

W47-13: Date: April 7, 2007 Time: 8:28am. Photographer: C. Hartman Description: Middle Basin- foamy prop wash View: Into water

W47-14: Date: April 7, 2007 Time: 9:25am. Photographer: C. Hartman Description: Dead coot along reeds, Middle Basin

W47-15: Date: April 7, 2007 Time: 9:28am. Photographer: C. Hartman Description: Bagging dead coot, Middle Basin

W48-1 Date: April 8, 2007 Time: 7:16am. Photographer: D. Owen Description: Aeration at Jefferson Bridge, East Basin View: Northeast

W48-2 Date: April 8, 2007 Time: 7:33am. Photographer: D. Owen
Description: Aeration hose at south shoreline, East Basin View: South

W48-3 Date: April 8, 2007 Time: 13:38am. Photographer: C. Hartman Description: Reeds, Middle Basin

W48-4 Date: April 8, 2007 Time: 7:10am. Photographer: C. Hartman Description: Dead bird- Middle Basin

W48-5 Date: April 8, 2007 Time: 12:53pm. Photographer: C. Hartman Description: Coots on the water, Middle Basin

W410-1 Date: April 10, 2007 Time: 6:50am. Photographer: L. Campagna Description: Dead fish in Mid-Basin

Date: April 10, 2007 Time: 7:09am. Photographer: D. McCoy W410-2 Description: Great blue heron- East Basin

W410-3 Date: April 10, 2007 Time: 7:24am. Photographer: D. McCoy
Description: East Basin pilings View: Southwest

W410-4 Date: April 10, 2007 Time: 8:17am. Photographer: D. McCoy
Description: East Basin piling water level marker View: Southwest

W410-5 Date: April 10, 2007 Time: 1211pm. Photographer: L. Campagna Description: Cattails Mid-Basin

W410-6 Date: April 10, 2007 Time: 1212pm. Photographer: L. Campagna Description: Mid-Basin backwater View: East
Buena Vista Spill Photos
City of Carlsbad - Non Relevant Photos

\%

孚

$$
\begin{aligned}
& \text { ysy }
\end{aligned}
$$

(事 (

City of Carlsbad

Sewer Overflow Prevention Plan

Sewer Overflow Response Plan

EPA Region 9

City of Carlsbad
Section 308 Information Request
CWA-308-IX-FY01-41

Unless otherwise specified below, within sixty days of receipt of this information request the City of Carlsbad shall submit to EPA Region 9 and the California Regional Water Quality Control Board, San Diego Region, the following information relating to its sanitary sewage collection system:

1. A description of the sanitary sewage collection system owned and operated by the City of Carlsbad that includes the following information:
a. description of the service area including names of cities and communities served,
b. approximate population served,
c. average daily flow,
d. the total length of sewers,
e. size range of pipe diameters,
f. number of and a description of sewage pump stations,
g. a map of the sewage collection system showing the locations of primary sewers (interceptor, outfall \& truck sewers), and sewage pump stations, and
h. range and average age of sewers.
2. A description of your sewage collection system management, operations, and maintenance practices, including the following:
a. Management Program
i. The organizational structure of departments responsible for the sewage collection system.
ii. The legal authorities and ordinances governing use of the sewage collection system (brief description, not including the industrial pretreatment program).
iii. Adequacy of sewer system maps and availability of maps to maintenance crews. Do system maps accurately reflect sewer pipe locations and construction?
iv. Are sewer maps available in a Geographic Information System (GIS) format?
v. Describe the system used for tracking and responding to public complaints related to your sewage collection system.
vi. Describe how the annual maintenance budget is determined. If a list of maintenance requirements has been developed, describe the items on the list which remain unfunded due to budget shortfalls.
vii. Provide a summary of your annual budget for system operations, maintenance, and capital improvements.
viii. Provide your staffing levels for collection system management, administration, operations, and maintenance. Indicate if you use contractors to implement your system operations and maintenance tasks.
b. Spill Response, Reporting, and Record Keeping
i. Provide copies of your spill response plans and spill reporting and record keeping procedures. If you do not have written plans and procedures, describe your practices.
ii. Describe measures to ensure that all sewage spills are detected and brought to the attention of spill response staff.
iii. Provide a list of emergency response equipment (such as portable pumps and generators) which you own or have access to for responding to sewage spills.
iv. Describe your procedures for protecting storm drains from sewage spills and notifying the storm water quality protection authorities of spills that impact their storm drains.
c. Sewage Pump Stations
i. Indicate the number of spills from sewage pump stations in the last five years.
ii. Describe the reliability and adequacy of sewage pump station design and operations, including hydraulic capacity, redundant systems, alarms, and backup power.
d. Maintenance Program
i. Describe the maintenance management system used, including procedures for identifying trends and problem areas and for prioritizing and scheduling routine, preventive, and corrective maintenance and cleaning. Indicate if you use a computerized maintenance management system.
ii. Provide the average miles of sewer pipe cleaned annually over the past five years (or fewer years if data not available), and provide the average percentage of your total sewer pipe miles cleaned at least once annually over the past five years (or fewer years if data not available). Provide the frequency in years in which you clean your entire collection system. (Include root removal or control in these figures).
iii. Provide the average miles of sewer pipe receiving root removal or control annually over the past five years (or fewer years if data not available), and provide the average percentage of your total sewer pipe miles receiving root removal or control at least once annually over the past five years (or fewer years if data not available).
iv. If you have identified trouble spots in your collection system, how often are the trouble spots cleaned?
v. Describe the system for tracking and responding to odor complaints. Describe the program for monitoring or assessing odors from your collection system. Describe identified odor problem areas and any ongoing efforts to control odors from your collection system.
e. Source Control Program
i. Do you have an ordinance that limits or requires control of fats, oils, and grease introduced to your collection system by restaurants and food
processing facilities? Provide a copy of your ordinance and related regulations, policies, and guidance.
ii. Describe your current grease source control program, including implementation of any grease control ordinances, permitting, inspections and enforcement. Provide the number of staff working on your grease source control program. Of this number, how many spend half or more of their time directly implementing the grease source control program.
f. Sewer Inspection, Condition Assessment, and Rehabilitation Program
i. Describe the program and methods used to inspect and assess the condition of your sewers. Do you own or have access to Closed Circuit T.V. equipment for inspecting sewer pipes?
ii. For each method of sewer pipe inspection (visual, CCTV, etc.), indicate the miles and percentage of your sewage collection system inspected and assessed annually. Indicate the number of miles or percentage of your system for which you have completed a condition assessment. If you have completed a condition assessment of your entire system, indicate when this assessment was completed.
iii. Describe your program for rehabilitating or replacing defective or deteriorated sewers. Indicate the number of miles of sewer planned for rehabilitation or replacement over the next five years.

g. Capacity Assurance Program

i. Explain how sewer system hydraulic capacity is evaluated, including the effects of infiltration and inflow (I\&I).
ii. Explain whether the system has experienced overflows resulting from capacity restrictions due to excessive I \& I, dry weather flow increases, or undersized pipes or pump stations. Indicate the major cause of capacity related overflows in your system.
iii. Have you completed an assessment of infiltration and inflow in your collection system. Did the assessment address both groundwater infiltration and rainfall derived infiltration and inflow? Describe what methods were used to complete the I \& I assessment (i.e., flow monitoring, smoke testing, etc.). Describe the major findings of your I \& I assessment.
iv. Describe the system for monitoring flow in your collection system including permanent or temporary flow meters in the sewer pipes or at sewage pump stations.
v. Describe the model or other system for predicting flow and available capacity in your collection system.
vi. Describe the program used for planning, funding, and constructing additional capacity needed for your system.
vii. Indicate any plans over the next five years for constructing relief sewers.
h. Capital Improvement Program
i. Describe the program for identifying, prioritizing, funding, and constructing

City of Carlsbad Public Works

Section 1

a. The majority of the city is covered in the service area. Leucadia W.D. serves the southern section of the city.
b. The approximate population served is 17000 service connections.
c. The average daily flow is 6.5 MGD.
d. The approximate length of sewer lines is 214 miles.
e. The range of pipe size is from $4^{\prime \prime}$ to $24^{\prime \prime}$.
f. The city has 16 pump stations. 4 stations have three pumps. 12 stations have two pumps. The city has three pump stations with submersible pumps. Three stations that are above ground with self-priming pumps. Ten stations that have vertical dry-pit non-clog pumps.
g. Attached are the maps of the sewage collection system and pump stations. (See exhibit "A")
h. The range and average age of the system is 25 years.

Section 2

a. Management Program

i. Public Works Sanitation Operations and Public Works Construction / Maintenance Department. The operations crews maintain the pump stations and the maintenance crews clean and maintain the sewer lines.
ii. The legal authorities and ordinances governing use of the sewage collection system are the City Engineer and Carlsbad Municipal Code ordinance Title 13 Chapters 13.04, 13.08, 13.10, 13.12, 13.16, and 13.20.
iii. Adequate maps of the sewer system are available to all field crews. The existing maps reflect the locations of sewer pipe, trunk lines, and force mains. The mapping system will be upgraded to show new construction areas.
iv. The city's Engineering Division is in the process of transferring all maps to the GIS format.
v. The city uses a Microsoft Access Data Base to log all complaints and print out a hard copy for the field crew to respond.
vi. The annual maintenance budget is determined by past budgets and projected growth of the system.
vii. For the summary of the annual budget for system operations, maintenance, and capital improvements see exhibit " D ".
viii. The staffing levels are Deputy Public Works Director, Public Works Managers, Public Works Supervisors, Senior Office Specialist, Sanitation Operations Crew, Construction / Maintenance Crew. Occasionally contractors are used to inspect sewer lines and perform maintenance on facilities.

b. Spill Response, Reporting, and Record Keeping

i. See attached copy of Sewer Overflow Response Plan (See exhibit "B")
ii. See attached copy of Sewer Overflow Response Plan (See exhibit "B")
iii. See attached copy Emergency Phone Numbers (See exhibit "B")
IV. In the event that a spill may enter a storm drain the city crew will use sand bags or build a berm to protect the storm drain system. If the spill has entered a storm drain structure the city crew will notify the California Regional Water Quality Control Board (San Diego Region) by completing a Sanitation Sewer Overflow Report Form. Also if any waterways have been affected by the spill the city crew will post the effected area.

c. Sewage Pump Stations

i. One. 6/24/97
ii. Reliability and adequacy; 12 of the pump stations have a two pump setup. It only requires one pump to maintain the flow. The other 4 have three pumps in which they have two as standby. All pumps are alternated daily to give adequate run time for each. (See exhibit "C")

d. Maintenance Program

i. The city uses the Sussex Work Management System 7.1.19; this is a work order and inventory database. The criteria used to identify trend and/or problem areas are excessive grease, flat lines, low flows or siphons. If you refer to the City of Carlsbad Sewer Prevention Plan section I, topic II the criteria for the city's maintenance program is outlined.
ii. The city crews are cleaning on an average of 47 mile per year, which
 represents approximately 21% of the sewer system peryear. With an average of 21% cleaned per year it will take approximately 5 years to clean the entire system.
iii. The city crews are removing or controlling roots in the system on an average of .84 miles per year, which represents approximately $.003 \%$ of the sewer system per year.
iv. There are 15 identified trouble spots within the sewer system. 2 of the locations are cleaned quarterly, the rest are cleaned bi-annually. While cleaning the identified locations the whole area that feeds into the trouble spot is cleaned.
v. The system in use to track and respond to odor complaints is the Microsoft Access Database. All odor complaints are tracked to find the source of the odors; air samples are monitored with an Atmospheric Tester and Hydrogen Sulfide Test kit. If the odor cannot be controlled at the source, the sewer access hole will be sealed. Identified odor problem areas are monitored by notification of customer by an educational letter (see attached copy in the Sewer Overflow Prevention Plan) this alerts the customer of their responsibility to maintain grease trap.

e. Source Control Program

i. Carlsbad Municipal Code 13.04 .050 (2) see attached copy of ordinance and educational letter to the customers. (See exhibit " E ")
ii. The city's grease control program consists of an educational letter (see exhibit " B " copy in Sewer Overflow Prevention Plan)

f. Sewer Inspection, Condition Assessment and Rehabilitation Program

i. The city crews inspect all sewer access holes when cleaning the pipes. Private contractors provide CCTV inspection of sewer pipes between access holes. The city owns 2 CCTV systems; these are used mostly for $4^{\prime \prime}$ to $6^{\prime \prime}$ laterals. Refer to attached Performance Standards for inspection policies.
ii. The city has about 14 miles of the sewer system inspected per year; this represents approximately 0.06% of the entire system. The inspections performed on the sewer system are an ongoing assessment of the system.
iii. The City contracted out a sewer inspection service to CCTV any pipelines that were 30 years or older. From this inspection the City identified any problem areas and prioritized these areas for repairs. Within the City's Capital Improvement Program there are approximately 5.78 miles due to be replaced or refurbished in the next five years.

g. Capacity Assurance Program

i. Hydraulic capacity evaluation: The major trunk sewers are evaluated in master plans, that are updated every five years, to determine if their size is adequate to convey peak flows from their tributary sewer service area. This is done by determining the number of equivalent dwelling units tributary to the sewer pipeline and multiplying the number of EDU's by a flow rate of 220 gallons per EDU. A peaking factor is then applied to this flow rate to determine the peak design flow for the trunk sewer pipeline. In addition to the modeling effort the flows in each trunk sewer is also measured at critical points to determine the actual depth of flow. This depth is measured against criteria to maintain the peak flow depth below 0.75 D , where D is the diameter of the pipeline.
ii. Overflows: No overflows have occurred to the sewer system from I\&I or other conditions.
iii. We have not completed an I\&I study or assessment. The flow rates in the sewer pipelines are within capacity limits. We are aware the peaking factor increases to approximately 3 during wet weather periods. The truck sewers suspected of contributing the high inflows during wet weather periods are presently being upgraded by either replacement with new pipelines or are being relined. The inflow problem is also caused by agencies upstream of Carlsbad that have their sewers connected to the Carlsbad sewer system.
iv. The City continuously monitors most of its trunk sewers using permanent meters installed at downstream points near the treatment plant and also at upstream points where other agencies connect to the trunk sewers. This way we know how much sewage is being generated by the City of Carlsbad on a daily basis. These flow rates are compared to the capacity of the pipelines at those locations. At other locations the City has two portable meters that we install in collector sewers to monitor flow rates at critical locations and where operations and maintenance staff determine that additional data is required. Finally, we periodically arrange for a consulting firm to measure flow rates in the larger diameter trurik sewers where the City has contractual limits on its capacity when
jointly used by other agencies. In addition to these meters each of the major sewer lift stations has a permanent flow meter installed on the discharge force main. These flow rates are compared to the pump capacities.
v. The sewer model used by the City is "Sewercad". The ultimate flow rates are updated annually by reviewing the existing and approved land development projects in terms of equivalent dwelling units and adding in projections on what future land development is estimated to add in terms of EDU's. This data is then converted to a flow rate by using a factor of 220 gallons per day and the result is then multiplied by an appropriate factor to generate flow rate tributary to the trunk sewers.
vi. The City has master planned the sewer system. Future collector sewers are the responsibility of the developer to construct in order to serve his development. Reimbursement agreements are entered into with a developer who is required to construct a sewer pipeline greater in size than is required for his project. When future developers connect to the oversized trunk sewers the City collects a fee per EDU from that future and reimburses the original developer for the over sizing. In addition, to the reimbursement agreement for over sizing, the City collects a connection fee for treatment capacity. This fee is used to expand the treatment plant when necessary to meet the requirements of the future land development projects. The connection fee is based on the cost for the ultimate size of the treatment plant for Carlsbad's needs divided by the projection of possible future connections that may occur. This fee is recalculated approximately every five years.
vii. The City is now constructing the last major trunk sewer to increase its size to meet ultimate sewage flows. There are no plans to construct any additional relief sewers because there are no capacity problems. Some sewers are experiencing deterioration from corrosion from hydrogen sulfide gases in the sewer pipelines. These sewers are being replaced as the condition warrants based on periodic review of the pipelines and access holes.

h. Capital Improvement Program

i. See attached exhibit "G"
ii. See attached exhibit "G"

Section 3

See attached exhibit "F"

Section 4

The City of Vista, Vallecitos Sanitation District, and Leucadia Sanitation District all have Sewer trunk lines that run through the CityofCarlsbad. The satellite agencies and the CityofCarlsbad jointly own the lines. These lines do not tribute to the City's system, but our system flows into their trunk lines. The contact nurnbers are as follows, Vista 760-726-1340, Vallecitos 760-744-0460 and Leucadia 760-753-0155. The CityofCarlsbad assumes some responsibility for maintenance for the lines that are jointly owned.

