
PILOT CHANNEL BORINGS AND SEDIMENT CHARACTERIZATION REPORT

FINAL REPORT

TASK ORDER #9 DOC ID# CSD-TM-09-URS09-01

MARCH 16, 2011

PROGRAM ASSESSMENT SERVICES
BMP DEVELOPMENT & ENGINEERING
ASSET MANAGEMENT SERVICES
ENVIRONMENTAL ASSESSMENT & PERMITTING
STRATEGIC PLANNING
MONITORING & INVESTIGATIONS

Doc Scanned On 10 /21 /13
K. Ruiz Time: 4:06

CITY OF SAN DIEGO

Not covered by grant

Table of Contents

Section 1	Intr	oduction	1-1
	1.1	Purpose	1-1
	1.2	Scope of Work	
	1.3	Background	
	1.5	1.3.1 Hydrology	
		1.3.2 Channel Maintenance History	
		1.3.3 Emergency Channel Excavation	
Section 2	Fiel	d Procedures	2-1
Section 3	Lab	oratory Analyses and Results	3-1
	3.1	Laboratory Methods	3-1
	3.2	Laboratory Analytical Results	3-2
		3.2.1 Chemical Analyses Results	
		3.2.1.1 Metals	
		3.2.1.2 Total Petroleum Hydrocarbons	
		3.2.1.3 Semi-volatile Organic Compounds	
		3.2.1.4 Polynuclear Aromatic Hydrocarbons	
		3.2.1.5 Organochlorine Pesticides and Polychlorinated Biphenyls	
		3.2.2 Geotechnical Analyses Results	
Section 4	Disc	ussion	4-1
	4.1	Human Health Screening	4-1
		4.1.1 Metals	
		4.1.2 Semi-volatile Organic Compounds	4-2
		4.1.3 Polynuclear Aromatic Hydrocarbons	4-2
		4.1.4 Organochlorine Pesticides and Polychlorinated Biphenyls	4-2
	4.2	Ecological Risk Screening	4-2
		4.2.1 Metals	
		4.2.2 Semi-volatile Organic Compounds	4-3
		4.2.3 Polynuclear Aromatic Compounds	4-3
		4.2.4 Organochlorine Pesticides and Polychlorinated Biphenyls	4-3
	4.3	Hazardous Waste Screening	4-3
Section 5	Con	clusions	5-1
Section 6	Refe	rences	6-1

List of Tables, Figures, and Appendices

Tables

Table 1-1. Smugglers Gulch Peak Discharge Frequency	Distribution		•••••	1-3
Table 3-1. Chemical Constituent Analyses			•••••	3-1
Table 3-2. Geotechnical Parameter Analyses			•••••	3-1
Table 3-3. Metals Analyte Detection Ranges				3-2
Table 3-4. Sediment Sample Analytical Results – Metals	S	•	•••••	3-4
Table 3-5. Sediment Sample Analytical Results – Organ	ics		•••••	3-6
Figures	•			
Figure 1-1. Site Location Map			•	1-2
Figure 1-2. Boring Locations Map			1	

Appendices

Appendix A	Boring Logs and Grain-size Distribution Curves
Appendix B	Laboratory Analytical Report and Chain-of-Custody Form

List of Acronyms and Abbreviations

bgs below ground surface

Cal EPA California Environmental Protection Agency
CHHSLs California Human Health Screening Levels

City Of San Diego

COPCs chemicals of potential concern

DEH San Diego County Department of Environmental Health

DEHP di(2-ethyl hexyl)phthalate

DTSC Department of Toxic Substances Control

ERL Effects Range-Low
ERM Effects Range-Medium
MDLs Method detection limits
mg/kg milligrams per kilogram
mg/l milligrams per liter

NOAA National Oceanic and Atmospheric Administration

OCPs organochlorine pesticides

PAHs polynuclear aromatic hydrocarbons

PCBs polychlorinated biphenyls

PEA Preliminary Endangerment Assessment

PG Professional Geologist

PRGs Preliminary Remediation Goals

RCRA Resource Conservation and Recovery Act

RLs reporting limits

RSLs Regional Screening Levels

RWQCB Regional Water Quality Control Board

SM silty sand

SP-SM poorly graded sand with silt
SQGs Sediment Quality Guidelines
SQuiRTs Screening Quick Reference Tables
STLC Soluble Threshold Limit Concentration
SVOCs Semi-volatile organic compounds

TCLP Toxicity Characteristic Leaching Procedure

TPH total petroleum hydrocarbons

TTLC Total Threshold Limit Concentration

ug/kg micrograms per kilogram

USCS Unified Soil Classification System

US EPA United States Environmental Protection Agency

WET Waste Extraction Test

SECTION 1 INTRODUCTION

This report summarizes the results of a field investigation conducted for the City of San Diego (City), Storm Water Department Pollution Prevention Division to perform a preliminary evaluation of sediment quality excavated from a portion of Smuggler's Gulch and the Pilot Channel located in the Tijuana River Valley in the southwest portion of the City of San Diego, immediately north of the U.S. – Mexico international border (Figure 1-1). The sampling and analysis activities described herein were performed under existing Task Order 9 provided by the City under contract H084440.

1.1 Purpose

The purpose of the field investigation was to perform a preliminary evaluation of sediment quality and its characteristics prior to completion of the emergency excavation of accumulated sediment that began in October 2009.

1.2 Scope of Work

The following scope of work to accomplish the objectives of this project:

- Mobilizing a limited-access rig to drill two soil borings,
- Collecting sediment samples from the soil borings,
- Submitting the samples to a laboratory for chemical analyses,
- Submitting the samples to a geotechnical laboratory to identify the characteristics of the materials,
- Evaluating the data, and
- Preparing this report.

1.3 Background

1.3.1 Hydrology

The Smugglers Gulch drainage basin is approximately 3,532 acres (5.52 square miles), situated mostly in Tijuana, Mexico (Figure 1-1). Surface water in the basin flows from south to north across the international border and is calculated to convey peak discharges for the 2-, 10-, 50- and 100-year storms as presented in Table 1-1.

URS

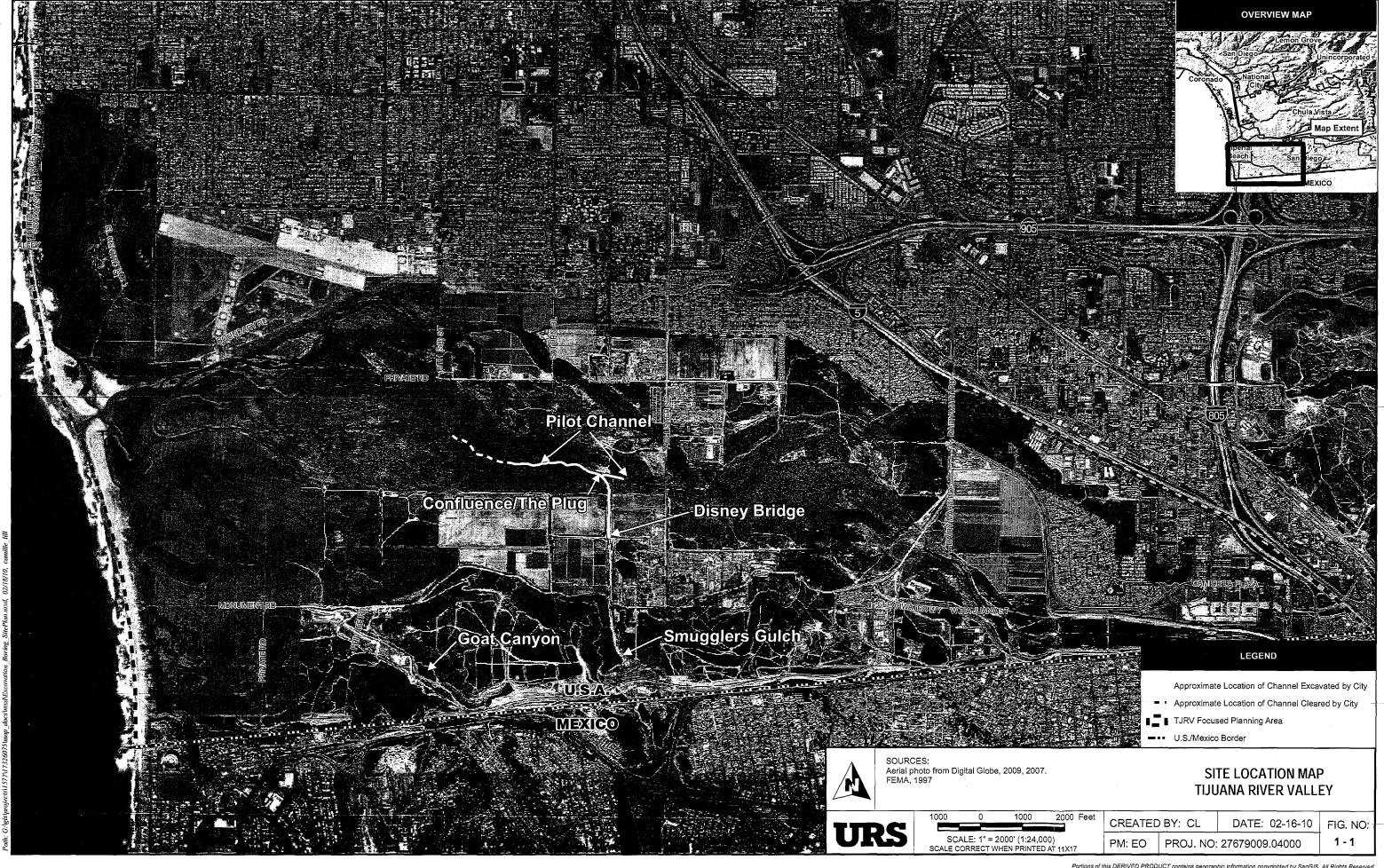
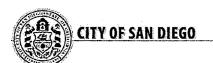


Table 1-1. Smugglers Gulch Peak Discharge Frequency Distribution

Recurrence Interval	2-Year	10-Year	50-Year	100-Year
Peak Discharge (cfs)	653	1,668	3,081	3,626

Source: U.S. Army Corps of Engineers 2008.

cfs = cubic feet per second


1.3.2 Channel Maintenance History

According to a letter submitted by the City to the Regional Water Quality Control Board (RWQCB) in May 2004, the City has maintained an approximately 1,500-foot portion of the Smugglers Gulch Channel north of the Monument Road "Arizona Crossing" since 1999. The channel clearing activities have been conducted under a series of permits filed with a number of regulatory oversight agencies. Information provided below regarding these maintenance activities appears in the May 2004 correspondence between the City and the RWQCB. These maintenance operations have been conducted to facilitate the flow of runoff to the Tijuana River and the Tijuana River Valley area, and to reduce the potential of flooding. The need to remove sediment from Smugglers Gulch channel is evaluated based on an engineering survey of the channel depth compared to the required design depth on as-needed basis.

The removal operations utilize backhoes, excavators, scrapers, and bulldozers to remove trash, tires, sediment, and debris that have accumulated from Disney Bridge to the end of the Pilot Channel during wet weather flows. Grading is limited vertically by design grade and horizontally by established channel banks, and according to established engineering plans. Trash, sediment, debris, and vegetation removed from the Tijuana River Valley were previously disposed at the Miramar Landfill. There are records of the types and volumes of materials excavated and disposed from various locations maintained by the City beginning in 1999, but information specific to each area was not documented until 2001. In that year, the Smugglers Gulch channel was excavated from September 2 - 29. Approximately 10,644 cubic yards (cy) of trash, sediment and debris was removed and disposed. In the following year, considerably less sediment was removed from the channel between October 30 – November 1, 2002 and approximately 668 cubic yards of trash, sediment and debris was removed. A flow line was re-established in Smugglers Gulch channel through simple grading in 2003, and no material was removed.

In late 2008, City maintenance staff removed and stockpiled approximately 600 cubic yards (cy) of sediment from Smuggler's Gulch between Monument Road and the Disney Bridge. The sediment was placed in a stockpile on City property adjacent to Monument Road. URS Corporation (URS) conducted sampling of a portion of the remaining stockpile in April 2009 to characterize chemicals of potential concern (COPCs) that may be present in these materials so that possible disposal and/or reuse scenarios could be evaluated. Grain-size analyses were also conducted to evaluate whether the materials might be suitable for beach replenishment. Based on the size of the remaining stockpile, five samples were collected for the following analyses: Title 22 metals, total petroleum hydrocarbons (TPH), semi-volatile organic compounds [SVOCs, including polynuclear aromatic hydrocarbons (PAHs)], organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs).

URS

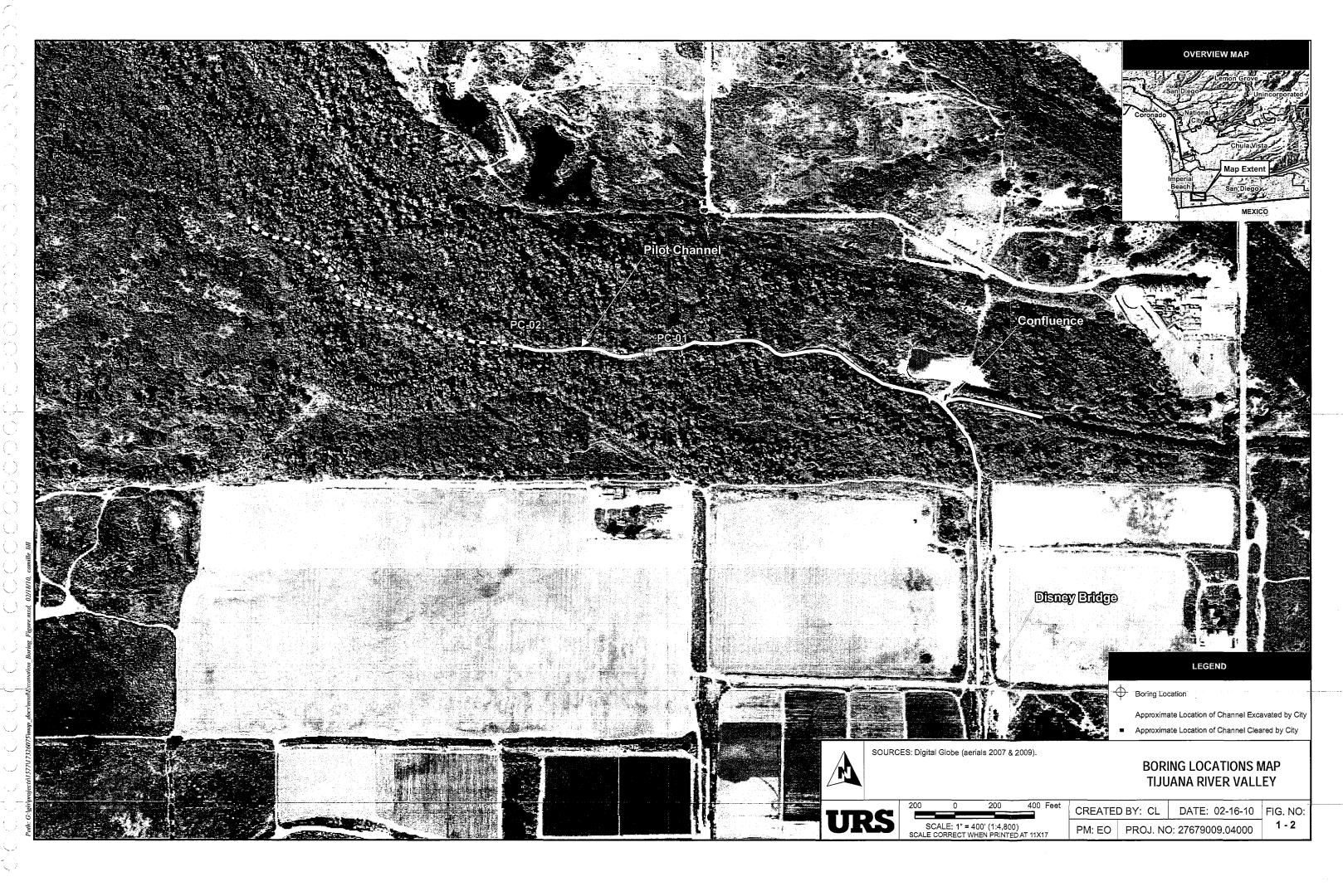
The analytical results were compared to human health and ecological risk screening and hazardous waste criteria. Certain metals, PAHs and OCPs were detected in one or more of the samples. None of these constituents were present at concentrations above human health screening criteria for residential property use. Residential use is the most conservative exposure scenario and as such, unrestricted use of the sediment could be possible. From an ecological perspective comparison of the data to Effects Range-Low (ERLs), there is only one compound, 4,4'-DDT that was present in 4 of 5 of the samples analyzed that exceeded its screening level. It was concluded that this compound may require further evaluation based on the intended reuse of the sediment, particularly if it were to be used in the marine environment. Comparison of the data to hazardous waste criteria indicated that the sediment in the stockpile was non-hazardous. As such, it would appear that the sediment is suitable for unrestricted reuse, provided that it were free of trash and other debris. Grain-size analyses revealed that the materials consisted of poorly graded sand with silt (SP-SM). Based on the grain-size distribution, these materials could be suitable for beach replenishment, considering the characteristics of a receiving location. It was concluded that the sand may have other possible beneficial uses since it does not contain considerable fines.

1.3.3 Emergency Channel Excavation

In Summer 2009, the City began accelerated permitting activities with the resource agencies in order to conduct an emergency excavation program for Smuggler's Gulch north of the Disney Bridge and the Pilot Channel. The Pilot Channel extends from the confluence of the Smuggler's Gulch channel and the main Tijuana River for an approximate distance of 4,000 feet to the west. The program was conducted to abate potential hazards associated with flooding of the valley this winter, as El Niño and possibly heavy precipitation was being predicted. The channel was excavated from the Disney Bridge northward and then westward from the confluence with the main Tijuana River Channel. Excavation began in early October 2009 and was stopped following the first major storm event that occurred on November 28, 2009.

Excavation continued from January 9 to 17, 2010 in which approximately 3 feet of sediment that accumulated in the channel from Disney Bridge to the Confluence was removed. During this time, 5 feet of sediment was excavated from the Confluence eastward for approximately 500 feet of the Pilot Channel (Bill Tamargo, pers. comm.). The westernmost 2,000 feet of the Pilot Channel was cleared, but not excavated due to the rain events that occurred in late November 2009. The City requested URS to conduct sediment sampling from borings at two locations prior to excavation. Field procedures and the results of analytical testing are described in the following sections of this report.

URS 1-4



SECTION 2 FIELD PROCEDURES

On November 16, 2009, two soil borings were drilled by Baja Exploration, a California-licensed drilling contractor located in Escondido, California under the oversight of a URS geologist at the locations shown on Figure 1-2. The borings were drilled in the Pilot Channel to the west of the confluence of Smuggler's Gulch and one of the Tijuana River channels. Drilling was conducted in accessible areas along the Pilot Channel, where the City personnel had removed vegetation and trash from the ground surface. The borings were drilled using a tracked, limited-access rig with 8-inch diameter hollow-stem augers. The borings were drilled to depths of approximately 10 feet, above the level of the water table. Since the borings were shallower than 20 feet and did not encounter the water table, no boring permit was required by the San Diego County Department of Environmental Health (DEH).

