


















 1

INVESTIGATION OF THE FEASIBILITY AND BENEFITS  
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ABSTRACT 
 
The Clean Water Act NPDES permit that regulates municipal separate storm sewer systems 
(MS4s) in Ventura County, California will be reissued in 2007.  The draft permit includes 
provisions for requiring the use of low impact development practices (LID) for certain kinds of 
development and redevelopment projects.  Using six representative development project case 
studies, the author investigated the practicability and relative benefits of the permit’s LID 
requirements.  The results showed that (1) LID site design and source control techniques are 
more effective than conventional best management practices (BMPs) in reducing runoff rates; 
(2) Effective Impervious Area (EIA) can practicably be capped at three percent, a standard more 
protective than that proposed in the draft permit; and (3) in five out of six case studies, LID 
methods would reduce site runoff volume and pollutant loading to zero in typical rainfall 
scenarios. 
 
 
 
 
 
 
 
 
INTRODUCTION 
 
The Assessment in Relation to Municipal Permit Conditions 
 
This purpose of this study is to investigate the relative water quality and water reuse benefits of 
three levels of storm water treatment best management practices (BMPs):  (1) basic “treat-and-
release” BMPs (e.g., drain inlet filters, CDS units), (2) commonly used BMPs that expose runoff 
to soils and vegetation (extended-detention basins and biofiltration swales and filter strips), and 
(3) low-impact development (LID) practices.  The factors considered in the investigation are 
runoff volume, pollutant loading, and the availability of water for infiltration or other reuse.  In 
order to assess the differential impact of storm water reduction approaches on these factors, 
this study examines six case studies typical of development covered by the Ventura County 
Municipal Separate Storm Sewer System Permit. 
 
Low-impact development methods reduce storm runoff and its contaminants by decreasing their 
generation at sources, infiltrating into the soil or evaporating storm flows before they can enter 
surface receiving waters, and treating flow remaining on the surface through contact with 
vegetation and soil, or a combination of these strategies.  Soil-based LID practices often use 
soil enhancements such as compost, and thus improve upon the performance of more 
traditional basins and biofilters.  For the study’s purposes, verification of the practicability and 
utility of LID practices was based on a modified version of the Planning and Land Development 
Program (Part 4, section E) in the Draft Ventura County Municipal Separate Storm Sewer 
System Permit (“Draft Permit”).  The Draft Permit requires that Effective Impervious Area (EIA) 
of certain types of new development and redevelopment projects be limited to five percent of 
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total development project area.  EIA is defined as hardened surface hydrologically connected 
via sheet flow or a discrete hardened conveyance to a drainage system or receiving water body.  
(Draft Permit p. 50)  The study modified this requirement to three percent, as a way to test both 
the feasibility of meeting the higher, five percent standard in the draft permit and because as the 
lower, three percent EIA is essential to protect the Ventura County aquatic environment (see 
Attachment A). 
 
The Draft Permit further requires minimizing the overall percentage of impervious surfaces in 
new development and redevelopment projects to support storm water infiltration.  The Draft 
Permit also directs an integrated approach to minimizing and mitigating storm water pollution, 
using a suite of strategies including source control, LID, and treatment control BMPs.  (Draft 
Permit p. 50)  It is noted in this section of the document that impervious surfaces can be 
rendered "ineffective" if runoff is dispersed through properly designed vegetated swales.  In 
testing the practicability of the draft permit’s requirements and a three percent EIA standard, this 
study broadened this approach to encompass not only vegetated swales (channels for 
conveyance at some depth and velocity) but also vegetated filter strips (surfaces for 
conveyance in thin sheet flow) and bioretention areas (shallow basins with a range of vegetation 
types in which runoff infiltrates through soil either to groundwater or a subdrain for eventual 
surface discharge).  The Draft Permit’s stipulation of “properly designed” facilities was 
interpreted to entail, among other requirements, either determination that existing site soils can 
support runoff reduction through infiltration or that soils will be amended using accepted LID 
techniques to attain this objective.  Finally, the study further broadened implementation options 
to include water harvesting (collection and storage for use in, for example, irrigation or gray 
water systems), roof downspout infiltration trenches, and porous pavements. 
 
The Draft permit was interpreted to require management of EIA, other impervious area (what 
might be termed Not-Connected Impervious Area, NCIA), and pervious areas as follows: 
 

• Runoff from EIA is subject to treatment control and the Draft Permit’s 
Hydromodification Mitigation Control requirements before discharge. 

 
• NCIA must be drained onto a properly designed vegetated surface or its runoff 

managed by one of the other options discussed in the preceding paragraph.  To the 
extent NCIA runoff is not eliminated prior to discharge from the site in one of these 
ways, it is subject to treatment control and the Draft Permit’s Hydromodification 
Mitigation Control requirements before discharge. 

 
• Runoff from pervious areas is subject to treatment control and the Draft Permit’s 

Hydromodification Mitigation Control requirements before discharge.  This provision 
applies to pervious areas that both do and do not receive drainage from NCIA. 

 
Where treatment control BMPs are required to manage runoff from the site, the Draft Permit’s 
Volumetric or Hydrodynamic (Flow Based) Treatment Control design bases were assumed to 
apply.  The former basis applies to storage-type BMPs, like ponds, and requires capturing and 
treating either the runoff volume from the 85th percentile 24-hour rainfall event for the location, 
the volume of annual runoff to achieve 80 percent or more volume treatment, or the volume of 
runoff produced from a 0.75 inch storm event.  The calculations in this analysis used the 0.75-
inch quantity.  The Hydrodynamic basis applies to flow-through BMPs, like swales, and requires 
treating the runoff flow rate produced from a rain event equal to at least 0.2 inches per hour 
intensity (or one of two other approximately equivalent options). 
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Scope of the Assessment 
 
With respect to each of the six development case studies, three assessments were undertaken: 
a baseline scenario incorporating no storm water management controls; a second scenario 
employing conventional BMPs; and a third development scenario employing LID storm water 
management strategies.  
 
To establish a baseline for each case study, annual storm water runoff volumes were estimated, 
as well as concentrations and mass loadings of four pollutants:  (1) total suspended solids 
(TSS), (2) total recoverable copper (TCu), (3) total recoverable zinc (TZn), and (4) total 
phosphorus (TP).  These baseline estimates were based on the anticipated land use and cover 
with no storm water management efforts.   
 
Two sets of calculations were then conducted using the parameters defined for the six case 
studies.   
 
The first group of calculations estimated the extent to which basic BMPs reduce runoff volumes 
and pollutant concentrations and loadings, and what impact, if any, such BMPs have on 
recharge rates or water retention on-site.   
 
The second group of calculations estimated the extent to which commonly used soil-based 
BMPs and LID site design strategies ameliorate runoff volumes and pollutant concentrations 
and loadings, and the effect such techniques have on recharge rates.  When evaluating LID 
strategies, it was presumed that EIA would be limited to three percent and runoff from EIA, 
NCIA, and pervious areas would be managed as indicated above.  The assessment of basins, 
biofiltration, and low-impact design practices analyzed the expected infiltration capacity of the 
case study sites.  It also considered related LID techniques and practices, such as source 
reduction strategies, that could work in concert with infiltration to serve the goals of:  (1) 
preventing increase in annual runoff volume from the pre- to the post-developed state, (2) 
preventing increase in annual pollutant mass loadings between the two development states, 
and (3) avoiding exceedances of California Toxics Rule (CTR) acute saltwater criteria for 
copper and zinc. 
 
The results of this analysis show that: 
 

• Developments implementing no post-construction BMPs result in storm water runoff 
volume and pollutant loading that are substantially increased, and recharge rates that 
are substantially decreased, compared to pre-development conditions.   

 
• Developments implementing basic post-construction treatment BMPs achieve reduced 

pollutant loading compared to developments with no BMPs, but storm water runoff 
volume and recharge rates are similar to developments with no BMPs.   

 
• Developments implementing traditional basins and biofilters, and even more so low-

impact post-construction BMPs, achieve significant reduction of pollutant loading and 
runoff volume as well as greatly enhanced recharge rates compared to both 
developments with no BMPs and developments with basic treatment BMPs.   

 
• Typical development categories, ranging from single family residential to large 

commercial, can feasibly implement low-impact post-construction BMPs designed in 
compliance with the draft permit’s requirements, as modified to include a lower, three 
percent EIA requirement. 

 



 4

This report covers the methods employed in the investigation, data sources, and references for 
both.  It then presents the results, discusses their consequences, draws conclusions, and 
makes recommendations relative to the feasibility of utilizing low-impact development practices 
in Ventura County developments. 
 
CASE STUDIES 
 
Six case studies were selected to represent a range of urban development types considered to 
be representative of coastal Southern California, including Ventura County.  These case studies 
involved:  a multi-family residential complex (MFR), a relatively small-scale (23 homes) single-
family residential development (Sm-SFR), a restaurant (REST), an office building (OFF), a 
relatively large (1000 homes) single-family residential development (Lg-SFR) and a sizeable 
commercial retail installation (COMM).1   
 
Parking spaces were estimated to be 176 sq ft in area, which corresponds to 8 ft width by 22 ft 
length dimensions.  Code requirements vary by jurisdiction, with the tendency now to drop 
below the traditional 200 sq ft average.  About 180 sq ft is common, but various standards for 
full- and compact-car spaces, and for the mix of the two, can raise or lower the average.2  The 
176 sq ft size is considered to be a reasonable value for conventional practice. 
 