EXHIBIT A

EXHIBIT B

CITY OF CARLSBAD

Section I: SEWER OVERFLOW PREVENTION PLAN (SOPP)

Section: II:
 SEWER OVERFLOW RESPONSE PLAN (SORP)

Section III: EMERGENCY PHONE NUMBERS

Sewer Overflow Prevention Plan (SOPP) and Sewer Overflow Response Plan (SORP) prepared by: Pat Guevara, Public Works Manager; Revised May, 2001

SECTION I PREVENTION PLAN

CITY OF CARLSBAD SEWER OVERFLOW PREVENTION PLAN (SOPP)

In accordance with Califomia Regional Water Quality Control Board Order No. 96-04, a Sewer Overflow Prevention Plan (SOPP) shall be designed.

Background:

The City sewer service area consist of approximately seventy (70) percent of the City of Carlsbad. There are five (5) major sewage drainage basins as shown on Attachment 1.

The Carlsbad Wastewater Collection System utilizes about 145 miles of sanitary sewers and approximately 17,000 service laterals and 17 sewage lift stations for sewage conveyance and the Encina Wastewater Authority for treatment.

Currently, 4 major wastewater interceptor systems are within the City of Carlsbad. These interceptors are the Vista/Carlsbad, North Agua Hedionda, Buena/Vallecitos and the North Batiquitos. The City of Carlsbad owns and leases capacity in all of these interceptors servicing other agencies including; City of Vista, City of Oceanside, Vallecitos Water District, Leucadia County Water District and the Encinitas Sanitary District.

In general the Carlsbad sewage system was planned and constructed as dictated by watershed or topographic boundaries. Since sewer lines generally follow the low areas of a watershed, there are a number of gravity sewers which end at lagoons or near the ocean. Protection of these surface waters, recreational water and/or the health and safety of the public is Carlsbad's priority concern.

The intent of the Sewer Overflow Prevention Plan (SOPP) is to prevent or minimize the potential for sanitary sewer overflows by developing and implementing the following procedural programs:
I. Inspection
II. Prevention Maintenance
III. Spill Response
IV. Posting
V. Emergency Response
VI. Restoration
VII. Documentation
VIII. Reporting

Note: Items III through VIII are covered under the City of Carlsbad Sewer Overflow Response Plan (attached).

I. Inspection Procedures

Inspection of collection lines will be accomplished by the utilization of the following methods:
a. Visually by line cleaning crews as they are working in the area. Completion of manhole inspection report (see Attachment 2).
b. Use of video equipment.
c. Additional observations during times of inclement weather.
d. After receiving odor or lateral complaints that might be a result of a line blockage.
e. After receiving complaints of vandalism such as children playing in or around manholes.
f. Assuring manhole accessibility within construction areas.
g. Daily sewer lift station checks.

II. Preventative Maintenance

Preventative maintenance will be an ongoing program by using the following methods:
a. Daily sewer main cleaning by high velocity hydraulic cleaning (Vactor).
b. Daily record keeping by inspection and cleaning crews (manhole inspection reports to detect deterioration of the cement structure before failure and work order documentation).
c. Remove debris from manholes as soon as we become aware of them.
d. Clean documented priority lines (excessive grease, flat lines or low flows) a minimum of two times a year.
e. Mailing educational letters (see Attachment 3).
f. Prioritize repairs.
g. Completing repairs in a timely manner.
h. Continuous training of staff.
i. Each sewer lift station is fitted with alarm system.

III-VII These items are addressed in the attached copy of our Sewer Overflow Response Plan (SORP).

MANHOLE INSELCIION REPORT

District No. \qquad Date: \qquad Time: \qquad ampm By: \qquad

Contract No. \qquad Trunk Name: \qquad

Manhole Station: \qquad Manhole Type: A, B, or C GW Seepage: YES/NO Cross Streets On: \qquad At/Near: \qquad

CONDITION

ITEM	$\frac{\text { GOOD }}{0-10 \%}$			$\frac{\text { FARR }}{11-25 \%}$			$\frac{\text { POOR }}{26-50 \%}$			$\frac{\text { VERY POOR }}{>51 \%}$		
	TOP	MD	BASE	TOP	MID	BASE	TOP	MID	BASE	TOP	MID	BASE
SOFIENING CONC												
EXPOSED STEEI												
BRICKSMORTAR												

COVER SIEE: BOLI DOWN: YN SEALED: YNN	GOOD	RAIR	POOR	YERYPOOR
GRADE RNNG				
FRAMEJCOVER				

PIPE SIZE:
FLOW DEPTH: $-1 / 4+1-1 / 3+1-1 / 2+1-2 / 3+1-3 / 4+1$ FULL
$\mathrm{H}_{2} \mathrm{~S}$: \qquad ppm (if entry is made)

COMMENTS:

Type 1
Type B
Tyoe e

ATTACHMENT "3"
 Educational Letter

Dear Customer:

As a form of preventive maintenance, the City of Carlsbad wishes to remind you that Carlsbad Municipal Code No. 13.04.050, Section (g) states in part: 'No person shall discharge or cause t be discharged any fats and greases to the sewer system if their concentration and physical dispersion results in separation and adherence to sewer structures and appurtenances";...Wastewater carrying such materials must be effectively pretreated by a process or device to effect removal from the flow before its discharge to the sewer system";..."All grease, oil and sand interceptors shall be maintained in continuously efficient operation at all times by the owner at the owner's expense.";..."In the maintaining of these interceptors, the owner shall be responsible for the proper removal and disposal by appropriate means of the captured material and shall maintain records of the dates, amounts and means of disposal, which are subject to review by the Deputy City Engineer."

Because of abnormally high concentrations of grease in the sewer system, we are requesting that all restaurants be aware of their responsibilities. This, along with our periodic sewer main cleaning, will help to eliminate main stoppages and untimely sewage backups in your establishments.

If we can be of assistance, please feel free to contact our office during regular business hours. Pat Guevara, our Public Works Manager, Construction Maintenance, will be happy to assist you. He can be reached at (760) 438-2722 extension 7132.

Respectfully,

ROBERT J. GREANEY
Deputy Public Works Director

SECTION II

RESPONSE PLAN

CITY OF CARLSBAD
 SEWER OVERFLOW RESPONSE PLAN

PURPOSE

The City owns and operates a diverse collection system which consists of pumping stations, gravity sewer pipelines, and sewage force mains. These facilities are well maintained and normally should not result in any sewage overflows/spills. However, the possibility exists that unforeseen accidents, unusual equipment failure or other events not controlled by the City could result in a sewage overflow/spill. This procedure provides a plan that when enacted in response to a sewer overflow/spill would reduce or eliminate public health hazards, prevent unnecessary property damage, and minimize the inconvenience of service interruptions.

GENERAL

Normal and routine maintenance of the collection system is the ounce of prevention that is worth a pound of cure. Nevertheless, there will be times when an overflow/spill will occur. This Sewer Overflow Response Plan will help facilitate a timely and technically correct response.

In order for response personnel to accurately assess the level of response, the potential for outside costs associated with cleanup, potential liability claims for property damage, and to accurately report overflow/spills to regulatory agencies, the following definitions shall apply.

1. MINOR SPILL

A minor spill is a sewage spill that is contained and can effectively and satisfactorily be cleaned up by City personnel, and does not require regulatory notification.

A minor INSIDE spill is one that:
A. Is confined to the affected drain area and does not enter other rooms.
B. Does not contaminate carpet, furniture or other homeowner belongings that require specialized cleaning and disinfection.
C. Does not pose a threat to public health.

A minor OUTSIDE spill is one that:
A. Is less than 50 gallons; or
B. Is between 50 and 1000 gallons and does not occur within 50 feet of human habitation, does not contaminate public waters, does not pose a threat to public health and/or the environment, and can be cleaned up by City personnel.

2. MAJOR SPILL

A major spill is a sewage spill that contaminates the homeowners property inside the home, can not be effectively and satisfactorily cleaned up by City personnel, and requires regulatory notification.

A major INSIDE spill is one that:
A. Spreads beyond the immediate drain area into other living areas.
B. Contaminates wall-to-wall carpets, furniture or other homeowner belongings that require specialized cleaning or disinfection.
C. Poses a threat to public health.

A major OUTSIDE spill is one that:
A. Is greater than 1000 gallons.
B. Is more than 50 gallons but occurs within 50 feet of human habitation, contaminates public water and/or poses a threat to public health and/or the environment.

SAFETY

Whenever City personnel respond to a report of an overflow/spill, they may encounter an emergency situation that requires immediate action. The most critical aspect of resolving an incident of this nature is to safely and competently perform the actions a necessary to return the damaged equipment or facility to operation as soon as possible.

The most important item to remember during this type of incident is that safe operations always take precedence over expediency or short cuts.

Depending on the nature or cause of the overflow/spill, personnel may be performing mechanical or electrical repairs at a pumping station, removing a mainline blockage with the Vactor or repairing a damaged section of pipeline (forcemain). At this point, it is essential that all applicable safety procedures are followed so that the response does not cause the situation to escalate.

Typical responses may require personnel to implement the following types of safety procedures:

- Lockout/Tagout of equipment for repairs
- Confined Space entry procedures
- Traffic control procedures at site
- Equipment and/or vehicle operation
- Use of personnel protective equipment

Another important aspect of responding to an overflow/spill is the ability to maintain adequate communication via two-way radio and/or cellular telephone. Responders may need to call for additional resources as the situation may warrant as well as to notify other personnel and supervisors of the situation.

PROCEDURES

This section will provide the step-by-step procedures explaining the actions to be taken in response to an overflow/spill. This section is divided into three sections depending on the cause of the overflow/spill: Pipeline blockage, forcemain leak or pump station failure.

PIPELINE BLOCKAGE

1. Contact property owner or person reporting overflow/spill and obtain information on location to determine if the spill is within the City's service area and for completion of reporting requirements.
2. Upon arrival at the scene, a determination must be made as to the source of the overflow/spill. Is it coming from a sewer pipe or is it from an individual building lateral or private sewer? Contain spillage immediately, if possible.
3. If it is determined that the overflow/spill is originating from a private lateral or sewer, the owner or property manager must be notified and informed that they are responsible for corrective action and any damages i.e., relieving the blockage. Chronic overflows/spills at the same property shall be referred to the County Department of Health Services and/or the respective Code Enforcement Division for resolution.
4. If an overflow/spill has originated from the mainline sewer, contain spill and secure the spill area by placing cones or barricades if needed around the site.
5. Contact the duty person for assistance at the site, and also check pump station condition if overflow structure is located in close proximity to a pump station. Be aware that a pump station failure can cause an overflow/spill in adjacent upstart structures.
6. Inspect flow conditions in structures upstream and downstream from the overflowing structure to determine location of blockage. Always set up Vactor at the next structure downstream from the overflowing structure.
7. Use Vactor to relieve blockage as soon as possible.
8. Once the blockage has been relieved or problem corrected and the overflow has ceased, every attempt should be made to contain the sewage that has spilled. If the spill can be contained by sandbagging storm drains or building a berm to capture or channel spill flow to a location which is accessible to the Vactor for vacuuming up the spill, do so.
9. If there is flooding or property damage, notify the Supervisor immediately.
10. Take necessary photographs of the affected area for City records.
11. To minimize health hazards and damage, provide proper cleanup by removing debris and sanitizing affected area.
12. Do not volunteer or disown City liability. Instead, simply state that you are looking into and trying to resolve the matter as quickly as possible. If the resident wants to discuss liability, let him/her know that liability cannot be addressed until all information on the overflow has been evaluated. Be polite and sympathetic to the property owner's concerns. Express that you understand how difficult the situation is and assure them that regardless of who is at fault, you are there to assist in expediting the cleanup.
A. If overflow is inside structure (major):
13. Call for emergency clean-up services (see phone numbers under "Homeowner/Occupant - Emergency Information"), confirm the estimated time of arrival, and let the resident know that they are on their way.
14. Take photographs of all areas in structure where overflow has reached.
15. If resident needs temporary living arrangements during clean-up, offer the hotel listed under "Homeowners/Occupant - Emergency Information" and arrange for a one night stay or until the next business day if necessary, using the City credit card.
16. Call Risk Management at (760) 602-2470 to report incident and status of homeowner/occupant.
B. If overflow is inside structure (minor):
17. Take photographs of existing damaged areas for assisting in settling potential claims.
18. The owner/occupant is to call outside professional cleaning service for cleaning, sanitizing, placing of blowers and/or dehumidifiers.
C. If overflow is outside of structure (major or minor):
19. If overflow is on the ground, remove debris by means of a rake and shovel.
20. Wash area down (if possible) and disinfect with PineSol per label instructions.
21. Dispose of water/debris properly.
22. If there is damage to real estate and/or personal property, Public Works Manager or Supervisor will advise property owner/occupant that Risk Management will be in contact by the next business day to discuss property restoration or they may call Risk Management at (760) 602-2470.
23. Make certain that the City's main sewer is functioning properly before leaving area.
24. Complete all required reports with pertinent details including estimate of spill volume. Turn in reports and photos to the Public Works Manager by the start of the next workday.
25. All overflows/spills greater than 1000 gallons, or any sewer overflow/spill greater than 50 gallons that occurs within 50 feet of human habitation or poses a threat to public health and/or the environment are to be reported to the Regional Water Quality Control Board at 8:00 a.m. on the first work day following the incident. This report will be submitted by the Supervisor.

FORCEMAIN LEAK

In the event that a spill has occurred due to a leak from a force main, the following actions will be taken:

1. The leaking forcemain will be isolated and bypassed while emergency repairs are conducted to the pipeline. This bypassing may take one of the following forms:

- Highline of temporary pipeline around affected area.
- Bypassing of flow of parallel force main (Phase II \& Phase III transmission lines only have this capability).
- Use of pumps and tank trucks to convey flow
- Use of Vactor to vacuum and transport flow (low flow conditions only).