The borings were logged in accordance with the Unified Soil Classification System (USCS) by a URS geologist under the supervision of a California Professional Geologist (PG). Sediment samples were collected from the borings continuously using a modified California sampler. Two samples from intervals in the boring containing appreciable fines were submitted to a state-certified laboratory for chemical analyses. The top (0 to 1.5 feet), middle (5 to 6.5 feet), and lower (10 to 11.5 feet) of the sample core and a composite of the entire core were submitted to URS' in-house geotechnical laboratory for grain-size analyses. The borings logs and grain-size analyses are provided in Appendix A.

URS 2-1

SECTION 3 LABORATORY ANALYSES AND RESULTS

3.1 Laboratory Methods

The sediment samples collected from the borings were analyzed for the following COPCs known to be present in the Tijuana River basin. These COPCs are summarized in Table 3-1 and include the common chemicals that could be present resulting from urban and agricultural activities that have historically and are currently occurring in the watershed. Many of the COPCs can be present as a result of human activities and could be present at concentrations that may pose an adverse risk to human health and the environment. Method detection limits (MDLs) and reporting limits (RLs) for specific compounds analyzed by each analytical method appear in the laboratory report provided in Appendix B.

Table 3-1. Chemical Constituent Analyses

Analyte	Analytical Method
Metals including: antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, copper, lead, mercury, molybdenum, nickel, selenium, silver, thallium, vanadium and zinc	EPA 6010B/7421
Total Petroleum Hydrocarbons (Extended Range)	EPA 8015B
Semi-volatile Organic Compounds [SVOCs, including Polynuclear Aromatic Hydrocarbons (PAHs)]	EPA 8270C
Organochlorine Pesticides (OCPs) and Polychlorinated Biphenyls (PCBs)	EPA 8081/8082

^a EPA = U.S. Environmental Protection Agency

The samples were also subjected to geotechnical analyses to serve as a preliminary indicator of whether or not the sediment may be suitable for beach replenishment or another beneficial use. Sample analyses were proposed to include the parameters indicated in Table 3-2; however, expansion and plasticity indices were not measured since the samples did not contain appreciable fines.

Table 3-2. Geotechnical Parameter Analyses

Parameter	Analytical Procedure
Grain-size Distribution	ASTM ^a D421/422
Expansion Index	ASTM D4829
Plasticity Index	ASTM D4318

^a American Society for Testing and Materials

URS 3-1

3.2 Laboratory Analytical Results

3.2.1 Chemical Analyses Results

Chemical laboratory analytical results are provided for metals and organics in Table 3-4 and Table 3-5, respectively. A copy of the laboratory analytical report and chain-of-custody (COC) form are provided in Appendix B. The analytical results are described below by analytical suite.

3.2.1.1 Metals

Of the 17 metals analyzed, 12 were present at detectable concentrations in one or more of the sediment samples analyzed. The ten metals detected included: arsenic, barium, chromium, cobalt, copper, lead, mercury, nickel, vanadium and zinc. The detected ranges of each of the metals are presented in Table 3-3.

Table 3-3. Metals Analyte Detection Ranges

Analyte	Detected Ranges (mg/kg)
Antimony	1.09
Arsenic	1.51 to 1.94
Barium	35.5 to 86.2
Cadmium	0.09 to 0.31
Chromium	4.88 to 11.3
Cobalt	1.99 to 5.31
Copper	3.62 to 13.9
Lead	3.68 to 7.91
Mercury	0.02 to 0.10
Nickel	2.09 to 7.91
Vanadium	13.9 to 37.9
Zinc	19.0 to 50.0

3.2.1.2 Total Petroleum Hydrocarbons

Each of the samples was analyzed for total petroleum hydrocarbons-extended range. TPH were detected in the gasoline, diesel fuel or the heavier hydrocarbons carbon ranges of C6 to C10, C10 to C28 and C28 to C40, respectively.

0

3.2.1.3 Semi-volatile Organic Compounds

Of the SVOCs analyzed, there were four phthalates present in the samples analyzed, including bis(2-ethylhexyl) phthalate, butyl benzyl phthalate, di-n-butyl phthalate, and diethyl phthalate. Detected concentrations ragned from 1.85 to 264 micrograms per kilogram (ug/kg).

3.2.1.4 Polynuclear Aromatic Hydrocarbons

PAHs were present in each of the samples with the exception of sample no. PC-01-10.0 collected from boring PC-01 at approximately 10 feet below ground surface (bgs). Sample no. PC-02-01.0 from boring PC-02 contained the greatest number of PAHs at detectable concentrations. The PAHs detected included benzo(a) anthracene, benzo(b)fluoranthene, benzo(a)pyrene, chrysene, fluoranthene, phenanthrene and pyrene. Detected concentrations were relatively low, ranging from 2.68 to 14.3 ug/kg.

3.2.1.5 Organochlorine Pesticides and Polychlorinated Biphenyls

OCPs and PCBs were not detected at concentrations above the laboratory detection limit reported for specific compounds and congeners, respectively, in the samples analyzed.

3.2.2 Geotechnical Analyses Results

Grain-size distribution curves are provided in Appendix A for eight samples collected from the two borings. The results of the grain-size analyses indicate that the composite sample of boring PC-01 is silty sand (SM) and the composite sample of boring PC-02 is poor SP-SM. Since there were few fines in the samples analyzed, both the expansion index and plasticity index were not applicable, and therefore, were not performed. Sediment analyzed from the Smuggler's Gulch stockpile in early 2009 were of similar grain-size distribution and consisted of poor SP-SM (URS, 2009).

URS

Table 3-4. Sediment Sample Analytical Results – Metals

(metals reported in mg/kg, unless noted otherwise)

		··· <u> </u>	DO 04 05 0	DO 01 10 0	DC 02 01 0	PC-02-05.0	Hum	an Health	Hazaro	dous Waste Cr	iterion	Ecolog	ical Risk
Analyte	Detection	Reporting	PC-01-05.0	PC-01-10.0	PC-02-01.0	PG-02-05.0	СН	ISL/RSL		STLC	TCLP	Marine	Sediment
	Limit	Limit	11/16/2009 11:00:00 AM	11/16/2009 11:15:00 AM	11/16/2009 10:00:00 AM	11/16/2009 10:15:00 AM	Residential	Commercial/ Industrial	TTLC	(mg/l)	(mg/l)	ERL	ERM
Antimony	1.09	10.0	ND	ND	ND	ND	30	3,800	500	15			
Arsenic	0.43	1.00	1.51	ND	1.94	1.74	0.07	0.24	500	5.0	5.0	8.2	41.6
Barium	0.36	1.00	70.7	35.5	86.2	57.0	5,200	63,000	10,000	100	100		
Beryllium	0.02	1.00	ND	ND	ND	ND	150	1,700	75	0.75			
Cadmium	0.08	1.00	ND	ND	ND	ND	1.7	7.5	100	1.0	1.0	1.2	9.6
Chromium	0.40	1.00	10.1	4.88	11.3	6.60	100,000	100,000	2,500	5	5	81	370
Cobalt	0.10	1.00	4.41	1.99	5.31	3.42	660	3,200	8,000	80		Per habitual	
Copper	0.09	1.00	4.92	3.62	7.38	13.9	3,000	38,000	2,500	25		34	270
Lead	0.79	1.00	6.06	3.68	7.71	7.30	150	3,500	1,000	5.0	5.0	46.7	218
Mercury	0.02	0.05	ND	ND	0.10	ND	18	180	20	0.2	0.2	150	710
Molybdenum	1.10	5.00	ND	ND	ND	ND	380	4,800	3,500	350			Olahu.
Nickel	0.31	1.00	3.53	2.09	4.38	7.91	1,600	16,000	2,000	20		20.9	51.6
Selenium	0.52	1.00	ND	ND	ND	ND ,	380	4,800	100	1.0	1.0		
Silver	0.10	0.50	ND	ND	ND	ND	380	4,800	500	5	5	1,.0	3.7

	ļ					•							
			PC-01-05.0	PC-01-10.0	PC-02-01.0	PC-02-05.0	Human Health Hazardous Waste Criterion			Ecolog	ical Risk		
Analyte	Detection Limit		PG-01-03.0	PC-01-10.0	PC-02-01.0	PG-02-03.0	СНІ	HSL/RSL		STLC	TCLP	Marine Sediment	
	Limit	Limit	11/16/2009 11:00:00 AM	11/16/2009 11:15:00 AM	11/16/2009 10:00:00 AM	11/16/2009 10:15:00 AM	Residential	Commercial/ Industrial	TTLC	(mg/l)	(mg/l)	ERL	ERM
Thallium	0.46	1.00	ND	ND	ND	ND	5	63	700	7.0		MMW	
Vanadium	0.20	1.00	32.6	13.9	37.9	22.9	530	6,700	2,400	24		<u></u> ,	
Zinc	0.56	1.00	38.2	19.0	50.0	48.4	23,000	100,000	5,000	250		150	410

Notes:

Metals by EPA Method 6010, with the exception of mercury (EPA Method 7471)

CHHSL: California Human Health Screening Level

RSL: U.S. EPA Region IX Regional Screening Level

TTLC: Total Threshold Limit Concentration

STLC: Soluble Threshold Limit Concentration. Multiply STLC regulatory limit by 10

to compare to results. See text for discussion.

TCLP: Total Threshold Limit Concentration. Multiply TCLP regulatory limit by 20 to compare to results. See text for discussion.

ERL: Effects Range-Low
ERM: Effects Range-Medium

ND: Not Detected

---: None Established

Table 3-5. Sediment Sample Analytical Results - Organics

(consistuents reported in mg/kg, unless noted otherwise)

	Method		PC-01-05.0	PC-01-10.0	PC-02-01.0	PC-02-05.0	Huma	n Health	Hazardo	us Waste (Criterion	Ecologi	cal Risk				
Analyte	Detection	Reporting					CHHSL/RS		CHHSL/RSL					STLC	TCLP	Marine S	Sediment
	Limit	Limit	11/16/2009 11:00:00 AM	11/16/2009 11:15:00 AM	11/16/2009 10:00:00 AM	11/16/2009 10:00:15 AM	Residential	Commercial/ Industrial	TTLC	(mg/l)	(mg/l)	ERL	ERM				
TPH-extended range (mg/kg)	various	various	ND	ND	ND	ND	***										
SVOCs (ug/kg):		···				\			· · · · · · · · · · · · · · · · · · ·								
bis(2-ethylhexyl) phthalate	5.72	45.0	135	36.1	264	114	35,000	120,000				Men					
butyl benzyl phthalate	4.11	40.0	13.4	ND	53.7	145	260,000	910,000									
bi-n-butyl phthalate	3.87	40.0	4.96	ND	9.73	26.7	6,100,000	62,000,000									
biethyl phthalate	1.61	20.0	2.77	- ND	ND	1.85	49,000,000	490,000,000									
PAHs (ug/kg):	<u> </u>											<u> </u>					
benzo(a)anthracene	3.09	20.0	ND	ND	13.6	ND	150	2,100				261	1,600				
benzo(b)fluoranthene	3.09	20.0	ND	ND ·	14.3	- ND	150	2,100		****							
benzo(a)pyrene	3.07	20.0	ND	ND	6.01	ND	38	130				430	1,600				
chrysene	2.87	20.0	ND	ND	7.48	ND	15,000	210,000				384	2,800				
fluoranthene	3.43	20.0	ND	ND	8.00	3.51	2,300,000	22,000,000				600	5,100				
phenanthrene	1.95	20.0	2.68	ND	5.69	3.83						240	1,500				
pyrene	2.88	20.0	4.12	ND	10.7	7.58	1,700,000	17,000,000				665	2,600				
OCPs and PCBs (ug/kg)	various	various	ND	ND	ND	ND	various	various	various	various	various	various	various				

Notes:

TPH: Total petroleum hydrocarbons-extended range by modified EPA Method 8015

OCPs and PCBs: Organochlorine pesticides and polychlorintated biphenyls by EPA Method 8081A/8082

SVOCs Semivolatile organic compounds by EPA Method 8270C

PAHs: Polynuclear aromatic hydrocarbons by EPA Method 8270C

CHHSL: California Human Health Screening Level

RSL: U.S.EPA Region IX Regional Screening Levels

TTLC: Total Threshold Limit Concentration

STLC: Soluble Threshold Limit Concentration. Multiply STLC regulatory limit by 10 to compare to results.

See text for discussion.

TOLD: Total Threshold Limit Concentration. Multiply TCLP regulatory limit by 20 to compare to results.

See text for discussion.

ERL: Effects Range-Low

RM: Effects Range-Medium

ND: Not Detected

SECTION 4 DISCUSSION

URS conducted screening of the soil sample analytical results by comparing the concentrations of the detected COPCs to human health screening and hazardous waste criteria, in order to identify the potential soil reuse and disposal options that may be suitable for the materials excavated from the Pilot Channel. The analytical data were compared to California Human Health Screening Levels (CHHSLs; California Environmental Protection Agency (Cal EPA) 2005) for both residential and non-residential land use scenarios. In instances where there was no established CHHSL for a COPC detected, the data were compared to U.S. EPA Region IX Regional Screening Levels [RSLs; formerly known as Preliminary Remediation Goals (PRGs; United States Environmental Protection Agency [U.S. EPA 2009])]. The data were also compared to state and federal hazardous waste criteria to evaluate possible disposal requirements. For comparative purposes, the various screening levels are listed on the right side of Table 3-4 and Table 3-4. In addition to these criteria, if the sediment were to be used for beach replenishment, the data are also compared to ecological risk screening criteria. A preliminary ecological risk screen is also discussed below.

4.1 Human Health Screening

The CHHSLs were modeled after the PRGs and have been developed for about 60 chemicals in soil or soil gas based on a threshold of one in a million (1 x 10⁻⁶) lifetime cancer risk and a hazard quotient of 1.0 for non-cancer health effects. The CHHSLs were developed using standard exposure assumptions and chemical toxicity values published by the California Environmental Protection Agency (Cal EPA), where available and the U.S. EPA, in instances where no Cal EPA-specific toxicity value exists.

It should be noted that the comparison of analytical data to CHHSLs is a screening tool. It does not indicate that the chemical concentrations exceeding these levels pose an adverse health risk. It does however; suggest that further evaluation of potential human health concerns may be warranted. Used in conjunction with the human health screening evaluation described in the California Environmental Protection Agency/Department of Toxic Substances Control (DTSC) Preliminary Endangerment Assessment (PEA) Guidance Manual (revised 1999), the CHHSLs can assist in identifying whether further site investigation, risk assessment and/or remediation is needed at a particular site. CHHSLs are not regulatory cleanup standards; however, in lieu of developing site-specific cleanup goals in instances where the cleanup action timeframe is short, these values may be used for these purposes provided that the responsible party and oversight agency are in concurrence, the site has been fully characterized, and potential environmental concerns are fully evaluated.

The concentrations of the detected constituents are compared to these screening criteria by analytical suite in the sections below. Based on this evaluation, none of the COPCs were present in the samples at levels that would pose an adverse human health risk.

4.1.1 Metals

The concentrations of each of the 12 metals detected generally fall within narrow ranges and appear to represent background (Bradford et al. 1996). None of the metals, with the exception of arsenic, is present in the sediment at concentrations above their respective residential and commercial/industrial CHHSL or

URS 4-1

RSL. Background soil in many areas of the U.S., including California, contains arsenic at concentrations above the CHHSL. The concentrations of arsenic detected in the samples from the borings ranged from 1.51 to 1.94 mg/kg. DTSC conducted a background study of arsenic at school sites in the Los Angeles Unified School District that found that concentrations generally below approximately 6 mg/kg represent background (DTSC 2005). DTSC typically requires further action if arsenic concentrations are generally above 15 to 20 mg/kg.

4.1.2 Semi-volatile Organic Compounds

The SVOC, bis(2-ethylhexyl) phthalate [also known as di(2-ethyl hexyl)phthalate (DEHP)] does not have an established CHHSL for residential and/or commercial/industrial use; however, there are U.S. EPA Region IX Regional Screening Levels (RSLs) that have been established for this and the other phthalates detected in the soil samples analyzed. The residential and industrial RSLs are 35,000 and 120,000 micrograms per kilogram (ug/kg), respectively. The concentrations of this compound that were detected in the samples were well below these screening criteria. This compound is used to make plastic flexible. It is present in many everyday plastic products (ATSDR, 2002). Similarly, the other phthalates also have RSLs that are higher than those established for DEHP. The detected concentrations are very low relative to their respective screening critieria for residential and industrial use. These compounds have uses similar to DEHP.

4.1.3 Polynuclear Aromatic Hydrocarbons

OF the PAHs, only benzo(a)pyrene has CHHSLs established for residential and commercial/industrial property use. The other PAHs detected have established RSLs. The RSLs for the other PAHs detected are considerably higher than the CHHSLs established for benzo(a)pyrene. None of the concentrations of the PAHs detected were above their respective CHHSLs or RSLs.

4.1.4 Organochlorine Pesticides and Polychlorinated Biphenyls

No OCPs or PCBs were present at detectable concentrations in the sediment samples analyzed from the soil borings. Therefore these compounds are not present at concentrations that are above their respective CHHSLs or RSLs.

4.2 Ecological Risk Screening

The National Oceanic and Atmospheric Administration (NOAA) has prepared a series of reference tables, referred to as Screening Quick Reference Tables (SQuiRTs) that can be used to screen inorganic and organic constituents in a variety of environmental media under various environmental circumstances. The table is used to screen for COPCs that could threaten natural resources of concern to NOAA. NOAA also develops Sediment Quality Guidelines (SQGs) as informal, interpretive tools for ecological risk screening. The values appearing in the SQuiRTs should not be construed as cleanup levels, but are suitable for preliminary screening to identify whether further action is necessary. Because beach replenishment occurs in the marine environment, the data from the borings have been compared to marine sediment guidelines: Effects Range-Low (ERL) and Effects Range-Medium (ERM) screening levels. The ERL is the concentration below which adverse effects rarely occur in organisms for a particular

URS

substance. The ERM, which is a higher concentration than the ERL is that concentration above which effects frequently occur. The ERLs and ERMs have been calculated for nine metals, thirteen PAHs and some OCPs. There is no established ERL and ERM for some of the COPCs, specifically, TPH and some of the other organic analytes.

4.2.1 Metals

A comparison of ERL and ERM values for the detected metals in the sediment indicates that none of the concentrations present are above its respective ERL.

4.2.2 Semi-volatile Organic Compounds

There are no ERLs and ERMs established for the phthalates detected in the sediment samples analyzed.

4.2.3 Polynuclear Aromatic Compounds

PAHs were not detected in the sediment samples collected from the borings; therefore none of the compounds is present at a concentration above its respective ERL.

4.2.4 Organochlorine Pesticides and Polychlorinated Biphenyls

OCPs and PCBs were not detected in the sediment samples collected from the borings; therefore none of the compounds is present at a concentration above its respective ERL.