Roadways and walkways assume a wide variety of patterns.  Exclusive of the two SFR cases, 
simple, square parking lots with roadways around the four sides and square buildings with 
walkways also around the four sides were assumed.  Roadways and walkways were taken to 
be 20 ft and 6 ft wide, respectively. 
 
Single-family residences were assumed each to have a driveway 20 ft wide and 30 ft long.  It 
was further assumed that each would have a sidewalk along the front of the lot, which was 
calculated to be 5749 sq ft in area.  Assuming a square lot, the front dimension would be 76 ft.  
A 40-ft walkway was included within the property.  Sidewalks and walkways were taken to be 4 
ft wide. 
 
Exclusive of the COMM case, the total area for all of these impervious features was subtracted 
from the total site area to estimate the pervious area, which was assumed to have conventional 
landscaping cover (grass, small herbaceous decorative plants, bushes, and a few trees).  For 
the COMM scenario, the hypothetical total impervious cover was enlarged by 10 percent to 
represent the landscaping, on the belief that a typical retail commercial establishment would 
typically be mostly impervious. 
 
Table 1 (page 5) summarizes the characteristics of the six case studies.  The table also 
provides the recorded or estimated areas in each land use and cover type. 

                                                 
1  Building permit records from the City of San Marcos in San Diego County provided data on total site 
areas for the first four case studies, including numbers of buildings, building footprint areas (including 
porch and garage for Sm-SFR), and numbers of parking spaces associated with the development projects.  
While the building permit records made no reference to features such as roadways, walkways, and 
landscaping normally associated with development projects, these features were taken into account in the 
case studies using assumptions described herein.  Larger developments were not represented in the 
sampling of building permits from the San Marcos database.  To take larger development projects into 
account in the subsequent analysis, the two larger scale case studies were hypothesized.  The Lg-SFR 
scenario scaled up all land use estimates from the Sm-SFR case in the ratio of 1000:23.  The hypothetical 
COMM scenario consisted of a building with a 2-acre footprint and 500 parking spaces.  As with the 
smaller-scale cases, these hypothetical developments were assumed to have roadways, walkways, and 
landscaping, as described herein. 
 
2  J. Gibbons, Parking Lots, NONPOINT EDUCATION FOR MUNICIPAL OFFICERS, Technical Paper No. 5 (1999) 
(http://nemo.uconn.edu/tools/publications/tech_papers/tech_paper_5.pdf). 



 5

Table 1.  Case Study Characteristics and Land Use and Land Cover Areas 

 MFRa Sm-SFRa RESTa OFFa Lg-SFRa COMMa

No. buildings 11 23 1 1 1000 1
Total area (ft2) 476,982 132,227 33,669 92,612 5,749,000 226,529
Roof area (ft2) 184,338 34,949 3,220 7,500 1,519,522 87,120
No. parking spaces 438 - 33 37 - 500
Parking area (ft2) 77,088 - 5808 6512 - 88,000
Access road area (ft2) 22,212 - 6097 6456 - 23,732
Walkway area (ft2) 33,960 10,656 1362 2078 463,289 7,084
Driveway area (ft2) - 13,800 - - 600,000 -
Landscape area (ft2) 159,384 72,822 17,182 70,066 3,166,190 20,594

 

a MFR—multi-family residential; Sm-SFR—small-scale single-family residential;  
REST—restaurant; OFF—office building; Lg-SFR—large-scale single-family residential; COMM—retail commercial 
 
 
METHODS OF ANALYSIS 
 
Annual Storm Water Runoff Volumes 
 
Annual surface runoff volumes produced were estimated for both pre- and post-development 
conditions for each case study site.  Runoff volume was computed as the product of annual 
precipitation, contributing drainage area, and a runoff coefficient (ratio of runoff produced to 
rainfall received).  For impervious areas the following equation was used:  
 

C = (0.009) I + 0.05 
 
where I is the impervious percentage.  This equation was derived by Schueler (1987) from 
Nationwide Urban Runoff Program data (U.S. Environmental Protection Agency 1983).  With I = 
100 percent for fully impervious surfaces, C is 0.95. 
 
The basis for pervious area runoff coefficients was the Natural Resource Conservation 
Service’s (NRCS) Urban Hydrology for Small Watersheds (NRCS 1986, as revised from the 
original 1975 edition).  This model estimates storm event runoff as a function of precipitation 
and a variable representing land cover and soil, termed the curve number (CN).  Larger events 
are forecast to produce a greater amount of runoff in relation to amount of rainfall because they 
more fully saturate the soil.  Therefore, use of the model to estimate annual runoff requires 
selecting some event or group of events to represent the year.  A 0.75-inch rainfall event was 
used in the analysis here for the relative comparison between pre- and post-development and 
applied to deriving a runoff coefficient for annual estimates, recognizing that smaller storms 
would produce less and larger storms more runoff. 
 
To select CN for the pre-development case, an analysis performed in the area of the Cedar Fire 
in San Diego County was used in which CN was determined before and after the 2003 fire.3  In 
the San Diego analysis, CN = 83 was estimated for the pre-existing land cover, which was 
generally chaparral, a vegetative cover also typical of Ventura County.  As indicated below, soils 
are also similar in Ventura and San Diego Counties, making the parameter selection reasonable 
for use in both locations.  For post-development landscaping, CN = 86 was selected based on 
tabulated data in NRCS (1986) and professional judgment.  
 
Pre- and post-development runoff quantities were computed with these CN values and the 0.75-
inch rainfall, and then divided by the rainfall to obtain runoff coefficients.  The results were 0.07 
                                                 
3  American Forests, San Diego Urban Ecosystem Analysis After the Cedar Fire (Feb. 3, 2006) 
(http://www.ufei.org/files/pubs/SanDiegoUrbanEcosystemAnalysis-PostCedarFire.pdf). 
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and 0.12, respectively.  Finally, total annual runoff volumes were estimated based on an 
average annual precipitation in the City of Ventura of 14.71 inches.4 
 
Storm Water Runoff Pollutant Discharges 
 
Annual pollutant mass discharges were estimated as the product of annual runoff volumes 
produced by the various land use and cover types and pollutant concentrations typical of those 
areas.  Again, the 0.75-inch precipitation event was used as a basis for volumes.  Storm water 
pollutant data have typically been measured and reported for general land use types (e.g., 
single-family residential, commercial).  However, an investigation of low-impact development 
practices of the type this study sought to conduct demands data on specific land coverages.  
The literature offers few data on this basis.  Those available and used herein were assembled 
by a consultant to the City of Seattle for a project in which the author participated.  They appear 
in Attachment B (Herrera Environmental Consultants, Inc. undated). 
 
Pollutant concentrations expected to occur typically in the mixed runoff from the several land 
use and cover types making up a development were estimated by mass balance; i.e., the 
concentrations from the different areas of the sites were combined in proportion to their 
contribution to the total runoff. 
 
The Effect of Conventional Treatment BMPs on Runoff Volume, Pollutant Discharges, and 
Recharge Rates 
 
The first question in analyzing how BMPs reduce runoff volumes and pollutant discharges was, 
What BMPs are being employed in Ventura County developments under the permit now in 
force?  This permit is open-ended and provides regulated entities with a large number of 
choices and few fixed requirements.  These options presumably include manufactured BMPs, 
such as drain inlet inserts (DIIs) and continuous deflective separation (CDS) units.  
Developments may also select such non-proprietary devices as extended-detention basins 
(EDBs) and biofiltration swales and filter strips.  EDBs hold water for two to three days for solids 
settlement before releasing whatever does not infiltrate or evaporate.  Biofiltration treats runoff 
through various processes mediated by vegetation and soil.  In a swale, runoff flows at some 
depth in a channel, whereas a filter strip is a broad surface over which water sheet flows.  Each 
of these BMP types was applied to each case study, although it is not clear that these BMPs, in 
actuality, have been implemented consistently within Ventura County to date. 
  
The principal basis for the analysis of BMP performance was the California Department of 
Transportation’s (CalTrans, 2004) BMP Retrofit Pilot Program, performed in San Diego and Los 
Angeles Counties.  One important result of the program was that BMPs with a natural surface 
infiltrate and evaporate (probably, mostly infiltrate) a substantial amount of runoff, even if 
conditions do not appear to be favorable for an infiltration basin.  On average, the EDBs, 
swales, and filter strips lost 40, 50 and 30 percent, respectively, of the entering flow before the 
discharge point.  DIIs and CDS units do not contact runoff with a natural surface, and therefore 
do not reduce runoff volume. 
 