2. Depending on the nature of the damage to the pipeline, location of leak, volume of flow being conveyed, and the depth of the pipeline emergency, repairs may be conducted by City personnel or by a contractor.
3. Due to the lack of service connections to the forcemains, it is highly unlikely that any flooding of personal property would occur as the result of a forcemain leak. The threat to the environment and the public health would still exist, and therefore, cleanup and containment efforts similar to those for a mainline blockage spill would be required.

PUMP STATION FAILURE

Each pump station is fitted with an alarm system that provides information to City operators in the event of a system failure. City staff shall respond immediately when an alarm message is received and utilize the following procedures.

1. Upon receiving an alarm message either at the Public Works, Maintenance and Operations Center or at home, the duty operator will respond immediately to the pump station from which the alarm has originated.
2. Based on the alarm condition and considering the type of alarm received, the responding operator shall determine the appropriate course of action and decide on the staff response.
3. In the event of a power outage, the "Power Outage Emergency Procedure" shall be implemented.
4. A determination shall be made as to the likelihood that the shutdown or equipment failure will result in the release of sewage. Mobilize the necessary personnel and/or equipment to correct the problem.
5. Notify the Public Works Manager of the situation.
6. Take the necessary steps to return the pump station to proper operation.
7. If an overflow/spill has occurred, proceed to step \#8 of the above mainline blockage overflow/spill instructions.

RESPONSIBILITIES

Public Works Manager, Sanitation Operations and Const/Maint. Supervisors are responsible to ensure all Operations and Maintenance personnel are trained in and follow these procedures.

All Operations and Maintenance personnel are responsible for following these procedures and completing reports with all pertinent information. These reports consist of the following and will be updated and maintained by the Public Works Manager.

- City of Carlsbad Overflow/Spill Report - Same as California Regional Water Quality Control Board Sewer Overflow Report (Attachment "A")
- Daily Sign Check (if applicable, Attachment "B")
- City of Carlsbad Incident Report (Attachment "C")

Only the Public Works Manager, Deputy Public Works Director, Public Works Supervisors are authorized to volunteer or disown City liability or offer cleaning service or repairs to affected property. The incident coordinator during and/or after work hours shall be: Don Wasko, Public Works Supervisor, Const/Maint, (760) 438-2722 Ext. 7138/(760) 730-3376; Louie Montanez, Public Works Supervisor, Sanitation Operations (760) 438-2722 Ext. 7137/(760) 439-0308.

The Supervisor shall be responsible for notifying regulatory agencies of overflows/spills within the required time frame.

All major overflows/spills shall be reported via telephone/fax within 24 hours to the Prop. 65 Coordinator at the San Diego County Department of Health Services:
San Diego County
Department of Health Services
Prop. 65 Coordinator (Clay Clifton)
P.O.Box 85261
San Diego CA $92186-5261$
(619) 338-2386/fax (619) $338-2174$
After Hours - County Communicatio
(858) 565-5255 Request Environment
Re: Agua Hedionda Watershed
Preharvest Shellish Sanitation Unit
Rolf Frankenbach
(510) 540-3210-work
(916) 819-9084 - pager or

Gregg Langolis
(510) 327-5590 - work
(916) 819-0984 - pager

In addition, a written report shall be submitted to the Califormia Regional Water Quality Control Board at the address below within five (5) working days from date of overflow/spill (attachment "A"). A copy of this report shall also be submitted to Prop. 65 Coordinator at the San Diego County Health Services Department.

California Regional Water Qualitry Control Board
San Diego Region
Suite B
9771 Clairemont Mesa Boulevard
San Diego CA 92124
(619) 467-2952
(619) 571-6972 FAX

TRAINING

This procedure shall be reviewed at semi-monthly safety meetings a minimum of twice per year. In addition, this procedure shall be used as the basis for a minimum of four tailgate training sessions per year by both the Operations and Maintenance Departments.

OPERATIONS/MAINTENANCE

SEWER SPILL TRAINING

1. Contain spill.
2. Correct the cause of the spill.
3. Contact Superintendent or Supervisor.

The following will be completed by you or your supervisor:

A. Contact Health Department immediately if spill will reach any recreational area, beaches, lagoons, above ground water.

Clay Clifton - 24 hour phone number (619) 338-2386/Pager: (619) 492-9825
Fax: (619) 338-2174

1. The health department will give specific instructions of areas that need to be posted.
2. Notify and post areas of contamination if Health Department cannot respond immediately.
3. If posting is required, you must maintain a \log on all signage locations (Attachment B).
4. Signs will be checked at 7:00 a.m. and 3:00 p.m. daily, until ordered to be removed.
B. Two forms need to be completed by you and turned into the office the next work day.
5. California Regional Water Quality Control Board, San Diego Region, Sewer Overflow Report Form (Attachment A)
6. City of Carlsbad Incident Report (Attachment C)

CALIFORNIA REGIONAL WATER QUALITY CONTROL BOARD
SAN DIEGO REGION
SANITATION SEWER OVERFLOW REPORT FORM
5/9/96

1. SANITARY SEWER OVERFLOW SEQUENTIAL TRACKING NUMBER:
2. REPORTED TO:
 STAFF)
3. DATE REPORTED: _ _ 1 _ _ $/ \ldots$ (MM/DD/YY)

TIME REPORTED: _ _ : _ _ (MILITARY OR 24 HOUR TIME)
4. REPORTED BY:
5. PHONE: (__) _ _ . _ . .
6. RESPONSIBLE SEWER AGENCY:
7. OVERFLOW START: DATE: _ _ 1 _ $1 \ldots$ (MM/DD/YY)
8. OVERFLOW END: DATE: _ _ 1 _ _ $/ \ldots$ (MM/DD/YY)

TIME: _ _ : _ _ (MILITARY OR 24 HOUR TIME)
9. TOTAL OVERFLOW VOLUME:

10. OVERFLOW VOLUME RECOVERED: (GALLONS) SANITARY SEWER OVERFLOW LOCATION:
11. STREET:
12. CITY:
13. COUNTY: _ _ (SD, RI, OR)
14. ZIP CODE:

```
--- - - - - - - 
```

15. SANITATION SEWER OVERFLOW STRUCTURE I.D. :
16. NUMBER OF OVERFLOWS AT THIS LOCATION IN PAST 12 MONTHS \qquad
17. OVERFLOW CAUSE - SHORT DESCRIPTION - - CIRCLE ONE

ROOTS	GREASE	LINE BREAK	INFILTRATION
ROCKS	BLOCKAGE	POWER FAILURE	PUMP STATION FAILURE
DEBRIS	VANDALISM	FLOOD DAMAGE	MANHOLE FAILURE
	OTHER	CONSTRUCTION	

18. OVERFLOW CAUSE - - DETAILED DESCRIPTION OF CAUSE

19. SANITARY SEWER OVERFLOW CORRECTION - - DESCRIPTION OF ALL PREVENTATIVE AND CORRECTIVE MEASURES TAKEN OR PLANNED.

INITIAL AND SECONDARY RECEIVING WATERS:
20. DID THE SANITARY SEWER OVERFLOW REACH SURFACE WATERS? (Y OR N)
21. DID THE SANITARY SEWER OVERFLOW ENTER A STORM DRAIN? _ (Y OR N)
22. NAME OR DESCRIPTION OF INITIAL RECEIVING WATERS. (IF NONE, TYPE NONE)
23. NAME OR DESCRIPTION OF SECONDARY RECEIVING WATERS. (IF NONE, TYPE NONE)
24. IF THE SANITARY SEWER OVERFLOW DID NOT REACH SURFACE WATERS, DESCRIBE THE FINAL DESTINATION OF SEWAGE.

NOTIFICATION:
25. WAS THE LOCAL HEALTH SERVICES AGENCY NOTIFIED: _ (Y OR N)
26. IF THE OVERFLOW WAS OVER 1,000 GALLONS TO SURFACE WATER, WAS THE OFFICE OF EMERGENCY SERVICES (OES) NOTIFIED: _ _ (Y OR N) (NOT APPLICABLE, ENTER NA)

AFFECTED AREA POSTING:
27. WERE SIGNS POSTED TO WARN OF CONTAMINATION? _ (Y OR N)
28. HOW MANY DAYS WERE THE WARNING SIGNS POSTED?
29. REMARKS:

NOTE: IF THE SANITARY SEWAGE OVERFLOW EVENT RESULTS IN A DISCHARGE OF MORE THAN 1,000 GALLONS TO SURFACE WATERS, THIS FORM MUST BE RECEIVED BY THE REGIONAL BOARD NO LATER THAN FIVE DAYS AFTER THE OVERFLOW START DATE.

The following certification must be completed with the five day notice:
I swear under penalty of perjury that the information submitted in this document is true and correct. I certify under penalty of perjury that I have personally examined and am familiar with the information submitted in this document and all attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information, I believe that the information is true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment.

Signature

DAILY SIGN CHECK LOCATION OF SPILL DATE OF SPILL

LOG-IN TIME DATE AND SIGN NO. MISSING
DATE

C̄OMMMENTTS:

TYPE OF INCIDENT:
DATE OF INCIDENT: \qquad PREPARED BY:

LOCATION OF INCIDENT:
TIME OF INCIDENT: \qquad POLICE CALLED: YES NO

POLICE REPORT NUMBER: \qquad OFFICER'S NAME \qquad
HOW DID THE INCIDENT OCCUR (BE SPECIFIC) \qquad
\qquad
\qquad
\qquad

CONTACT PERSON OR AGENCY: \qquad ADDRESS: \qquad PHONE: \qquad
WITNESSES TO THE INCIDENT:

NAME	ADDRESS	
\square	\square	

(PLEASE USE ADDITIONAL SHEETS IF NEEDED)
WHAT ACTION STEPS WILL BE TAKEN TO PREVENT SUBSEQUENT INCIDENTS:
\qquad
\qquad
\qquad
SUPERVISOR'S
SIGNED \qquad SIGNATURE

SECTION III

 EMERGENCY PHONE \#'s
MEMORANDUM

April 25, 2001

TO: ALL CITY PERSONNEL

FROM: Public Works Manager Construction/Maintenance

RE: SANITATION/WATER EMERGENCY RESPONSE DISPATCH

It has been brought to our attention that some water/sewer related calls have been routed through the Community Services office. In order to provide quality, responsive, customer service, please contact the following:

First response for any WATER related problems (i.e., no water, water running, broken water lines, etc.) or SANITATION related problems (i.e., sewer line stoppages or back-ups, dead animals in the city right-of-way, etc.), shall be handled by Water Construction/Maintenance personnel

DURING WORKING HOURS: CALL 438-2722, Ext. 7134, for immediate response.

AFTER HOURS: NEXTEL PHONE - (760) 802-8101 (Duty Personnel) (If no response to cellular number, dial (760) 802-4790.

For any SEWER PUMP STATION ALARMS, dial the cellular phone, (760) 8024694.

Our people have been instructed that in the case of a mistaken call, they will take the message and contact the correct person or service district so as not to take up dispatcher time. We hope this will serve as a more efficient procedure and eliminate telephone tieups for dispatch and unnecessary time associated with contacting the proper department, as most emergency response situations can be associated with the described problems.

If there are any questions, please feel free to contact either Pat Guevara, ext 7132, or Kurt Musser, ext 7133.

Respectfully,

Public Works Manager, Construction/Maintenance

CITY OF CARLSBAD MUNICIPAL WATER DISTRICT
 EMERGENCY TELEPHONE LIST

CITY OF CARLSBAD MUNICIPAL WATER DISTRICT EMERGENCY TELEPHONE LIST

PIPE SUPPLIERS	
AMERON PIPE (Manufacturing)	1-619-561-6363 or 1-909-899-1716 or 1-626-683-4000
INSITUFORM ${ }^{+*}$	1-858-451-0977 or 760-468-2878 or 562-946-0046 fax 949-654-4830
MARCON PRODUCTS*	744-3355 or 1-619-214-8938 or 1-619-465-7682
MARDEN SUSCO	744-5600 or 489-9561 or 751-1992
PACIFIC PIPELINE SUPPLY	471-7473 or 471-4650 fax or 753-2861 Bob - owner
SANCON ENGINEERING***	1-714-891-2323 or 714-231-3630 Chuck Parson cell phone \#
EQUIPMENT(Rental)	
ALLIDE BARRICADES	1-619-442-4401 or 1-619-442-4403
ATLAS PUMP TRUCKS	1-619-443-7867
NATIONS RENT	741-9272
EL CAMINO RENTAL	438-7368
HAWTHORNE(large equipment)	431-7000
RAIN for RENT(large pumps)	1-909-653-2171
TREBOR (traffic control devises)	1-619-286-9701 or 1-619-286-9700
TRENCHPLATE RENTAL	746-8564
SMALL EQUPTMENT (Rental)	
Wacker (Chris Voelker)	760-728-4274
Breezer (Dave Yungen)	760-210-0096
MATERIAL \& PARTS SUPPLIERS	
MARCON	744-3355 or 1-619-214-8938 or 1-619-465-7682
MISSION ELECTRIC	476-0111 or fax 476-0110
HANSON	729-2090 or 802-6456 or 781-1723 fax
U.S. FILTER	781-5335
WYROC INC.	727-0878
TOOL SUPPLIERS	
GRAINGER	471-0400 or 1-800-225-5994
IDG (Industrial Distribution Group	744-4313
STAR BUILDERS SUPPLY	744-3240
OTHER SUPPLIERS \& CONTRACTORS	
PIONEER AMERICA	1-909-598-2165
CHLORINATORS \& CONTROLS	746-5922 or 724-8631
QUIGLEY COMMUNICATIONS	433-6101 or 967-3718
SANITATION STATION CONTRACTORS	
SMITH \& LOVELESS	1-913-888-5201
SLIVNICK MACHINE	744-8692 or 630-0744 or 1-619-977-8735

SPECIALIST
C\&W DIVING SERVICES INC. 1-619-474-2700 or 1-619-526-2288
DIVE/CORR 1-213-439-8287
*sewer M/H and main suppliers
${ }^{* *}$ sewer systern suppliers
***sewer system \& M/H rehabilitators

EMERGENCY CLEANUP SERVICES

A-1 CARPET \& CLEANING SERI 746-6469 OR 619-748-8490

887 Rancheros Drive

San Marcos, CA 92069

LUTH \& TURLEY	$619-579-8673$
1350 Hill Street	
EI Cajon, CA 92020	

HOTELS WITH KITCHENETTES
RAMADA SUITES CARLSBAD $438-2285$
751 MACADAMIA DRIVE
CARLSBAD, CA 92009
RESIDENCE INN CARLSBAD $\quad 431-9999$
2000 FARADAY AVENUE
CARLSBAD, CA 92008