4.3 Hazardous Waste Screening

State (California Code of Regulations [CCR] Title 22 Section 66261.3) and Federal hazardous waste regulations (40CFR 261.3) include regulatory limits for certain constituents based on toxicity. In California, the regulatory limits for the toxicity characteristic are identified by comparing the concentrations of a constituent to the Total Threshold Limit Concentration (TTLC) and Soluble Threshold Limit Concentration (STLC). If a constituent concentration is above either of these regulatory limits, the material may be considered a non-Resource Conservation and Recovery Act (RCRA), California hazardous waste. As such, the materials may require disposal at a Class I landfill if these materials were to be removed from the site. To identify whether a material is a Federal or RCRA hazardous waste, the materials are subjected to a leaching procedure and the concentration of that constituent in the extract is compared to the Toxicity Characteristic Leaching Procedure (TCLP) regulatory limit. None of the COPCs analyzed were present in the sediment above its respective TTLC regulatory limit.

Both the Waste Extraction Test (WET) that is used to obtain the STLC of a sample and the TCLP have an inherent dilution factor. TTLCs for a constituent can be screened to identify whether a sample has the potential to exceed its STLC or TCLP regulatory limit. The WET has a dilution factor of 10 times and the TCLP has a dilution factor of 20 times. For example, a sample with a lead concentration of greater than 50 milligrams per kilogram (mg/kg) has the potential to have an STLC concentration greater than the STLC regulatory limit of 5 milligrams per liter (mg/l), assuming that all the lead present in the sample is extracted through the WET and is present in the extract that is analyzed for lead. Similarly, a lead

URS 4-3

concentration of 100 mg/kg has the potential to exceed the TCLP regulatory limit of 5 mg/l if all of the lead extracted by this procedure were to be present in the extract.

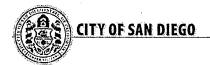
Based on such an evaluation of the data for the soil samples analyzed from borings, none of the detected COPCs with regulatory limits based on toxicity were present at concentrations above its TTLC, 10 times its respective STLC and 20 times its respective TCLP regulatory limit. The analytical data indicate that the sediment sampled in the borings is non-hazardous.

URS 4-4

SECTION 5 CONCLUSIONS

Based on the results of sampling and analyses, the following conclusions may be drawn:

<u>Human Health Risk:</u> Analytical results indicate that none of the metals or organic compounds was present in the sediment at concentrations that were above a respective CHHSL or RSL established for a residential use scenario. Residential use is the most conservative exposure scenario and as such, unrestricted use of the sediment could be possible considering that it does not appear to pose a potential adverse human health risk.


<u>Ecological Risk:</u> Based on the detected concentrations of the metals and comparison to the ERL and ERM screening levels, none were present at concentrations above their respective ERL. None of the samples analyzed contained detectable concentrations of the organic compounds analyzed. Therefore, preliminary results from this investigation indicate that the sediment may be suitable for reuse in the marine environment.

<u>Hazardous Waste Criteria</u>: The sediment is non-hazardous based on comparison to California and federal hazardous waste criteria appearing in CCR Title 22, Chapter 11, Article 3 and 40 CFR 261.3, respectively. Because these materials are non-hazardous, it would appear that the sediment is suitable for unrestricted reuse, provided that it was free of trash and other unsuitable debris.

<u>Grain-size Analyses:</u> The composite materials from boring PC-01 consist of SM, and sediment from the composite of boring PC-02 consists of poorly graded SP-SM. Based on the grain-size distribution, these materials could be suitable for beach replenishment, considering the characteristics of a receiving location. It is possible that the sand may have other possible beneficial uses since it does not contain considerable fines.

The results presented herein serve as a preliminary assessment of the characteristics associated with sediment excavated from the Pilot Channel based on a limited number of analyses. It is possible that there may be some variation in the grain size distribution of the sediment from year to year depending on the intensity of storm events. Although few COPCs were detected in the sediment samples, it is possible that the types and concentrations of COPCs that may be present in sediment in the valley may be highly variable. Therefore, as a standard practice, some level of analyses of stockpiled materials in accordance with applicable regulatory guidelines will be necessary to confirm that the sediment is suitable for its intended reuse.

URS 5-1

SECTION 6 REFERENCES

- Agency for Toxic Substances and Disease Registry. 2002. ToxFAQsTM for Di(2-ethylhexyl) phthalate (DEHP).
- Bradford, G.R., A.C. Chang, A.L. Page, D. Bahktar, J.A. Frampton and H. Wright. 1996. "Background Concentrations of Trace and Major Elements in California Soils". March.
- California Environmental Protection Agency Department of Toxic Substances Control. 2005. Final Report. Background Metals at Los Angeles Unified School District Sites. June 6.
- California Environmental Protection Agency. 2005. Use of California Human Health Screening Levels (CHHSLs) in Evaluation of Contaminated Properties. January.
- California Environmental Protection Agency Department of Toxic Substances Control. 1999.

 Preliminary Endangerment Assessment Guidance Manual. Second Printing. June.
- City of San Diego, Bill Tamargo, Personal Communication, January 21, 2010.
- National Oceanic and Atmospheric Administration. 2008. Screening Quick Reference Tables (SQuiRTs).
- National Oceanic and Atmospheric Administration. 2006. Sediment Quality Guidelines (ERL/ERM). April 12. http://response.restoration.noaa.gov.
- San Diego County Department of Environmental Health. 2004. Site Assessment and Mitigation Manual.
- URS Corporation. 2009. Smugglers Gulch Channel Excavations Spoils Sediment Characterization Final Report. September 9.
- U.S. Army Corps of Engineers, 2008. Department of Homeland Security Customs and Border Protection San Diego Sector Area V Smuggler's Gulch Sta. 73+31.94 to Sta. 180+40.14 Amendments Design Analysis Report Package 1A,1, and 3 Final Updates.
- U.S. Environmental Protection Agency. 2009. Regional Screening Level (RSL) Table Master. April.
- U.S. Environmental Protection Agency. SW-846. Test Methods for Evaluating Solid Waste, Physical/Chemical Methods. Third Edition.

URS 6-1

Appendix A Boring Logs and Grain-size Distribution Curves

Project: Pilot Channel Borings and Sediment Analysis

Project Location: Pilot Channel
Project Number: 27679009.04000

Key to Logs

Sheet 1 of 1

	SAME	LES				ğ	
Elevation, feet Depth, feet	Type Number	Blows per foot	Graphic Log	MATERIAL DESCRIPTION	Water Content, %	Dry Density, p	REMARKS AND OTHER TESTS
1 2	3 4	5	6	7	8	9	10

COLUMN DESCRIPTIONS

- Elevation: Elevation in feet referenced to mean sea level (MSL) or site datum.
- 2 Depth: Depth in feet below the ground surface.
- Sample Type: Type of soil sample collected at depth interval shown; sampler symbols are explained below.
- Sample Number: Sample identification number.
 Unnumbered sample indicates no sample recovery.
- Blows per foot: Number of blows required to advance driven sampler 12 inches beyond first 6-inch interval, or distance noted, using a 140-lb hammer with a 30-inch drop.
- Graphic Log: Graphic depiction of subsurface material encountered; typical symbols are explained below.
- Material Description: Description of material encountered; may include relative density/consistency, moisture, color, particle size; texture, weathering, and strength of formation material

- **Water Content:** Water content of soil sample measured in laboratory, expressed as percentage of dry weight of specimen.
- 9 <u>Dry Unit Weight</u>: Dry density of soil sample measured in laboratory, expressed in pounds per cubic feer (pcf).
- Remarks and Other Tests: Comments and observations regarding drilling or sampling made by driller or field personnel.

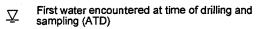
<u>WA</u>	Three-point wash sieve, %<#200 sieve
<u>SA</u>	Sieve analysis, %<#200 sieve
匸	Liquid limit (from Atterberg limits test), %
<u>PI</u>	Plasticity Index (LL-PL), %; NP=nonplastic
<u>Ds</u>	Direct Shear test

TYPICAL MATERIAL GRAPHIC SYMBOLS

SAND (SP)

Silty SAND (SM)

Poorly graded SAND with silt (SP-SM)


Well graded SAND with silt (SW-SM)

TYPICAL SAMPLER GRAPHIC SYMBOLS

California Split Spoon sampler (2.5")

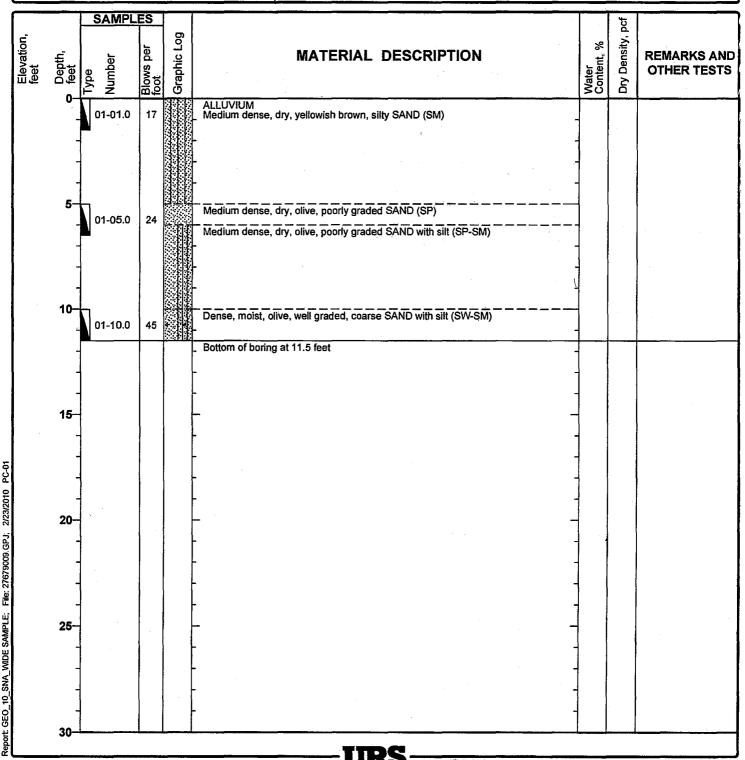
OTHER GRAPHIC SYMBOLS

Water level measured at specified time after completion of drilling and sampling

- Minor change in material properties within a stratum
- -- Inferred or gradational contact between strata

GENERAL NOTES

- Soil classifications are based on the Unified Soil Classification System. Descriptions and stratum lines are interpretive; actual lithologic changes may be gradual. Field descriptions may have been modified to reflect results of lab tests.
- Descriptions on these logs apply only at the specific boring locations and at the time the borings were advanced.
 They are not warranted to be representative of subsurface conditions at other locations or times.
- All wells were completed with a traffic-rated well vault set in concrete. Well casings were secured with locking plugs and locks.

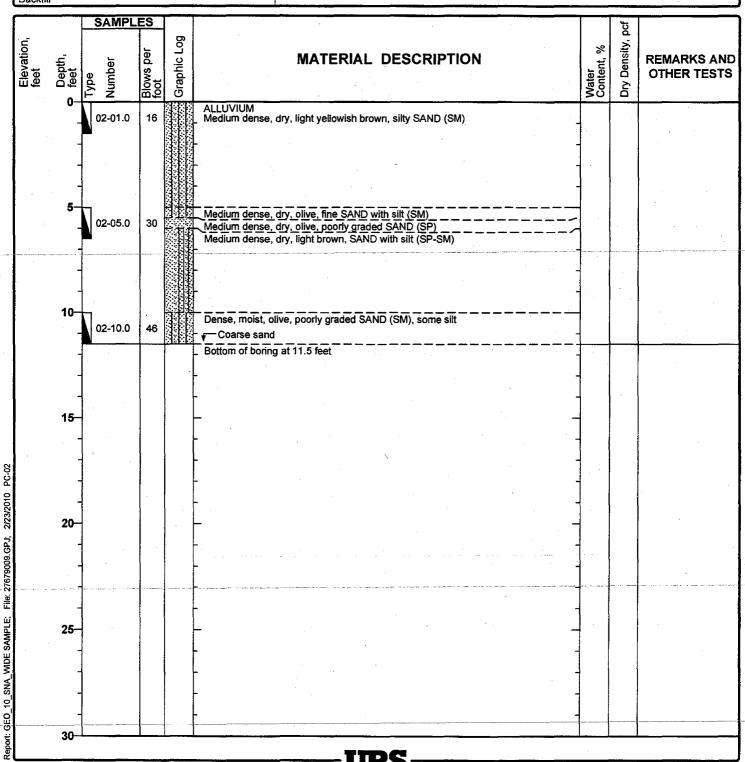

Project: Pilot Channel Borings and Sediment Analysis

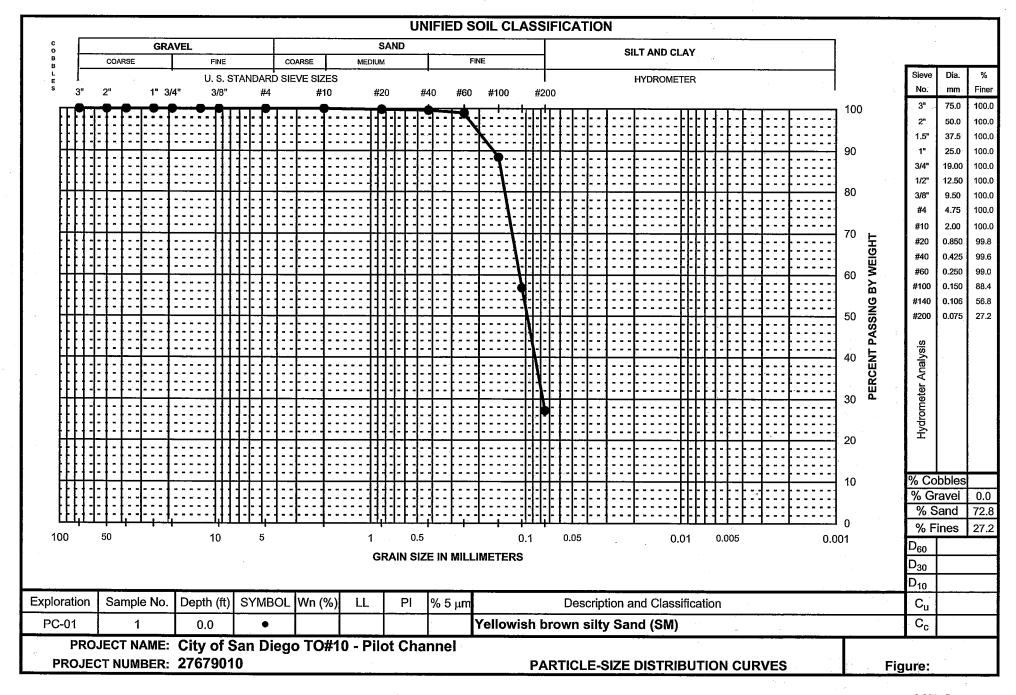
Project Location: Pilot Channel Project Number: 27679009.04000

Log of Boring PC-01

Sheet 1 of 1

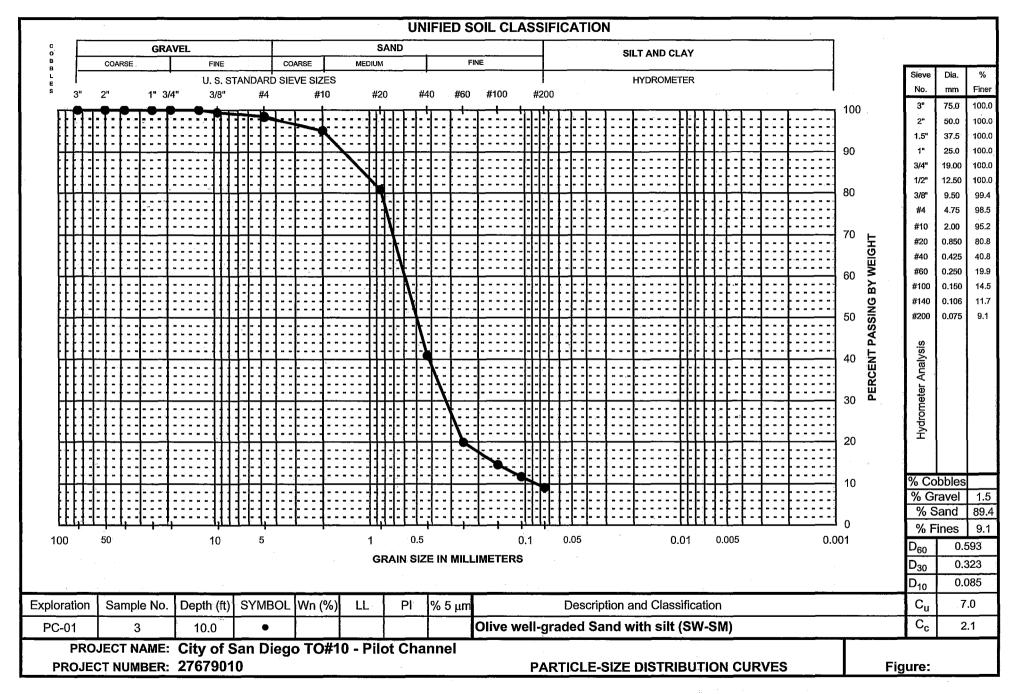
Date(s) 11/16/09 Drilled 11/16/09	Logged By	S. Haber	Checked R. Scott
Drilling Method Hollow Stem Auger	Drill Bit Size/Type	8 inches	Total Depth of Borehole 11.5 feet
Drill Rig Type Limited Access Rig	Drilling Contractor	Baja Exploration	Approximate Surface Elevation
Water Level None encountered Depth (Feet)	Sampling Method(s)	California Split Spoon	Hammer 140 lbs/30" drop
Borehole Soil cuttings	Location	N 32°33.161', W 117°05.626'	