The CalTrans program further determined that BMP effluent concentrations were usually a 
function of the influent concentrations, and equations were developed for the functional 

                                                 
4  Ventura County Watershed Protection District (http://www.vcwatershed.org/fws/specialmedia.htm).  The 
City of Ventura is considered to be representative of most of the developed and developing areas in 
Ventura County.  However, there is some variation around the county, with the maximum precipitation 
registered at Ojai (annual average 21.32 inches).  Ojai is about 15 miles inland and lies at elevation 745 ft 
at the foot of the Topatopa Mountains, the orographic effect of which influences its meteorology.  Ojai’s 
higher rainfall was taken into account in the calculations, and the report notes the few instances where it 
affected the conclusions.  
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relationships in these cases.  BMPs generally reduced influent concentrations proportionately 
more when they were high.  In relatively few situations influent concentrations were constant at 
an “irreducible minimum” level regardless of inflow concentrations. 
 
In analyzing the effects of BMPs on the case study runoff, the first step was to reduce the runoff 
volumes estimated with no BMPs by the fractions observed to be lost in the pilot study.  The 
next task was estimating the effluent concentrations from the relationships in the CalTrans 
report.  The final step was calculating discharge pollutant loadings as the product of the reduced 
volumes and predicted effluent concentrations.  As before, typical pollutant concentrations in the 
mixed runoff were established by mass balance. 
 
Estimating Infiltration Capacity of the Case Study Sites 
 
Infiltrating sufficient runoff to maintain pre-development hydrologic characteristics and prevent 
pollutant transport is the most effective way to protect surface receiving waters.  Successfully 
applying infiltration requires soils and hydrogeological conditions that will pass water sufficiently 
rapidly to avoid overly-lengthy ponding, while not allowing percolating water to reach ground-
water before the soil column captures pollutants. 
 
The study assumed that infiltration would occur in surface facilities and not in below-ground 
trenches.  The use of trenches is certainly possible, and was judged to be an approved BMP by 
CalTrans after the pilot study.  However, the intent of this investigation was to determine the 
ability of pervious areas to manage the site runoff.  This was accomplished by determining the 
infiltration capability of the pervious areas in their original condition for each development case 
study, and further assessing the pervious areas’ infiltration capabilities if soils were modified 
according to low impact development practices. 
 
The chief basis for this aspect of the work was an assessment of infiltration capacity and 
benefits for Los Angeles’ San Fernando Valley (Chralowicz et al. 2001).  The Chralowicz study 
posited providing 0.1-0.5 acre for infiltration basins to serve each 5 acres of contributing 
drainage area.  At 2-3 ft deep, it was estimated that such basins could infiltrate 0.90-1.87 acre-
ft/year of runoff in San Fernando Valley conditions.  Soils there are generally various loam 
textures with infiltration rates of approximately 0.5-2.0 inches/hour.  The most prominent soils in 
Ventura County, at least relatively near the coast, are loams, sandy loams, loamy sands, and 
silty clay loams, thus making the conclusions of the San Fernando Valley study applicable for 
these purposes.5  This information was used to estimate how much of each case study site’s 
annual runoff would be infiltratable, and if the pervious portion would provide sufficient area for 
infiltration.  For instance, if sufficient area were available, the infiltration configuration would not 
have to be in basin form but could be shallower and larger in surface area.  This study’s 
analyses assumed the use of bioretention areas rather than traditional infiltration basins.  
 
Volume and Pollutant Source Reduction Strategies 
 
As mentioned above, the essence of low-impact development is reducing runoff problems 
before they can develop, at their sources, or exploiting the infiltration and treatment abilities of 
soils and vegetation.  If a site’s existing infiltration and treatment capabilities are inadequate to 
preserve pre-development hydrology and prevent runoff from causing or contributing to 
violations of water quality standards, then LID-based source reduction strategies can be 
implemented, infiltration and treatment capabilities can be upgraded, or both. 

                                                 
5  Cabrillo Port Liquefied Natural Gas Deepwater Port Draft EIS/EIR (Oct. 2004) 
(http://www.cabrilloport.ene.com/files/eiseir/4.05%20%20-Agriculture%20and%20Soils.pdf).   
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Source reduction can be accomplished through various LID techniques.  Soil can be upgraded 
to store runoff until it can infiltrate, evaporate, or transpire from plants through compost addition.  
Soil amendment, as this practice is known, is a standard LID technique.   
 
Upgraded soils are used in bioretention cells that hold runoff and effect its transfer to the 
subsurface zone.  This standard LID tool can be used where sufficient space is available.  This 
study analyzed whether the six development case study sites would have sufficient space to 
effectively reduce runoff using bioretention cells, assuming the soils and vegetation could be 
amended and enhanced where necessary. 
 
Conventional pavements can be converted to porous asphalt or concrete or replaced with 
concrete or plastic unit pavers or grid systems.  For such approaches to be most effective, the 
soils must be capable of infiltrating the runoff passing through, and may require renovation.  
 
Source reduction can be enhanced by the LID practice of water harvesting, in which water from 
impervious surfaces is captured and stored for reuse in irrigation or gray water systems.  For 
example, runoff from roofs and parking lots can be harvested, with the former being somewhat 
easier because of the possibility of avoiding pumping to use the water and fewer pollutants. 
Harvesting is a standard technique for Leadership in Energy and Environmental Design (LEED) 
buildings.6  Many successful systems of this type are in operation, such as the Natural 
Resources Defense Council offices (Santa Monica, CA), the King County Administration 
Building (Seattle, WA), and two buildings on the Portland State University campus (Portland, 
OR).  This investigation examined how water harvesting could contribute to storm water 
management for case study sites where infiltration capacity, available space, or both appeared 
to be limited. 
 
 
RESULTS OF THE ANALYSIS 
 
1. “Base Case” Analysis:  Development without Storm Water Controls  

 
Comparison of Pre- and Post-Development Runoff Volumes 
 
Table 2 (page 9) presents a comparison between the estimated runoff volumes generated by 
the respective case study sites in the pre- and post-development conditions, assuming 
implementation of no storm water controls on the developed sites.  On sites dominated by 
impervious land cover, most of the infiltration that would recharge groundwater in the 
undeveloped state is expected to be lost to surface runoff after development.  This greatly 
increased surface flow would raise peak flow rates and volumes in receiving water courses, 
raise flooding risk, and transport pollutants.  Only the office building, the plan for which retained 
substantial pervious area, would lose less than half of the site’s pre-development recharge. 

                                                 
6  New Buildings Institute, Inc., Advanced Buildings (2005) 
(http://www.poweryourdesign.com/LEEDGuide.pdf). 
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Table 2.  Pre- and Post-Development without BMPs:  Distribution of Surface Runoff Versus 
Recharge to Groundwater 

Annual Volume (acre-ft) MFRa Sm-SFRa RESTa OFFa Lg-SFRa COMMa

Precipitationb  13.4 3.72 0.95 2.60 162 6.37 
Pre-development runoffc 0.94 0.26 0.07 0.18 11 0.45 
Pre-development recharged 12.5 3.46 0.88 2.42 150 5.92 
Post-development impervious runoffc 8.48 1.59 0.44 0.60 69 5.50 
Post-development pervious runoffc 0.54 0.25 0.06 0.24 11 0.07 
Post-development total runoffc 9.02 1.83 0.50 0.84 80 5.57 
Post-development recharged 4.39 1.88 0.45 1.76 82 0.80 
Post-development recharge loss  
(% of pre-development recharge) 

8.08 
(65%) 

1.57 
(46%) 

0.43 
(49%) 

0.66 
(27%) 

68 
(45%) 

5.12 
(86%) 

 

a MFR—multi-family residential; Sm-SFR—small-scale single-family residential; REST—restaurant; OFF—office 
building; Lg-SFR—large-scale single-family residential;  
COMM—retail commercial 
b Volume of precipitation on total project area 
c Quantity of water discharged from the site on the surface 
d Quantity of water infiltrating the soil; the difference between precipitation and runoff 
 
 
Pollutant Concentrations and Loadings 
 
Table 3 presents the pollutant concentrations from the literature and loadings calculated as 
described for the various land use and cover types represented by the case studies.  
Landscaped areas are expected to release the highest TSS concentration, although relatively 
low TSS mass loading because of the low runoff coefficient.  The highest copper concentrations 
and loadings are expected from parking lots.  Roofs, especially commercial roofs, top the list for 
both zinc concentrations and loadings.  Landscaping would issue by far the highest phosphorus, 
although access roads and driveways would contribute the highest mass loadings. 
 
