	\$1,585,076	\$300,000	\$75,000	\$115,000
Water Quality Testing Subtask completed *	Ŷ1,000,000	\$45,099	\$45,099	\$45,099	. , ,	\$45,099	<i>,,,,,,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	***
Lower San Joaquin River Salt & Boron WQO	\$765,000	\$765,000	\$765,000	\$765,000	\$774,977	\$765.000		
Implementation Planning	<i>,,03,000</i>	<i>\$103,000</i>	<i>,,,,,,,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	<i>\$103,000</i>	\$774,977	<i>,,,,,,,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
SSALTS Phase 1	\$335,000	\$345,000	\$345,000	\$345,000	\$429,977	\$345,000		
SSALTS & Implementation Planning/Refine MA	\$350,000	,000,C+iCÇ	\$100,000	\$100,000	\$329,977	\$100,000		
Effective MP evaluation	\$215,000		\$348,377	\$100,000 \$0	\$329,977	\$348,377		\$348,377
Economically Disadvantaged Communities	\$215,000		əə40,377	ŞU	\$329,977 \$329,977	əə40,377		7 / 3,940
	şss,000							
Documentation Basin Plan Amendment	¢420.000		¢400.000	¢200.000	\$329,977 \$29.977	\$400,000	\$100,000	
CEQA Equivalent (SED) & Basin Plan Staff Report	\$430,000		\$400,000		/ -	. ,	. ,	
Final SNMP Documentation and changes (16/17)	\$75,000		\$104,977	\$29,977	\$0 ¢0	\$104,977	\$75,000	
Initial Implementation (not shown here)	¢0.440.000	64 004 cm	¢0.446.277		\$0	60 AAC 277	¢4.024.000	6757 277
Potential Final Balance:	\$8,419,000	\$4,904,408	\$8,446,377	\$5,765,000	\$0	\$8,446,377	\$1,924,000	\$757,377

Notes/Legend

Central Valley Water Board Meeting: 6 D Scope/Cost Not Included in February 2012 workplan for this task *


** TPM paid by CVSC in 2014-15

*** Stakeholder funding from MUN POTW participants \$60K and up to \$55K from CVSC member direct contributions plus up to \$75K CVSC contribution

Cost Share Summary

Annual	Year								
	2009	2010	2011	2012	2013	2014 +**			
CVSC Workplan	\$398,719	\$362,530	\$220,000	\$116,896	\$220,000	\$1,326,297			
Stakeholder Direct Workplan	\$0	\$0	\$73,000	\$384,744	\$834,000	\$144,000			
CAA Expended	\$0	\$387,764	\$433,527	\$167,076	\$1,278,815				
CAA Projected						\$2,732,818			
Workplan Expended to Date	\$398,719	\$750,294	\$726,527	\$668,716	\$2,332,815	\$1,470,297			
Stakeholder Related to									
Workplan*	\$307,604	\$511,611	\$4,483,307	\$2,030,420	\$3,704,209	\$402,395			
Cumulative									
	2009	2010	2011	2012	2013	2014 +**			
CVSC Funds	\$398,719	\$761,249	\$981,249	\$1,098,145	\$1,318,145	\$2,644,442			
Total Stakeholder Direct									
Workplan	\$0	\$0	\$73,000	\$457,744	\$1,291,744	\$1,435,744			
Stakeholder Related to				1					
Workplan*	\$307,604				\$11,037,151				
Total Stakeholder Expenditures	\$706,323								
CAA Uncontracted	\$1,054,070	\$745,294	\$976,766	\$2,083,852	\$937,131	\$0			
CAA Committed to Contracts	\$145,930	\$454,706	\$2,223,224	\$2,916,148	\$4,062,869	\$5,000,000			
CAA Expended to Date	\$0	\$387,764	\$821,291	\$1,383,608	\$2,285,436				
Total Expended to Date	\$706,323	\$1,968,228	\$7,178,062	\$10,272,439	\$15,932,476				
Total Projected Expenditures			\$7,000,000	\$10,000000	\$16,000,000	\$20,000,000			
% Stakeholder Expended Funds	100%	80%	89%	87%	86%				
Central Valley Water Board Mee		er 2013			00				

Relative Contributions to Project Costs

<u>Anticipated Outcome</u>: Adoption of a CV-SNMP that Complies with SRWP

Recycled Water Policy Elements	CV-SALTS
Water recycling and stormwater management goals/objectives	X
Conceptual model Source/fate; assimilative capacity; etc.	X
Monitoring Plan	X
Antidegradation analysis	X
Implementation methods Including templates for modifying Beneficial uses, water quality objectives, and developing area-specific SNMPs	X
Management activities	X
Central Valley Water Board Meeting: 6 December 2013	85

<u>Anticipated Outcome</u>: Ability to Fold in More Area-specific SNMPs, as needed

- Utilize Master CV-SNMP as default management approach
- Periodic updates to include area-specific SNMPs in the future
 - Utilize process templates from master plan
 - Area-specific SNMPs
 - Archetypes
 - Prototypes
- Facilitate ability to provide safe drinking water to communities already impacted by salt and nitrate

Summarized CV-SALTS Workplan Schedule

						Fina SNMF	•		
Revised 11/1/13						→	1	вра 🗲	
CV-SALTS Program Element	2011	2012	2013	2014	2015	2016	2017	2018	+
Program Management							 		
Technical Studies							1		
Initial Concetual Model							1		
Phase 2 SNMP							1		
Phase 3 Antidegradation Monitoring Economics							1		
Archetypes/Case Studies							1		
Groundwater MUN (Tulare)							1		
Surface Water MUN (Sac Valley POTWs)							1		
Management Practice Development							 		
Lower San Joaquin River Salt and Boron Objectives							1		
Implementation Planning							1		
SSALTS Study							1		
Implementation Planning							1		
Documentation for Approval									
CEQA Equivalent Documentation									
BPA Documentation Process Support									
Initial Implementation									
Monitoring and Reporting									
Phase II SNMP							1		
							1		

Central Valley Water Board Meeting: 6 December 2013

87

Staff Recommendation

Approve Resolution to Extend Completion Date of Central Valley Salt and Nitrate Management Plan to 2016, Based on Demonstration of Substantial Progress