# Pretreatment Conference – Colorado River Basin Sampling & Monitoring



Proper sample technique is critical for good analysis results. Trash in = Trash out.

January 2009

## Purpose of sampling

- Determine impact of industrial waste on POTW
- Verify compliance with limits
- Verify the quality of self-monitoring data
- Support enforcement
- Support local limit development
- Verify sampling location specified in permit is adequate
- Support permit development
- Determine user fees

# Sampling Plan – Standard Operating Procedures (SOP)

- Type of sample (grab vs. composite)
- Sample location
- Order of sampling
- Type of flow measurement
- Parameter for analysis
- Sample volume
- Sample containers

- Preservation techniques
- Sample identification procedures
- Packaging and shipping
- Safety concerns
- Hazardous waste
- Chain-of-custody
  QA/QC procedures

# **Sample Collection Method**

- Specify collection method.
  - Grab sample
  - Composite sample
    - Time proportional
    - Flow proportional
- Specify sampling period (e.g. 24-hour, 8-hour)
- Specify minimum number of aliquots
- Specify minimum number of grab samples
- Need to match sewer use ordinance requirements

## **Grab Samples**

- Taken from a wastestream on a one-time basis without consideration of the flow rate of the wastestream and without consideration of time
  - Permit Limits that have instantaneous maximum concentration limits. *Checking for extreme conditions.*
  - Must be used to monitor certain pollutants (e.g., pH, volatile organics, cyanide) – Why?
    - Allow compositing of grab samples? (Pros/Cons).
  - On a case-by-case basis may be used for monitoring batch discharges

Grabs: do NOT skim surface or drag bottom of wastewater stream

### **Composite Samples**

Composite: Sample composed of two or more discrete aliquots. The aggregate sample will reflect the average water quality over the sample period.

- More representative measure of the discharge of pollutants over a given period of time
- Accounts for variability in pollutant concentration and discharge flow rate
- May be sequential discrete samples or a single combined sample
  - 24 hr Time Discrete sample example: 24 bottles with 4 samples collected every 15 minutes in each bottle.

# **Types of Composite Samples**

- Composite Sample is defined by the time interval between aliquots, and the volume of each aliquot (t, V).
  - <u>Time Proportional</u> (tc, Vc): Interval time and sample volume are constant

Flow Proportional: Interval time or sample volume may vary

Constant volume (tv, Vc)

Constant time (tc, Vv)

Flow Proportional Composite Set-up Joe's Chicken Factory discharges 24,000 gallons per day over a 24 hour period Frequency of sample: every 300 gallons. Number of samples: 80 Volume per sample: 120 mls. {this would provide 9,600 mls (9.6 liters) for the composite sample.}

Determine sample frequency and sample volume that will provide representative sample.





If an eight bottle discrete based sample was collected (one bottle per hour), a flow proportional sample could be prepared by using hourly flow data

#### Flow Measurement - Primary Devices

- Weirs and flumes are the most common primary flow measurement devices.
- These devices are hydraulic structures, installed in the flow stream, which create a geometric relationship between flowrate and depth of flow.



#### Flow Measurement - Secondary Devices

- Typical secondary devices:
- measure level
- convert level to flow rate
- display data



#### Level/Depth Measurement

Three most common technologies utilized are:

- Ultrasonic the sensor transmits high frequency pulses which hit the surface of the liquid and return to the sensor. The electronics measure the time it takes the sound to return
- 2. Pressure Transducer water pressure is sensed by mechanical elements in the sensor which converts the pressure to a voltage
- 3. Bubbler A constant flow of bubbles are continuously pushed through a small tube in the flow stream and the backpressure changes in proportion to the liquid level in the flow stream



#### **Continuous Sample**

- Continuous Sample: Automated collection and analysis of a parameter in a discharge
  - Typically used for pH and flow
  - Permit should define the conditions for a violation, significant noncompliance, etc...

## Example Situation – Case #1



 Regular fluctuations in pollutant loading over the course of the day
 Very slight fluctuations in flow
 Recommendation: Time Proportional Composite

### Example Situation – Case #2



- Irregular fluctuations in pollutant loading over the course of the day
- Erratic fluctuations in flow
- Recommendation: Flow Proportional Composite

# **Sampling Location**

- Must coincide with the point(s) at which the effluent limits apply
- Must produce a sample "representative" of the nature and volume of the industrial user's effluent
- Must be safe, convenient, and accessible to industrial user and Control Authority personnel.
- Make sure industry and POTW are sampling at proper sample location.
   Recommend photograph, provide diagram in file





#### **1124 Industrial Way**

#### **Field Considerations**

Field Log Book – Bound w/ hardback cover. Got to have it, record all field readings, times, dates.

PH meter calibration- fresh buffers of 4, 7, and 10 std. units, calibrate daily, DI water to rinse probe thoroughly, prevent carryover to sample.

Other equipment for indicator: Conductivity meter - related to TDS and salinity, can correlate with metals.

# Pollutant Types

- Conventional compatible w/ POTW or POTW designed to treat
  - BOD5, TSS, O&G, Fecal or Total Coliform, Ammonia
- Non-conventional POTW not designed to remove, but incidental removal can occur
  - Metals, organics, cyanide, phenols

Know what you are sampling, info on pollutant and basis for analysis so you can properly collect sample and interpret data.