Table 3.  Pollutant Concentrations and Loadings for Case Study Land Use and Cover Types  

Land Use Concentrations Loadings 

 TSS 
(mg/L) 

TCu 
(mg/L) 

TZn 
(mg/L) 

TP 
(mg/L) 

Lbs. 
TSS/ 
acre-
year 

Lbs. 
TCu/ 
acre-
year 

Lbs. 
TZn/ 
acre-
year 

Lbs. 
TP/ 

acre-
year 

Residential roof 25 0.013 0.159 0.11 79 0.041 0.503 0.348 
Commercial roof 18 0.014 0.281 0.14 57 0.044 0.889 0.443 
Access 
road/driveway 120 0.022 0.118 0.66 380 0.070 0.373 2.088 

Parking 75 0.036 0.097 0.14 237 0.114 0.307 0.443 
Walkway 25 0.013 0.059 0.11 79 0.041 0.187 0.348 
Landscaping 213 0.013 0.059 2.04 85 0.005 0.024 0.815 

 
 
The CTR acute criteria for copper and zinc are 0.0048 mg/L and 0.090 mg/L, respectively.  
Table 3 shows that all developed land uses are expected to discharge copper above the 
criterion, based on the mass balance calculations using concentrations from Table 3.  Any 
surface release from the case study sites would violate the criterion at the point of discharge, 
although dilution by the receiving water would lower the concentration below the criterion at 
some point.  Even if copper mass loadings are reduced by BMPs, any surface discharge would 
exceed the criterion initially, but it would be easier to dilute below that level.  In contrast, runoff 
from some land covers would not violate the acute zinc criterion.  Because of this difference, the 
evaluation considered whether or not the zinc criterion would be exceeded in each analysis, 
whereas there was no point in this analysis for copper.  There are no equivalent water quality 
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criteria for TSS and TP; hence, their concentrations were not further analyzed in the different 
scenarios. 
 
Table 4 shows the overall loadings, as well as zinc concentrations, expected to be delivered 
from the case study developments should they not be fitted with any BMPs.  As Table 4 shows, 
all cases are forecast to exceed the 0.090 mg/L acute zinc criterion, and the retail commercial 
development does so by a wide margin.  Because of its size, the large residential development 
dominates the mass loading emissions. 
 
Table 4.  Case Study Pollutant Concentration and Loading Estimates without BMPs 

 MFRa Sm-SFRa RESTa OFFa Lg-SFRa COMMa 
TZn (mg/L) 0.127 0.123 0.128 0.133 0.123 0.175 
Lbs. TSS/year 1321 345 125 242 15016 853 
Lbs. TCu/year 0.46 0.074 0.032 0.045 3.21 0.37 
Lbs. TZn/year 3.09 0.607 0.174 0.301 26.4 2.64 
Lbs. TP/year  6.58 2.39 0.72 1.78 104 3.36 

 

a MFR—multi-family residential; Sm-SFR—small-scale single-family residential; REST—restaurant;  
OFF—office building; Lg-SFR—large-scale single-family residential; COMM—retail commercial 
 
 
2. “Conventional BMP” Analysis:  Effect of Basic Treatment BMPs 
 
Effect of Basic Treatment BMPs on Post-Development Runoff Volumes 
 
The current permit allows regulated parties to select from a range of BMPs in order to treat or 
infiltrate a given quantity of annual rainfall.  The range includes drain inlet inserts, CDS units, 
and other manufactured BMPs, detention vaults, and sand filters, all of which isolate runoff from 
the soil; as well as basins and biofiltration BMPs built in soil and generally having vegetation.  
Treatment BMPs that do not permit any runoff contact with soils discharge as much storm water 
runoff as equivalent sites with no BMPs, and hence yield zero savings in recharge.  As 
mentioned above, the CalTrans (2004) study found that BMPs with a natural surface can reduce 
runoff by substantial margins (30-50 percent for extended-detention basins and biofiltration). 
 
With such a wide range of BMPs in use, runoff reduction ranging from 0 to 50 percent, and a 
lack of clearly ascertainable requirements, it is not possible to make a single estimate of how 
much recharge savings are afforded by maximal implementation of the current permit.  We 
made the following assumptions regarding implementation of BMPs.  Assuming natural-surface 
BMPs perform at the average of the three types tested by CalTrans (2004), i.e., 40 percent 
runoff reduction, the estimate can be bounded as shown in Table 5 (page 11).  The table 
demonstrates that allowing free choice of BMPs without regard to their ability to direct water into 
the ground forfeits substantial groundwater recharge benefits when hardened-surface BMPs are 
selected.  Use of soil-based conventional BMPs could cut recharge losses from half or e more 
of the full potential to about one-quarter to one-third or less, except with the highly impervious 
commercial development.  This analysis shows the wisdom of draining impervious to pervious 
surfaces, even if those surfaces are not prepared in any special way.  But as subsequent 
analyses showed, soil amendment can gain considerably greater benefits.  
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Table 5.  Pre- and Post-Development with Conventional BMPs:  Distribution of Surface Runoff 
Versus Recharge to Groundwater  

Annual Volume 
(acre-ft) MFRa  

Sm-SFRa RESTa OFFa Lg-SFRa COMMa 

Precipitationb  13.4 3.72 0.95 2.60 162 6.37 
Pre-development 
runoffc 0.94 0.26 0.07 0.18 11 0.45 

Pre-development 
recharge 12.5 3.46 0.88 2.42 150 5.92 

Post-development 
impervious runoffc, d 

 
5.09-8.48 

 
0.95-1.59 

 
0.26-0.44 

 
0.36-0.60 

 
41-69 

 
3.30-5.50 

Post-development 
pervious runoffc, d 0.32-0.54 0.15-0.25 0.04-0.06 0.14-0.24 6.6-11 0.04-0.07 

Post-development 
total runoffc, d 5.41-9.02 1.10-1.83 0.30-0.50 0.50-0.84 48-80 3.34-5.57 

Post-development 
recharged, e 4.39-7.99 1.88-2.62 0.45-0.65 1.76-2.10 82-114 0.80-3.03 

Post-development 
recharge loss  
(% of pre-development 
recharge) d, e 

4.51-8.08 
(36-65%) 

0.84-1.57 
(24-46%) 

0.23-0.43 
(26-49%) 

0.32-0.66 
(13-27%) 

36-68 
(24-45%) 

2.89-5.12 
(49-86%) 

 

a MFR—multi-family residential; Sm-SFR—small-scale single-family residential; REST—restaurant; OFF—office 
building; Lg-SFR—large-scale single-family residential; COMM—retail commercial.  Ranges represent 40 percent runoff 
volume reduction, with full site coverage by BMPs having a natural surface, to no reduction, with BMPs isolating runoff 
from soil. 
b Volume of precipitation on total project area 
c Quantity of water discharged from the site on the surface 
d Ranging from the quantity with hardened bed BMPs to the quantity with soil-based BMPs 
e Quantity of water infiltrating the soil; the difference between precipitation and runoff 
 
 
Effect of Basic Treatment BMPs on Pollutant Discharges 
 
Table 6 (page 12) presents estimates of zinc effluent concentrations and mass loadings of the 
various pollutants discharged from four types of conventional treatment BMPs.  The 
manufactured CDS BMPs in this table, which do not expose runoff to soil or vegetation, are not 
expected to drop any of the concentrations sufficiently to meet the acute zinc criterion at the 
discharge point.  The loading reduction results show the CDS units always performing below 50 
percent reduction for all pollutants analyzed, and most often in the vicinity of 20 percent, with 
zero copper reduction. 
 
When treated with swales or filter strips, effluents from each development case study site are 
expected to fall below the CTR acute zinc criterion.  All but the large commercial site would 
meet the criterion with EDB treatment.  These natural-surface BMPs, if fully implemented and 
well maintained, are predicted to prevent the majority of the pollutant masses generated on 
most of the development sites from reaching a receiving water.  Only total phosphorus reduction 
falls below 50 percent for two case studies.  Otherwise, mass loading reductions range from 
about 60 to above 80 percent for the EDB, swale, and filter strip.  This data indicates that 
draining impervious to pervious surfaces, even if those surfaces are not prepared in any special 
way, pays water quality as well as hydrologic dividends. 
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Table 6.  Pollutant Concentration and Loading Reduction Estimates with Conventional BMPs 

 MFRa Sm-SFRa RESTa OFFa Lg-SFRa COMMa 
Effluent Concentrations:       
CDS TZn (mg/L)a 0.095 0.095 0.098 0.102 0.095 0.131 
EDB TZn (mg/L)a 0.085 0.086 0.084 0.084 0.086 0.098 
Swale TZn (mg/L) 0.055 0.054 0.055 0.056 0.054 0.068 
Filter strip TZn (mg/L) 0.039 0.039 0.039 0.041 0.039 0.048 
Loading Reductions:       
CDS TSS loading reduction 15.7% 19.9% 22.0% 24.0% 19.9% 16.9% 
CDS TCu loading reduction 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 
CDS TZn loading reduction 22.7% 22.4% 22.9% 23.1% 22.4% 25.1% 
CDS TP loading reduction 30.6% 41.5% 40.7% 45.9% 41.5% 20.3% 
EDB TSS loading reduction 68.1% 73.7% 79.0% 81.1% 73.7% 71.7% 
EDB TCu loading reduction 61.9% 55.7% 66.2% 63.0% 55.7% 66.8% 
EDB TZn loading reduction 59.7% 59.6% 60.4% 61.9% 59.6% 66.6% 
EDB TP loading reduction 61.9% 69.7% 69.1% 72.9% 69.7% 54.5% 
Swale TSS loading reduction 68.8% 71.1% 73.1% 73.9% 71.1% 69.4% 
Swale TCu loading reduction 72.5% 68.5% 78.2% 73.3% 68.5% 75.8% 
Swale TZn loading reduction 78.4% 78.1% 84.3% 78.8% 78.1% 80.7% 
Swale TP loading reduction 66.3% 70.7% 67.2% 76.2% 70.7% 55.0% 
Filter strip TSS loading reduction 69.9% 75.4% 80.6% 82.6% 75.4% 72.3% 
Filter strip TCu loading reduction 74.4% 69.1% 78.2% 75.4% 69.1% 78.7% 
Filter strip TZn loading reduction 78.3% 77.9% 78.4% 78.7% 77.9% 80.9% 
Filter strip TP loading reduction 48.4% 53.1% 63.7% 59.8% 53.1% 34.6% 

 

a MFR—multi-family residential; Sm-SFR—small-scale single-family residential; REST—restaurant;  
OFF—office building; Lg-SFR—large-scale single-family residential; COMM—retail commercial;  
CDS— continuous deflective separation unit; EDB—extended-detention basin 
 
 
3. LID Analysis:  Development According to Modified Draft Permit Provisions 
 
(a)  Hydrologic Analysis 
 
The LID analysis was first performed according to the Draft Permit provisions under the 
Planning and Land Development Program (Part 4, section E).  In this analysis, however, EIA 
was limited to three instead of five percent, under the reasoning presented in Attachment A.  All 
runoff from NCIA was assumed to drain to vegetated surfaces, as provided in the Draft Permit. 
 