FIGURE F-I
LIFT STATION LOCATIONS

\#1	Home Plant \#\# 1411052	729-7513	III	2359	Carsbad Blvd.
\#2	Fox's \#\# 1476686 \# 1037077-110	434-3327	III	4155	Harrison St.
\#3	Terramar \#\# 861108	438-9178	III	300	Cannon Rd.
\#4	Batiquitos \#\# 1568462	603-8195	III	7382	Gabbiano Ln.
\#5	Chinquapin \#\# 1005010	434-0214	III	4010	Carlsbad Blvd.
\#6	Forest \#\# 447146	434-0398	III	1731	Forest Ave.
\#7	Vancouver \#\# 1004907	434-0412	III	2690	Vancouver St.
\#8	Woodstock \#\# 25104773-10119773	434-0168	III	4666	Woodstock St.
\#9	Villas \#\# 84105526-1380435	434-0513	III.	2860	Winthrop Ave.
\#10	Faraday (Upper) \#\# (32-729-132) 1306132	438-8139	III	1711	Faraday Ave.
\#11	La Golondrena \#\# 1024365	931-0407	III	2516	La Golondrena St.
\#12	Gateshead \#\# 1167543	434-3018	III	4779	Gateshead Rd.
\#13	Simsbury \# 918955	434-0427	III	3086	Tamarack Ave.
\#14	Faraday (Lower) \#\#	929-0213	III	1507	Faraday Ave.
	Poinsettia \#\# 12938995	918-9496	III		2425 Poinsettia Lane
	Knots \#\# 1359036	438-8642	III		501 Knots Lane
Offic	ice; Telemetry Verbatim 438	438-2382		Comput	tor \#

EXHIBIT C

finformation

- Information

Information

linformation

information

4. Pl lnformation

Appendix B

Lift Station Summaries

Lift Station	Basin	Capacity (gpm)
Agua Hedionda	Vista/Carisbad	21,500
Buena Vista	Vista/Carlsbad	16,063
Chinquapin	Vista/Carlsbad	360
Faraday (Upper)	South Agua Hedionda	1,000
Faraday (Lower)	South Agua Hedionda	307
Forest	Vista/Carlsbad	360
Foxes	North Agua Hedionda	2,300
Gateshead	North Agua Hedionda	40
Home Plant	South Agua Hedionda	800
La Golondrina	Buena/Vallecitos	110
North Batiquitos	North Batiquitos	2,250
Poinsettia	North Batiquitos	1,230
Simsbury	North Agua Hedionda	382
Terramar	Vista/Carlsbad	100
Vancouver	Vista/Carlsbad	150
Villas	Vista/Carlsbad :!	125
Woodstock	South Agua Hedionda	50

CARLSBAD MUNICIPAL WATER DISTRICT

LIFT STATION SUMMARY FORM

```
STATION: Home Plant Lift Station # 1
Location: 2359 Carisbad Blvd.
Trunk Sewer: Vista/Carisbad
Basin: 1G
```

A. Flows

Capacity (gpm): 800 (Largest unit out of service)
Projected Peak (gpm): 1000
B. Pumps

Number: 3
Type: \quad Vertical Centrifugal non-clog pumps with Mechanical Seals
Manufacturer: Paco
Model No.: 52-49514-NCP
Serial Nos.: 91C0646701C
91C0646701A
91C0646701B
Rated Flow: 800 gpm
Head: $\quad 70$ (ft)
Speed: 1770 rpm
Horsepower: 20 HP
C. Motors

Manufacturer: General Electric
Model No.: 5KS2560NL4JR2A
Serial Nos.: 6P1233
6P1234
6P1235
Horsepower: 20
Voltage: 230
Frequency: 3 Phase, 60 Hz VFD
Enclosure: Code: G
Frame: L356HP1
Type: KS
D. Drives

Split shaft w/universal joint for flexible shaft with guide bearing.
E. Controls

Type: \quad Tesco Liquitronic $\mathrm{IV}=$ computer
Features: VFD - Mitsubishi Transistor Inverter. By using Key Pad to set your points. All levels of water measured with air compressor. The VFD will only operate the lead pump.
F. Alarms

Pump Fail:	Yes
Loss of Power:	Yes
Station Flooding:	Yes
High Level:	Yes
Low Level:	Yes
Combustible Gas:	No
$\mathrm{H}_{2} \mathrm{~S}:$	No

G. Electrical Service

Voltage (volts): $\quad 230$
Transformer (kVa): Yes; 150, $50 / 60 \mathrm{~Hz}$
Main Breaker (amp): 200
H. Telemetry

V/O Dutec to Modern communicator, to Compaq 590 computer with Wonderware Software.
I. Standby Power

	ENGINE	GENERATOR
Manufacturer	John Deere	Kholer
Model No.	G	60ROZJ71
Serial No.	T04039,	293438
Output	T369894	\cdots
Speed	HP	kW 60
Voltage	1800	
Frequency	n/a	240
Fuel Type	n/a	$3 P H, 60 \mathrm{~Hz}$
Fuel Consumption (gallons/hr)	Diesel	
Fuel Storage (gallons)	5.6	
Rated Run Time (hrs) (with full tank)	50	

I. Ventilation

For VFD electrical Cooling fan; Dayton 240 cfm

	Dry Well	Wet Well
Fan Capacity (cfm)	615 (Supply \& Exhaust)	1035 (Supply \& Exhaust)
Air Changes (per hr)	6.7	12

J. Odor Control

None
K. Structure

Below ground two levels. Wet well and dry well are separated by concrete wall.
L. Wet Well Corrosion Protection

No.
M. General

Alarm call box is a Microtel 200. One Muffin Monster grinder in wet well channel. Each has its own hydraulic motor and controller. Model 30002-32, Motor. Hydraulic power pack driven with 5 HP motor. Volts 230, 3 Phase, 60 Hz . Controller = PC2040 with H.O.A. Selector switch \& ON Relay Enclosure Nema 4X F.R.P.

COMMENTS

1. Ventilation fans for both dry and wet wells should run continuously to maintain the flammability of the interior space below 20% of the lower explosive limit (LEL).
2. Ventilation fans should be fitted with flow detection devices (flow switches) connected to alarm signaling system to indicate ventilation system failure.
3. Combustible gas detectors should be provided in both dry and wet wells. Means should be provided to automatically de-energize all electrical sources of ignition in the well in the event the interior atmosphere of the well reaching 20% of the lower explosive limit (LEL).
4. Local and remote alarms for both ventilation system failure and combustible gas detection should be provided.
5. Fire extinguisher should be provided for generator room.
6. Loose wirings touching other wirings should be separated and strapped to equipment supports or walls.
7. Wiring of the Mercury float switch in the wet well should be changed to intrinsically safe relay.

COST ESTIMATE

The cost estimate for the above modifications ranges between $\$ 15,000$ to $\$ 25,000$.

Entrance view.

HOME PLANT LIFT STATION

HONE PLANT LIFT STATION

Wetwell - electrical needs upgrade

LIFT STATION SUMMARY FORM

STATION: Fox Plant Lift Station \# 2

Location: 4155 Harrison Street
Trunk Sewer: North Agua Hedionda Lift Station Basin: 1L

A. Flows

Capacity (gpm): 2300 (Largest unit out of service)
Projected Peak (gpm): 2300
B. Pumps

Number: 3
Type: Vertical Centrifugal non-clog pumps with Mechanical Seals

Pumps	No. 1	No. 2	No. 3
Manufacturer	Chicago pumps	Chicago pumps	Fairbank Morse
Model No.	VOSOLC5	VOSOLC5	B5400
Serial No.	Unknown	P00015627	K3P1056991
Rated Flow (gpm)	1150	1150	1500
Head (ft)	65	65	65
Speed (rpm)	1185	1185	1175
Horsepower (HP)	30	30	40

C. Motors

Motors	No. 1	No. 2	No. 3
Manufacturer	Marathon Electric	Marathon Electric	Reliance Duty Master AC Motor
Model No.	365upTSV98AC		
Serial No.	2 N916791	2N916792	1MAF27604-G1-ZM
Horsepower (HP)	30	30	40
Voltage	220	220	220
Frequency	3 Phase, Hz 60	3 Phase, Hz 60	3 Phase, HZ 60
	Single Speed	Single Speed	Single Speed
Enclosure	Frame 365up,	Frame 365up,	Frame 364Hp,
	Type TSV-BE	Type TSV-BE	Design B

D. Drives

Vertical open-shaft, and universal joint for flexible shafting.

E. Controls

Type: \quad Autocon Industries Inc. (Bubbler system)
Features: Pressure Sensor control with Bellows operation and spring lever control. Alternator selector switch type. By Electric Switch corporation \#31306A, Series 31. Motor starters No. 1 - Furnas 14HB32AA-11, No. 2 - Furnas 14HB32AC-71, No. 3 - Furnas 14IP32AA71.
F. Alarms

Pump Fail:	No
Loss of Power:	Yes
Station Flooding:	Yes
High Level:	Yes
Low Level:	Yes
Combustible Gas:	No
$\mathrm{H}_{2} \mathrm{~S}:$	No

G. Electrical Service

Voltage (volts): $\quad 220$
Transformer (kVa): No
Main Breaker (amp): 400
H. Teiemetry
na
I. Standby Power

See Chinquapin Lift Station \#5
J. Ventilation

	Drywell	Wetwell
Fan Capacity (cfm)	300 (Exhaust Only)	300 (Exhaust Only)
Air Changes (per hr)	4.5	4.5

K. Odor Controi

None. Clean wet well every 6 months.
L. Structure

Below ground two levels. Wet well and dry well are separated by concrete wall.

M. Wet Well Corrosion Protection

No.
N. General

Alarm call box is a Microtel 200. Two Muffin Monster grinders in wet well channel. Each has its own hydraulic motor and controller. Model 30000-0032, Motor. Hydraulic power pack driven with 5 HP motor. Volts 230, 3 Phase, 60 Hz . Controller = PC2040 with H.O.A. Selector switch \& OR Relay Enclosure Nema 4X F.R.P.

COMMENTS

1. Existing exhaust fans capacities (cfm) are less than the required capacities to meet the electrical classification of the spaces (both dry and wet wells). These fans should be removed and replaced with new FRP fans with higher cfm capacities. The new supply and exhaust fans shall be rated for $2,000 \mathrm{cfm}$ each.
2. New supply fans with the new exhaust fans for both dry and wet wells should be installed.
3. Odors generated from wet well are escaped to the atmosphere through the openings in the entrance door and uncovered grating at the top slab of the lift station. Therefore, to help control the odors, the uncovered gratings should be removed for both dry and wet wells, and the opening should be modified to allow for the installation of the new supply fans. Any remaining openings should be covered. Also, the entrance doors should be replaced with FRP doors.
4. Ventilation ducts should be removed and replaced with new FRP ducts. The exhaust ducts should extend 10 feet higher than the top slab grade level.
5. Ventilation fans for both dry and wet wells should be fitted with flow detection devices (flow switches) connected to alarm signaling system to indicate ventilation system failure.
6. Combustible gas detectors should be installed in both dry and wet wells. Means should be provided to automatically de-energize all electrical sources of ignition in the well in the event the interior atmosphere of the well reaching 20% of the lower explosive limit (LEL).
7. Local and remote alarms for both ventilation systems failure and combustible gas detection should be provided.
8. Existing conduits and wiring installations should be upgraded in the wet well to meet Class 1, Div. 2 area.
9. Loose wirings touching other winings should be separated and strapped to equipment supports, or walls.
10. Walls and stairs for both dry and wet wells should be inspected and evaluated for corrosion.
11. Wiring of the mercury float switch in the wet wells should be changed to intrinsically safe relay.

Entrance view.

Wet Well-Class 1 Divison 1 Eectrical needs aggrads

Wet Well - Class 1 Division 1
Electrical controls need upgrade. Needs odor control.

Wet Well - Requires corrosion protection.
FOXES LIFT STATION

STATION: Terramar Lift Station \#3
 Location: \quad South of Cannon East of El Arbol
 Trunk Sewer: Vista/Carlsbad
 Basin:
 3A

A. Flows

Capacity (gpm): 100 (Largest unit out of service)
Projected Peak (gpm): 100
B. Pumps

Number: 2
Type: . Vertical Centrifugal non-clog pumps with Mechanical Seals
Manufacturer: Fairbank Morse
Model No.: 5412BK
Serial Nos.: K251021136
K251021136-1
Rated Flow: 100 gpm
Head: 25 (ft)
Speed: 1150 rpm
Horsepower: 3 HP
C. Motors

Manufacturer: U.S. Motors
Model No.: 1027
Serial Nos.: 37482881
3748377
Horsepower: 3
Voltage: 220
Frequency: 3 Phase, 50 Hz
Enclosure: Type: H
Frame: 215P
D. Drives

Vertical open-shaft, with guide bearing and universal joint for flexible shafting.
E. Controls

Type: \quad Autocon Industries Inc. (Bubbler System)
Features: Pressure sensor control with bellows operation and spring lever action. Motor starters = Furnas 14CP32AC, Heater H-33
F. Alarms

Pump Fail: No
Loss of Power: Yes
Station Flooding: Yes
High Level: Yes
Low Level: Yes
Combustible Gas: No
$\mathrm{H}_{2} \mathrm{~S}$: No
G. Electrical Service

Voltage (volts): $\quad 220$
Transformer (kVa): No
Main Breaker (amp): 100
H. Telemetry
n/a
I. Standby Power

Portable Unit
J. Ventilation

	Dry Well	Wet Well
Fan Capacity (cfm)	230 (Exhaust Only)	NO
Air Changes (per hr)	6	

K. Odor Control

None. Clean wet well with Vactor every 4 months.
L. Structure

Concrete 3 levels down. Wet well within pump room. Wet well 3^{\prime} wide $6^{\prime \prime} 8^{\prime \prime}$ high.
M. Wet Well Corrosion Protection

No.
N. General

Alarm call box is a Microtel 200.

COMMENTS

1. Ventilation fan for the dry well should run continuously to maintain the flammability of the interior space below 20% of the lower explosive limit (LEL).
2. Ventilation fan should be fitted with flow detection device (flow switch) connected to alarm signaling system to indicate ventilation system failure.
3. Combustible gas detectors should be provided in both dry and wet wells. Means should be provided to automatically de-energize all electrical sources of ignition in the well in the event the interior atmosphere of the well reaching 20% of the lower explosive limit (LEL).
4. Local and remote alarms for both ventilation system failure and combustible gas detection should be provided.
5. Loose wirings touching other wirings should be separated and strapped to equipment supports or walls.
6. Local and remote alarms for pump failure should be provided.
7. Wet well requires inspection and evaluation for corrosion.
8. Wiring of the Mercury float switch in the wet well should be changed to intrinsically safe relay.

TERRAMAR LIFT STATION

Entrance view.

Drywell - Class 1 Div. 2 exhaust fan.

TERRAMAR LIFT STATION

Drywell- electrical controls

STATION: North Batiquitos Lift Station \#4

Location:	7575 Batiquitos Dr.
Trunk Sewer:	North Batiquitos
Basin:	$19 A$

A. Flows

Capacity (gpm): 1210 (Largest unit out of service)
Projected Peak (gpm): 2250, Existing La Costa station will be replaced and upgraded to this flow capacity
B. Pumps

Number: 3
Type: \quad Vertical close coupled non-clog centrifugal pumps with mechanical seals Manufacturer: ATT AC Pump
Model No.: 250
Serial Nos.: $\quad \# 1=1-74006-01-2$
\#2=1-74006-01-3
\#3=1-74006-06-1
Rated Flow: 1210 gpm
Head: 164 (ft)
Speed: $\quad 1785 \mathrm{rpm}$
Horsepower: 100 HP
C. Motors

Manufacturer: Marathon Electric XRI
Model No.: XM405TTF56050ANW
Serial Nos.: $\quad \# 1=19-04409-11 / 13 / 01$
\# $2=19-04409-11 / 13 / 02$
\#3=19-04409-11/13/03
Horsepower: 100
Voltage: 480
Frequency: 3 Phase, 60 Hz , Single Speed
Enclosure: Type: TFS
Frame: 405 HPV
D. Drives

Vertical open-shaft, and universal joint for flexible shafting.
E. Controls

Type: \quad Tesco Flex Control
Features: Bubbler type. Alternating Relay, Derversified Electric ARA-120-ADA
F. Alarms

Pump Fail:	Yes
Loss of Power:	Yes
Station Flooding:	Yes
High Level:	Yes
Low Level:	Yes
Combustible Gas:	No
$\mathrm{H}_{2} \mathrm{~S}:$	No .