# BOD (type?), Solids (type?)



#### BOD5, CBOD5, NOD

Total Solids, Total Suspended Solids, Total Dissolved Solids

TSS sample and Temp\* example



## **Analysis Variation**

#### Ammonia

- Seasonal variation in domestic sewage
  Domestic sewage: Higher in summer, lower in winter
  - winter
- POTW designed to treat ammonia?
- > anaerobic conditions then > ammonia (Denitrification)

TKN

Ammonia plus Organic N

– Interferences in analysis? Nitrates >10 mg/L

# Wet Chemistry

#### Total Phenols

- Can be high at landfills. (see pollutant sources handout)
- Interferences primarily sulfide and color, as with most wet chemistry analysis

#### Cyanide

- Check if chlorine present; then add ascorbic acid and then NaOH
- Low level detection ( < 0.10 mg/L) can have interferences</li>

### Metals



Inductively Coupled Plasma (ICP)

Total vs Dissolved Preserve with Nitric Acid Watch for sampling interferences (tobacco use) Zn and Cu can be high in domestic background samples

# Organics

Two (2) major groups

- Semi-volatile (SVOCs) and Volatile (VOCs)
- Semi-volatiles have two other broad categories:
  - Acid Extractables (phenol species)
  - Base Neutrals (phthalates, naphthalene, etc...)

GC/MS

Why do you use glass container to collect SVOCs?



#### Volatile Organic Compounds (VOCs)

Special vials (normally two 40 ml vials)
 No air bubbles (zero headspace) in samples. Why?

- VOCs, as name implies, can change; sometimes rapidly.
- VOC Case Scenario chloroform
  - The industry may not list a specific pollutant on their BMR, however by-products and break down of some other organics can form particular pollutants.

# Quality ensured by

- Proper planning
- Sampler cleaning, clean containers
- Representative samples
- Proper handling and preservation
- Appropriate chain-of-custody and sample identification procedures
- Adequate QA/QC

# QA/QC – validate the quality

- Equipment blanks automatic sampler, some set up sampler to pull DI water for 24 hour period and then pour up for analysis.
- <u>Trip blanks</u> VOCs
- Duplicate samples collect two grab samples
- Split samples one sample poured up in two containers. Note: For a 10 L sample container, recommend to pour up in one gallon container then split sample.

# Preventative sampler maintenance

 Pump tubing replacement
 Suction line replacement
 Container replacement
 Diagnostic routines
 Volume calibration



### Avoid sampler problems by:

- Always try to keep suction line as short and vertical as you can (do not coil excess tubing around sampler)
- Use fresh, fully charged battery for each set of samples taken
- Change pump tubing and suction line when needed
- Make sure strainer is covered with water and not pulling debris from bottom of channel

### QA/QC – protect quality

- Sample from least to most contaminated sampling locations
- Wear gloves
- Do Not use tobacco products while sampling
- Proper preservation
- Do not exceed holding times

#### What to document

- Cleaning
- Calibration
- Equipment maintenance
- Preservation
- Chain-of-custody
- Date and time of samples

- Ambient field conditions
- Sampling personnel
- Field measurements (pH, temperature)
- Anything unusual that may effect sample (power outage, holding time exceeded).

**Corrosion Control Monitoring** Development & implementation of sitespecific corrosion control measures (hydrogen sulfide or other corrosives) Monitoring program to evaluate corrosion control measures? Communication: work with sever maintenance sections to identify problem

areas.

Performance measures, and mechanism to include corrosion control program in Information Mgt. System.

# H2S – Hydrogen Sulfide









# Industrial Corrosion





## Industrial User Corrosion

- Corrosion impact may be further downstream than immediate downstream manholes.
  - Example: SIU initially discharges to 400 feet of PVC pipe, but then goes to concrete and iron pipe. Collapsed sewer resulted after 12 years of SIU discharge.
- Work with CCTV personnel to record sewer system impacts below IU's, especially those associated w/ dairy products, bottling operations, use of DI water & cleaners, metal finishers, etc... (scheduled CCTV)





### Corrosion

Hydrogen Sulfide-anaerobic decomposition of sulfate

- FOG can contribute to sulfide formation in sewer pump stations and in collection system
- Also, <u>sulfate</u> can react with calcium in concrete to form calcium sulfate, which can cause concrete to crack
- Chloride
  - Can cause decay and penetrate coatings
- Chlorine
  - HCI and HOCI can increase rate at which iron and steel corrode
- Nitrates and Nitrites
  - Can contribute to iron and steel corrosion
- Dissolved Salts
  - Electrolytic action on base material can corrode concrete, cement mortar
- Organic Compounds
  - Solvents will promote the dissolution of gaskets and rubber and plastic linings

# Krispy Kreme pH adjustment system





Grease Interceptor deterioration, baffle wall collapse, leaking, and corrosion impact to public sewer









#### Other sources of corrosion



Sewer corrosion below a coffee shop

**Food Service Establishments... \*Coffee Shops** (coffee pH 4.6 to 5.1) \*Bakeries, FSEs with high sugar use **Industrial Users: Dairy products, colas** Work with Support **& Preventive Maintenance** Personnel

Food Service Establishment Sampling & Analysis (from 325 FSEs)

- Average pH from Interceptor: 4.9 std. units (range 1.2 to 11.5)
  - Low pH: anaerobic conditions, sugars, cleaners, soft drinks
  - High pH: additives, cleaners, vent hood cleaning (NaOH)
- BOD5 from monthly pumped interceptor with all components can be 500 to 1,000 mg/L. What about facilities that do not have adequate grease control equipment or are not maintaining the equipment?
- O&G from 20 mg/L to 2,500 mg/L. Depends on time of day, type of restaurant, type of grease control equipment, etc...