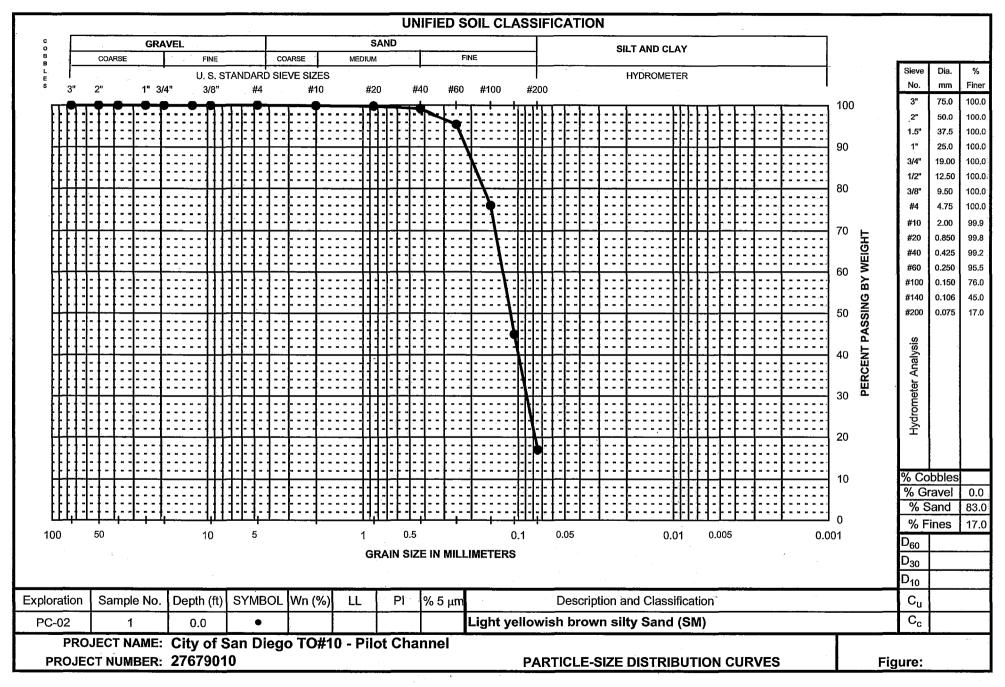

Project: Pilot Channel Borings and Sediment Analysis

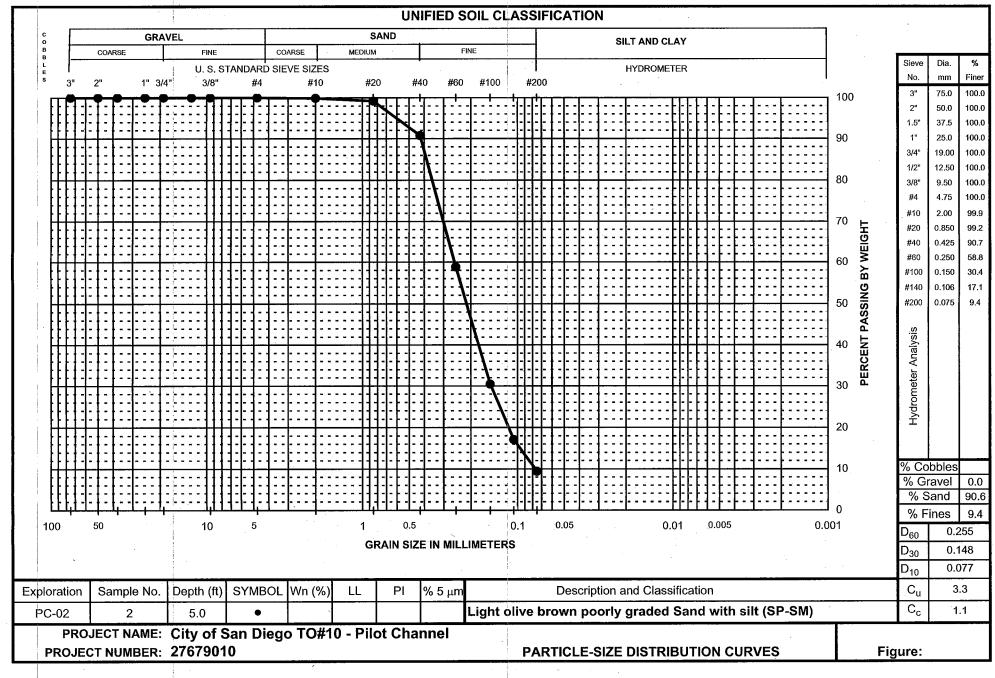

Project Location: Pilot Channel
Project Number: 27679009.04000

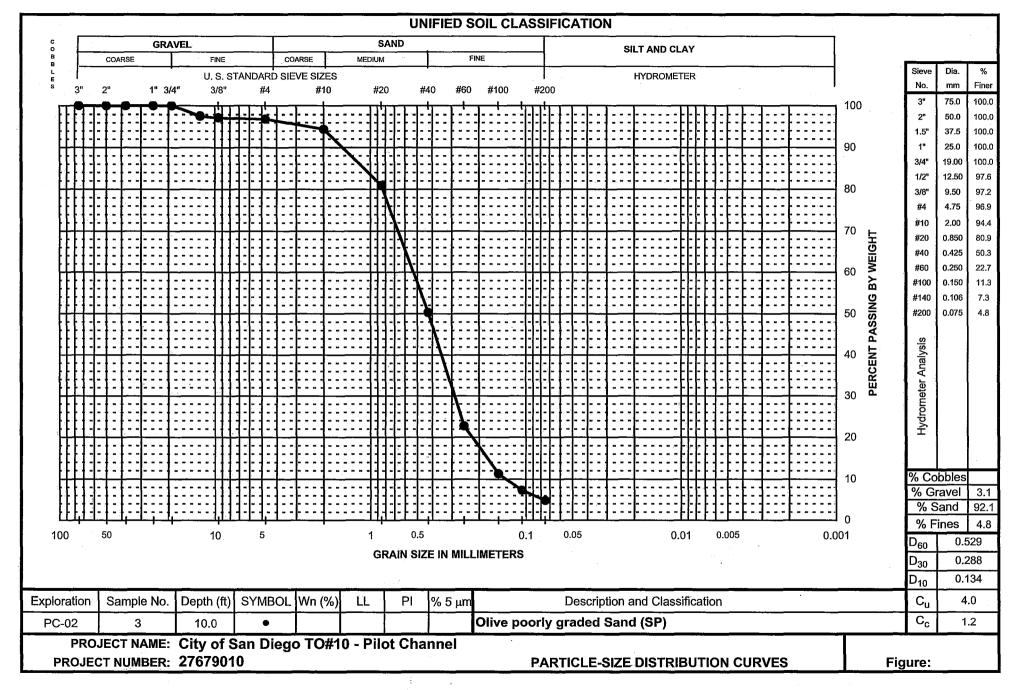
Log of Boring PC-02

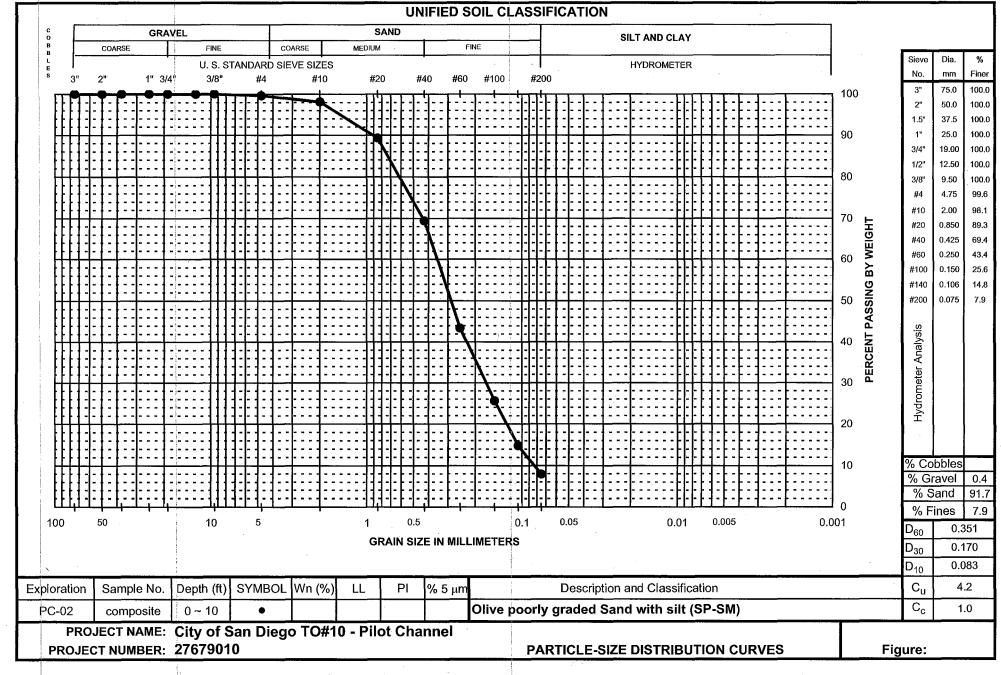
Sheet 1 of 1


Date(s) 11/16/09 Drilled	Logged By	S. Haber	Checked R. Scott
Drilling Method Hollow Stem Auger	Drill Bit Size/Type	8 inches	Total Depth of Borehole 11.5 feet
Drill Rig Type Limited Access Rig	Drilling Contractor	Baja Exploration	Approximate Surface Elevation
Water Level None encountered	Sampling Method(s)	California Split Spoon	Hammer Data 140 lbs/30" drop
Borehole Backfill Soil cuttings Location		N 32°33.172', W 117°05.775'	




UNIFIED SOIL CLASSIFICATION SAND **GRAVEL** SILT AND CLAY FINE COARSE MEDIUM U. S. STANDARD SIEVE SIZES HYDROMETER #200 75.0 50.0 37.5 25.0 19.00 1/2" 12.50 3/8" 9.50 4.75 2.00 PERCENT PASSING BY WEIGHT #20 0.850 0.425 #60 0.250 0.150 #100 #140 0.106 #200 20 % Cobbles % Gravel % Sand 96.0 % Fines 3.8 50 10 0.5 0.05 0.01 0.005 0.001 0.374 **GRAIN SIZE IN MILLIMETERS** 0.287 D_{30} 0.190 Sample No. | Depth (ft) | SYMBOL | Wn (%) % 5 μm Exploration LL Ы **Description and Classification** 2.0 PC-01 Olive poorly graded Sand (SP) 5.0 1.2 PROJECT NAME: City of San Diego TO#10 - Pilot Channel PROJECT NUMBER: 27679010 **PARTICLE-SIZE DISTRIBUTION CURVES** Figure:


URS



UNIFIED SOIL CLASSIFICATION SAND GRAVEL SILT AND CLAY FINE COARSE COARSE MEDIUM Dia. U. S. STANDARD SIEVE SIZES **HYDROMETER** Finer #20 #60 #100 #200 75.0 100.0 100 1.5" 37.5 3/4" 19.00 12.50 3/8" 9.50 4.75 2.00 PERCENT PASSING BY WEIGHT 0.850 0.425 0.250 0.150 0.106 #200 0.075 Hydrometer Analysis 20 % Cobbles % Gravel % Sand % Fines 100 0.001 10 0.05 0.01 0.005 D_{60} **GRAIN SIZE IN MILLIMETERS** D₃₀ Sample No. Depth (ft) SYMBOL Wn (%) % 5 μm **Description and Classification** C_{u} LL Exploration Ы Сс Light olive brown silty Sand (SM) PC-01 composite 0~10 PROJECT NAME: City of San Diego TO#10 - Pilot Channel PROJECT NUMBER: 27679010 **PARTICLE-SIZE DISTRIBUTION CURVES** Figure:

cadaaacadaaaaaaaaaaaaaaaaa

Appendix B Laboratory Analytical Report and Chain-of-Custody Form

EnviroMatrix

Analytical, Inc. -

19 February 2010

URS Corporation

EMA Log #: 0911387

Attn: Robert Scott

1615 Murray Canyon Rd Suite 1000

San Diego, California 92108

Project Name: 27679010

Enclosed are the results of analyses for samples received by the laboratory on 11/16/09 15:37. Samples were analyzed pursuant to client request utilizing EPA or other ELAP approved methodologies. I certify that this data is in compliance both technically and for completeness.

Dan Verdon

Laboratory Director

CA ELAP Certification #: 2564

4340 Viewridge Avenue, Suite A - San Diego, California 92123 - (858) 560-7717 - Fax (858) 560-7763

Analytical Chemistry Laboratory

Project Name: 27679010

EMA Log #: 0911387

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
PC-02-01.0	0911387-01	Soil	11/16/09 10:00	11/16/09 15:37
PC-02-05.0	0911387-02	Soil	11/16/09 10:15	11/16/09 15:37
PC-01-05.0	0911387-03	Soil	11/16/09 11:00	11/16/09 15:37
PC-01-10.0	0911387-04	Soil	11/16/09 11:15	11/16/09 15:37

Project Name: 27679010

EMA Log #: 0911387

Total Metals by EPA 6000/7000 Series Methods

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
PC-02-01.0 (0911387-01) Soil	Sampled: 11/1			11/16/09 1	5:37					
Antimony	1.09	1.00	10.0	mg/kg	1	9111823	11/18/09	11/18/09	EPA 6010	J
Arsenic	1.94	0.43	1.00	"	"	"	**	**	"	
Barium	86.2	0.36	1.00	"	**	11	11	m .	"	
Beryllium	ND	0.02	1.00	"	**	" .	**	11/18/09	т.	
Cadmium	0.25	0.08	1.00	"	"	11	11	11/18/09	. "	J
Chromium	11.3	0.40	1.00	Ħ	"	**	Ħ	"	i ii	
Cobalt	5.31	0.10	1.00	n	"	"	11		n	
Copper	7.38	0.09	1.00	n	"	11	**	" .	n	
Lead	7.71	0.79	1.00	n	"	"	"		n	
Molybdenum	ND	1.10	5.00	11	"	11	. "	"	"	***
Nickel	4.38	0.31	1.00	"	"	11	.11	. "	. "	
Selenium	ND	0.52	1.00	11	"	**	"	**	н .	
Silver	ND	0.10	0.50	11	**	**	· m	11	"	
Thallium	ND	0.46	1.00	**	. "	**	11	. "	"	
Vanadium	37.9	0.20	1.00	11	n.	"	11	Ħ	n	
Zinc	50.0	0.56	1.00	11	n	**	11	11	n	
Mercury	0.10	0.02	0.05	11	11	9111926	11/19/09	11/19/09	EPA 7471	makang at in mangkan na na makan mangkan mining m
PC-02-05.0 (0911387-02) Soil	•	5/09 10:15	Received:	11/16/09 1	5:37					
Antimony	ND	1.00	10.0	mg/kg	1	9111823	11/18/09	11/18/09	EPA 6010	
Arsenic	1.74	0.43	1.00	"	**	** .	**	**	"	
Barium	57.0	0.36	1.00	"	**	11	tt	17	**	
Beryllium	ND	0.02	1.00	**	. "	"	**	11/18/09	"	
Cadmium	0.31	0.08	1.00	11	11	. "	11	11/18/09	· n	J
Chromium	6.60	0.40	1.00	'n	11	11	. "		. "	
Cobalt	3.42	0.10	1.00	ü	11	11	11	Ħ	. "	
Copper	13.9	0.09	1.00	11	11	11	11	17	n	
Lead	7.30	0.79	1.00		**	,n	**	**	. "	
Molybdenum	ND	1.10	5.00	"	н	n	11	11	. "	
17101y Odolidili	7.91	0.31	1.00	17		**	**	11	"	
· ·			1 00	**	11	"	**	"	n	•
Nickel	ND	0.52	1.00							
Nickel Selenium		0.52 0.10	0.50	"	11	n	***	**	".	
Nickel Selenium Silver	ND			"	11 11	"	11	11	# . #	
Nickel Selenium Silver Thallium	ND ND	0.10 0.46	0.50 1.00						" . "	
Nickel Selenium Silver Thallium Vanadium Zinc	ND ND ND	0.10	0.50	. 11	. 11	"	"	11	" . " . "	

Project Name: 27679010

EMA Log #: 0911387

Total Metals by EPA 6000/7000 Series Methods

Analyte	Result	MDL	Reporting Limit	Units	Dibution	Batch	Prepared	Analyzad	Method	Notes
				,	Dilution	Dattil	Frepared	Analyzed	Meniod	INOIGS
PC-01-05.0 (0911387-03) Soil	Sampled: 11/1									
Antimony	ND	1.00	10.0	mg/kg	1	9111823	11/18/09	11/18/09	EPA 6010	
Arsenic	1.51	0.43	1.00	tt	11	**	Ħ	H	11	
Barium	70.7	0.36	1.00	11	11	**	**	tt	11	
Beryllium	ND	0.02	1.00	. 11	, "	11	11	11/18/09	11	
Cadmium	0.09	0.08	1.00	11	Ħ	11	11	11/18/09	"	J
Chromium	10.1	0.40	1.00	**	tt	11	11	**	"	
Cobalt	4.41	0.10	1.00	II	11	17	*1	Ħ	"	
Copper	4.92	0.09	1.00	U	11	**	**	u	11	
Lead	6.06	0.79	1.00	11	11	**	tt.	11	11	
Molybdenum	ND	1.10	5.00	11	11	"	**	11	n	
Nickel	3.53	0.31	1.00	11	Ħ	11	11	**	Ħ	
Selenium	ND	0.52	1.00	**	**	tt	11	н	tt	
Silver	ND	0.10	0.50	11	"	11	11	**	# .	
Thallium	ND	0.46	1.00	tt	tt	11	11	11	11	
Vanadium	32.6	0.20	1.00	11	**	tř	11	11	11	
Zine	38.2	0.56	1.00	11	11	11	11	11	**	
Mercury	ND	0.02	0.05	11	n	9111926	11/19/09	11/19/09	EPA 7471	
PC-01-10.0 (0911387-04) Soil	Sampled: 11/10	6/09 11:15	Received:	11/16/09 1	5:37					
Antimony	ND	1.00	10.0	mg/kg	1	9111823	11/18/09	11/18/09	EPA 6010	
Arsenic	0.63	0.43	1.00	n	tt	11	lt .	11	11	J
Barium	35.5	0.36	1.00	11	11	11	11	11/18/09	11	
Beryllium	ND	0.02	1.00	"	**	tt	tt	11/18/09	***	
Cadmium	0.27	0.08	1.00	Ħ	11	Ħ	n	11/18/09	It	J.
Chromium	4.88	0.40	1.00	11	**	п	11	"	11	
Cobalt	1.99	0.10	1.00	11	n	11	11	n	11	
Copper	3.62	0.09	1.00	11	11	11	u .	11/18/09	11	
Lead	3.68	0.79	1.00	11		11	11	11/18/09	**	
Molybdenum	ND	1.10	5.00	"	"	tt	tt.	11	**	
Nickel	2.09	0.31	1.00	**	11	**	"	11	tt	
Selenium	ND	0.52	1.00	n	"	n	tr	**	· tr	
Silver	ND	0.10	0.50	n	11	n	11	11/18/09	tt	
Thallium	ND	0.46	1.00	11	11	***	11	11/18/09	11	
Vanadium	13.9	0.20	1.00	"	1r	11	11	11/18/09	"	
Zinc	19.0	0.56	1.00	n	11		11	11710703	11°	•
Mercury	0.02	0.02	0.05	u	"	9111926	11/19/09	11/19/09	EPA 7471	J
•										