G. Electrical Service

Voltage (volts): 480
Transformer (kVa): Square D Class 9070 Type EZ-2, 480-120.
Main Breaker (amp): 1200
H. Telemetry
I. Standby Power

	ENGINE	GENERATOR
Manufacturer	Caterpillar	Olympian
Model No.	3208	$96 A 02053-S$
Serial No.	5 YF022862	2027503
Output	HP233	kW 200
Speed	1800	
Voltage	N/A	$277 / 480$
Frequency	N/A	3 ph .60 Hz.
Fuel Type	Diesel	
Fuel Consumption (gallons/hr)	$50 \%=7.6$ gals @	
Fuel Storage	$100 \%=14.8$ gals	
(gallons)	300	
Rated Run Time (hrs) (with full tank)	$50 \%=39$ hrs @	
Silencer	$100 \%=20$ hrs	

J. Ventilation

	Dry Well	Wet Well
Fan Capacity (cfm)	3400 (supply)	1000 (supply)
	4000 (exhaust)	1100 (exhaust)
Air Changes (per hr)	12	12

K. Odor Control

None.
L. Structure

Below ground concrete walls.
M. Wet Well Corrosion Protection

Polyvinyl chloride liner. (PVC) T-Lock Amerplate as manufactured by Ameron Corporate.
N. General

Alarm call box is a Microtel.

COMMENTS

1. Ventilation fans for both dry and wet wells should run continuously to maintain the flammability of the interior space below 2% of the Lower Explosive Limit (LEL).
2. Ventilation fans should be fitted with flow detection devices (flow switches) connected to alarm signaling system to indicate ventilation system failure.
3. Combustible gas detectors should be provided in the dry well. Means should be provided to automatically de-energize all electrical sources of ignition in the well in the event the interior atmosphere of the well reaching 20\% of the Lower Explosive Limit (LEL).
4. Local and remote alarms for both ventilation system failure and combustible gas detection should be provided.
5. Fire extinguishers should be provided for dry well and generator room.
6. Wiring of the Mercury float switch in the wet well should be intrinsically safe relay.
7. Dry well ventilation fans capacities should be changed to read: Supply fan $4,000 \mathrm{cfm}$, Exhaust fan $3,400 \mathrm{cfm}$. This is to maintain the space under positive pressure.

NORTH BATIQUITOS LIFT STATION

New Lift Station - under construction.

Ertranceviow.

CARLSBAD MUNICIPAL WATER DISTRICT

LIFT STATION SUMMARY FORM

STATION: Chinquapin Lift Station \#5

Location:	4010 Carisbad Blvd.
Trunk Sewer:	Vista/Carlsbad
Basin:	1 H

A. Flows

Capacity (gpm):	360 (Largest unit out of service)
Projected Peak (gpm):	360

B. Pumps

Number: 2
Type: Submersible explosion proof
Manufacturer: Aurora/Hydromatic
Model No.: \quad S4HX750JC
Serial Nos.: Unknown-1, S7676
Rated Flow: 360 gpm
Head: $\quad 43$ (ft)
Speed: $\quad 1750 \mathrm{rpm}$
Horsepower: $71 / 2 \mathrm{HP}$
C. Motors

Manufacturer: Aurora/Hydromatic
Model No.: S4HX750JC
Serial Nos.: Unknown-1=S7676
Horsepower: $71 / 2$
Voltage: $\quad 230$
Frequency: One Speed 3 Phase, 60 Hz
Enclosure: C.L. ins. - B
Design: B
Code: K
D. Drives

Submersible pumps/closed system
E. Controls

Type: \quad Float and Rod System
Features: \quad Square D Mechanical Alternator. Motor starter Square D, Type \#SD01, Heaters B-40.
F. Alarms

Pump Fail: Yes, Seal Failure
Loss of Power: Yes
Station Flooding: Yes
High Level: Yes
Low Level: Yes
Combustible Gas: No
$\mathrm{H}_{2} \mathrm{~S}$: No
G. Electrical Service

Voltage (volts): 230
Transformer (kVa): N/R
Main Breaker (amp): 100
H. Telemetry
I. Standby Power

	ENGINE	GENERATOR
Manufacturer	Caterpillar	Kato-Diesel
Model No.	$3606 T$	125 SR9 E
Serial No.	66 D 15626	73998
Output	HP	kW 125
Speed	1800	1800
Voltage	n/a	$120 / 240$
Frequency	n/a	$3 P H$
Fuel Type	Diesel	
Fuel Consumption (gallons/hr)		
Fuel Storage (galions)	125	
Rated Run Time (hrs) (with full tank)		
Silencer \quad.	Residential Kittell	

J. Ventilation

	Drywell	Wetwell
Fan Capacity (cim)	No	No
Air Changes (per hr)		

FOREST LIFT STATION

Drywell - Class 1 Div. 1 electrical needs upgrading
Wetwell - Class 1 Div. 1.

STATION: Vancouver Lift Station \#7

Location:	2990 Vancouver
Trunk Sewer:	Vista/Carlsbad
Basin:	25

A. Flows

Capacity (gpm): $\quad 150$ (Largest unit out of service)

Projected Peak (gpm): 150
B. Pumps

Number: 2
Type: . Vertical close coupled non-clog centrifugal pumps with Mechanical seal.
Manufacturer: Smith Loveless, Inc.
Model No.: 4B2A
Serial Nos.: 831138
831139
Rated Flow: 150 gpm
Head: 103 (ft)
Speed: $\quad 1760 \mathrm{pm}$
Horsepower: 15 HP
C. Motors

Manufacturer: Reuland Electric Co.
Model No.: 16055-XX2980
Serial Nos.: 833588F-10
833588F-4
Horsepower: 15
Voltage: 460
Frequency: $\quad 3$ Phase, 60 Hz , Single Speed
Enclosure: Frame AWO-284V
Type VOND
D. Drives

Close coupled.
E. Controls

Type: \quad Smith Loveless (bubbler system)
Features: Spring loaded mercury switch for pump on-off cycle. Struthers Dunn \#A311XRXPR alternating relay. Motor starters, Westinghouse 4L330C, Heaters FH4B.
F. Alarms

Pump Fail: No
Loss of Power: Yes
Station Flooding: Yes
High Level: Yes
Low Level: Yes
Combustible Gas: No
$\mathrm{H}_{2} \mathrm{~S}$:
No
G. Electrical Service

Voltage (volts): . 460
Transformer (kVa): (2) 460 to 120 Vac
Main Breaker (amp): 60
H. Telemetry

None
I. Standby Power

Portable unit.
J. Ventilation

	Dry Well	Wet Well
Fan Capacity (cfm)	100 (Exhaust Only)	No
Air Changes (per hr)	12	

K. Odor Control

None. Clean wet well every 8 weeks with Vactor. We add 50\# of granular chlorine every 8 weeks.
L. Structure
$36 "$ entrance tube with pump landing 12 . Wet well and pumps separate. Wet well concrete. Pump structure coated with Versapox Epoxy. Wet well $5^{\prime} 11^{\prime \prime}$ diameter, and $17^{\prime \prime} 3^{\prime \prime}$ deep.
M. Wet Well Corrosion Protection

No.
N. General

Alarm call box is a Microtel 200.

COMMENTS

1. Ventilation fan for the dry well should run continuously to maintain the flammability of the interior space below 20\% of the Lower Explosive Limit (LEL).
2. Ventilation fan should be fitted with flow detection device flow switch connected to alarm signaling system to indicate ventilation system failure.
3. Combustible gas detectors should be provided in both dry and wet wells. Means should be provided to automatically de-energize all electrical sources of ignition in the well in the event the interior atmosphere of the well reach 20% of the Lower Explosive Limit (LEL).
4. Local and remote alarms for both ventilation system failure and combustible gas detection should be provided.
5. Loose wirings touching other wirings should be separated and strapped to equipment supports or walls.
6. Local and remote alarms for pump failures should be provided.
7. Wet well requires inspection and evaluation for corrosion.
8. Wiring of the Mercury float switch in the wet well should be changed to intrinsically safe relay.
9. Some existing electrical conduits should be upgraded from PVC to Rigid steel conduits.

VANCOUVER LIFT STATION

Wetwell entrance.

VANCOUVER LIFT STATION

VANCOUVER LIFT STATION

Drywell entrance view.

STATION: Woodstock Lift Station \#8
 Location: 4666 Woodstock St.
 Trunk Sewer: South Agua Hedionda Basin: 7C

A. Flows

Capacity (gpm):	50 (Largest unit out of service)
Projected Peak (gpm):	50

B. Pumps

Number: 2
Type: \quad Horizontal - Self-priming with Mechanical Seal
Manufacturer: Gorman Rupp
Model No.: T3A3-B
Serial Nos.: 778268 \& 778269
Rated Flow: 50 gpm
Head: $\quad 25$ (ft)
Speed: 974 rpm
Horsepower: 2 HP
C. Motors

Manufacturer: Sterling
Model No.: 82-40193
Serial Nos.: none
Horsepower: 2
Voltage: 230
Frequency: Single Phase, 60 Hz , Single Speed
Enclosure: Frame 254T, Code G
D. Drives

V-Belt drive, two belts per pump.
E. Controls

Type: \quad Gorman Rupp Company (Bubbler system).
Features: Bubbler control with mercury pressure switch. **Motor circuit breaker - ITE 30 amp. \#EEZ-B030. **Magnetic starter, Allen Bradley \#709-BOT, Size 1, Heaters W-53.
F. Alarms

Pump Fail:	Yes
Loss of Power:	Yes
High Level:	Yes
Low Level:	Yes
Combustible Gas:	No
$\mathrm{H}_{2} \mathrm{~S}:$	No

G. Electrical Service

Voltage (volts): $\quad 230$
Transformer (kVa): N/R
Main Breaker (amp): 100
H. Telemetry

None.
I. Standby Power

	ENGINE	GENERATOR
Manufacturer	Generac	Generac
Model No.	V-Twin	V-Twin
Serial No.		
Output	HP 16	kW 8000 - Max 10,000
Speed	N/A	
Voltage	N/A	Single Phase
Frequency	Gas	
Fuel Type	5.3 at 1/2 Load	
Fuel Consumption	4.3	
(gallons/hr)		
Fuel Storage (gallons)		
Rated Run Time (hrs) (with		
full tank)		
Silencer		

J. Ventilation

Automatic Operation, Thermostatically Controlled.

	Dry Well	Wet Well
Fan Capacity (cfm)	140 (Exhaust Only)	No
Air Changes (per hr)	38	

K. Odor Control

None. Clean wet well every 4-8 weeks. We also add 50\# of granular chlorine every 6-8 weeks.
L. Structure

Station above ground. Wet well below concrete structure. A.H. type.
M. Wet Well Corrosion Protection

No.
N. General

Alarm call box is a Microtel 200.

COMMENTS

1. Ventilation fan for the dry well should run continuously.
2. Ventilation fan should be fitted with flow detection devices (flow switch) connected to alarm signaling system to indicate ventilation system failure.
3. Combustible gas detectors should be provided in both dry and wet wells. Means should be provided to automatically de-energize all electrical sources of ignition in the well in the event the interior atmosphere of the well reaching $\mathbf{2 0 \%}$ of the Lower Explosive Limit (LEL).
4. Local and remote alarms for both ventilation system failure and combustible gas detection should be provided.
5. Loose wirings touching other wirings should be separated and strapped to equipment supports, or walls.
6. Wet well requires inspection and evaluation for corrosion.
7. Wiring of the Mercury float switch in the wet well should be changed to intrinsically safe relay.

WOODSTOCK LIFT STATION

STATION: Villas Lift Station \#9

Location:	2860 Winthrop Avenue
Trunk Sewer:	Vista/Carlsbad
Basin:	7A

A. Flows

Capacity (gpm):	125 (Largest unit out of service)
Projected Peak (gpm):	125

B. Pumps

Number: 2
Type: Horizontal - Self priming centrifugal pump with Mechanical Seal.
Manufacturer: Gorman Rupp
Model No.: T3A3-B
Serial Nos.: \quad \#1=779644
\#2=None (unknown)
Rated Flow: 125 gpm
Head: $\quad 90(\mathrm{ft})$
Speed: 1912 rpm
Horsepower: 15 HP
C. Motors

Manufacturer: Siemens Allis
Model No.: 51-324-900
Serial Nos.: None
Horsepower: 15
Voltage: 208
Frequency: $\quad 3$ Phase, 60 Hz , Single Speed
Enclosure: Frame: 245T
Code: G
D. Drives

V-Belt drive, two belts per pump.

E. Controls

Type: \quad Gorman Rupp Company (bubbler system)
Features: Bubbler control with mercury pressure switch. Motor circuit breaker Square D, 70 amp , \#FAL32070. Magnetic motor starter, Allen Bradley \#709D0D16, Size 3, Heaters W-67.
F. Alarms

Pump Fail: Yes
Loss of Power: Yes
High Level: Yes
Low Level: Yes
Combustible Gas: No
$\mathrm{H}_{2} \mathrm{~S}$: No
G. Electrical Service

Voltage (volts): $\quad 200$
Transformer (kva): $\quad 2 \mathrm{kVa}, 200$ volts primary to 115 volts
Main Breaker (amp): 100
H. Telemetry

None
I. Standby Power

Portable Unit
J. Ventilation

Thermostatically controlled fan for automatic operation

	Dry Well	Wet Well
Fan Capacity (cfm)	140 (exhaust only)	No
Air Changes (per hr)	12	-

K. Odor Control

None. Clean wet well every 4-8 weeks. We also add 50\# of granular chlorine every 6-8 weeks.
L. Structure

Station above ground. Wet well below concrete structure. A.H. Type.
M. Wet Well Corrosion Protection

Coated May 1994 by National Plant Services. Material used Poly Urethane spray on type.
N. General

Alarm call box is a Microtel 200.

COMMENTS

1. Ventilation fan for the dry well should run continuously.
2. Ventilation fan should be fitted with flow detection device (flow switch) connected to alarm signaling system to indicate ventilation system failure.
3. Combustible gas detectors should be provided in both dry and wet wells. Means should be provided to automatically de-energize all electrical sources of ignition in the well in the event the interior atmosphere of the well reach 20% of the Lower Explosive Limit (LEL).
4. Local and remote alarms for both ventilation system failure and combustible gas detection should be provided.
5. Loose wirings touching other wirings should be separated and strapped to equipment supports or walls.
6. Wet well requires inspection and evaluation for corrosion.
7. Wiring of the Mercury float switch in the wet well should be changed to intrinsically safe relay.

