July 6, 2009
By E-mail and U.S. Mail

John Robertus
Executive Officer
California Regional Water Quality Control Board, San Diego Region
9174 Sky Park Court, Suite 100
San Diego, CA 92123-4340
Subject: Tentative Order No. R9-2009-0002 NPDES No. CAS0108740

Dear Mr. Robertus:
At the July 2, 2009 public hearing, one of your board members requested clarification regarding the proposed Municipal Action Level (MAL) for nickel and the assertion made in the presentation by Richard Boon, County of Orange, that it was more stringent than the Basin Plan objective (See Attachment 1 - Presentation Slide). Mr. Boon was not present at this time to clarify the data and, in his absence, your staff opined incorrectly that Mr. Boon had used a Maximum Contaminant Level (MCL) rather than a Basin Plan objective and that the MAL was not more stringent than the Basin Plan

The comparison of the proposed MAL for nickel (26/ug/l) with the Basin Plan objective for nickel was first presented in our comment letter of May 15 on the March 13, 2009, version of the Tentative Order. For the nickel objective, the Basin Plan incorporates the California Toxics Rule (CTR) by reference. CTR establishes both acute and chronic objectives. Since the MAL appeared to be an instantaneous value, the comparison was made to the California Toxic Rule acute criterion. The published value (see Attachment $1-p .31712$ Federal Register / Vol. 65, No. 97 / Thursday, May 18, 2000 / Rules and Regulations) for this criterion, which assumes $100 \mathrm{mg} / \mathrm{l}$ as CaCO_{3} hardness, is $470 \mathrm{ug} / \mathrm{l}$. The MAL is therefore significantly more stringent than this Basin Plan objective.

Constituent	CTR Criterion - Maximum Concentration	Proposed MAL
Nickel	$470 \mathrm{ug} / \mathrm{I}$	$26 \mathrm{ug} / \mathrm{I}$

It is requested that this clarification be provided to your Board:members to eliminate any confusion on the response to the question.

Thank you for your attention to our comments. Please contact Richard Boon at (714) 955-0670

John H. Robertus
Page 2 of 2
with any questions on this matter.

Mary Anne Skorpanich Director, OC Watersheds Program

Attachment 1: Presentation Slide

Attachment 2: p. 31712 Federal Regulations

cc: City Permittees

Constituent	MAL (ppb)	Basin Plan $(\mathbf{p p b})$
Nickel	26.34	469
Waterbody	$\%>$ MAL	\%>BP
Aliso Creek	58.5	0
Prima Deshecha	100	2.1
Segunda Deshecha	93.4	0

A		B Freshwater		C Saltwater		D Human Health (10^{-6} risk for carcinogens) For consumption of:	
\# Compound	CAS Number	Criterion Maximum Conc. ${ }^{\text {d }}$ B1	Criterion Continuous Conc. ${ }^{\text {d }}$ B2	Criterion Maximum Conc. ${ }^{\text {d }}$ C1	Criterion Continuous Conc. ${ }^{\text {d }}$ C2	Water \& Organisms ($\mu \mathrm{g} / \mathrm{L}$) D1	$\begin{gathered} \text { Organisms } \\ \text { Only } \\ (\mu \mathrm{g} / \mathrm{L}) \\ \mathrm{D} 2 \end{gathered}$
1. Antimony	7440360					14 a,s	$4300 \mathrm{a}, \mathrm{t}$
2. Arsenic ${ }^{\text {b }}$	7440382	340 i,m,w	150 i,m,w	$69 \mathrm{i}, \mathrm{m}$	36 i,m		
3. Beryllium	7440417					n	n
4. Cadmium ${ }^{\text {b }}$	7440439	4.3 e,i,m,w,x	2.2 e,i,m,w	$42 \mathrm{i}, \mathrm{m}$	9.3 i,m	n	n
5a. Chromium (III)	16065831	550 e, i, m, o	180 e,i,m,o			n	n
5b. Chromium (VI) ${ }^{\text {b }}$	18540299	16 i,m,w	11 i,m,w	$1100 \mathrm{i}, \mathrm{m}$	$50 \mathrm{i}, \mathrm{m}$	n	n
6. Copper ${ }^{\text {b }}$	7440508	$13 \mathrm{e}, \mathrm{i}, \mathrm{m}, \mathrm{w}, \mathrm{x}$	9.0 e,i,m,w	4.8 i,m	3.1 i,m	1300	
7. Lead ${ }^{\text {b }}$	7439921	65 e,i,m	2.5 e,i,m	210 1,m	8.1 i,m	n	n
8. Mercury ${ }^{\text {b }}$	7439976	[Reserved]	[Reserved]	[Reserved]	[Reserved]	0.050 a	0.051 a
9. Nicket ${ }^{\text {b }}$	7440020	470 e,i,m,w	$52 \mathrm{e}, \mathrm{i}, \mathrm{m}, \mathrm{w}$	74 i,m	$8.2 \mathrm{i}, \mathrm{m}$	610 a	4600 a
10. Selenium ${ }^{\text {b }}$	7782492	[Reserved] p	5.0 q	290 i,m	$71 \mathrm{i}, \mathrm{m}$	n	n
11. Silver ${ }^{\text {b }}$	7440224	$3.4 \mathrm{e}, \mathrm{i}, \mathrm{m}$		$1.9 \mathrm{i}, \mathrm{m}$			
12. Thallium	7440280					$1.7 \mathrm{a}, \mathrm{s}$	$6.3 \mathrm{a}, \mathrm{t}$
13. Zinc ${ }^{\text {b }}$	7440666	$\begin{array}{r} 120 \\ e, i, m, w, x \end{array}$	$120 \mathrm{e}, \mathrm{i}, \mathrm{m}, \mathrm{w}$	$90 \mathrm{i}, \mathrm{m}$	81 i,m		