One goal of this exercise was to identify methods that reduce runoff production in the first place.  
It was hypothesized that implementation of source reduction techniques could allow all of the 
case study sites to infiltrate substantial proportions of the developed site runoff, advancing the 
hydromodification mitigation objective of the Draft Permit.  When runoff is dispersed into the soil 
instead of being rapidly collected and conveyed away, it recharges groundwater, supplementing 
a resource that maintains dry season stream flow and wetlands.  An increased water balance 
can be tapped by humans for potable, irrigation, and process water supply.  Additionally, runoff 
volume reduction would commensurately decrease pollutant mass loadings. 
 
Accordingly, the analysis considered the practicability of more than one scenario by which the 
draft permit’s terms could be met, as modified to reflect three percent EIA.  In one option, all 
roof runoff is harvested and stored for some beneficial use. A second option disperses runoff 
into the soil via roof downspout infiltration trenches.  The former option is probably best suited to 
cases like the large commercial and office buildings, while distribution in the soil would fit best 
with residences and relatively small commercial developments.  The analysis was repeated with 
the assumptions of harvesting OFF and COMM roof runoff for some beneficial use and 
dispersing roof runoff from the remaining four cases in roof downspout infiltration systems. 
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Expected Infiltration Capacities of the Case Study Sites 
 
The first inquiry on this subject sought to determine how much of the total annual runoff each 
property is expected to infiltrate.  This assessment tested the feasibility of draining all but three 
percent of impervious area to pervious land on the sites.  Based on the findings of Chralowicz et 
al. (2001), it was assumed that an infiltration zone of 0.1-0.5 acres in area and 2-3 ft deep would 
serve a drainage catchment area in the size range 0-5 acres and infiltrate 0.9-1.9 acre-ft/year.  
The conclusions of Chralowicz et al. (2001) were extrapolated to conservatively assume that 0.5 
acre would be required to serve each additional five acres of catchment, and would infiltrate an 
incremental 1.4 acre-ft/year (the midpoint of the 0.9-1.9 acre-ft/year range).  According to these 
assumptions, the following schedule of estimates applies: 
 

Pervious Area Available for Infiltration  Catchment Served acres Infiltration Capacity  
0.5 acres 0-5 acres 1.4 acre-ft/year 
1.0 acres 5-10 acres 2.8 acre-ft/year 
1.5 acres 10-15 acres 4.2 acre-ft/year 

(Etc.) ... ... 
 
As a formula, infiltration capacity ≈ 2.8 x available pervious area.  To apply the formula 
conservatively, the available area was reduced to the next lower 0.5-acre increment before 
multiplying by 2.8. 
 
As shown in Table 7, five of the six sites have adequate or greater capacity to infiltrate the full 
annual runoff volume from NCIA and pervious areas where EIA is limited to three percent of the 
total site area (four at the higher Ojai rainfall).  Indeed, five of the six development types have 
sufficient pervious area to infiltrate all runoff, including runoff from EIA areas.  With the most 
representative rainfall, only the large commercial development, with little available pervious 
area, falls short of the needed capacity to infiltrate all rainfall, but it still has the capacity to meet 
the terms of the draft permit, as modified for this analysis.  These results are based on 
infiltrating in the native soils with no soil amendment.  For any development project at which 
infiltration-oriented BMPs are considered, it is important that infiltration potential be carefully 
assessed using site-specific soils and hydrogeologic data.  In the event such an investigation 
reveals a marginal condition (e.g., hydraulic conductivity, spacing to groundwater) for infiltration 
basins, soils could be enhanced to produce bioretention zones to assist infiltration.  Notably, the 
four case studies with far greater than necessary infiltration capacity would offer substantial 
flexibility in designing infiltration, allowing ponding at less than 2-3 ft depth. 
 
Table 7. Infiltration and Runoff Volume With 3 Percent EIA and All NCIA Draining to Pervious Areas 

 MFRa Sm-SFRa RESTa OFFa Lg-SFRa COMMa

EIA runoff (acre-ft/year) 0.38 0.11 0.03 0.07 4.6 0.18 
NCIA + pervious area 
runoff (acre-ft/year) 8.63 1.73 0.47 0.76 75.0 5.39 

Total runoff (acre-ft/year) 9.01 1.84 0.50 0.83 79.6 5.57 
Pervious area available 
for infiltration (acres) 3.66 1.67 0.39 1.61 72.7 0.47 

Estimated infiltration 
capacity (acre-ft/year)b 9.8 4.2 1.4 4.2 203 1.4 

Infiltration capacity c > 100%d > 100% > 100% > 100% > 100% ~26% d 
 

a MFR—multi-family residential; Sm-SFR—small-scale single-family residential; REST—restaurant;  
OFF—office building; Lg-SFR—large-scale single-family residential; COMM—retail commercial;  
b Based on Chralowicz et al. (2001) according to the schedule described above 
c Compare runoff production from NCIA + pervious area (row 3) with estimated infiltration capacity (row 6) 
d At Ojai rainfall levels, capacity would be ~78 percent at the MFR site and ~18 percent at the COMM site. 
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As Table 7 shows, five of the six case study sites have the capacity to infiltrate all runoff 
produced onsite by draining impervious surfaces to pervious areas.  Even runoff from the area 
assumed to be EIA could be infiltrated in most cases based on the amount of pervious area 
available in typical development projects.  By showing that it is possible under normal site 
conditions and using native soils to retain all runoff in typical developments, these results 
demonstrate that a three percent EIA requirement, which would not demand that all runoff be 
retained, is feasible and practicable.   
 
Additional Source Reduction Capabilities of the Case Study Sites:  Water Harvesting Example 
 
Infiltration is one of a wide variety of LID-based source reduction techniques.  Where site 
conditions such as soil quality or available area limit a site’s infiltration capacity, other source 
LID measures can enhance a site’s runoff retention capability.  For example, soil amendment, 
which improves infiltration, is a standard LID technique.  Water harvesting is another.  Such 
practices can also be used where infiltration capacity is adequate, but the developer desires 
greater flexibility for land use on-site.  Table 8 shows the added implementation flexibility 
created by subtracting roof runoff by harvesting it or efficiently directing it into the soil through 
downspout dispersion systems, further demonstrating the feasibility of meeting the draft permit’s 
proposed requirements, as modified to include a three percent EIA standard.    
 
Table 8.  Infiltration and Runoff Volume Reduction Analysis Including Roof Runoff Harvesting or 
Disposal in Infiltration Trenches (Assuming 3 Percent EIA and All NCIA Draining to Pervious Areas) 

 MFRa Sm-SFRa RESTa OFFa Lg-SFRa COMMa 
EIA runoff (acre-ft/year) 0.38 0.11 0.03 0.07 4.6 0.18 
Roof runoff (acre-ft/year) 4.92 0.93 0.09 0.20 41 2.33 
Other NCIA + pervious 
area runoff (acre-ft/year) 3.71 0.79 0.39 0.56 35 3.06 

Total runoff (acre-ft/year) 9.01 1.84 0.50 0.83 79.6 5.57 
Pervious area available for 
infiltration (acres) 3.66 1.67 0.39 1.61 72.7 0.47 

Estimated infiltration 
capacity (acre-ft/year)b 9.8 4.2 1.4 4.2 203 1.4 

Infiltration capacity c > 100% > 100% > 100% > 100% > 100% ~45% d  
 

a MFR—multi-family residential; Sm-SFR—small-scale single-family residential; REST—restaurant;  
OFF—office building; Lg-SFR—large-scale single-family residential; COMM—retail commercial;  
b Based on Chralowicz et al. (2001) according to the schedule described above 
c Comparison of runoff production from NCIA + pervious area (row 3) with estimated infiltration capacity (row 6) 
d If the higher rainfall at Ojai is assumed, capacity would be ~32 percent of the amount needed for the COMM case. 
 