VILLAS LIFT STATION

Entrance view.

$$
\begin{aligned}
& \text { Dryasl.- Slass } 10 \% 2 \\
& \text { Met\% シ - Sass } 1 \text { DN. }
\end{aligned}
$$

STATION: Faraday Lift Station \#10 (Upper)

Location:	1759 Faraday
Trunk Sewer:	South Aqua Hedionda
Basin:	$5 B \& 24 C$

A. Flows

Capacity (gpm): 1000 (Largest unit out of service)

Projected Peak (gpm): 1000

B. Pumps

Number: 2
Type: \quad Vertical close couple, non-clog centrifugal pumps with Mechanical Seal.
Manufacturer: Smith Loveless
Model No.: 6 C3
Serial Nos.: 890849
890850
Rated Flow: 1000 gpm
Head: $\quad 55$ (ft)
Speed: $\quad 1800 \mathrm{rpm}$
Horsepower: 25 HP
C. Motors

Manufacturer: G.E. for Smith Loveless
Model No.: 5K284DP6712ANO
Serial Nos.: 035222
035225
Horsepower: 25
Voltage: 460
Frequency: 3 Phase, 60 Hz , Single Speed
D. Drives

Close coupled.
E. Controls

Type: Smith Loveless
Features: Pump Alternator - ARA-120-ADA, Diversified Electronics
Emergency transfer switch, automatic, Kohler Ser. No. K24650
Spring loaded mercury switch for On/Off cycles
Motor starter, Westinghouse 610C51605, Heaters FH54
F. Alarms

Pump Fail:	Yes
Loss of Power:	Yes
Station Flooding:	Yes
High Level:	Yes
Low Level:	Yes
Combustible Gas:	No
$\mathrm{H}_{2} \mathrm{~S}:$	No

G. Electrical Service

Voltage (volts): $\quad 480$
Transformer (kVa): \quad Primary 240/480 to 120/240
Main Breaker (amp): 225
H. Telemetry

None
I. Standby Power

	ENGINE	GENERATOR
Manufacturer	Cummins	Kohler
Model No.	$505 \mathrm{CID8}-3 \mathrm{LTR}$	$125 R O Z 273$
Serial No.	442283260	234749
Output	HP	kW 125
Speed	1800	1800
Voltage	n / a	460
Frequency	n / a	3 Phase, 60 Hz
Fuel Type	Diesel	
Fuel Consumption (gallons/hr)		
Fuel Storage (gallons)	125	
Rated Run Time (hrs) (with full tank)		

J. Ventilation

	Dry Well	Wet Well
Fan Capacity (cfm)	215 (Exhaust Only)	No
Air Changes (per hr)	12	

K. Odor Control

None. Clean wet well every $3-5$ weeks, add 50\# of granular chlorine every 6 months

L. Structure

42" entrance tube, 12^{\prime} length/pump landing $11^{\prime} 10^{\prime \prime}$ diameter and $9^{\prime} 5^{\prime \prime}$ high. Wet well and pumps separate

Wet well concrete 8' diameter, 17' depth. Coated with Versapox epoxy.
M. Wet Well Corrosion Protection

No.
N. General

Alarm call box is a Microtel 200.

COMMENTS

1. Ventilation fan for the dry well should run continuously to maintain the flammability of the interior space below 20\% of the Lower Explosive Limit (LEL).
2. Ventilation fan should be fitted with flow detection device (flow switch) connected to alarm signaling system to indicate ventilation system failure.
3. Combustible gas detectors should be provided in both dry and wet wells. Means should be provided to automatically de-energize all electrical sources of ignition in the well in the event the interior atmosphere of the well reach 20% of the Lower Explosive Limit (LEL).
4. Local and remote alarms for both ventilation system failure and combustible gas detection should be provided.
5. Loose wirings touching other wirings should be separated and strapped to equipment supports or walls.
6. Wet well requires inspection and evaluation for corrosion.
7. Wiring of the Mercury float switch in the wet well should be changed to intrinsically safe relay.
8. Existing intake air for the dry well should be plugged and the entrance tube should be modified to allow for intake air form the opposite side which prevents short circuiting between exhaust and intake air.

FARADAY LIFT STATION (UPPER)

Entrance view.

D"wel: Class 1 Diw 2

CARLSBAD MUNICIPAL WATER DISTRICT

LIFT STATION SUMMARY FORM

STATION: La Golondrina Lift Station \#11

Location: 2516 La Golondrina
Trunk Sewer: BuenaNallecitos
Basin: 6B
A. Flows

Capacity (gpm): 110 (Largest unit out of service)
Projected Peak (gpm): 110
B. Pumps

Number: 2
Type: Vertical close couple, non-clog centrifugal pumps with Mechanical Seal.
Manufacturer: Smith Loveless
Model No.: 4B2A
Serial Nos.: 831104
831103
Rated Flow: 110 gpm
Head: $\quad 45$ (ft)
Speed: $\quad 1170 \mathrm{pm}$
Horsepower: 5 HP
C. Motors

Manufacturer: Smith Loveless
Model No.: 8264-XX2978
Serial Nos.: 834658A-6
834658A-4
Horsepower: 5
Voltage: 230
Frequency: $\quad 3$ Phase, 60 Hz , Single Speed
Enclosure: Frame: AWO-L210
Type: VONO
D. Drives

Close coupled.
E. Controls

Type: Smith Loveless
Features: \quad Spring load mercury switch for pump or/off
Struthers Dunn \#211XBX-PR alternating relay
Motor Starters - 8011B3951-14, Heathers FH46
Roto-Phase Rotary Generator - Input 1 ph., 230 volts; Output 3 ph., 230 volts max. System H/P 10, Model DBR, Ser. No. 55607-LN
F. Alarms

Pump Fail:	No
Loss of Power:	Yes
Station Flooding:	Yes
High Level:	Yes
Low Level:	Yes
Combustible Gas:	No
$\mathrm{H}_{2} \mathrm{~S}:$	No

G. Electrical Service

Voltage (volts): $\quad 230,1 \mathrm{ph}$.
Transformer (kVa): No
Main Breaker (amp): 100
H. Telemetry

None
I. Standby Power

Portable unit
J. Ventilation

	Dry Well	Wet Well
Fan Capacity (cfm)	50 (Exhaust Only)	No
Air Changes (per hr)	12	

K. Odor Control

None. Clean wet well every 6 months, add 50\# of granular chlorine every 6 months.
L. Structure
$36^{\prime \prime}$ entrance tube, 11 ' pump landing. Wet well and pumps separate. Wet well concrete. Coated with Versapox epoxy. Wet well 4' diameter, depth 21 '6".
M. Wet Well Corrosion Protection

No.
N. General

Alarm call box is a Microtel 200.

COMMENTS

1. Ventilation fan for the dry well should run continuously to maintain the flammability of the interior space below 20\% of the Lower Explosive Limit (LEL).
2. Ventilation fan should be fitted with flow detection device (flow switch) connected to alarm signaling system to indicate ventilation system failure.
3. Combustible gas detectors should be provided in both dry and wet wells. Means should be provided to automatically de-energize all electrical sources of ignition in the well in the event the interior atmosphere of the well reach 20% of the Lower Explosive Limit (LEL).
4. Local and remote alarms for both ventilation system failure and combustible gas detection should be provided.
5. Loose wirings touching other wirings should be separated and strapped to equipment supports or walls.
6. Local and remote alarms for pumps failure should be provided.
7. Wet well requires inspection and evaluation for corrosion.
8. Wiring of the Mercury float switch in the wet well should be changed to intrinsically safe.
9. Connection for standby generator should be provided.

LA GOLONDRINA LIFT STATION

Entrance view.

Wetwell entrance - Class 1 Div. 1.

LA GOLONDRINA LIFT STATION

Drywell entrance - Class 1 Div. 2.

CARLSBAD MUNICIPAL WATER DISTRICT

LIFT STATION SUMMARY FORM

STATION: Gateshead Lift Station \#12
 Location: $\quad 4779$ Gateshead Road
 Trunk Sewer: North Agua Hedionda
 Basin: 7C

A. Flows

Capacity (gpm): 40 (Largest unit out of service)
Projected Peak (gpm): 40
B. Pumps

Number: 2
Type: Horizontal - Self priming centrifugal pump with Mechanical Seal.
Manufacturer: Gorman Rupp
Model No.: TЗАЗ-B
Serial Nos.: \quad \#1=828939
\#2=828940
Rated Flow: $\mathbf{4 0}$ gpm
Head: 25 (ft)
Speed: 988 rpm
Horsepower: 3 HP
C. Motors

Manufacturer: Siemens Allis
Model No.: 51-391-087
Serial Nos.: None
Horsepower: 3
Voltage: 230
Frequency: $\quad 3$ Phase, 60 Hz
Enclosure: Frame: 182T
Code: K
D. Drives

V-Belt drive, two belts each pump.
E. Controls

Type: \quad Gorman Rupp Company (bubbler system)
Features: Controls with bubbler Electronic Pressure switch. Main Control board Solid State. Motor Starters Square D 20 Amp. \#FAL 32020 Heaters W50.
F. Alarms

Pump Fail: Yes
Loss of Power: Yes
High Level: Yes
Low Level: Yes
Combustible Gas: No
$\mathrm{H}_{2} \mathrm{~S}$: No
G. Electrical Service

Voltage (volts): $\quad 230$
Transformer (kVa): (2) 230 volts primary to 115 volts
Main Breaker (amp): 100
H. Telemetry

None
I. Standby Power

Portable Unit
J. Ventilation

	Dry Well	Wet Well
Fan Capacity (cfm)	50 (Exhaust Only)	No
Air Changes (per hr)	6	

K. Odor Control

None. Clean wet well every 4-8 weeks. Also add 50\# of granular chlorine every 6-8 weeks.
L. Structure

Station enclosures \& entrance tube; fiberglass reinforced Isophthalic Polyester Resins. Station Nominal diameter 76", Height 9', entrance tube 36". Wet well 7 ' diameter, 25'6" deep.
M. Wet Well Corrosion Protection

No.
N. General

Alarm call box is a Microtel 200.

COMMENTS

1. Ventilation fan for the dry well should run continuously to maintain the flammability of the interior space below 20% of the Lower Explosive Limit (LEL).
2. Ventilation fan should be fitted with flow detection device (flow switch) connected to alarm signaling system to indicate ventilation system failure.
3. Combustible gas detectors should be provided in both dry and wet wells. Means should be provided to automatically de-energize all electrical sources of ignition in the well in the event the interior atmosphere of the well reach 20\% of the Lower Explosive Limit (LEL).
4. Local and remote alarms for both ventilation system failure and combustible gas detection should be provided.
5. Loose wirings touching other wirings should be separated and strapped to equipment supports or walls.
6. Wet well requires inspection and evaluation for corrosion.
7. Wiring of the Mercury float switch in the wet well should be changed to intrinsically safe relay.

GATESHEAD LIFT STATION

Entrance view.

Drywell - Class 1 Div. 2

CARLSBAD MUNICIPAL WATER DISTRICT

LIFT STATION SUMMARY FORM

STATION: Simsbury Lift Station \#13

Location:	3531 Simsbury Dr.
Trunk Sewer:	North Agua Hedionda
Basin:	7A

A. Flows

Capacity (gpm): 382 (Largest unit out of service)
Projected Peak (gpm):
382
B. Pumps

Number: 2
Type: . Vertical close coupled non-clogged centrifugal pumps with mechanical seals.
Manufacturer: `Smith \& Loveless, Inc.
Model No.: 4D4A
Serial Nos.: \#1-851053
\#2-851054
Rated Flow: 382gpm
Head: $\quad 200$ (ft)
Speed: $\quad 1760 \mathrm{rpm}$
Horsepower: 50 HP
C. Motors

Manufacturer: Reuland Electric Co.
Model No.: 189 24-XN5363A
Serial Nos.: \#1-855363-A-1
\#2-855363-A-3
Horsepower: 50
Voltage: 460
Frequency: $\quad 3$ Phase, 60 Hz , Single speed, soft start.
Enclosure: Frame: 365 U-AFU
Type: VONO
Code: H
D. Drives

Close coupled.

E. Controls

Type: \quad Smith \& Loveless (bubbler type system)
Features: \quad Spring loaded mercury switch for lead on/off. Struthers Dunn pump alternator relay. Motor starters, Westinghouse \#A201K3CA, Size 3, Heaters FH 83. Automatic Transfer Switch \#RMT 1504CE Russ electric.

F. Alarms

Pump Fail: No.
Loss of Power: Yes
High Level: Yes
Low Level: Yes
Combustible Gas: No
$\mathrm{H}_{2} \mathrm{~S}$: No
G. Electrical Service

Voltage (volts): 460
Transformer (kVa): (2) 480 volts to 130 volts
Main Breaker (amp): 200
H. Telemetry

None
I. Standby Power

	ENGINE	GENERATOR
Manufacturer	Cummins	Kohler
Model No.	$6 \mathrm{BTS5.9}$	80 ROZ271
Serial No.	21550018 HCH	172803
Output	HP 126	kW 94
Speed	1800	
Voltage	n / a	480.
Frequency	n / a	$3 \mathrm{ph} ., 60 \mathrm{~Hz}$.
Fuel Type	diesel	
Fuel Consumption (gallons/hr)	6.2 at 100\%	
Fuel Storage (gallons)		
Rated Run Time (hrs)		
(with full tank)		
Silencer	Muffler	

J. Ventilation

	Dry well	Wet well
Fan Capacity (cfm)	178 (Exhaust Only)	No
Air Changes (per hr)	6	

K. Odor Control

None. Clean wet well every 8 weeks. Also add 50\# to 100\# of granular chlorine every 8-12 weeks.
L. Structure

Generator is housed in brick building. Pump room below ground concrete structure. Wet well A.H. type concrete. Diameter 8^{\prime}, depth $13^{\prime \prime} 8^{\prime \prime}$. Concrete overflow tank W $23^{\prime} \times L 14^{\prime} \times \mathrm{D}$ $13^{\prime \prime} 8^{\prime \prime}$.
M. Wet Well Corrosion Protection

No.
N. General

Alarm call box is a Microtel 200.

COMMENTS

1. Ventilation fan for the dry well should run continuously to maintain the flammability of the interior space below 20\% of the Lower Explosive Limit (LEL).
2. Ventilation fan should be fitted with flow detection device (flow switch) connected to alarm signaling system to indicate ventilation system failure.
3. Combustible gas detectors should be provided in both dry and wet wells. Means should be provided to automatically de-energize all electrical sources of ignition in the well in the event the interior atmosphere of the well reach 20% of the Lower Explosive Limit (LEL).
4. Local and remote alarms for both ventilation system failure and combustible gas detection should be provided.
5. Loose wirings touching other wirings should be separated, and strapped to equipment supports or walls.
6. Wet well requires inspection and evaluation for corrosion.
7. Wiring of the Mercury float switch in the wet well should be changed to intrinsically safe relay.

SIMSBURY LIFT STATION

Entrance view.

SIMSBURY LIFT STATION

Standby generator room.