Project Name: 27679010

EMA Log #: 0911387

Organochlorine Pesticides by EPA Method 8081B

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
PC-02-01.0 (0911387-01) Soil								111101)200	1120	210100
Aldrin	ND	0.51	2.00	ug/kg	1	9111702	11/17/09	11/18/09	EPA 8081	
alpha-BHC	ND	0.27	2.00	"	11	"	11	11	11	
beta-BHC	ND	0.43	2.00		11	***	11	11	n	
gamma-BHC (Lindane)	ND	0.35	2.00	n	"	**	11	11	Ħ	
delta-BHC	ND	0.41	2.00	"	"	11	u	11	**	
alpha-Chlordane	ND	0.47	5.00	"	"	"	17	"	11	
gamma-Chlordane	ND	0.51	5.00	11	**	**	***	. 11	11	
Chlordane (Total)	ND	4.70	5.00	"	. 11	"	11	, m	11	
4,4'-DDD	ND	1.96	8.00	"	4	11	17	11	TT.	
4,4'-DDE	ND	1.88	8.00	**	"	***	. #	11	H ·	
4,4′-DDT	ND	1.28	8.00	"	11	**	11	n	**	
Dieldrin	ND	0.47	2.00	. ' #	1	11	. 11	. "	**	
Endosulfan I	ND	0.42	2.00	"	" ,	11	n		Ħ	
Endosulfan II	ND	0.76	2.00	"	"	n ·	11	"	tt	
Endosulfan sulfate	ND	0.48	2.00	**	**	n ·	"	11	11	
Endrin	ND	0.49	2.00	"	"	**	**	"	, "	
Endrin aldehyde	ND	0.30	2.00	Ħ	11	11	11	11	#I	
Endrin ketone	ND	0.80	2.00	· n	. 11	n `	n	11	"	
Heptachlor	ND	0.71	2.00	"	"	**		m ,	n	
Heptachlor epoxide	ND	0.70	2.00	"		**	11	"		
Methoxychlor	ND	0.74	5.00	"	11	" .	**	"	n n	
Toxaphene	ND	8.80	25.0	"	***	"	ļ#	**	**	
Surrogate: TCMX	112	58 %	26-1-	46		,,	"	"	"	
PC-02-05.0 (0911387-02) Soil	Sampled: 11/16				5.27					
Aldrin	ND	0.51	2.00	ug/kg	1	9111702	11/17/09	11/18/09	EPA 8081	
alpha-BHC	ND	0.27	2.00	ug/Kg	,,	"	"	"	B1110001	
beta-BHC	ND	0.43	2.00	"	11	11	11	**	"	
gamma-BHC (Lindane)	ND	0.45	2.00	"	11	"		. #	"	
delta-BHC	ND	0.41	2.00	"		**	**	**	n ·	
alpha-Chlordane	ND	0.47	5.00	"	11	**	**	**	,,	
gamma-Chlordane	ND	0.51	5.00	11	11	**	**	**	11	
Chlordane (Total)	ND	4.70	5.00	"	"	11	**		"	
4,4'-DDD	ND	1.96	8.00	11	. 4	**	**	**	. 11	
4,4'-DDE	ND	1.88	8.00	**	. 7	"	**	"	m	
- 4,4'-DDT	ND ND	1.28	8.00	#		n	**	n,	н	
Dieldrin	ND	0.47	2.00	"	1	"	π.		п.	
Endosulfan I	ND ND	0.47	2.00				11	11	#	**************************************
Endosulfan II	ND ND	0.42	2.00	"	**	,	"	11	**	
Endosulfan sulfate	ND ND			"	**	"	,	"	11	
Endosulian sulfate	ND	0.48	2.00		"	••	.,	"	"	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

EnviroMatrix Analytical, Inc.

Project Name: 27679010

Surrogate: TCMX

EMA Log #: 0911387

Organochlorine Pesticides by EPA Method 8081B

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
PC-02-05.0 (0911387-02) Soil	Sampled: 11/16	6/09 10:15	Received:	11/16/09 1	5:37					
Endrin	ND	0.49	2.00	ug/kg	1	9111702	11/17/09	11/18/09	EPA 8081	
Endrin aldehyde	ND	0.30	2.00	tt	11	**	**	tt .	"	
Endrin ketone	ND	0.80	2.00	· II	11	**	tt	tt		
Heptachlor	ND	0.71	2.00	11	"	**	11	tt	II .	
Heptachlor epoxide	ND	0.70	2.00	11	"	".	. "	tt	n	
Methoxychlor	ND	0.74	5.00	**	11	tt	II	11	'n	
Toxaphene	ND	8.80	25.0	***	tt	11		"	11	
Surrogate: TCMX		56 %	26-14	<i>‡6</i>		"	"	n	"	
PC-01-05.0 (0911387-03) Soil	Sampled: 11/16	6/09 11:00	Received:	11/16/09 1	5:37					
Aldrin	ND	0.51	2.00	ug/kg	ī	9111702	11/17/09	11/18/09	EPA 8081	
alpha-BHC	ND	0.27	2.00	11	11	. #	tt	11	u	
beta-BHC	ND	0.43	2.00	11	"	tř	tt	11	II .	
gamma-BHC (Lindane)	ND	0.35	2.00	**	n	11	u	. 11	n	
delta-BHC	ND	0.41	2.00	**	11	11	II .	11	n	
alpha-Chlordane	ND	0.47	5.00	11	11	11	11	11	11	
gamma-Chlordane	ND	0.51	5.00	tt .	11	11	n	"	11	
Chlordane (Total)	ND	4.70	5.00	tt	11	**	11	**		
4,4'-DDD	ND	1.96	8.00	n ·	4	tt	Ħ	II .	II .	
4,4'-DDE	ND	1.88	8.00	11	11	11	tt	11	11	
4,4'-DDT	ND	1.28	8.00	11	Ħ	11	n	11	11	
Dieldrin	ND	0.47	2.00	**	1	11	H	11	11	
Endosulfan I	ND	0.42	2.00	**	11	11	U U	11	11	
Endosulfan II	ND	0.76	2.00	11	TP	11	n	11	11	
Endosulfan sulfate	ND	0.48	2.00	**	11	11	п	11	n	
Endrin	ND	0.49	2.00	e1	11	11	n	n	11	
Endrin aldehyde	ND	0.30	2.00	tf	n .	11	11	"	"	
Endrin ketone	ND	0.80	2.00	11	11	11	11	**	"	
Heptachlor	ND	0.71	2.00	11	11	**	11	**	n	
Heptachlor epoxide	ND	0.70	2.00	11	11	**	**	tt .	**	
Methoxychlor	ND	0.74	5.00	1T	11	tt	**	tt .	n	
Toxaphene	ND	8.80	25.0	11	11	Tř	**	11	u	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

26-146

66 %

Project Name: 27679010

EMA Log #: 0911387

Organochlorine Pesticides by EPA Method 8081B

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
PC-01-10.0 (0911387-04) Soil	Sampled: 11/1	6/09 11:15	Received: 11	/16/09 1	15:37					
Aldrin	ND	0.51	2.00	ug/kg	1	9111702	11/17/09	11/18/09	EPA 8081	
alpha-BHC	ND	0.27	2.00	**	11	**	**	п	TT	
beta-BHC	ND	0.43	2.00	18	, #	**	It	**	H .	
gamma-BHC (Lindane)	ND	0.35	2.00	19	11	**	11	11	tt .	
delta-BHC	ND	0.41	2.00	"	**	**	11	**	u u	
alpha-Chlordane	ND	0.47	5.00	"	11	tı	11	n	**	
gamma-Chlordane	ND	0.51	5.00	**	11	Ħ	11	, 11	11	•
Chlordane (Total)	ND	4.70	5.00	19	, 11	**	11	Ħ	# ,	
4,4'-DDD	ND	1.96	8.00	TT .	4	π	11	# ·	n n	4
4,4'-DDE	ND	1.88	8.00	19	"	, н	41	11	m "	
4,4′-DDT	ND	1.28	8.00	17 '	. 11	11		**	**	
Dieldrin	ND	0.47	2.00	17	1	**	17	, "	"	
Endosulfan I	ND	0.42	2.00	. 17	"	*1	**	11	11	
Endosulfan II	ND	0.76	2.00	17	n,	11	#	Ħ	н,	
Endosulfan sulfate	ND	0.48	2.00	11		n ·	Ħ.	, . ·	**	
Endrin	ND	0.49	2.00	11	11	11	. 11	11	11	
Endrin aldehyde	ND	0.30	2.00	11	11	11	17	n ·	Ħ	
Endrin ketone	ND	0.80	2.00	11	11	77	11	11	, н	
Heptachlor	ND	0.71	2.00	**	**	11	."	11	#	
Heptachlor epoxide	ND.	0.70	2.00	**	**	11	**	Ħ .	"	4
Methoxychlor	ND	0.74	5.00	n	"	. 11	**	"	**	
Toxaphene	ND	8.80	25.0	n	11	**	11	**	***	
Surrogate: TCMX		82 %	26-146			. "	"	"	n	-

Project Name: 27679010

EMA Log #: 0911387

Polychlorinated Biphenyls by EPA Method 8082

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
PC-02-01.0 (0911387-01) Soil	Sampled: 11/1	6/09 10:00	Received:	11/16/09 1	5:37					
Aroclor 1016	ND	4.60	20.0	ug/kg	1	9111702	11/17/09	11/18/09	EPA 8082	
Aroclor 1221	ND	4.60	20.0	tr.	11	*1		11	n	
Aroclor 1232	ND	4.60	20.0	"	11	**	tt.	11	11	
Aroclor 1242	ND	4.60	20.0	11	17	"	"	tt	"	
Aroclor 1248	ND	4.60	20.0	11	11	"	11	11	"	
Aroclor 1254	ND	4.60	20.0	11	11	11	11	"	"	
Aroclor 1260	ND	4.60	20.0		77	. 11	11	**	"	
Surrogate: TCMX		58 %	26-1-	46		"	"	"	"	
PC-02-05.0 (0911387-02) Soil	Sampled: 11/1	6/09 10:15	Received:	11/16/09 1	5:37	t				
Aroclor 1016	ND	4.60	20.0	ug/kg	1	9111702	11/17/09	11/18/09	EPA 8082	
Aroclor 1221	ND	4.60	20.0	19	tt	**	tt	11	'n	
Aroclor 1232	ND	4.60	20.0	tr.	11	**	11	, II	"	
Aroclor 1242	ND	4.60	20.0	u	. 11	11	, # t	"	" .	
Aroclor 1248	ND	4.60	20.0	ıı	**	11	11	**	n	
Aroclor 1254	ND	4.60	20.0	11	н	11	11	"	**	
Aroclor 1260	ND	4.60	20.0	11	er	11	11	II .	"	
Surrogate: TCMX		56 %	26-1	46		"	"	"	"	
PC-01-05.0 (0911387-03) Soil	Sampled: 11/1	6/09 11:00	Received:	11/16/09 1	5:37					
Aroclor 1016	ND	4.60	20.0	ug/kg	1	9111702	11/17/09	11/18/09	EPA 8082	1.1
Aroclor 1221	ND	4.60	20.0	"	11	tt	tt	11	"	
Aroclor 1232	ND	4.60	20.0	rr ·	*1	tt	tt	11	"	
Aroclor 1242	ND	4.60	20.0	11	**	. #	tt	n	**	
Aroclor 1248	ND	4.60	20.0	11	77	11	tt	"	"	
Aroclor 1254	ND	4.60	20.0	11	**	11	11	**	n .	
Aroclor 1260	ND	4.60	20.0	11	tř	11	tt · · ·	"		
Surrogate: TCMX		66 %	26-1	46		"	"	"	"	

Project Name: 27679010

EMA Log #: 0911387

Polychlorinated Biphenyls by EPA Method 8082

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
PC-01-10.0 (0911387-04) Soil	Sampled: 11/1	6/09 11:15	Received: 11	/16/09 1	5:37			•		
Aroclor 1016	ND	4.60	20.0	ug/kg	1	9111702	11/17/09	11/18/09	EPA 8082	
Aroclor 1221	ND	4.60	20.0	**	"	"	**	н .	"	
Aroclor 1232	ND	4.60	20.0	**	"	11	**	n ·	**	
Aroclor 1242	ND	4.60	20.0	**	"	11	"	11	, n	
Aroclor 1248	ND	4.60	20.0	**	**	".	n ·	**	11	
Aroclor 1254	ND	4.60	20.0	**	11	n	# w	11		
Aroclor 1260	ND	4.60	20.0	11	*1	11	**	**	п .	-
Surrogate: TCMX		82 %	26-146			"	"	"	#	<u> </u>

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

EnviroMatrix

Project Name: 27679010

EMA Log #: 0911387

Semivolatile Organic Compounds by EPA Method 8270C

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
PC-02-01.0 (0911387-01) Soil	Sampled: 11/10	5/09 10:00	Received:	11/16/09	15:37					
Acenaphthene	ND	5.12	20.0	ug/kg	1	9111701	11/17/09	11/17/09	EPA 8270C	
Acenaphthylene	ND	5.37	20.0	11	"	II.	**	11	11	
Anthracene	ND	2.82	20.0	tt	**	11	. "	11	n	
Benzidine	ND	150	150	11	n ,	11	11	**	11	
Benzo (a) anthracene	13.6	3.09	20.0	11	11	11	"	n	#	· J
Benzo (b) fluoranthene	14.3	3.09	20.0	11	11	11	m .	H	tt	J
Benzo (k) fluoranthene	ND	3.68	20.0	11	11	۳,	11	11	tt	
Benzo (g,h,i) perylene	ND	4.63	40.0	11	11	**	***	11	tr	
Benzo (a) pyrene	6.01	3.07	20.0	**	tt	11	11	11	1P	J
Benzyl alcohol	ND	1.44	75.0	tt	**	n n	11	n	11	
Bis(2-chloroethoxy)methane	ND	7.26	20.0	tt	Ħ	11	11	H	11	
Bis(2-chloroethyl)ether	ND	7.96	25.0	u	n	11	11	tt .	**	
Bis(2-chloroisopropyl)ether	ND	8.81	25.0	11	11	**	11	11	"	
Bis(2-ethylhexyl)phthalate	264	5.72	45.0	n	"	11	11	n	tt	
4-Bromophenyl phenyl ether	ND	3.71	20.0	**	11	11	n	11	III.	
Butyl benzyl phthalate	53.7	4.11	40.0	**	u	**	11	11	11	
Carbazole	ND	4.94	60.0	ŧŧ	**	11	11*	11	11	
4-Chloroaniline	ND	4.42	100	11	tt	11	. 11	n	11	
4-Chloro-3-methylphenol	ND	8.34	20.0	11	11	n	11	n.	11	
2-Chloronaphthalene	ND	6.11	20.0	11	11	Ħ	11	11	rr .	
2-Chlorophenol	ND	6.48	20.0	"	11	11	H	tt.	u	
4-Chlorophenyl phenyl ether	ND	4.90	20.0	**	11	TT .	n	11	11	
Chrysene	7.48	2.87	20.0	11	u	**	11	11	11	J
Dibenz (a,h) anthracene	ND	5.00	40.0	Ħ	"	11	TI .	11	11	
Dibenzofuran	ND	5.42	20.0	tt	**	11	tt	11	11	
Di-n-butyl phthalate	9.73	3.87	40.0	tt.	11	11	11	11	11	J
1,2-Dichlorobenzene	ND	9.07	20.0	11	tt	11	11	n	11	
1,3-Dichlorobenzene	ND	8.51	20.0	11	11	11	tr	**	**	
1,4-Dichlorobenzene	ND	8.55	20.0	11	11	**	11	11	**	
3,3'-Dichlorobenzidine	ND	5.26	150	**	11	11	11	11	11	
2,4-Dichlorophenol	ND	5.32	20.0	**	11	11	11	11	ti .	
Diethyl phthalate	ND	1.61	20.0	**	**	11	n	**	11	
2,4-Dimethylphenol	ND	2.40	80.0	11	**	11	11	11	"	
Dimethyl phthalate	ND	3.36	20.0	tt	tt	**	11	**	"	
4,6-Dinitro-2-methylphenol	ND	5.50	50.0	11	tt	n	11	11	n	
2,4-Dinitrophenol	ND	10.9	100	11	11	11	11	"	n	
2,4-Dinitrotoluene	ND	4.08	20.0	**	**	11	11	11	11	
2,6-Dinitrotoluene	ND	6.02	20.0	**	**	**	11	"	"	
Di-n-octyl phthalate	ND	4.61	40.0	11	u	11	11	11	u	
Fluoranthene	8.00	3.43	20.0	**	11	11	11	11	11	J

Project Name: 27679010

EMA Log #: 0911387

Semivolatile Organic Compounds by EPA Method 8270C

)				Reporting				_			_
)	Analyte	Result	MDL	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
\ \	PC-02-01.0 (0911387-01) Soil	Sampled: 11/16	5/09 10:00	Received: 11	/16/09 1	5:37					
,	Fluorene	ND	4.50	20.0	ug/kg	1	9111701	11/17/09	11/17/09	EPA 8270C	
ì	Hexachlorobenzene	ND	3.10	20.0	n	17		н	n		
N.	Hexachlorobutadiene	ND	7.09	20.0	**	***	11	**	n		
	Hexachlorocyclopentadiene	ND	6.98	50.0	"	** .	**	' 11	Ħ	n	
ì	Hexachloroethane	ND	8.88	20.0	**	17	"	n	Tt .	**	
Ŋ	Indeno (1,2,3-cd) pyrene	ND	4.33	30.0	"	17	17	11	***	n .	
of s	Isophorone	ND	7.56	20.0	11	"	11	n	n	**	
)	2-Methylnaphthalene	ND	7.62	20.0	**	**	11	и.	" .	. **	
`	2-Methylphenol	ND	6.56	20.0	* #	**	. 11	**	11	ii.	
/	4-Methylphenol (3-Methylpheno	l) ND	6.24	40.0	"	**	**	H	11	н	
)	Naphthalene	ND	7.25	20.0	. "	11	"	n	**	"	
}	2-Nitroaniline	ND	3.91	50.0	11	11	. "	n	**	"	
	3-Nitroaniline	ND	6.54	100	17	11	11	n	"	**	
)	4-Nitroaniline	ND	5.49	70.0	11	. 11	11	"	"	11 ,	
7	Nitrobenzene	ND	8.04	20.0	11	11	"	и	11		
. / : —	2-Nitrophenol	ND_	7.56	20.0	11	***	tt .		11	# New Contract Contra	
)	4-Nitrophenol	ND ND	2.85	70.0	. 17	**	11	n	11	"	
Ţ	N-Nitrosodimethylamine	ND	8.02	20.0	17	ţŧ	11	'n	"	n	
· .	N-Nitrosodiphenylamine	ND	8.02	35.0	11	11	. #	n	**	u, u	
<i>).</i>	N-Nitrosodi-n-propylamine	ND	7.90	30.0	11	**	Ħ	n	**	"	
;	Pentachlorophenol	ND	6.02	40.0	11	**	11	. "	**	11	
4	Phenanthrene	5.69	1.95	20.0	n	"	11	11	Ħ	. 11	J
)	Phenol	ND	8.81	30.0	n	**	**	***	Ħ	. "	
)	Pyrene	10.7	2.88	20.0	"	***	11	n · .	**	n .	J
`\	Pyridine	ND	8.85	100	n	11	**	"	#	"	
)	1,2,4-Trichlorobenzene	ND	7.08	20.0	. #	**	**	11	n	'. "	
Ž	2,4,5-Trichlorophenol	ND	7.66	30.0		**	11	"	**	"	
´ ;	2,4,6-Trichlorophenol	ND	5.55	30.0	11	"	11	11	11	. "	
. /	Surrogate: 2-Fluorophenol		45 %	25-121			".	"	"	"	_
Ĵ	Surrogate: Phenol-d6		45 %	24-113			"	"	"	"	
`\	Surrogate: Nitrobenzene-d5		45 %	23-120			"	"	"	"	
-1	Surrogate: 2-Fluorobiphenyl		47 %	30-115			"	n	"	"	
j	Surrogate: 2,4,6-Tribromopheno.	<i>l</i> .	35 %	19-122			"	"	"	"	
Ž	Surrogate: Terphenyl-dl4	· ·	51 %	18-137			"	"	"	"	