 
Effect of Full LID Approach on Recharge  
 
Table 9 (page 15) shows the recharge benefits of preventing roofs from generating runoff and 
infiltrating as much as possible of the runoff from the remainder of the case study sites.  The 
data show that LID methods offer significant benefits relative to the baseline (no storm water 
controls) in all cases.  These benefits are particularly impressive in developments with relatively 
high site imperviousness, such as in the MFR and COMM cases.  In the latter case the full LID 
approach (excluding the common and effective practice of soil amendment) would cut loss of 
the potential water resource represented by recharge and harvesting from 86 to 37 percent. 
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Table 9.  Comparison of Water Captured Annually (in acre-ft) from Development Sites for Beneficial 
Use With a Full LID Approach Compared to Development With No BMPs 

 MFRa Sm-SFRa RESTa OFFa Lg-SFRa COMMa

Pre-development rechargeb (acre-ft) 12.5 3.46 0.88 2.42 150 5.92 

No BMPs:       

post-development recharge b (acre-ft) 4.39 1.88 0.45 1.76 82 0.80 

post-development runoff (acre-ft) 8.08 1.57 0.43 0.66 68 5.12 

post-development % recharge lost 65% 46%  49% 27% 45% 86% 

Full LID approach:       

post-development runoff capture (acre-ft)c 12.5 3.46 0.88 2.42 150 3.73 

post-development runoff (acre-ft) 0  0 0  0  0 2.19  

post-development % recharge lost 0% 0% 0% 0% 0% 37% 
 

a MFR—multi-family residential; Sm-SFR—small-scale single-family residential; REST—restaurant; OFF—office 
building; Lg-SFR—large-scale single-family residential; COMM—retail commercial 
b Quantity of water infiltrating the soil; the difference between precipitation and runoff 
c Water either entirely infiltrated in BMPs and recharged to groundwater or partially harvested from roofs and partially 
infiltrated in BMPs. For the first five case studies, EIA was not distinguished from the remainder of the development, 
because these sites have the potential to capture all runoff. 
 
 
(b)  Water Quality Analysis 
 
As outlined above, it was assumed that EIA discharges, as well as runoff from all pervious 
surfaces, are subject to treatment control.  For purposes of the analysis, treatment control was 
assumed to be provided by conventional sand filtration.  This choice is appropriate for study 
purposes for two reasons.  First, sand filters can be installed below grade, and land above can 
be put to other uses.  Under the Draft Permit’s approach, pervious area should be reserved for 
receiving NCIA drainage, and using sand filters would not draw land away from that service or 
other site uses.  A second reason for the choice is that sand filter performance data equivalent 
to the data used in analyzing other conventional BMPs are available from the CalTrans (2004) 
work.  Sand filters may or may not expose water to soil, depending on whether or not they have 
a hard bed.  This analysis assumed a hard bed, meaning that no infiltration would occur and 
thus there would be no additional recharge in sand filters.  Performance would be even better 
than shown in the analytical results if sand filters were built in earth. 
 
Pollutant Discharge Reduction Through LID Techniques 
 
The preceding analyses demonstrated that each of the six case studies could feasibly comply 
with the draft permit’s requirements, as modified to include a more protective three percent EIA 
standard.  Moreover, for five of the six case studies, all storm water discharges could be 
eliminated at least under most meteorological conditions by dispersing runoff from impervious 
surfaces to pervious areas.  Therefore, pollutant additions to receiving waters would also be 
eliminated.  This demonstrates not only that a lower EIA (three percent) is a feasible and 
practicable approach to maintaining the natural hydrology of land being developed, as 
discussed above, but that a lower EIA is a feasible and practicable way to eliminate the 
discharge of pollutants that could cause or contribute to violations of water quality standards.   
 
While the high proportion of impervious area present on the large commercial site relative to 
pervious area would not allow eliminating all discharge, harvesting roof water and draining NCIA 
to properly-prepared pervious area would substantially decrease the volume discharged.  
Deployment of treatment control BMPs (e.g. sand filter treatment) could cut contaminant 
discharges from pollutants in the remaining volume of runoff to low levels.   
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Table 10 presents the pollutant reductions from the untreated case achievable through the 
complete LID approach described above in comparison to conventional treatments (from Table 
6).  Assuming EIA still discharges through sand filters, pollutant loadings from the untreated 
condition are expected to decrease by more than 96 percent for all but the COMM case.  In that 
challenging case loadings would still fall by at least 89 percent for TSS and the metals and by 
83 percent for total phosphorus, assuming City of Ventura rainfall levels, and slightly less 
assuming the higher Ojai rainfall levels.  Thus, the Draft Permit’s basic premise of disconnecting 
most impervious area, supplemented by specially managing roof water, is shown by both water 
quality and hydrologic results to be feasible and to afford broad and significant environmental 
benefits. 
 
Table 10.  Pollutant Loading Reduction Estimates With a Full LID Approach Relative to 
Conventional BMPs 

 MFRa Sm-SFRa RESTa OFFa Lg-SFRa COMMa 
Conventional TSS loading 
reductionb 

15.7-
69.9% 

19.9-
75.4% 

22.0-
80.6% 

24.0-
82.6% 

19.9-
75.4% 

16.9-
72.3% 

Conventional TCu loading 
reductionb 

0.0-
74.4% 

0.0-
69.1% 

0.0-
78.2% 

0.0-
75.4% 

0.0-
69.1% 0.0-78.7%

Conventional TZn loading 
reductionb 

22.7-
78.4% 

22.4-
78.1% 

22.9-
84.3% 

23.1-
78.8% 

22.4-
78.1% 

25.1-
80.9% 

Conventional TP loading 
reductionb 

30.6-
66.3% 

41.5-
70.7% 

40.7-
69.1% 

45.9-
76.2% 

41.5-
70.7% 

20.3-
55.0% 

LID TSS loading reductionc 99.4% 99.3% 99.5% 99.4% 99.3% 89.0% d 
LID TCu loading reductionc 98.1% 96.7% 98.0% 96.2% 96.7% 90.6% d 
LID TZn loading reductionc 99.1% 98.8% 98.9% 98.3% 98.8% 94.8% d 
LID TP loading reductionc 98.1% 98.6% 98.8% 98.7% 98.6% 83.1%d 

 

a MFR—multi-family residential; Sm-SFR—small-scale single-family residential; REST—restaurant; OFF—office 
building; Lg-SFR—large-scale single-family residential; COMM—retail commercial; CDS— continuous deflective 
separation unit; EDB—extended-detention basin; NCIA—not connected impervious area; EIA—effective (connected) 
impervious area 
b Range from Table 6 represented by treatment by CDS unit, EDB, biofiltration swale, or biofiltration strip 
c Based on directing roof runoff to downspout infiltration trenches (MFR, Sm-SFR, REST, and Lg-SFR) or harvesting it 
(OFF and COMM), draining other NCIA to pervious areas, and treating EIA with sand filters 
d If the higher rainfall at Ojai is assumed, reduction estimates for TSS, TCu, TZn, and TP would be 84.0, 86.3, 92.5, and 
75.5 percent, respectively. 
 
 
SUMMARY AND CONCLUSIONS 
 
This paper demonstrated that common Ventura County area residential and commercial 
development types subject to the Municipal NPDES Permit are likely, without storm water 
management, to reduce groundwater recharge from the predevelopment state by approximately 
half in most cases to a much higher fraction with a large ratio of impervious to pervious area.  
With no treatment, runoff from these developments is expected to exceed CTR acute copper 
and zinc criteria at the point of discharge and to deliver large pollutant mass loadings to 
receiving waters. 
 
Conventional soil-based BMP solutions that promote and are component parts of low-impact 
development approaches, by contrast, regain about 30-50 percent of the recharge lost in 
development without storm water management, although commercially-manufactured filtration 
and hydrodynamic BMPs for storm water management give no benefits in this area.  It is 
expected the soil-based BMPs generally would release effluent that meets the acute zinc 
criterion at the point of discharge, although it would still exceed the copper limit.  Excepting 
phosphorus, it was found that these BMPs would capture and prevent the movement to 
receiving waters of the majority of the pollutant loadings considered in the analysis. 
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It was found that a three percent Effective Impervious Area standard can be met in typical 
developments, and that by draining all site runoff to pervious areas, runoff can be eliminated 
entirely in most development types.  This result was reached assuming the use of native soils.  
Soil enhancement (typically, with compost) can further advance infiltration.  Draining impervious 
surfaces onto the loam soils typical of Ventura County, in connection with limiting directly 
connected impervious area to three percent of the site total area, should eliminate storm runoff 
from some development types and greatly reduce it from more highly impervious types.  Adding 
roof runoff elimination to the LID approach (by harvesting or directing it to downspout infiltration 
trenches) should eliminate runoff from all but mostly impervious developments.  Even in the 
development scenario involving the highest relative proportion of impervious surface, losses of 
rainfall capture for beneficial uses could be reduced from more than 85 to less than 40 percent, 
and pollutant mass loadings would fall by 83-95 percent from the untreated scenario when 
draining to pervious areas was supplemented with water harvesting.  These results demonstrate 
the basic soundness of the Draft Permit’s concept to limit directly connected impervious area 
and drain the remainder over pervious surfaces.   
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ATTACHMENT A 
 

JUSTIFICATION OF PROPOSED EFFECTIVE IMPERVIOUS AREA LIMITATION 
 
 
 

Summary 
 

 The literature shows that adverse impacts to the physical habitat and biological 
integrity of receiving waters occur as a result of the conversion of natural areas to 
impervious cover. These effects are observed at the lowest levels of impervious 
cover in associated catchments (two to three percent) and are pronounced by the 
point that impervious cover reaches five percent. To protect biological 
productivity, physical habitat, and other beneficial uses, effective impervious area 
should be capped at no more than three percent. 