LIFT STATION SUMMARY FORM

STATION: Faraday Lift Station \#14 (Lower)

Location: 1507 Faraday
 Trunk Sewer: South Agua Hedionda
 Basin:
 8

A. Flows

Capacity (gpm):
307 (Largest unit out of service)
Projected Peak (gpm):
382
B. $F \mathrm{mps}$

Number: 2
Type: Vertical close coupled non-clogged centrifugal pumps with mechanical seals.
Manufacturer: Smith \& Loveless, Inc.
Model No.: 4C3
Serial Nos.: 950751
950752
Rated Flow: 307gpm
Head: 144 (ft)
Speed: $\quad 1760 \mathrm{rpm}$
Horsepower: 25 HP
C. Motors

Manufacturer: Smith \& Loveless
Model No.: $\quad 2 \mathrm{C} 284$ TTD8634BP
Serial Nos.: \#1-42453290-3/22.02
\#2-42453270-3/22.02
Horsepower: 25
Voltage: 460
Frequency: 3 Phase, 60 Hz , Single speed.
Enclosure: Frame: 284HPHVZ
Type: TDR
Code: H
D. Drives

Close coupled.
E. Controls

Type: \quad Smith \& Loveless (bubbler type system)
Features: Transfer switch Kohler \#K-5666541-150. Ser. \#K62095. Motor Starters Allen Bradley \#150-A35NBD. Air Pressure spring adjusting control for pump on/off.
F. Alarms

Pump Fail:	Yes
Loss of Power:	Yes
High Level:	Yes
Low Level:	Yes
Combustible Gas:	No
$\mathrm{H}_{2} \mathrm{~S}:$	No

G. Electrical Service

Voltage (volts): $\quad 460$
Transformer (kVa): \quad \#9, 480 volts to 208/120
Main Breaker (amp): 100
H. Telemetry

None
I. Standby Power

	ENGINE	GENERATOR
Manufacturer	John Deere	Kohler
Model No.		80ROZJ71
Serial No.	CD6059T220023	367275
Output	HP	kW 80
Speed	1800	
Voltage	n/a	460
Frequency	n/a	3 ph., 60 Hz
Fuel Type	diesel	
Fuel Consumption		
(gallons/hr)	125	
Fuel Storage (gallons)		
Rated Run Time (hrs)		
(with full tank)		
Silencer		

J. Ventilation

	Dry well	Wet well
Fan Capacity (cifm)	215 (Exhaust Only)	No
Air	anges (per hr)	12

K. Odor Control

Air injection system. Air to wet well and to force main.
L. Structure
$42^{\prime \prime}$ entry tube with $11^{\prime} 10^{\prime \prime}$ pump landing area. Height is $9^{\prime} 5^{\prime \prime}$. Steel with Versapox Epoxy Coating. Wet well separate from pumps. Wet well concrete structure A.H. type. Diameter 5° depth 20^{\prime}.
M. Wet Well Corrosion Protection

No.
N. General

Alarm call box is a Microtel 200.

COMMENTS

1. Ventilation fan for the dry well should run continuously to maintain the flammability of the interior space below 20\% of the Lower Explosive Limit (LEL).
2. Ventilation fan should be fitted with flow detection device connected to alarm signaling system to indicate ventilation system failure.
3. Combustible gas detectors should be provided in both dry and wet wells. Means should be provided to automatically de-energize all electrical sources of ignition in the well in the event the interior atmosphere of the well reach $\mathbf{2 0 \%}$ of the Lower Explosive Limit (LEL).
4. Local and remote alarms for both ventilation system failure and combustible gas detection should be provided.
5. Loose wirings touching other wirings should be separated, and strapped to equipment supports or walls.
6. Wiring of the Mercury float switch in the wet well should be changed to intrinsically safe relay.
FARADAY LIFT STATION (LOWER)

Entrance view.

STATION: Pointsettia

Location:

Trunk Sewer:
Basin: 10A \& B
A. Flows

Capacity (gpm): $\quad 1,230$ (Largest unit out of service) Projected Peak (gpm): 1,700
B. Pumps

Number:
2 installed, ult. 3
Type:
Manufacturer:
Model No.:
Serial Nos.:
Rated Flow:
Centrifugal non-clog pumps with Mechanical Seals Unknown Unknown Unknown

Head:
Speed:
Horsepower:
850 gpm

Comminutor:
247 (ft)
1,800 rpm
125 HP
5 HP
C. Motors

Engine and Generator Set: 250 kW

EXHIBIT D

Page 3
무
塄
品 GL Side GL-GENERAL LEDGER WB-WORKING BUDGET

SELECT FUND: 511 ; ACCOUNT TYPE: XP
City of Carlsbad
THU, AUG 16, 2001, 08/16/01 5:07 PM

	GL Side	GL-GENERAL L	EDGER	WB-WORKING	BUDGET
SELECT	FUND: 511 ; ACCOUNT TYPE: XP				FY Qt Pe
ORG KEY	Title		Director		
5116310	SEWER OPERATIONS				02012
OBJECT	Description	Budget	Actual	Encumbrance	Balance
6100	REG SALARIES	499,100.00	44,334.97	0.00	454765.03
6150	IOD	0.00	572.83	0.00	-572.83 OVR
6200	OVERTIME	53,280.00	4,387.09	0.00	48,892.91
6300	PARTTIME	0.00	0.00	0.00	
6400	TEMP HELP	8,000.00	0.00	0.00	8,000.00
6501	HEALTH INSUR	72,200.00	7,987.38	0.00	64,212.62
6510	LIFE INSURANCE	2,800.00	318.64	0.00	2,481.36
6520	VISION INSUR	0.00	70.37	0.00	-70.37 OVR
6530	MEDICARE	3,900.00	539.48	0.00	3,360.52
6653	FINAL VAC PAY	0.00	0.00	0.00	
6655	DISABILITY	7.800 .00	804.40	0.00	6,995.60
6656	UNEMPLOYMENT	500.00	61.86	0.00	438.14
6657	WORKER'S COMP	14,460.00	1,205.00	0.00	13,255.00
6720	PERS	32,500.00	3,992.35	0.00	28,507.65
6741	DEF COMP MATCH	0.00	357.66	0.00	-357.66 OVR
7111	MACH /EQ RENT	31,080.00	0.00	0.00	31,080.00
7120	MISC LEASES	7,770.00	0.00	0.00	7,770.00
7211	COMMUN EQ MAINT	0.00	0.00	0.00	
7220	VEHICLE MAINT	0.00	0.00	0.00	
7230	MNR BLDG MAINT	0.00	0.00	0.00	
7241	ASPHALT REPAIRS	20,000.00	0.00	0.00	20,000.00
7435	ADMINISTRATIVE	0.00	0.00	0.00	
7490	MISC PROF SERVIC	52,000.00	0.00	54,720.00	-2,720.00 OVR
7500	ENCINA SERVICES	2,303,706.00	0.00	0.00	2,303,706
7550	MISC OUTSIDE SER	227,360.00	730.00	0.00	226630.00

Page 4
GL JL-report id: GLSHBA01
WB-WORKING BUDGET
Actual
WB-WORKING BUDGE Director $\begin{aligned} & \text { FY Qt Pe }\end{aligned}$
N

OBJECT	Description	Budget	Actual	Encumbrance	Balance
7556	MISC SERVICES	0.00	0.00	0.00	
7558	UNIFORM MAINT	2.220 .00	51.31	0.00	2,168.69
7710	ADS AND PUBLISHI	0.00	0.00	0.00	
7711	DUES \& SUBSCRIP	3,330.00	0.00	0.00	3,330.00
7712	BOOKS/PUBLIC	0.00	0.00	0.00	
7715	PRINTING	13,875.00	0.00	0.00	13,875.00
7720	POSTAGE	24,420.00	0.00	0.00	24,420.00
7725	OFF SUPP	1,110.00	0.00	0.00	1,110.00
7730	SOFTWARE	13,519.56	0.00	13,519.56	
7731	MISC COMP HARDWR	0.00	0.00	0.00	
7750	HEAT AND LIGHT	119,350.00	7.517.57	0.00	111832.43
7751	TELE \& COMM	15,540.00	0.00	0.00	15,540.00
7752	WASTE DISPOSAL S	0.00	0.00	0.00	
7753	WATER	5,550.00	461.95	0.00	5,088.05
7801	BUILDING MAINT	2,775.00	0.00	0.00	2,775.00
7821	PARTS-EQUIP	30,274.03	0.00	2,524.03	27,750.00
7830	ROCK/MINERAL	20,618.81	0.00	618.81	20,000.00
7850	SMALL TOOLS	3,885.00	0.00	0.00	3,885.00
7851	SAFETY EQUIP	8,880.00	181.82	0.00	8,698.18
7853	METERS/FITTINGS	0.00	0.00	0.00	
7857	PERS PROT EQUIP	0.00	0.00	0.00	
7880	GAS AND OIL	0.00	0.00	0.00	
7899	MISC SUPP	50,932.51	874.09	10,692.51	39,365.91
8130	TRAINING/TR TRVL	3,000.00	70.00	0.00	2,930.00
8500	DEPRECIATION	1,443,000.00	0.00	0.00	1,443,000

Page 5

THU, AUG 16, 2001, 5:07 PM ---.-req: BHONI---.--leg: GL JL-report id: GL Side GL-GENERAL LEDGER

SELECT FUND: 511 ; ACCOUNT TYPE: XP

OBJECT
8520
8522
8700
8810
8811
8830
8860
8890
8892
8910
8911
9020
9022
5,671,002.64 113,971.27 86,524.64 5,470,507 **
$\begin{array}{ll}\text { City of Carlsbad } 08 / 16 / 01 \quad \text { Budget vs. Actual } & \text { Page } 6 \\ \text { THU, AUG 16, } 2001, ~ 5: 07 \mathrm{pM} \ldots-\text { req: BHONI-----leg: GL JL-report id: GLSHBA01 }\end{array}$

ENCINA WATER POLLUTION CONTROL FACILITY

34891	BUILDING IMPROVEMENTS	SEWER CONN	1,787,249	510,799	182,515
34111	CAPITAL ACQUISTTIONS - UNIT I	SEWER CONN	3,290,986	357,670	122.230
36691	CAPITAL PLANNING /SERVICES	SEWER REPL	1,655,512	57,586	190.892
	COGENERATION REHABILITATION	SEWER REPL	581,447		
6881	FLOW EQUALIZATION PROJECT	SEWER CONN	5,646,518	159,310	73,486
	PHASE N EXPANSION - DEBT SERVICE	SEWER CONN	13,082,183		
38071	PHASE V EXPANSION	SEWER CONN	11,682,762	87,886	701,973
38061	PHASE V EXPANSION - INTERIM CAPACTTY	SEWER CONN	222,298	129,029	93,269
34491	PLANT REHABILITATION	SEWER REPL	2,883,047	1,093,309	327,608
36701	PUMP STATION INTERFACES	SEWER REPL	42.649	25,000	636
36661	TECHNOLOGY MASTER PLAN	SEWER CONN	1,160,942	113,705	227,515

35811	AVENIDA ENCINAS GRAVITY SEWER	SEWER REPL	175,000		
33221	BUENA VISTA LIFT STATION	SEWER CONN	502,132	245,211	256,921
	BUENA VISTA LIFT STATION PUMP ADDITION	SEWER CONN	233,000		
	CARLSBAD TRUNK SEWER REACHES VCT1A, VCT1B, VCT1C (SB	SEWBENEF	455,000		
34941	CHINQUAPIN SEWAGE LIFT STATION	SEWER REPL	450,000	446,013	3,987
36224	FARADAY AVENUE - ORION TO MELROSE SEWER	SEWER REPL	110,200	110,200	
34951	FOREST GRAVITY SEWER	SEWER REPL	800,000	19,652	280,348
36561	FOXES SEWAGE LIFT STATION UPGRADE	SEWER REPL	2,185,000	2.121,764	63,236
NEW	HONE PLANT LIFT STATION	SEWER REFL	285,000		
	LA COSTA MEADOWS SEWER EXTENSION	SEWER REPL	175,000		
	LA GOLONDRIA SEWER EXTENSION	SEWER REPL	150,000		
	NIGHTSHADE GRAVITY SEWER EXTENSION	SEWER CONN	150,000		
35371	NORTH AGUA HEDIONDA INTERCEPTOR REHABILITATION	SEWER REPL	1,487,600	60,483	589,517
NEW	NORTH AGUA HEDIONDA INTERCEPTOR REHAB - EL CAMINO RE	SEWER REPL	720,000		
	NORTH AGUA HEDIONDA TRUNK SEWER REACH NAHT1A	SEWER REPL	1,533,200		
35381	NORTH BATIQUITOS INTERCEPTOR REHMBILITATION	SEWER REPL	1.000,000	828	399,072
- 9091	NORTH BATIQUITOS SEWAGE LIFT STATION MODIFICATIONS	SEWER REPL	332.000		
. 391	PALMER WAY SEWER EXTENSION	SEWER REPL	125,000	70,472	54,528
$\begin{array}{r} \text { JJECT } \\ \text { JOB KEY } \\ \hline \end{array}$	PROIECT TITLE	FUND	TOTAL BUDGET	PRIOR EXP/ENC	BALANCE FORWARD
38101	POINSEITA LANE SEWER RELOCATION	SEWER REPL	400,000	7,740	392,260
NEW	POINSETTA SEWAGE LIFT STATION ODORNOISE ABATEMENT	SEWER REPL	221,800		382,200
34511	SEWER ACCESS HOLE REHABILITATION	SEWER REPL	2,800,000	73,322	726,878
$\begin{aligned} & 38081 \\ & \hline 38401 \\ & \hline \end{aligned}$	SEWER CONNECTION FEE UPDATE	SEWER CONN	15,000	5,851	9,149
	SEWER LIFT STATION REPAIRS AND UPGRADES	SEWER REPL	235,380	207	179,793
34521	SEWER LINE REFURBISHMENTS/REPLACEMENT	SEWER REPL	7.850,000	642,959	907,041
NEW	SEWER MASTER PLAN UPDATE	SEWER CONN	181,000		
33241	SEWER MONITORING PROGRAM	SEWER CONN	548,075	26,931	142,144
35831	SOUTH AGUA HEDIONDA INTERCEPTOR PHASE II	SEWBENEF	5,501,495	1,381,512	2,013,883
	SOUTH AGUA HEDIONDA INTERCEPTOR PHASE II (MSTA)	OTHER	610,000		2,013,83
38281	SOUTH AGUA HEDIONOA INTERCEPTOR PHASE III	SEW BENEF	2,100,000	417,001	582,099
	SOUTH AGUA HEDIONDA INTERCEPTOR PHASE IU (VISTA)	OTHER	600,000		
385921	VISTACARLSBAD INTERCEPTOR - PAVEMENT OVERLAY	TRANSNET-LOC	695,880		695,880
31821	VISTACARLSBAD INTERCEPTOR AGLA HEDIONDA LIFT STATION	SEWER CONN	6,250,000	83,825	266,175
31822	VISTACARLSBAD INTERCEPTOR REACH VC5A, 5B TO VC11A	SEWER CONN	12,223,433	2,424,733	9,798,700
	VISTAVCARLSBAD INTTERCEPTOR REACHVC11B	SEWER CONN	2,900,000		702,020
	VISTACARLSBAD INTERCEPTOR REACH VC13 TO VC15	SEWER CONN	10,200,000		
NEW	VISTAVCARLSBAD INTERCEPTOR REHAB REACHES 1 THROUGH	SEWER REPL	327,075		
	SUBTOTAL SEWER PROJECTS		107,436,783	10,673,978	19,983.655