Project Name: 27679010

EMA Log #: 0911387

Semivolatile Organic Compounds by EPA Method 8270C

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
PC-02-05.0 (0911387-02) Soil		6/09 10:15	Received:				•			
Acenaphthene	ND	5.12	20.0	ug/kg	1	9111701	11/17/09	11/17/09	EPA 8270C	
Acenaphthylene	ND	5.37	20.0	11	IF	"	11	n	11	
Anthracene	ND	2.82	20.0	11	17	**	n	**	"	
Benzidine	ND	150	150	11	11	n	11	11	11	
Benzo (a) anthracene	ND	3.09	20.0	**	11	"	11	tt	· n	
Benzo (b) fluoranthene	ND	3.09	20.0			11	11	11	"	
Benzo (k) fluoranthene	ND	3.68	20.0	tt	11	11	**	11	"	
Benzo (g,h,i) perylene	ND	4.63	40.0	"	**	11	tt		, e	
Benzo (a) pyrene	ND	3.07	20.0	u	. "	11		"	P	
Benzyl alcohol	ND	1.44	75.0	11	tt	11	ti .	**	tt	
Bis(2-chloroethoxy)methane	ND	7.26	20.0	11	11	**	11	11	11	
Bis(2-chloroethyl)ether	ND	7.96	25.0	11	tr	11	11	11	11	
Bis(2-chloroisopropyl)ether	ND	8.81	25.0	11	11	11	11	**	11	
Bis(2-ethylhexyl)phthalate	114	5.72	45.0	"	11	11	TT .	11	*1	
4-Bromophenyl phenyl ether	ND	3.71	20.0	Ħ	11	11	**	**	**	
Butyl benzyl phthalate	145	4.11	40.0	ıı	11	rr ·	. 11	**	er	
Carbazole	ND	4.94	60.0	II	**	11	n	**	, tt	
4-Chloroaniline	ND	4.42	100	II	ti .	**	11	"	nt ,	
4-Chloro-3-methylphenol	ND	8.34	20.0	n	n	**	11	11	11	
2-Chloronaphthalene	ND	6.11	20.0	n	II.	11	11	11	n n	
2-Chlorophenol	ND	6.48	20.0	n		tt	11	11	n '	
4-Chlorophenyl phenyl ether	ND	4.90	20.0	11	11	tt	n .	11	11	
Chrysene	ND	2.87	20.0	IT	11	11	"	11	n	
Dibenz (a,h) anthracene	ND	5.00	40.0	11	11	11	n	n	**	
Dibenzofuran	ND	5.42	20.0	11	"	11	"	11	**	
Di-n-butyl phthalate	26.7	3.87	40.0	If	n	TT.	11	*1	n	J
1,2-Dichlorobenzene	ND	9.07	20.0	11	11	11	n	**	tt.	
1,3-Dichlorobenzene	ND	8.51	20.0	IP	11	**	H	t#	II	
1,4-Dichlorobenzene	ND	8.55	20.0	11	11	"	tt .	**	11	
3,3'-Dichlorobenzidine	ND	5.26	150	11	11	H	11	tr.	II .	
2,4-Dichlorophenol	ND	5.32	20.0	11	u	Ħ	. 11	II.	11	
Diethyl phthalate	1.85	1.61	20.0	11	11	*1	11	tr.	11	J
2,4-Dimethylphenol	ND	2.40	80.0	"	11	**	11	17		Ū
Dimethyl phthalate	ND	3.36	20.0	11	11	. 11	**	11	m .	
4,6-Dinitro-2-methylphenol	ND	5.50	50.0	. "	11	n '	н	11	rr .	
2,4-Dinitrophenol	ND	10.9	100	11	TT .	n	11	**	tt	
2,4-Dinitrotoluene	ND	4.08	20.0	11	11	n	II	n	11	
2,6-Dinitrotoluene	ND	6.02	20.0	**	11	11	11	**	11	
Di-n-octyl phthalate	ND	4.61	40.0	ıı	11	11	"	n	tt	
Fluoranthene	3.51	3.43	20.0	11	11	11	"	tt	. 11	J

Project Name: 27679010

EMA Log #: 0911387

Semivolatile Organic Compounds by EPA Method 8270C

		· ·								
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	npled: 11/16	5/09 10:15	Received: 1	1/16/09 1	5:37					
Fluorene	ND	4.50	20.0	ug/kg	1	9111701	11/17/09	11/17/09	EPA 8270C	
Hexachlorobenzene	ND	3.10	20.0	n	11	11	11	***	n	
Hexachlorobutadiene	ND	7.09	20.0	Ħ	Ħ	**	n .	**	m .	
Hexachlorocyclopentadiene	ND	6.98	50.0	"	"	11	***	n .	n	
Hexachloroethane	ND	8.88	20.0	"	11	Ħ		"	n .	
Indeno (1,2,3-cd) pyrene	ND	4.33	30.0	n	"	11	II .	" .	n	
Isophorone	ND	7.56	20.0	n	n	11	11	*	н	
2-Methylnaphthalene	ND	7.62	20.0	"	m	n .	" .	**	"	
2-Methylphenol	ND	6.56	20.0	"	n .	"	11	"	**	
4-Methylphenol (3-Methylphenol)	ND	6.24	40.0	**	'n	· ·	11	"	**	
Naphthalene	ND	7.25	20.0	**	17	n	"	**	"	
2-Nitroaniline	ND	3.91	50.0	"	. 11	11	- 11	**	"	
3-Nitroaniline	ND	6.54	100	**	. 11	".	. 11	**	и .	
4-Nitroaniline	ND	5.49	70.0	. 44	"		n	"	"	
Nitrobenzene	ND	8.04	20.0	**	. 11	n .		#	1 M	
2-Nitrophenol	ND	7.56	20.0	11	. 11	11	11	11		
4-Nitrophenol	ND	2.85	70.0		**	11	. 11	**	n	
N-Nitrosodimethylamine	ND	8.02	20.0	**	11	$t = -\mathbf{u}(\nabla t)$	**	"	· n	
N-Nitrosodiphenylamine	ND	8.02	35.0	**	. "	"	**	. 11	n	
N-Nitrosodi-n-propylamine	ND	7.90	30.0	ń	. "		**	11	т .	
Pentachlorophenol	ND	6.02	40.0	**	11	11	"	**	m ·	
Phenanthrene	3.83	1.95	20.0	"	**	11	11	11		J
Phenol	ND	8.81	30.0	**	11.	**	TT .	11	**	
) Pyrene	7.58	2.88	20.0	tt	11		"	**		J
Pyridine	ND	8.85	100	"	**	"	"	, "	. "	
1,2,4-Trichlorobenzene	ND	7.08	20.0	**	"	**	11	"	**	
2,4,5-Trichlorophenol	ND	7.66	30.0	**	. "	n	. #	"	"	
2,4,6-Trichlorophenol	ND	5.55	30.0	ii	11	n ·	11	II .		
Surrogate: 2-Fluorophenol		40 %	25-121			"	"	n,	"	
Surrogate: Phenol-d6		39 %	24-113	}		"	"	<i>n</i>	"	
Surrogate: Nitrobenzene-d5		41 %	23-120)		"	"	n	"	
Surrogate: 2-Fluorobiphenyl		40 %	30-115			"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		30 %	19-122			"	"	"	"	
Surrogate: Terphenyl-dl4		49 %	18-137			"		n .	"	
)			10 107							

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Analytical, Inc. -

Project Name: 27679010

EMA Log #: 0911387

Semivolatile Organic Compounds by EPA Method 8270C

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared.	Analyzed	Method	Notes
PC-01-05.0 (0911387-03) Soil	Sampled: 11/1	6/09 11:00	Received:	11/16/09	15:37					
Acenaphthene	ŅD	5.12	20.0	ug/kg	1	9111701	11/17/09	11/17/09	EPA 8270C	
Acenaphthylene	ND	5.37	20.0	II	**	11	tt	11	"	
Anthracene	ND	2.82	20.0	11	n '	11	11	n	n.	
Benzidine	ND	150	150	11	II	11	11	Ħ	. "	
Benzo (a) anthracene	ND	3.09	20.0	11	11	11	11	n	"	
Benzo (b) fluoranthene	ND	3.09	20.0	11	11	11	11	n	π,	
Benzo (k) fluoranthene	ND	3.68	20.0	11	11	".	11	11	11	
Benzo (g,h,i) perylene	ND	4.63	40.0	tt.	11	"	19	11	II .	
Benzo (a) pyrene	ND	3.07	20.0	18	Ħ .	11	tt	n	11	
Benzyl alcohol	ND	1.44	75.0	11	**	11	lt .	"	11	
Bis(2-chloroethoxy)methane	ND	7.26	20.0	11	Ħ	11 .	11*	**	**	
Bis(2-chloroethyl)ether	ND	7.96	25.0	11	n	11	tt .	n	**	
Bis(2-chloroisopropyl)ether	ND	8.81	25.0	11	Ħ	n	11	tt.	19	
Bis(2-ethylhexyl)phthalate	135	5.72	45.0	11	11	11	II	11	tt	
4-Bromophenyl phenyl ether	ND	3.71	20.0	и	11	n	11	11	tt	
Butyl benzyl phthalate	13.4	4.11	40.0	n	11	11	11	11	11	J
Carbazole	ND	4.94	60.0	11	11	11	11	11	1t	
4-Chloroaniline	ND	4.42	100	11	11	11	11	"	11	
4-Chloro-3-methylphenol	ND	8.34	20.0	11	**	11	11	**	11	
2-Chloronaphthalene	ND	6.11	20.0	, "	11	11	11	**	n	
2-Chlorophenol	ND	6.48	20.0	**	u,		11	u	**	
4-Chlorophenyl phenyl ether	ND	4.90	20.0	"	n	**	"	u	**	
Chrysene	ND	2.87	20.0	11	u	**	"	11	tt	
Dibenz (a,h) anthracene	ND	5.00	40.0	11	n	"	"	u	tt.	
Dibenzofuran	ND	5.42	20.0	**	n	tt	11	11	tt	
Di-n-butyl phthalate	4.96	3.87	40.0	11	н	11	11	. 11	u .	J
1,2-Dichlorobenzene	ND	9.07	20.0	tt.	11	11	**	11	ŧŧ	
1,3-Dichlorobenzene	ND	8.51	20.0	nt ·	11	tr.	n	11	11	
1,4-Dichlorobenzene	ND	8.55	20.0	11	"	11	11	"	11	
3,3'-Dichlorobenzidine	ND	5.26	150	11	**	11	11	"	Ħ	
2,4-Dichlorophenol	ND	5.32	20.0	11	n	**	11	**	**	
Diethyl phthalate	2.77	1.61	20.0	11	11	tr	· n	**	rr	J
2,4-Dimethylphenol	ND	2.40	80.0	17	n	n	"	11	tt	
Dimethyl phthalate	ND	3.36	20.0	ıı	11	**	"	o ·	tt .	
4,6-Dinitro-2-methylphenol	ND	5.50	50.0	ır	11	tt .	"	Tr.	11	
2,4-Dinitrophenol	ND	10.9	100	11	11	11	**	11	11	
2,4-Dinitrotoluene	ND	4.08	20.0	11	11	11	u	11	11	
2,6-Dinitrotoluene	ND	6.02	20.0	"	11	ŧŧ	11	11	tt	
Di-n-octyl phthalate	ND	4.61	40.0	11	11	11	**	u	11	
Fluoranthene	ND	3.43	20.0	#	11	11	n .	11	#1	

Project Name: 27679010

EMA Log #: 0911387

Semivolatile Organic Compounds by EPA Method 8270C

\										
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		-	Received: 1				•			
Fluorene	ND	4.50	20.0	ug/kg	1	9111701	11/17/09	11/17/09	EPA 8270C	
Hexachlorobenzene	ND .	3.10	20.0	"	,,	"	"	"	"	
Hexachlorobutadiene	ND	7.09	20.0	**	"	"	"	**	**	
Hexachlorocyclopentadiene	ND	6.98	50.0	"	,,	"	11	"	11	
Hexachloroethane	ND	8.88	20.0	**	"	"	**	**	"	
Indeno (1,2,3-cd) pyrene	ND	4.33	30.0	" .	**	"	11	***	n ,	
Isophorone	ND	7.56	20.0	**	n	"	17	**	n '	
2-Methylnaphthalene	ND	7.62	20.0	Ħ	"	n	".	**	"	
2-Methylphenol	ND	6.56	20.0	**		n	. "	11	т	
4-Methylphenol (3-Methylphenol)	ND	6.24	40.0	iı	. "	" .	**	. "	**	
Naphthalene	ND	7.25	20.0	"	**	"	**	**	" .	
2-Nitroaniline	ND	3.91	50.0	**	**	**		"	it	
3-Nitroaniline	ND	6.54	100	11	"		**	. "	. "	
4-Nitroaniline	ND	5.49	70.0	n	"	"	**	"	11	
Nitrobenzene	ND	8.04	20.0		. "	- 11	n	"		
2-Nitrophenol	ND	7.56	20.0	. 11	11	, 11	17			na na na anakanina sanakan na n
4-Nitrophenol	ND	2.85	70.0	ff	tt .	11	Ħ	"	11	
N-Nitrosodimethylamine	ND	8.02	20.0	**	. "	11	"	11	11	
N-Nitrosodiphenylamine	ND	8.02	35.0	**	**	"	"	. "	11	
N-Nitrosodi-n-propylamine	ND	7.90	30.0	**	11	"	n	. "	11	(
Pentachlorophenol	ND	6.02	40.0	**	**	н .	"	**	11	
Phenanthrene	2.68	1.95	20.0	**	**	II.	11	11	· . • •	J
Phenol	ND	8.81	30.0	• н	**	"	Ħ	. #	, n	
Pyrene	4.12	2.88	20.0	ti	"	n	11		π.	J
Pyridine	ND	8.85	100	Ü	т	"	**	"	11	
1,2,4-Trichlorobenzene	ND	7.08	20.0	**	, n	**	ii.	11	"	
2,4,5-Trichlorophenol	ND	7.66	30.0	**	. "	**	11	"	TT .	
2,4,6-Trichlorophenol	ND	5.55	30.0	**	**	. **	**	17	m m	
Surrogate: 2-Fluorophenol		45 %	25-121	•		"	"	"	"	
Surrogate: Phenol-d6		44 %	24-113	?		n	"	n .	"	
Surrogate: Nitrobenzene-d5		46 %	23-120			"	. "	"	n	
Surrogate: 2-Fluorobiphenyl		47 %	30-115			"	"	"	· "	
Surrogate: 2,4,6-Tribromophenol		36 %	19-122			. <i>n</i>	"	, "	"	
Surrogate: Terphenyl-dl4		55 %	18-137			'n	" ·	"	"	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Analytical, Inc.

Project Name: 27679010

EMA Log #: 0911387

Semivolatile Organic Compounds by EPA Method 8270C

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
PC-01-10.0 (0911387-04) Soil	Sampled: 11/16	5/09 11:15	Received:	11/16/09	15:37					
Acenaphthene	ND	5.12	20.0	ug/kg	1	9111701	11/17/09	11/17/09	EPA 8270C	
Acenaphthylene	ND	5.37	20.0	11	11	"	11	11	n	
Anthracene	ND	2.82	20.0	11	**	**	11	n	n	
Benzidine	ND	150	150.	11	ŧŧ	11	11	tt	11	
Benzo (a) anthracene	ND	3.09	20.0	11	11	11	11	II .		
Benzo (b) fluoranthene	ND	3.09	20.0	n	11	11	tt.	11	tt	
Benzo (k) fluoranthene	ND	3.68	20.0	**	11	11	II .	н	tt	
Benzo (g,h,i) perylene	ND	4.63	40.0	11	11	11	ti .	"	tt .	
Benzo (a) pyrene	ND	3.07	20.0	tt	"	**	11	11	tt.	
Benzyl alcohol	ND	1.44	75.0	11	**	**	"	11	n	
Bis(2-chloroethoxy)methane	ND	7.26	20.0	11	11	11	tt	11	"	
Bis(2-chloroethyl)ether	ND	7.96	25.0	11	tt	11	11	n	н	
Bis(2-chloroisopropyl)ether	ND	8.81	25.0	11	11	11	11	**	11	*
Bis(2-ethylhexyl)phthalate	36.1	5.72	45.0	**	. #	1f	11	"	11	J
4-Bromophenyl phenyl ether	ND	3.71	20.0	11	n .	"	11	n	11	
Butyl benzyl phthalate	ND	4.11	40.0	11	11	H	11	11	n	
Carbazole	ND	4.94	60.0	11	11	ti	11	11	"	
4-Chloroaniline	ND	4.42	100	*1	11	11	U	"	11	
4-Chloro-3-methylphenol	ND	8.34	20.0	n	11	n	11	**	11	
2-Chloronaphthalene	ND	6.11	20.0	11	**	***	11	11	11	
2-Chlorophenol	ND	6.48	20.0	11	**	n .	11	tt	11	
4-Chlorophenyl phenyl ether	ND	4.90	20.0	11	tt	n n	tt	u	**	
Chrysene	ND	2.87	20.0	11	tt.	n	tt	11	**	
Dibenz (a,h) anthracene	ND	5.00	40.0	*1	11	11	11	11	tt	
Dibenzofuran	ND	5.42	20.0	**	11	11	tt .	11	11	
Di-n-butyl phthalate	ND	3.87	40.0		11	"	11	"	11	
1,2-Dichlorobenzene	ND	9.07	20.0	**	"	11	11	"	11	
1,3-Dichlorobenzene	ND	8.51	20.0	tt	**	**	11	**	11	
1,4-Dichlorobenzene	ND	8.55	20.0	11	. 11	**	**	11	**	
3,3'-Dichlorobenzidine	ND	5.26	150	ti.	tt	II.	**	11	tt ,	
2,4-Dichlorophenol	ND	5.32	20.0	*1	11	u	tt .	11	tt	
Diethyl phthalate	ND	1.61	20.0	**	11	n	tt	"	11	
2,4-Dimethylphenol	ND	2.40	80.0	11	11	11	11	**	11	
Dimethyl phthalate	ND	3.36	20.0	11	. #	**	11	**	"	
4,6-Dinitro-2-methylphenol	ND	5.50	50.0	11		ır	" "	tt	rr .	
2,4-Dinitrophenol	ND	10.9	100	*1	11	11	tt	11	11	
2,4-Dinitrotoluene	ND	4.08	20.0	Ħ	11	n	ti	11	11	
2,6-Dinitrotoluene	ND	6.02	20.0	11	**	**	11	11	Ħ	
Di-n-octyl phthalate	ND	4.61	40.0	н	ır	11	n	u	11	
Fluoranthene	ND	3.43	20.0	11	11	**	11	"	11	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Analytical, Inc.

