Availability of Phosphorus for Algal Growth in Sediment and Stream Water Inputs to Lake Tahoe

Joseph W. Ferguson,
Robert G. Qualls
University of Nevada, Reno

John Reuter
University of California, Davis
Rationale

- Phosphorus is limiting biological growth
- Not all P loaded into the lake is available for algal and microbial growth
- Relative importance of sources may differ
- Need more relevant input for Lake Tahoe Clarity Model
- This may provide better information for TMDL limits
Annual Phosphorus Loading to Lake Tahoe

- **Source** – (Total-P, Soluble-P)
 - Atmospheric Deposition – 12.4, 5.6
 - *Stream Loading* – 13.3, 2.4
 - Direct Runoff – 12.3, 2.4
 - Groundwater – 4, 4
 - Shoreline Erosion – 1.6, N/A

(units in 10^3 kg/year)

(Reuter, et al. 2001)
Historical Work / Literature

- Suspended sediments collected from 5 tributaries to the lower great lakes: 21.8 percent of the total particulate P was bioavailable. (De Pinto, et al. 1981)
- Suspended sediments collected from the Flathead River-Lake ecosystem in Montana: 4-6 % of the total particulate P was bioavailable. (Ellis and Standford, 1988)
Outline

- **Materials and Methods**
 1) Algal Bioassay
 2) Chemical Fractionation

- **Results**
 1) What percentage of Total P is bioavailable?
 2) How do the different sources rank?
 3) Is there a chemical extraction that serves as a surrogate for an algal bioassay?

- **Conclusions**

- **Future Work**
Materials and Methods

- Algal Bioassay (DePinto et al. 1981)
- Chemical Extraction (Hedley et al. 1982)
Materials Sampled

- **Suspended sediments from:**
 1) 5 Major tributary streams
 - EC, GC, IC, UT, and WC.
 2) 5 Direct urban runoff areas
 - RB, SY, OS, SQ, and TC.

- **Dissolved organic P from:**
 3) 2 major tributary streams
 - EC, UT

- **Erodable Streambank Sediments from:**
 4) All LTIMP erodable stream banks
 - IC, GC, WC, UT, EC, ThC, GbC, TrC, and BC
Methods - Bioassay Procedure

Isolate suspended sediments by filtration.

1) Nylon Mesh (20 micron)
2) Filter with Sediment
3) Plastic Disk

3 week incubation with algae in P-free algal growth medium. Put filter into beaker. Isolated algae

Total P (in solution) after incubation – Total P (in solution) before incubation = Total P uptake by algae from sediments
Algal Bioassay Incubation
Algal Bioassay Incubation,
Selenastrum Capricornutum
Algal Bioassay Incubation (21 days)
Algal Bioassay

Total P that appears in solution after incubation is due to 2 mechanisms:
1) Direct uptake of exchangeable PO$_4$
2) Uptake of organic P that is mineralized by phosphatase enzymes.
Methods - Chemical Fractionation Procedure

- Anion Exchange Membrane extract*
- NaHCO_3 extractable inorganic, microbial biomass*, and organic P
- NaOH extractable inorganic and organic P
- HCl extractable Total P

*not tested for suspended sediments
Results

- Total P bioavailable from different sources (ug P/mg sed.)
- Percentage of total P that is bioavailable
- Relative rank of sources in ug P/mg sed., and % of TP that is bioavailable.
- Correlation between a chemical extract and bioavailability.
- High molecular weight dissolved organic P not found to be highly bioavailable
Total Bioavailable P (ug/mg sediment) in the Stream Sediments of 5 Tributaries of Lake Tahoe in Spring, Summer, and Fall 2003
Percent Phosphorus Bioavailable in the Stream Sediments of 5 Tributaries of Lake Tahoe in Spring, Summer, and Fall 2003
Total Bioavailable P (ug/mg sediment) in the Stream Bank Sediments of 9 TTIMP Sites of Lake Tahoe

![Bar Chart]

- BC
- ED
- GL
- TC
- TH
- GC
- IN
- WC
- UT

Average Total P Bioavailable (ug/mg Sediment) vs Streambank Source
Percent Phosphorus Bioavailable in the Stream Bank Sediments of 9 Tributaries of Lake Tahoe

![Bar Chart](image-url)

- **Streambank Source**
 - BC
 - ED
 - GL
 - TC
 - TH
 - GC
 - IN
 - WC
 - UT

- **Average % P Bioavailable**
 - BC: 1
 - ED: 4
 - GL: 13
 - TC: 4
 - TH: 2
 - GC: 8
 - IN: 13
 - WC: 7
 - UT: 0
Total Bioavailable P (ug/mg sediment) in the Runoff Samples of 5 Urban Areas of the Lake Tahoe Basin in Summer and Fall 2003
Percent Phosphorus Bioavailable in the Runoff Samples of 5 Urban Areas of the Lake Tahoe Basin in Summer and Fall 2003
Relative Rank of Sources

(ug/mg sediment)

Average P Bioavailable
(ug/mg)

Source
Relative Rank of Sources
(% P Bioavailable)

Source

- Tribut. Sus. Seds.
- Urban Runoff Seds.
- Erod. Bank Seds.
Bioavailable P vs. NaHCO$_3$ Extractable P for Suspended Stream Sediments

\[y = 1.1378x + 0.7174 \]

\[R^2 = 0.5184 \]
Bioavailable P vs. Membrane + NaHCO₃ Extractable P for All Stream Bank Sediments

\[y = 1.455x + 0.0308 \]

\[R^2 = 0.48 \]
Bioavailable P vs. NaHCO₃ Extractable P for Urban Runoff Sediments

\[y = 0.995 \times + 0.2 \]

\[R^2 = 0.90 \]

\[p<0.001 \]
DOP Mineralization and Algal Uptake from UT and EC

<table>
<thead>
<tr>
<th></th>
<th>Initial (ug/L)</th>
<th>Final (ug/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>UT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PO4</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>DOP</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>PP</td>
<td>20</td>
<td>14</td>
</tr>
<tr>
<td>TP</td>
<td>44</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PO4</td>
<td>11</td>
<td>6</td>
</tr>
<tr>
<td>DOP</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>PP</td>
<td>15</td>
<td>32</td>
</tr>
<tr>
<td>TP</td>
<td>37</td>
<td>45</td>
</tr>
</tbody>
</table>
Conclusions

Less than 50% of suspended sediment P is bioavailable from all sources (average is 22.33%)

% of sediment P bioavailable is highly variable between sources and season
1) Suspended stream seds. (2 – 47%)
2) Streambank seds. (<1 - 16%)
3) Urban runoff seds. (1 – 44%)

NaHCO₃ extractable total P is a fairly good indicator of bioavailable P.

DOP inputs from 2 Tributary Streams not likely highly bioavailable.
Future Work

- More work on the mineralization rate of DOP in the lake
- Particulate P settling in the lake
- Atmospheric deposition inputs
Acknowledgments

- Alan Heyvaert and Kim Gorman
- Bruce Warden, Bud Amorfini, and Dave Roberts of the Lahontan Region, CA Water Quality Control Board
- Funded by the California Regional Water Quality Control Board, Lahontan Region
Questions