EXHIBIT E

obtaining a permit from the city pursuant to Chapter 13.10, and without having first paid all fees required by this title; and no substance shall be placed, discharged or disposed of in the sewer system except substances of waste materials originating on the premises to which a sewer connection permit has been issued. (Ord. $7060 \$ 1$ (part), 1980)

13.04.050 Restrictions relating to use of public sewers.

(a) No person shall discharge or cause to be discharged any stormwater, surface water, groundwater, unpolluted industrial process water, roof runoff, subsurface drainage, or any waters from an uncontaminated cooling system, swimming pool, decorative fountain or pond, into any public sewer or any private sewer which is connected to the publicsewer without written permission in conformance with adopted regulations.
(b) No person shall enter, obstruct, uncover or tamper with any portion of the public sewer, or connect to it, or dispose anything into any sewer and/or sewer manhole without the written permission of the city engineer.
(c) No person or party shall remove or demolish any building or structures with plumbing fixtures connected directly or indirectly to the public sewer without first notifying the city engineer of such intention. All openings in or leading to the public sewer line or lines caused by such work shall be sealed watertight and inspected by the city engineer before being bactfilled.
(d) No person shall fill or backfill over, or cause to cover, or obstruct access to, any sewer manhole.
(e) No person shall erect any improvements, structures, or buildings over public sewers without the written permission of the city engineer.
(i) Except as hereinafter provided in this section, no person shall discharge or cause to be discharged any of the following described substances, waters or wastes into any public sewers:
(1) Liquid or vapor having a temperature
higher than one hundred forty degrees Fahrenheit
(2) Water or waste which may contain more than $200 \mathrm{mg} /$ concentration of fats, oils, or grease or more than thirteen pounds of such substances per day after pretreatment by a grease interceptor, whichever is less, or containing substances which may solidify or become viscous at temperatures between thirty-two degrees and one hundred fifty degrees Fahrenheit;
(3) Gasoline, berzene, naphtha, fuel oil, or other flammable or explosive liquid, solid or gas;
(4) Toxic, naxious or malodorous liquid, solid, or gas deemed a public hazard and nuisance;
(5) Garbage that has not been properly shredded to a size of one-fourth inch or less so that all particles will be carried freely under nomal flow conditions in the public sewers;
(6) Ashes, cinders, sand, mud, straw, shavings, metal, glass, rags, feathers, tar, plastics, wood, paunch manure, paper substances or normally dry, solid wastes capable of causing obstruction to the flow in or damage to sewers or other interference with the proper operation of the sewerage works;
(7) Water or wastes having a pH lower than 5.5 or higher than 9.5 or having any other corrosive property capable of causing damage or hazard to structures, equipment, and personnel of the sewerage works;
(8) Water or wastes containing any substance in sufficient quantity to discolor, injure, disrupt or interfere with the normal operation of any sewage treatment process, constitute a hazard to human or animal life, create a public nuisance, or significantly lower the quality of the receiving waters;
(9) Water or wastes containing suspended solids of such character or quantity that umusual attention or expense is required to handle such materials at a sewage treatment plant;
(10) Any unusual volume of flow or concentration of wastes constituting "slugs" as defined in subsection (21) of Section 13.04.010;
(11) Radioactive wastes or isotopes of such

EXHIBIT F

EXHIBIT G

CITY OF CARLSBAD Municipal Water District

Sewer and Manhole Rehabilitation Project Summary Report

DRAFT

November 1998

Prepared by:
Montgomery Watson
750 B Street, Suite 1610
San Diego, California 92101

TABLE OF CONTENTS

SECTION 1 - INTRODUCTION 1-1
SECTION 2 - SEWER AND MANHOLE DATABASE 2-1
Video Inspector Report Review. 2-1
Sewer Database 2-1
Manhole Database 2-2
SECTION 3 -PRIORITIZATION FOR REHABLLITATION 3-1
Prioritization of Sewer Deficiencies 3-1
Sewer Deficiencies 3-1
Prioritization for Rehabilitation 3-3
Summary of Sewer Prioritization 3-6
Manhole Prioritization 3-6
Summary of Manhole Prioritization 3-7
SECTION 4 - COST ESTIMATE 4-1
Rehabilitation Program 4-1
Sewer Cost Estimate 4-1
Repair Recommendation 4-2
Sewer Repair Costs 4-2
Sewer Rehabilitation Cost Summary 4-6
Manhole Cost Estimate 46
Manhole Repair Costs 4-7
APPENDIX A - INSPECTION OF EXISTING MANHOLE SUMMARY REPORT A-1
APPENDIX B - MANHOLE PRIORITIZATION B-1
APPENDIX C - SEWER CONTRACTOR SUBMITTAL INFORMATION C-1

Table of Contents

LIST OF TABLES

TABLE
NO. PAGE
3-1 Pipe Deficiencies by District Map Sheet 3-2
3-2 Heavy Root Removal Prioritization 3-3
3-3 Light Root Removal Prioritization 3-4
3-4 Grease Removal Prioritization 3-5
3-5 Debris Removal Prioritization 3-5
3-6 Manhole Condition 3-7
4-1 Cost Survey 4-1
4-2 Heavy and Light Root Cost Estimate, 4-3
4-3 Map Sheet Root Removal 4
4-4 Map Sheet Grease Removal 4-5
4-5 Map Sheet Debris Removal 4-5
4-6 Sewer Cost Summary 4-6
4-7 Manhole Cost Estimate 4-6
4-8 Manhole Cost Summary 4-7

Section 1 Introduction

INTRODUCTION

This report presents the results of two sewer video inspections conducted by Precision Pipeline Services and Video Inspection Specialists, and the manhole inspection by Sancon Engineering for the City of Carlsbad, California. The Carlsbad Water District (District) provided Montgomery Watson (MW) with the television inspection project notebooks, mapping and videocassettes. Using this information, MW summarized the video inspection examinations into an electronic database spreadsheet. The database identifies and locates the problem areas for easy reference from the reports prepared by the two firms. This information was prioritized in terms of scheduling of any needed repairs.

Approximately 45 of the 115 miles of sewer pipeline within the system were examined by the video inspectors. The sewer lines were identified by District map sheets. Each video inspector firm was given designated areas to evaluate. The majority of the pipeline is 6 inch and 8 -inch vitrified clay pipe; some of the pipeline was built as early as 1930 .

The purpose of this report is to:

- Define the logic of the sewer database
- Present sewer deficiencies
- Discuss the nature of the problem
- Provide prioritization for repair schedule
- Recommend improvements and their estimated costs.

The arrangement of the summary report first discusses the sewer and manhole inspection database in Section 2. Throughout this section, the Sewer and Manhole Rehabilitation Database is referred. This database is provided as a separate document from the summary report. From the database, sewer and manhole problems were identified and prioritized in Section 3. A recommendation for repairs and cost estimate is presented in Section 4. Also included in this report, is Sancon's manhole summary report and prioritization, and sewer contractor submittal information, provided in the Appendix.

Section 2 Database

DATA PROCESSING

Report Review

The first part of this assignment was to review the reports by Precision Pipeline and Video Inspection Specialists to identify the format that each firm established in recording their sewer observations. Both firms used similar criteria in identifying each run and problem by listing the nearest street address, the entering manhole number, the pipe length with noted conditions, and the exiting manhole number. However, Video Inspection Specialists used their own manhole numbering system, which had to be correlated to the existing manhole numbers used by the District.

Sewer Database

Two databases were initially constructed from the report of each sewer inspector. The database was designed to supply all the information found in the inspector reports, to relate the information to the current District map sheet number and to easily identify sewer problems. The database provides the following information:

- Street Location

- District To/From Manhole Number
- Video Inspector Reference To/From Manhole Number
- Pipe Length and Diameter
- Sewer Deficiencies
- Comments

Since the date of the video inspections, the District's manhole numbering system has been modified. Therefore, the old manhole numbers used in the inspector's reports were converted to the District's new quadrant manhole numbers. The old manhole numbers are provided in the electronic database, along with the new manhole numbers. Use of the new, old and video inspector manhole numbers provide reference to obtain sewer information under any circumstance. The order of the database utilized the District's manhole mapping sheets. This allowed a logical ascending sewer pipeline location by area using the map sheet number then the quadrant manhole location within the sheet.

The two inspector databases were merged, edited and sorted according to map sheet number and new manhole number. The combination of the two inspector databases and any correcting edits form the master sewer database. From the master list, a sewer database and an unidentified sewer list was established. Those sewer runs that could not be determined by MW and the District were removed from the sewer database.

The sewer database is reported in two modes, sewer deficiencies and comments. The first section of the database identifies sewer problems from the reports into categorized groups:

```
F Cracks
Root Intrusion
> Grease
D Damaged Pipe
> Blocked Pipe
\ Infiltration/Heavy Flow
F Flat Area
```

For each run, the deficiencies were identified by a check box, as shown in the Sewer and Manhole Rehabilitation Database under Sewer Database. The purpose of the check box is to provide a way of sorting the sewer deficiencies so that a particular problem or sets of problems could be evaluated and prioritized for the locations. A Sewer Deficiencies Summary Sheet is provided at the beginning of the Sewer and Manhole Rehabilitation Database as a quick reference of all the sewer problems for every map sheet.

The second part of the database is a comment section. This is the last column in the electronic database and follows sewer database in the Sewer and Manhole Rehabilitation Database under Sewer Comments. Sewer problems and the location in linear feet along the pipe reach where the problem was discovered are defined under comments. This section is useful because it's an accumulation of all observations from the sewer inspection reports for the entire sewer line.

When the inspector reports were joined, all duplicate runs where eliminated by combining all reported information for the same run into one line of the master database. Any references that could not be located by new, old, or Video Inspection Specialist manhole number were removed from the master database and placed in an Unidentified Location Table. The list of undefined runs is 23 out of 805 , or 3 percent. The Unidentified Table is also composed of the same sections, a deficiency section followed by a comment section, and can be found following the sewer database and sewer comment sections in the Sewer and Manhole Rehabilitation Database.

Manhole Database

A hard copy of the Inspection of Existing Manhole Summary Report by Sancon in June of 1994 is provided in Appendix A of this report. An electronic master manhole database was developed by MW using the information provided in the summary report. Similar to the sewer database, the master manhole database was separated into a manhole database and an unidentified list.

The manhole condition and comments is provided in the Sewer and Manhole Rehabilitation Database under Manhole Database. Each manhole was evaluated for existing condition and structural integrity, summarized by five categories:

```
> Frame/Cover
Frade Ring
Oteps
> Walls
 Base
```

Sancon rated each manhole by excellent, good, fair, corroded, poor and very poor for every category. A comment section was also provided.

The inspector provided the street address along with an independent manhole numbering system. Therefore, like Video Inspection Specialists, MW found the majority of the manholes evaluated and provided the modified District map sheet and manhole number equivalent to the inspector manhole number. Of the 327 manholes examined, 11 were not identified. The list of unidentified manholes is provided at the end of Manhole Database in the Sewer and Manhole Rehabilitation Database.

Section 3 Prioritization

ANALYSIS

Prioritization of Sewer Deficiencies

The District advised MW to help classify the critical and less critical sewer deficiencies for sewer rehabilitation prioritization. The problems were rated on the direct affects of sewer flow, on the ease of repair and the period of time it would take to solve the problem. Of the seven sewer deficiency categories, the following three conditions were found most immediate:

- Roots
- Grease
- Debris

Simple techniques can be used to eliminate these problems. The sewer line can be rehabilitated using high-pressure water (jetting), and/or root cutting. Each process can be used with or without chemicals. Jetting removes blockages and possibly light roots by the turbulent action of high-pressurized water through a specially designed nozzle that scours the sewer line. Hydrowashing with chemicals can be used to kill roots and dissolve grease. For root removal and grease buildup, root cutting with and without chemicals can establish a clear sewer line and remove debris. The root cutting technique can be a circular blade the size of the pipe diameter or slightly smaller if obstructions (i.e. protruding laterals) are found or a type of hammer that pounds through blockages. These techniques may be conducted by District staff or contracted out to companies that specialize in these particular sewer problems.

Sewer Deficiencies

In order to evaluate the areas that contain the three high priority sewer problems of roots, grease and debris, an electronic sort was conducted and complied in Table 3-1. The first column of the table presents the District map sheet number in ascending order. For each District map sheet, the total lengths to be cleaned for heavy and light roots, grease and debris were summarized. The table lists all the examined sewer areas within the inspectors evaluation. If a root ball was noted, it was considered as heavy roots and is added into the total of each sheet.

TABLE 3-1
Pipe Deficiencies by District Map Sheet

Map Sheet	Heavy Roots (ft)	Light Roots (ft)	Grease (ft)	Debris (ft)
4D	1,785	990	300	675
5C	3,327	3,390	906	150
5D	280	5,339	0	0
6C	0	771	0	0
9A	1,554	201	0	0
9B	3,139	3,261	1.699	892
9C	927	0	0	0
9D	1,425	3,786	2.697	750
10B	0	5,929	0	0
10C	5,423	5,259	300	267
10D	289	3,338	233	0
11A	292	2,345	0	0
11C	1,239	6,204	0	0
15B	3,352	1,480	0	1,127
15D	810	199	0	0
16A	2,283	5,260	272	1,614
16B	340	4,166	0	0
16C	2,446	3,487	0	350
16D	701	2,265	0	0
17A	453	2,368	0	211
17C	0	1,047	0	0
17D	0	1,774	0	0
18C	0	320	0	0
21B	0	0	0	0
21D	0	0	0	0
22B	0	665	0	0
27A	225	518	0	150
27D	1,593	620	0	0
Totals	31,883	64,982	6,407	6,186
	0	0	0	0
	0	0	0	0

This table provides the information used to prioritized the sewer lines. Additionally, it shows a comparison between map sheets and types of problems. There are several problems identified in each sheet, some of which are within the same sewer line. This is important to recognize because it is possible to clean the sewer line only once for all the sewer deficiencies.

Prioritization for Rehabilitation

The sewer problems identified may restrict flow. The most apparent is a heavy root or root ball, but grease buildup and debris could cause a significant problem with conveyance. Light roots are recognized as a potential problem, but are considered a less critical item compared to the other sewer problems.

Using Table 3-1, the subsequent tables were constructed to evaluate each sewer deficiency separately. This step provides separate attention to those areas with significant damage from each priority sewer deficiency. The District map sheets are prioritized by the amount of cleaning required.

Table 3-2 presents the priority list for heavy root intrusion.
TABLE 3-2
Heavy Root Removal Prioritization

Priority Order	Map Sheet	Heavy Root Removal (ft)
1	10 C	5,423
2	15 B	3,352
3	5C	3,327
4	9 B	3,139
5	16 C	2,446
6	16 A	2,283
7	4 D	1,785
8	27 D	1,593
9	9 A	1,554
10	9 D	1,425
11	11 C	1.239
12	9 C	927
13	15 D	810
14	16 D	701
15	17A	453
16	16 B	340
17	11 A	292
18	10 D	289
19	5 D	280
20	27A	225
		Total