Project Name: 27679010

EMA Log #: 0911387

Semivolatile Organic Compounds by EPA Method 8270C

√L											
. [_	nalyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
P	C-01-10.0 (0911387-04) Soil	Sampled: 11/16	5/09 11:15	Received: 11	/16/09 1	15:37					· .
F	uorene	ND	4.50	20.0	ug/kg	1	9111701	11/17/09	11/17/09	EPA 8270C	
) H	exachlorobenzene	ND	3.10	20.0	**	"	***	11		"	
H	exachlorobutadiene	ND	7.09	20.0	"	**	11	11	11	, •	
H	exachlorocyclopentadiene	ND	6.98	50.0	**	***	**	tr	11	"	٠.
	exachloroethane	ND	8.88	20.0	***	***	***	11	Ħ	**	٠
Ir	ideno (1,2,3-cd) pyrene	ND	4.33	30.0	" '		"		11	11	
Is	ophorone	ND	7.56	20.0	11	"	"	# 3	11	Ħ	
2	-Methylnaphthalene	ND	7.62	20.0	**	***	11	tr	11	n n	
2	Methylphenol	ND	6.56	20.0	"	. "	11	11	17	. "	
4.	Methylphenol (3-Methylphenol) ND	6.24	40.0	**	11	11	n	"	n	
\mathbb{N}	aphthalene	ND	7.25	20.0	**	11	11	tt .	" .	н .	
× 2-	Nitroaniline	ND	3.91	50.0	11	11		u .	'n	"	
ું 3-	Nitroaniline	ND	6.54	100	**	**	"	11	"	**	
) 4.	Nitroaniline	ND	5.49	70.0	**	"	11	11	**	11	
N	itrobenzene	ND	8.04	20.0	Ħ	. 11	n ·	11	"	11	
့် 2.	Nitrophenol	ND	7.56	20.0	11	"	11	tt .	11		LOUIS T THE STREET, VAN ALIENS HE
4.	Nitrophenol	ND	2.85	70.0	11	"	11	11	ii	. "	
N	-Nitrosodimethylamine	ND	8.02	20.0	11	"	11	Ħ	11	"	
N	-Nitrosodiphenylamine	ND	8.02	35.0	n .	"	. 11	n	**	n	
\sqrt{N}	-Nitrosodi-n-propylamine	ND	7.90	30.0	**	"	" "	n	"	"	
P	entachlorophenol	ND	6.02	40.0	**	**	**	11	11	"	
(P	henanthrene	ND	1.95	20.0	**	"	**	11	",	**	
$\frac{1}{2}$ P	henol	ND	8.81	30.0	**		"	n	**	H ·	
`) P :	yrene	ND	2.88	20.0	**	**	**	n	**	"	
P	yridine	ND	8.85	100	**	**	**	11	. "	**	
√1,	2,4-Trichlorobenzene	ND	7.08	20.0		"	11	. "	n n	tt.	
2,	4,5-Trichlorophenol	ND	7.66	30.0	"	"	"	**	"	"	
2,	4,6-Trichlorophenol	ND	5.55	30.0	н 🚶	11	"	# .	11	Ħ	
Si	urrogate: 2-Fluorophenol		43 %	25-121			"	"	"	"	
	urrogate: Phenol-d6		41 %	24-113			"	"	. "	"	
) S	urrogate: Nitrobenzene-d5		43 %	23-120			"	"	"	"	
	urrogate: 2-Fluorobiphenyl		42 %	30-115			"	"	"	"	
	urrogate: 2,4,6-Tribromophenol		31 %	19-122			"	. "	<i>"</i>	<i>n</i> ·	
	ırrogate: Terphenyl-dl4		51 %	18-137			"	"	" .	<i>n</i>	

Project Name: 27679010

EMA Log #: 0911387

TPH by EPA 8015C

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
PC-02-01.0 (0911387-01) Soil S	Sampled: 11/1	6/09 10:00	Received:	11/16/09 1	5:37					
Gasoline (C6-C10)	ND	4.0	10.0	mg/kg	1	9111737	11/17/09	11/18/09	EPA 8015C	
Diesel (C10-C28)	ND	4.0	10.0	11	**	11	Ħ	11	n	
Extended Range HC (C28-C40)	ND	10.0	10.0	"	#	11	117	11	"	
Surrogate: 4-Bromofluorobenzene	3	95 %	75-1.	29		"	ti	"	"	
•	Sampled: 11/1	6/09 10:15	Received:	11/16/09 1	5:37			•		
Gasoline (C6-C10)	ND	4.0	10.0	mg/kg	1	9111737	11/17/09	11/18/09	EPA 8015C	
Diesel (C10-C28)	ND	4.0	10.0	11	11	" .	H	II .	"	
Extended Range HC (C28-C40)	ND	10.0	10.0	**	11	11	11	11	11	
Surrogate: 4-Bromofluorobenzene	2	97 %	75-1.	29		"	"	"	"	
PC-01-05.0 (0911387-03) Soil S	Sampled: 11/1	6/09 11:00	Received:	11/16/09 1	5:37					
Gasoline (C6-C10)	ND	4.0	10.0	mg/kg	1	9111737	11/17/09	11/18/09	EPA 8015C	
Diesel (C10-C28)	ND	4.0	10.0	11	11	11	n ,	n	. "	
Extended Range HC (C28-C40)	ND	10.0	10.0	11	11	11	Ħ	п	"	
Surrogate: 4-Bromofluorobenzene	2	95 %	75-1.	29		H	"	"	"	
PC-01-10.0 (0911387-04) Soil S	Sampled: 11/1	6/09 11:15	Received:	11/16/09 1	5:37					
Gasoline (C6-C10)	ND	4.0	10.0	mg/kg	1	9111737	11/17/09	11/18/09	EPA 8015C	
Diesel (C10-C28)	ND	4.0	10.0	и	11	"	11	n	11	
Extended Range HC (C28-C40)	ND	10.0	10.0	л	11		11	"	n .	
Surrogate: 4-Bromofluorobenzene	?	94 %	75-1.	29		"	"	"	"	

Project Name: 27679010

EMA Log #: 0911387

Total Metals by EPA 6000/7000 Series Methods - Quality Control

Analyte	Result	MDL	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 9111823											
Blank (9111823-BLK1)					Prepared of	& Analyze	ed: 11/18/	09			
Antimony	ND	1.00	10.0	mg/kg							
Arsenic	ND	0.43	1.00	**							
Barium	ND	0.36	1.00	**							
Beryllium	ND	0.02	1.00	#							
Cadmium	ND	0.08	1.00	**							-
Chromium	ND	0.40	1.00	**							
Cobalt	ND	0.10	1.00	**							
Copper	0.73	0.09	1.00	**		:					J
Lead	ND	0.79	1.00	17							
Molybdenum	ND	1.10	5.00	11			,				
Nickel	ND	0.31	1.00	**							
Selenium	0.65	0.52	1.00	n							J
Silver	ND	0.10	0.50	** .							
Thallium	, ND	0.46	1.00	Ħ							
Vanadium .	ND	0.20	1.00	**							
Zinc	ND	0.56	1.00	**							
LCS (9111823-BS1)					Prepared of	& Analyze	ad: 11/18/	no			
Antimony	101	1.00	10.0	mg/kg	100	St Milary 20	101	75-125			
Arsenic	96.6	0.43	1.00	"	100		97	75-125			
Barium	101	0.36	1.00	. 11	100		101	75-125			
Beryllium	106	0.02	1.00	11	100		106	75-125			
Cadmium	102	0.08	1.00	"	100		102	75-125			
Chromium	104	0.40	1.00	**	100		104	75-125			
Cobalt	103	0.10	1.00	**	100		103	75-125			
Copper	106	0.09	1.00	**	100		106	75-125			
Lead	102	0.79	1.00	11	100		102	75-125		,	
Molybdenum	106	1.10	5.00		100		106	75-125			
Nickel .	103	0.31	1.00	11	100		103	75-125			
Selenium	99.0	0.52	1.00	**	100		99	75-125			
Silver	47.4	0.10	0.50	**	50.0		95	75-125			
Thallium	96.9	0.46	1.00		100		97	75-125			
Vanadium	107	0.20	1.00	**	100		107	75-125			
Zinc	101	0.56	1.00	11	100		101	75-125			

Project Name: 27679010

EMA Log #: 0911387

Total Metals by EPA 6000/7000 Series Methods - Quality Control

Analyte	Result	MDL	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 9111823											
LCS Dup (9111823-BSD1)					Prepared	& Analyze	ed: 11/18/0	09			
Antimony	101	1.00	10.0	mg/kg	100		101	75-125	0	20	
Arsenic	95.5	0.43	1.00	11	100		96	75-125	1	20	
Barium	102	0.36	1.00	**	100		102	75-125	1	20	
Beryllium	105	0.02	1.00	11	100		105	75-125	0.5	20	
Cadmium	102	0.08	1.00	tr.	100		102	75-125	0.7	20	
Chromium	105	0.40	1.00	11	100		105	75-125	1	20	
Cobalt	104	0.10	1.00	11	100		104	75-125	0.8	20	
Copper	107	0.09	1.00	11	100		107	75-125	1	20	
Lead	101	0.79	1.00	H .	100		101	75-125	0.5	20	
Molybdenum	107	1.10	5.00	**	100		107	75-125	1	20	
Nickel	104	0.31	1.00	"	100		104	75-125	0.8	20	
Selenium	98.3	0.52	1.00	"	100		98	75-125	0.7	20	
Silver	48.1	0.10	0.50	11	50.0		96	75-125	1	20	
Thallium	96.6	0.46	1.00	11	100		97	75-125	0.4	20	
Vanadium	108	0.20	1.00	11	100		108	75-125	1	20	
Zinc	101	0.56	1.00	11	100		101	75-125	0.3	20	
Duplicate (9111823-DUP1)		Sou	rce: 091142	1-03	Prepared	& Analyze	ed: 11/18/0	09	. <u>.</u> .		
Antimony	ND	1.00	10.0	mg/kg		ND				20	
Arsenic	1.35	0.43	1.00	11		1.85			31	20	QR-02
Barium	2.25	0.36	1.00	**		2.26			0.4	20	
Beryllium	ND	0.02	1.00	11		ND				20	
Cadmium	ND	0.08	1.00	n		ND				20	
Chromium	1.04	0.40	1.00	11		1.16			11	20	
Cobalt	560	0.10	1.00	,#		604			8	20	
Copper	0.29	0.09	1.00	"		0.45			45	20	QR-04, J
Lead	ND	0.79	1.00	11		ND				20	
Molybdenum	ND	1.10	5.00	u		ND				20	
Nickel	0.37	0.31	1.00	tr		0.40			7	20	J
Selenium	1.93	0.52	1.00	11		2.25			15	20	•
Silver	0.29	0.10	0.50	11		0.29			1	20	J
Thallium	ND	0.16	1.00	**		ND			•	20	
Vanadium	0.53	0.20	1.00	**		0.59			12	20	J

Project Name: 27679010

EMA Log #: 0911387

Total Metals by EPA 6000/7000 Series Methods - Quality Control

Analyte	Result	MDL	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
	Result	111111		Onno	20101	1(455417	70100	2111110	14.2		110100
Batch 9111823							-	-			
Matrix Spike (9111823-MS1)		Sou	rce: 091142	21-03	Prepared	& Analyze	ed: 11/18/0	09			
Antimony	82.5	1.00	10.0	mg/kg	92.6	ND	89	75-125			
Arsenic	88.6	0.43	1.00	**	92.6	1.85	94	75-125			
Barium	92.9	0.36	1.00	11	92.6	2.26	98	75-125			
Beryllium	95.1	0.02	1.00	17	92.6	ND	103	75-125			
Cadmium	92.8	0.08	1.00	17	92.6	ND	100	75-125			
Chromium	95.0	0.40	1.00	**	92.6	1.16	101	75-125			
Cobalt	595	0.10	1.00	**	92.6	604	NR	75-125			QM-4X
Copper	95.1	0.09	1.00	**	92.6	0.45	102	75-125			
Lead	91.2	0.79	1.00	н.	92.6	ND	98	75-125			
Molybdenum	93.1	1.10	5.00	11	92.6	ND	100	75-125			
Nickel	93.4	0.31	1.00	77	92.6	0.40	100	75-125			
Selenium	97.0	0.52	1.00	**	92.6	2.25	102	75-125			
Silver	42.1	0.10	0.50	**	46.3	0.29	90	75-125			
Thallium	80.2	0.46	1.00	* **	92.6	ND	87	75-125			
Vanadium	96.6	0.20	1.00	11	92.6	0.59	104	75-125	Barrons prosent response to 7 Million W	mane emission in sensional in 1990.	THE TAX AND THE CONTRACT CONTRA
Zinc	138	0.56	1.00	11	92.6	56.3	88	75-125			
Matrix Spike Dup (9111823-MSD1)		Sou	rce: 091142	21-03	Prepared	& Analyze	ed: 11/18/0	09			
Antimony	93.0	1.00	10.0	mg/kg	98.0	ND	95	75-125	12	20	
Arsenic	97.0	0.43	1.00	"	98.0	1.85	97	75-125	9	20	
Barium	102	0.36	1.00	11	98.0	2.26	101	75-125	9	20	
Beryllium	105	0.02	1.00	"	98.0	ND	107	75-125	10	20	
Cadmium	101	0.08	1.00	tt -	98.0	ND	104	75-125	9	20	
Chromium	104	0.40	1.00	**	98.0	1.16	105	75-125	9	20	
Cobalt	530	0.10	1.00	. 11	98.0	604	NR	75-125	12	20	QM-4X
Copper	105	0:09	1.00		98.0	0.45	106	75-125	10	20	•
) Lead	100	0.79	1.00	"	98.0	ND	102	75-125	10	. 20	
Molybdenum	103	1.10	5.00	tt	98.0	ND	105	75-125	10	20	
Nickel	103	0.31	1.00	**	98.0	0.40	104	75-125	10	20	
Selenium	106	0.52	1.00	. "	98.0	2.25	106	75-125	9	20	
Silver	46.1	0.10	0.50	. 11	49.0	0.29	94	75-125	9	20	
Thallium	89.7	0.46	1.00	, "	98.0	ND	91	75-125	11	20	•
Vanadium	106	0.20	1.00	H	98.0	0.59	108	75-125	10	20	
Zinc	140	0.56	1.00	"	98.0	56.3	86	75-125	2	20	
γ	140	0.50	1.00		70.0	20.3	30	,5 123	-	20	

Project Name: 27679010

EMA Log #: 0911387

Total Metals by EPA 6000/7000 Series Methods - Quality Control

Analyte	Result	MDL	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 9111926				·							
Blank (9111926-BLK1)					Prepared	& Analyzo	ed: 11/19/	09			
Mercury	ND	0.02	0.05	mg/kg							
LCS (9111926-BS1)		,			Prepared	& Analyzo	ed: 11/19/	09			
Mercury	0.20	0.02	0.05	mg/kg	0.200		101	75-125			
LCS Dup (9111926-BSD1)					Prepared	& Analyze	ed: 11/19/	09			·
Mercury	0.22	0.02	0.05	mg/kg	0.200		108	75-125	7	20	
Duplicate (9111926-DUP1)		Sou	rce: 091138	7-03	Prepared	& Analyze	ed: 11/19/	09			
Mercury	0.02	0.02	0.05	mg/kg		ND				20	J
Matrix Spike (9111926-MS1)		Sou	rce: 091138	37-03	Prepared a	& Analyze	ed: 11/19/0	09			
Mercury	0.26	0.02	0.05	mg/kg	0.182	ND	145	75-125			QM-06
Matrix Spike Dup (9111926-MSD1)		Sou	rce: 091138	87-03	Prepared a	& Analyze	ed: 11/19/	09			
Mercury	0.20	0.02	0.05	mg/kg	0.185	ND	110	75-125	26	20	QM-06

Project Name: 27679010

EMA Log #: 0911387

Organochlorine Pesticides by EPA Method 8081B - Quality Control

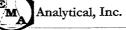
Analyte	Result	MDL	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
· L. · · · · · · · · · · · · · · · · · ·	Result	141175		CIIIG		, ,	701020	2,1111113	10.0		110003
Batch 9111702											
Blank (9111702-BLK1)					Prepared:	11/17/09	Analyzed	1: 11/18/09			<u> </u>
Aldrin	ND	0.51	2.00	ug/kg							
alpha-BHC	ND	0.27	2.00	11							
beta-BHC	ND	0.43	2.00	11						*	
gamma-BHC (Lindane)	ND	0.35	2.00	**							
delta-BHC	ND	0.41	2.00	**	**						
alpha-Chlordane	ND	0.47	5.00	**							
gamma-Chlordane	ND	0.51	5.00								
Chlordane (Total)	ND	4.70	5.00								
4,4′-DDD	ND	0.49	2.00	77							
4,4′-DDE	ND	0.47	2.00	17							
4,4′-DDT	ND	0.32	2.00	11							
Dieldrin	ND	0.47	2.00	. "				•			
Endosulfan I	ND	0.42	2.00	. "							
Endosulfan II	ND	0.76	2.00	"							
Endosulfan sulfate	ND .	0.48	2.00	**						A Transport of the Control of the Co	- The same and the second second of the second
Endrin	ND	0.49	2.00	"							
Endrin aldehyde	ND	0.30	2.00	**							
Endrin ketone	ND	0.80	2.00	"							
Heptachlor	ND	0.71	2.00	"							
Heptachlor epoxide	ND	0.70	2.00	н '							
Methoxychlor	ND	0.74	5.00	**							
7 Toxaphene	ND	8.80	25.0	**	•						
Surrogate: TCMX	14.8			n n	16.7		88	26-146			
LCS (9111702-BS1)					Prepared:	11/17/09	Analyzeo	1: 11/18/09			
Aldrin	15.5	0.51	2.00	ug/kg	16.7		93	42-122	· · · · ·		
gamma-BHC (Lindane)	15.3	0.35	2.00	"	16.7		92	32-127			
4,4'-DDT	17.7	0.32	2.00	**	16.7		106	25-160			
) Dieldrin	16.3	0.47	2.00	11	16.7		98	36-146			
Endrin	18.1	0.49	2.00	11	16.7		108	30-147			
Heptachlor	17.2	0.71	2.00	11	16.7		103	34-111			
Surrogate: TCMX	15.4	***************************************		"	16.7		92	26-146			