 
 
 
I. Impacts to physical habitat of California receiving waters observed at three 

percent impervious cover  
 
Stein et al.7 note that while studies from parts of the country with climates more humid than 
California’s indicate that physical degradation of stream channels can initially be detected when 
watershed impervious cover approaches 10%, biological effects, which may be more difficult to 
detect, may occur at lower levels (CWP 2003).8 Recent studies from both northern and southern 
California indicate that intermittent and ephemeral streams in California are more susceptible to 
the effects of hydromodification than streams from other regions of the US, with stream 
degradation being recognized when the associated catchment’s impervious cover is as little as 
3-5% (Coleman et al. 2005).9 Furthermore, supplemental landscape irrigation in semi-arid 
regions, like California, can substantially increase the frequency of erosive flows (AQUA TERRA 
Consultants 2004).10 
 
Coleman, et al.3 report that the ephemeral/intermittent streams in southern California 
(northwestern Los Angeles County through southern Ventura County to central Orange County) 
appear to be more sensitive to changes in percent impervious cover than streams in other 
areas. Stream channel response can be represented using an enlargement curve, which relates 
the percent of impervious cover to a change in cross-sectional area. The data for southern 
California streams forms a relationship very similar in shape to the enlargement curves 
developed for other North American streams. However, the curve for southern California 
streams is above the general curve for streams in other climates. This suggests that a specific 
enlargement ratio is produced at a lower value of impervious surface area in southern California 
than in other parts of North America. Specifically, the estimated threshold of response is 
approximately 2-3% impervious cover, as compared to 7-10% for other portions of the U.S. It is 
important to note that this conclusion applies specifically to streams with a catchment drainage 
area less than 5 square miles. 

                                                 
7  Stein, E.D., S. Zaleski, (2005) Managing Runoff to Protect Natural Streams: The Latest Developments on 
Investigation and Management of Hydromodification in California. (Proceedings of a Special Technical Workshop Co-
sponsored by California Stormwater Quality Association (CASQA), Stormwater Monitoring Coalition (SMC), University 
of Southern California Sea Grant (USC Sea Grant), Technical Report #475). 
8  Center for Watershed Protection (CWP), (2003) Impacts of Impervious Cover on Aquatic Systems. Ellicott City, MD. 
9  Coleman, D., C. MacRae, and E.D. Stein, (2005) Effect of Increases in Peak Flows and Imperviousness on the 
Morphology of Southern California Streams. Southern California Coastal Water Research Project Technical Report 
#450, Westminster, CA. 
10  AQUA TERRA Consultants, (2004) Urbanization and Channel Stability Assessment in the Arroyo Simi Watershed of 
Ventura County CA. FINAL REPORT. Prepared for Ventura County Watershed Protection Division, Ventura CA. 
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This study concludes that disconnecting impervious areas from the drainage network and 
adjacent impervious areas is a key approach to protecting channel stability. Utilizing this 
strategy can make it practical to keep the effective impervious cover (i.e. the amount 
hydrologically connected to the stream) equal to or less than the identified threshold of 2-3%. 
 

II. Impacts to biological integrity of receiving waters observed with any 
conversion from natural to impervious surface  

 
Two separate studies conducted by Horner et al.11,12 in the Puget Sound region (Washington 
State), Montgomery County, Maryland, and Austin, Texas built a database totaling more than 
650 reaches on low-order streams in watersheds ranging from no urbanization and relatively 
little human influence (the reference state, representing “best attainable” conditions) to highly 
urban (>60 percent total impervious area, “TIA”). Biological health was assessed according to 
the benthic index of biotic integrity (B-IBI) and, in Puget Sound, the ratio of young-of-the-year 
coho salmon (Oncorhynchus kisutch), a relatively stress-intolerant fish, to cutthroat trout 
(Oncorhynchus clarki), a more stress-tolerant species. The following discussion summarizes the 
results and conclusions of these two studies. 
 
There is no single cause for the decline of water resource conditions in urbanizing watersheds. 
Instead, it is the cumulative effects of multiple stressors that are responsible for degraded 
aquatic habitat and water quality. Imperviousness, while not a perfect yardstick, appears to be a 
useful predictor of ecological condition. However, a range of stream conditions can be 
associated with any given level of imperviousness. In general, only streams that retain a 
significant proportion of their natural vegetative land-cover and have very low levels of 
watershed imperviousness appear to retain their natural ecological integrity. It is this change in 
watershed land-cover that is largely responsible for the shift in hydrologic regime from a sub-
surface flow dominated system to one dominated by surface runoff. 
 
While the decline in ecological integrity is relatively continuous and is consistent for all 
parameters, the impact on physical conditions appears to be more pronounced earlier in the 
urbanization process than chemical degradation. It is generally acknowledged, based on field 
research and hydrologic modeling, that it is the shift in hydrologic conditions that is the driving 
force behind physical changes in urban stream-wetland ecosystems. 
 
Multiple scales of impact operate within urbanizing watersheds: landscape-level impacts, 
including the loss of natural forest cover and the increase in impervious surface area throughout 
the watershed; riparian corridor-specific impacts such as encroachment, fragmentation, and 
loss of native vegetation; and local impacts such as water diversions, exotic vegetation, stream 
channelization, streambank hardening, culvert installation, and pollution from the widespread 
use of pesticides and herbicides. All of these stressors contribute to the overall cumulative 
impact. 
 
The researchers found that there is no clear threshold of urbanization below which there exists 
a “no-effect” condition. Instead, there appears to be a relatively continuous decline in almost all 
measures of water quality or ecological integrity. Losses of integrity occur from the lowest levels 
of TIA and are already pronounced by the point that TIA reaches 5 percent.  

 

                                                 
11  Horner, R. R., C. W. May, (2002) The Limitations of Mitigation-Based Stormwater Management in the Pacific 
Northwest and the Potential of a Conservation Strategy based on Low-Impact Development Principles. (Proceedings of 
the American Society of Engineers Stormwater Conference, Portland, OR). 
12  Horner, R.R., E. H. Livingston, C. W. May, J. Maxted, (2006) BMPs, Impervious Cover, and Biological Integrity of 
Small Streams. (Proceedings of the Eighth Biennial Stormwater Research and Watershed Management Conference, 
Tampa, FL). 
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Similarly, the Alliance for the Chesapeake Bay13 reports that small-watershed studies by the 
Maryland Department of Natural Resources Biological Stream Survey have shown that some 
sensitive species are affected by even low amounts of impervious cover. In one study, no brook 
trout were observed in any stream whose watershed had more than 2 percent impervious cover, 
and brook trout were rare in any watershed with more than 0.5 percent impervious cover.  
 
III. Ventura County’s watersheds include biologically-significant water bodies 
 
The literature discussed above is relevant to the watersheds of Ventura County, which contain 
rivers and streams that currently or historically support a variety of beneficial uses that may be 
impaired by water quality degradation and stream hydromodification as a result of storm water 
runoff from impervious land cover. Unlike some Southern California watersheds, Ventura 
County still has many natural stream systems with a high degree of natural functionality.    
 
For instance, the Ventura River watershed in northwestern Ventura County “supports a large 
number of sensitive aquatic species,”14 including steelhead trout, a federally-listed endangered 
species. Although “local populations of steelhead and rainbow trout have nearly been eliminated 
along the Ventura River” itself, the California Department of Fish and Game has “recognized the 
potential for the restoration of the estuary and enhancement of steelhead populations in the 
Ventura River.”15 Steelhead may also be present in tributaries such as San Antonio Creek.16 
Thriving rainbow trout populations exist in tributaries of the Ventura River including Matilija 
Creek and Coyote Creek.17 The Ventura River either does or is projected to support the 
following beneficial uses: warm freshwater habitat; cold freshwater habitat; wildlife habitat; rare, 
threatened, or endangered species; migration of aquatic organisms; and spawning and 
reproduction.18 Furthermore, the Ventura River Estuary also supports commercial fishing, 
shellfish harvesting, and wetland habitat.19 The Ventura River receives municipal storm drain 
discharges from Ojai, San Buenaventura, and unincorporated areas of Ventura County.20 
 
The Santa Clara River watershed in northern Ventura County “is the largest river system in 
southern California that remains in a relatively natural state.”21 Sespe Creek is one of the Santa 
Clara’s largest tributaries, and “supports significant steelhead spawning and rearing habitat.”22 
Other creeks in the Santa Clara River watershed that support steelhead are Piru Creek and 
Santa Paula Creek. Sespe Creek and the Santa Clara River also provide spawning habitat for 
the Pacific lamprey. Rainbow trout populations exist in tributaries of the Santa Clara River 
including Sespe Creek.23 The creeks and the Santa Clara river do or are projected to support 
the following beneficial uses: warm freshwater habitat; cold freshwater habitat; wildlife habitat; 
preservation of biological habitats rare, threatened, or endangered species; migration of aquatic 
organisms; and spawning and reproduction.24 Los Padres National Forest covers much of the 
Santa Clara River watershed, but increasing development in floodplain areas has been 

                                                 
13  Karl Blankenship, BAY JOURNAL,”It’s a hard road ahead for meeting new sprawl goal: States will try to control growth 
of impervious” (July/August 2004), at http://www.bayjournal.com/article.cfm?article=66.  
14  Los Angeles Region Water Quality Control Plan (1994) p. 1-18 (“Basin Plan”). 
15  Basin Plan, p. 1-16; Ventura County Environmental & Energy Resources Division, “Endangered Steelhead Trout in 
Ventura County: Past, Present, and Future,” available at http://www.wasteless.org/Eye_articles/steelhead.htm.   
16  Ventura County Environmental & Energy Resources Division, “Steelhead Spawning in Ventura County,” (2005), 
available at http://www.wasteless.org/Eye_articles/steehead2005.html. 
17  Ventura County Environmental & Energy Resources Division, “Endangered Steelhead Trout in Ventura County: Past, 
Present, and Future,” available at http://www.wasteless.org/Eye_articles/steelhead.htm.   
18  Basin Plan, Table 2-1. 
19  Basin Plan, Table 2-4. 
20  Ventura County Watershed Protection District, Report of Waste Discharge (January 2005) at p. 3. 
21  Basin Plan, p. 1-16. 
22  Basin Plan, p. 1-16. 
23  Ventura County Environmental & Energy Resources Division, “Endangered Steelhead Trout in Ventura County: Past, 
Present, and Future,” available at http://www.wasteless.org/Eye_articles/steelhead.htm.   
24  Basin Plan, Table 2-1. 
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identified as a threat to the river system’s water quality.25 Furthermore, the Santa Clara estuary 
supports the additional beneficial uses of shellfish harvesting and wetlands habitat.26 The Santa 
Clara River receives municipal storm drain discharges from Fillmore, Oxnard, San 
Buenaventura, Santa Paula, and unincorporated areas of Ventura County.27 
 
The Calleguas Creek watershed “empties into Mugu Lagoon, one of southern California’s few 
remaining large wetlands.”28 It supports or is projected to support the following beneficial uses:  
estuarine habitat; marine habitat; wildlife habitat; preservation of biological habitats; rare, 
threatened, or endangered species; migration of aquatic organisms; spawning and 
reproduction; shellfish harvesting; and wetlands habitat.29 Historically, Calleguas Creek drained 
largely agricultural areas. But this watershed has been under increasing pressure from 
sedimentation due to increased surface flow from municipal discharges and urban wastewaters, 
among other sources.30 Increasing residential developments on steep slopes has been 
identified as a substantial contributing factor to the problem of accelerated erosion in the 
watershed (and sedimentation in the Lagoon). Calleguas Creek receives municipal storm drain 
discharges from Camarillo, Moorpark, Simi Valley, Thousand Oaks, and unincorporated areas 
of Ventura County.31 
 
Ventura County’s coastal streams also support a variety of beneficial uses:32  

• Little Sycamore Canyon Creek in southern Ventura County (warm freshwater habitat; 
wildlife habitat; rare, threatened or endangered species; and spawning and 
reproduction);  

• Lake Casitas tributaries (warm freshwater habitat; cold freshwater habitat; wildlife 
habitat; rare, threatened or endangered species; spawning and reproduction; and 
wetland habitat); 

• Javon Canyon and Padre Juan Canyon (warm freshwater habitat; cold freshwater 
habitat; wildlife habitat; and spawning and reproduction); and 

• Los Sauces Creek in northern Ventura County (warm freshwater habitat; cold 
freshwater habitat; wildlife habitat; migration of aquatic species; and spawning and 
reproduction). 

 
IV. Conclusion 
 
In order to protect the biological habitat, physical integrity, and other beneficial uses of the water 
bodies in Ventura County, effective impervious area should be capped at no more than three 
percent. 

                                                 
25  Basin Plan, pp. 1-16, 1-18. 
26  Basin Plan, Table 2-4. 
27  Ventura County Watershed Protection District, Report of Waste Discharge (January 2005) at p. 3. 
28  Basin Plan, p. 1-18. 
29  Basin Plan, Table 2-1. 
30  Basin Plan, pp. 1-16, 1-18. 
31  Ventura County Watershed Protection District, Report of Waste Discharge (January 2005) at p. 3. 
32  Basin Plan, Table 2-1. 
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ATTACHMENT B   
 

POLLUTANT CONCENTRATIONS FOR URBAN SOURCE AREAS (HERRERA ENVIRONMENTAL CONSULTANTS, INC. UNDATED) 
 

 

Source Area Study LocationSample Size (n)TSS (mg/L) TCu (ug/L)TPb (ug/L)TZn (ug/L)TP (mg/L)Notes
Roofs                   
Residential Steuer, et al. 1997 MI 12 36 7 25 201 0.06 2 
Residential Bannerman, et al. 1993 WI ~48 27 15 21 149 0.15 3 
Residential Waschbusch, et al. 2000 WI 25 15 n.a. n.a. n.a. 0.07 3 
Residential FAR 2003 NY  19 20 21 312 0.11 4 
Residential Gromaire, et al. 2001 France  29 37 493 3422 n.a. 5 
Representative Residential Roof Values     25 13 22 159 0.11   
Commercial Steuer, et al. 1997 MI 12 24 20 48 215 0.09 2 
Commercial Bannerman, et al. 1993 WI ~16 15 9 9 330 0.20 3 
Commercial Waschbusch, et al. 2000 WI 25 18 n.a. n.a. n.a. 0.13 3 
Representative Commercial Roof Values     18 14 26 281 0.14   
Parking Areas                   
Res. Driveways Steuer, et al. 1997 MI 12 157 34 52 148 0.35 2 
Res. Driveways Bannerman, et al. 1993 WI ~32 173 17 17 107 1.16 3 
Res. Driveways Waschbusch, et al. 2000 WI 25 34 n.a. n.a. n.a. 0.18 3 
Driveway FAR 2003 NY  173 17  107 0.56 4 
Representative Residential Driveway Values     120 22 27 118 0.66   

Comm./ Inst. Park. Areas Pitt, et al. 1995 AL 16 110 116 46 110 n.a. 1 
Comm. Park. Areas Steuer, et al. 1997 MI 12 110 22 40 178 0.2 2 
Com. Park. Lot Bannerman, et al. 1993 WI 5 58 15 22 178 0.19 3 
Parking Lot Waschbusch, et al. 2000 WI 25 51 n.a. n.a. n.a. 0.1 3 
Parking Lot Tiefenthaler, et al. 2001 CA 5 36 28 45 293 n.a. 6 
Loading Docks Pitt, et al. 1995 AL 3 40 22 55 55 n.a. 1 
Highway Rest Areas CalTrans 2003 CA 53 63 16 8 142 0.47 7 

Park and Ride Facilities CalTrans 2003 CA 179 69 17 10 154 0.33 7 

Comm./ Res. Parking FAR 2003 NY  27 51 28 139 0.15 4 
Representative Parking Area/Lot Values     75 36 26 97 0.14   
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Landscaping/Lawns                 
Landscaped Areas Pitt, et al. 1995 AL 6 33 81 24 230 n.a. 1 
Landscaping FAR 2003 NY  37 94 29 263 n.a. 4 
Representative Landscaping Values     33 81 24 230 n.a.   
Lawns - Residential Steuer, et al. 1997 MI 12 262 n.a. n.a. n.a. 2.33 2 
Lawns - Residential Bannerman, et al. 1993 WI ~30 397 13 n.a. 59 2.67 3 
Lawns Waschbusch, et al. 2000 WI 25 59 n.a. n.a. n.a. 0.79 3 
Lawns Waschbusch, et al. 2000 WI 25 122 n.a. n.a. n.a. 1.61 3 
Lawns - Fertilized USGS 2002 WI 58 n.a. n.a. n.a. n.a. 2.57 3 

Lawns - Non-P Fertilized USGS 2002 WI 38 n.a. n.a. n.a. n.a. 1.89 3 
Lawns - Unfertilized USGS 2002 WI 19 n.a. n.a. n.a. n.a. 1.73 3 
Lawns FAR 2003 NY 3 602 17 17 50 2.1 4 
Representative Lawn Values     213 13 n.a. 59 2.04   
 
Notes:             
Representative values are weighted means of collected data.  Italicized values were omitted from these calculations. 
1 - Grab samples from residential, commercial/institutional, and industrial rooftops.  Values represent mean of   
     DETECTED concentrations            
2 - Flow-weighted composite samples, geometric mean concentrations         
3 - Geometric mean concentrations            
4 - Citation appears to be erroneous - original source of data is unknown.  Not used to calculate representative value 
5 - Median concentrations.  Not used to calculate representative values due to site location and variation from other values.
6 - Mean concentrations from simulated rainfall study           
7 - Mean concentrations.  Not used to calculate representative values due to transportation nature of land use.  
 