Project Name: 27679010

EMA Log #: 0911387

Organochlorine Pesticides by EPA Method 8081B - Quality Control

Analyte	Result	MDL	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 9111702		•									
LCS Dup (9111702-BSD1)					Prepared:	11/17/09	Analyzed	: 11/18/09			
Aldrin	16.0	0.51	2.00	ug/kg	16.7		96	42-122	3	30	
gamma-BHC (Lindane)	15.6	0.35	2.00	11	16.7		94	32-127	2	30	
4,4'-DDT	18.2	0.32	2.00	11	16.7		109	25-160	3	30	
Dieldrin	16.7	0.47	2.00	11	16.7		100	36-146	3	30	
Endrin	18.4	0.49	2.00	11	16.7		111	30-147	2	30	
Heptachlor	17.3	0.71	2.00	11	16.7		104	34-111	0.4	30	
Surrogate: TCMX	15.4			"	16.7		93	26-146			
Duplicate (9111702-DUP1)		Sou	rce: 091138	7-01	Prepared:	11/17/09	Analyzed	: 11/18/09			
Aldrin	ND	0.51	2.00	ug/kg		ND				30	
alpha-BHC	ND	0.27	2.00	11		ND				30	
peta-BHC	ND	0.43	2.00	**		ND				30	
gamma-BHC (Lindane)	ND	0.35	2.00	11		ND				30	
delta-BHC	ND	0.41	2.00	"		ND				30	
alpha-Chlordane	ND	0.47	5.00	"		ND				30	
gamma-Chlordane	ND	0.51	5.00	11		ND				30	
Chlordane (Total)	ND	4.70	5.00	11		ND				30	
4,4′-DDD	ND	1.96	8.00	11		ND				30	
4,4'-DDE	ND	1.88	8.00	11		ND				30	
4,4′-DDT	ND	1.28	8.00	11		ND				30	
Dieldrin	ND	0.47	2.00	**		ND				30	
Endosulfan I	ND	0.42	2.00	**		ND				30	
Endosulfan II	ND	0.76	2.00	11		ND				30	
Endosulfan sulfate	ND	0.48	2.00	**		ND				30	
Endrin	ND	0.49	2.00	**		ND				30	
Endrin aldehyde	ND	0.30	2.00	11		ND				30	
Endrin ketone	ND	0.80	2.00	**		ND				30	
Heptachlor	ND	0.71	2.00	**		ND				30	
Heptachlor epoxide	ND	0.70	2.00	**		ND				30	
Methoxychlor	ND	0.74	5.00	**		ND				30	
Гохарћене	ND	8.80	25.0	11		ND				30	
Surrogate: TCMX	9.60			n	16.7		58	26-146	-		


Project Name: 27679010

EMA Log #: 0911387

Organochlorine Pesticides by EPA Method 8081B - Quality Control

Analyte	Result	MDL	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 9111702											
Matrix Spike (9111702-MS1)		Sou	rce: 091138	37-01	Prepared:	11/17/09	Analyzed	l: 11/18/09			
Aldrin	13.4	2.55	10.0	ug/kg	16.7	ND	80	42-122			
gamma-BHC (Lindane)	13.3	1.75	10.0	"	16.7	ND	80	32-127			
4,4'-DDT	11.1	1.60	10.0	11	16.7	ND	67 ·	25-160			
Dieldrin	13.6	2.35	10.0	17	16.7	ND	82	36-146			
Endrin	13.1	2.45	10.0	**	16.7	ND	79	30-147			
Heptachlor	11.9	3.55	10.0	. 11	16.7	ND	72	34-111			
Surrogate: TCMX	12.2			"	16.7		73	26-146			
Matrix Spike Dup (9111702-MSD1)		Sou	rce: 091138	37-01	Prepared:	11/17/09	Analyzed	l: 11/18/09			
Aldrin	11.3	2.55	10.0	ug/kg	16.7	ND	68	42-122	17	30	
gamma-BHC (Lindane)	11.2	1.75	10.0	**	16.7	ND	67	32-127	17	30	
4,4′-DDT	9.88	1.60	10.0	11	16.7	ND	. 59	25-160	12	30	J
Dieldrin	11.2	2.35	10.0	11	16.7	ND	67	36-146	20	30	
Endrin	10.8	2.45	10.0	**	16.7	ND	65	30-147	19	30	
Heptachlor	9.50_	3.55	10.0	***	16.7	ND	57	34-111	23	30	J
Surrogate: TCMX	9.48			"	16.7		57	26-146			

Project Name: 27679010

EMA Log #: 0911387

Polychlorinated Biphenyls by EPA Method 8082 - Quality Control

Analyte	Result	MDL	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD_	RPD Limit	Notes
Batch 9111702											
Blank (9111702-BLK1)		, , , , ,		•	Prepared:	11/17/09	Analyzed	i: 11/18/09			
Aroclor 1016	ND	4.60	20.0	ug/kg							
Aroclor 1221	ND	4.60	20.0	"							
Aroclor 1232	ND	4.60	20.0	11							
Aroclor 1242	ND	4.60	20.0	11							
Aroclor 1248	ND	4.60	20.0	"							
Aroclor 1254	ND	4.60	20.0	**							
Aroclor 1260	ND	4.60	20.0	11							
Surrogate: TCMX	14.8			"	16.7	·····	88	26-146			
LCS (9111702-BS2)				•	Prepared:	11/17/09	Analyzeo	1: 11/18/09			
Aroclor 1260	155	4.60	20.0	ug/kg	167		93	8-127			
Surrogate: TCMX	14.4	1		"	16.7	***************************************	87	26-146			
LCS Dup (9111702-BSD2)					Prepared:	11/17/09	Analyzed	1: 11/18/09			
Aroclor 1260	141	4.60	20.0	ug/kg	167		85	8-127	9	30	
Surrogate: TCMX	15.2			"	16.7		91	26-146			
Duplicate (9111702-DUP1)		Sour	rce: 091138	7-01	Prepared:	11/17/09	Analyzed	1: 11/18/09			
Aroclor 1016	ND	4.60	20.0	ug/kg		ND				30	
Aroclor 1221	ND	4.60	20.0	11		ND				30	
Aroclor 1232	ND	4.60	20.0	11		ND				30	
Aroclor 1242	ND	4.60	20.0	"		ND				30	
Aroclor 1248	ND	4.60	20.0	**	•	ND				30	
Aroclor 1254	ND	4.60	20.0	tt		ND				30	
Aroclor 1260	ND	4.60	20.0	II		ND				30	
Surrogate: TCMX	9.60	· · · · · · · · · · · · · · · · · · ·		n	16.7		58	26-146			
Matrix Spike (9111702-MS2)		Sour	rce: 091138	7-02	Prepared:	11/17/09	Analyzed	l: 11/18/09			
Aroclor 1260	130	23.0	100	ug/kg	167	ND	78	8-127			
Surrogate: TCMX	9.60			"	16.7		58	26-146			

Project Name: 27679010

EMA Log #: 0911387

Polychlorinated Biphenyls by EPA Method 8082 - Quality Control

			Reporting		Spike	Source		%REC		RPD	
Analyte	Result	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 9111702

Matrix Spike Dup (9111702-MSD2)						11/17/09	Analyze	i: 11/18/09			
Aroclor 1260	117	23.0	100	ug/kg	167	ND	70	8-127	11	30	
Surrogate: TCMX	8.02			"	16.7		48	26-146			

Client Name: URS Corporation EMA Log #: 0911387

Project Name: 27679010

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control

Analyte	Result	MDL	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 9111701	· ·					· · · · · ·					
Blank (9111701-BLK1)			' '		Prepared &	& Analyz	ed: 11/17/0)9			· · ·
Acenaphthene	ND	5.12	20.0	ug/kg							
Acenaphthylene	ND	5.37	20.0	11							
Anthracene	ND	2.82	20.0	11							
Benzidine	ND	150	150	**							
Benzo (a) anthracene	ND	3.09	20.0	11							
Benzo (b) fluoranthene	ND	3.09	20.0	tt							
Benzo (k) fluoranthene	ND	3.68	20.0	II							
Benzo (g,h,i) perylene	ND	4.63	40.0	11							
Benzo (a) pyrene	ND	3.07	20.0	и.							
Benzyl alcohol	ND	1.44	75.0	n							
Bis(2-chloroethoxy)methane	ND	7.26	20.0	**							
Bis(2-chloroethyl)ether	ND	7.96	25.0	11							
Bis(2-chloroisopropyl)ether	ND	8.81	25.0	11							
Bis(2-ethylhexyl)phthalate	ND	5.72	45.0	"							
4-Bromophenyl phenyl ether	ND	3.71	20.0	"							
Butyl benzyl phthalate	ND	4.11	40.0	**							
Carbazole	ND	4.94	60.0	11							
4-Chloroaniline	ND	4.42	100	11							
4-Chloro-3-methylphenol	ND	8.34	20.0	"							
2-Chloronaphthalene	ND	6.11	20.0	11							
2-Chlorophenol	ND	6.48	20.0	11							
4-Chlorophenyl phenyl ether	ND	4.90	20.0								
Chrysene	ND	2.87	20.0	"							
Dibenz (a,h) anthracene	ND	5.00	40.0	11							
Dibenzofuran	ND	5.42	20.0	**							
Di-n-butyl phthalate	ND	3.87	40.0	11							
1,2-Dichlorobenzene	ND	9.07	20.0	n							
1,3-Dichlorobenzene	ND	8.51	20.0	11							
1,4-Dichlorobenzene	ND	8.55	20.0	11							
3,3'-Dichlorobenzidine	ND	5.26	150	11							
2,4-Dichlorophenol	ND	5.32	20.0	**							
Diethyl phthalate	ND	1.61	20.0	**							
2,4-Dimethylphenol	ND	2.40	80.0	11							
Dimethyl phthalate	ND	3.36	20.0	tr.							
4,6-Dinitro-2-methylphenol	ND	5.50	50.0	u .	•						
2,4-Dinitrophenol	ND	10.9	100	11							
2,4-Dinitrotoluene	ND	4.08	20.0	"							
2,6-Dinitrotoluene	ND	6.02	20.0	#							

Project Name: 27679010

EMA Log #: 0911387

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control

Analyte	Result	MDL	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 9111701											
Blank (9111701-BLK1)					Prepared	& Analyz	ed: 11/17/	′09		-	,
Di-n-octyl phthalate	ND ·	4.61	40.0	ug/kg							
Fluoranthene	ND	3.43	20.0	11							
Fluorene	ND	4.50	20.0	11							
Hexachlorobenzene	ND	3.10	20.0	11							
Hexachlorobutadiene	ND	7.09	20.0	n							•
Hexachlorocyclopentadiene	ND	6.98	50.0	11							
Hexachloroethane	ND	8.88	20.0	17							
Indeno (1,2,3-cd) pyrene	ND	4.33	30.0	11							
Isophorone	ND	7.56	20.0	**							•
2-Methylnaphthalene	ND	7.62	20.0	11							
2-Methylphenol	ND	6.56	20.0	11							
4-Methylphenol (3-Methylphenol)	ND	6.24	40.0	11							
Naphthalene	ND	7.25	20.0	11							
2-Nitroaniline	ND	3.91	50.0	. "							
3-Nitroaniline	ND	6.54	100	11							
4-Nitroaniline	ND	5.49	70.0	. 17						,	
Nitrobenzene	ND	8.04	20.0	n .						•	
2-Nitrophenol	ND	7.56	20.0	"			,				
4-Nitrophenol	ND	2.85	70.0	**							
N-Nitrosodimethylamine	ND	8.02	20.0	11							
N-Nitrosodiphenylamine	ND	8.02	35.0	11							
N-Nitrosodi-n-propylamine	ND	7.90	30.0	. 11							
Pentachlorophenol	ND	6.02	40.0	**							
Phenanthrene	ND	1.95	20.0	"							
Phenol	ND	8.81	30.0	. "							
Pyrene	ND	2.88	20.0	**							
Pyridine	ND	8.85	100	H.							
1,2,4-Trichlorobenzene	ND	7.08	20.0	11							
2,4,5-Trichlorophenol	ND	7.66	30.0		•						
2,4,6-Trichlorophenol	ND	5.55	30.0	11		•					* * * * * * * * * * * * * * * * * * *
Surrogate: 2-Fluorophenol	429			"	568		75	25-121		-	
Surrogate: Phenol-d6	441			" .	568	,	78	24-113			
Surrogate: Nitrobenzene-d5	508			"	568		89	23-120		. *	
Surrogate: 2-Fluorobiphenyl	463	÷		"	568		81	30-115			
Surrogate: 2,4,6-Tribromophenol				"	568		32	19-122			-
Surrogate: Terphenyl-dl4	479			"	568		84	18-137			

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Analytical, Inc.

Project Name: 27679010

EMA Log #: 0911387

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control

Analyte	Result	MDL	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 9111701											
LCS (9111701-BS1)		- ,			Prepared	& Analyz	ed: 11/17/	09			
Acenaphthene	673	5.12	20.0	ug/kg	568		118	50-135			-
4-Chloro-3-methylphenol	616	8.34	20.0	11	568		108	34-142			
2-Chlorophenol	654	6.48	20.0	TI .	568		115	38-125			
Di-n-butyl phthalate	613	3.87	40.0	11	568		108	44-152			
1,4-Dichlorobenzene	508	8.55	20.0	11	568		89	48-125			
2,4-Dinitrotoluene	534	4.08	20.0	u	568		94	41-144			
4-Nitrophenol	579	2.85	70.0	11	568		102	10-155			
N-Nitrosodi-n-propylamine	766	7.90	30.0	и ,	568		135	28-156			
Pentachlorophenol	384	6.02	40.0	**	568		68	21-133			
Phenol	653	8.81	30.0	11	568		115	35-120			
Pyrene	604	2.88	20.0	**	568		106	40-152			
1,2,4-Trichlorobenzene	538	7.08	20.0	"	568		95	47-125			
Surrogate: 2-Fluorophenol	476			"	568		84	25-121			
Surrogate: Phenol-d6	476			n	568		84	24-113			
Surrogate: Nitrobenzene-d5	510			"	568		90	23-120			
Surrogate: 2-Fluorobiphenyl	489			"	568		86	30-115			
Surrogate: 2,4,6-Tribromophenol	294			n .	568		<i>52</i>	19-122			
Surrogate: Terphenyl-dl4	482			"	568		85	18-137			
LCS Dup (9111701-BSD1)					Prepared	& Analyz	ed: 11/17/	09			
Acenaphthene	695	5.12	20.0	ug/kg	568		122	50-135	3	30	
4-Chloro-3-methylphenol	629	8.34	20.0	"	568		111	34-142	2	30	
2-Chlorophenol	661	6.48	20.0	11	568		116	38-125	1	30	
Di-n-butyl phthalate	623	3.87	40.0	11	568		110	44-152	2	30	
1,4-Dichlorobenzene	512	8.55	20.0	"	568		90	48-125	0.8	30	
2,4-Dinitrotoluene	547	4.08	20.0	**	568		96	41-144	2	30	
4-Nitrophenol	490	2.85	70.0	11	568		86	10-155	17	30	
N-Nitrosodi-n-propylamine	787	7.90	30.0	11	568		139	28-156	3	30	
Pentachlorophenol	394	6.02	40.0	**	568		69	21-133	2	30	
Phenol	661	8.81	30.0	Ħ	568		116	35-120	1	30	
Pyrene	604	2.88	20.0	11	568		106	40-152	0.05	30	
1,2,4-Trichlorobenzene	555	7.08	20.0	"	568		98	47-125	3	30	
Surrogate: 2-Fluorophenol	484			"	568		85	25-121			
Surrogate: Phenol-d6	470			"	568		<i>83</i>	24-113			
Surrogate: Nitrobenzene-d5	<i>526</i>	•		"	568		93	23-120			
Surrogate: 2-Fluorobiphenyl	499			"	568		88	30-115			
Surrogate: 2,4,6-Tribromophenol	301			"	568		53	19-122			
Surrogate: Terphenyl-dl4	493			"	· 568		<i>87</i>	<i>18-137</i>			

Project Name: 27679010

EMA Log #: 0911387

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control

	Analyte	Result	MDL	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Ž	Batch 9111701											
Ż	Duplicate (9111701-DUP1)		Sou	rce: 091138	 37-01	Prepared	& Analyze	ed: 11/17/0	09			
٠,,	Acenaphthene	ND	5.12	20.0	ug/kg		ND				30	
,	Acenaphthylene	ND	5.37	20.0	11		ND				30	
)	Anthracene	ND	2.82	20.0	11	•	ND				30	
Y	Benzidine	ND	150	150	"		ND	• .			30,	
,'	Benzo (a) anthracene	ND	3.09	20.0	"		13.6				30	
)	Benzo (b) fluoranthene	ND	3.09	20.0	"		14.3				30	
7	Benzo (k) fluoranthene	ND	3.68	20.0	"		ND				30	
1	Benzo (g,h,i) perylene	ND	4.63	40.0	**		ND				30	
Ĺ	Benzo (a) pyrene	ND	3.07	20.0	11		6.01				30	
· .	Benzyl alcohol	ND	1.44	75.0	n .		ND				30	
	Bis(2-chloroethoxy)methane	ND	7.26	20.0	" 1		ND	•			30	
Ž	Bis(2-chloroethyl)ether	ND	7.96	25.0	"		ND				30	
	Bis(2-chloroisopropyl)ether	ND	8.81	25.0	"		ND				30	
	Bis(2-ethylhexyl)phthalate	127	5.72	45.0	"		264			71	30	QR-02
J	4-Bromophenyl phenyl ether	ND	3.71	20.0	11		ND				30	
ì	Butyl benzyl phthalate	15.8	4.11	40.0	"		53.7	• .		109	30	QR-02, J
2	Carbazole	ND	4.94	60.0	- 11		ND	9			30	
Ì	4-Chloroaniline	ND	4.42	100	."		ND				30	
,	4-Chloro-3-methylphenol	ND	8.34	20.0	11		ND				30	
1	2-Chloronaphthalene	ND	6.11	20.0	. "		ND				30	
j	2-Chlorophenol	ND	6.48	20.0	"		ND				30	1, 1
1	4-Chlorophenyl phenyl ether	ND	4.90	20.0	n		ND				30	
1	Chrysene	ND	2.87	20.0	"		7.48				30	
)	Dibenz (a,h) anthracene	ND	5.00	40.0	**		ND				30	
÷,	Dibenzofuran	ND	5.42	20.0	11		ND				30	
1	Di-n-butyl phthalate	6.44	3.87	40.0	11		9.73			41	30	QR-02, J
)	1,2-Dichlorobenzene	ND	9.07	20.0	11		ND				30	
. 1	1,3-Dichlorobenzene	ND	8.51	20.0	11		ND				30	
1	1,4-Dichlorobenzene	ND	8.55	20.0	n		ND				30	
Š	3,3'-Dichlorobenzidine	ND	5.26	150	n	•	ND				30	
ì	2,4-Dichlorophenol	ND	5.32	20.0	"		ND				30	
.1	Diethyl phthalate	ND	1.61	20.0	"		ND				30	•
ار	2,4-Dimethylphenol	ND	2.40	80.0	"		ND				30	
٠.,	Dimethyl phthalate .	ND	3.36	20.0	**		ND				30	
ر 	4,6-Dinitro-2-methylphenol	ND	5.50	50.0	11		ND				30	
J	2,4-Dinitrophenol	ND	10.9	100	11		ND	- Anni Salancia - Marail III a della sila su			30	
	2,4-Dinitrotoluene	ND	4.08	20.0	n		ND				30	
, d	2,6-Dinitrotoluene	ND	6.02	20.0			ND				30	
				•								

Project Name: 27679010

EMA Log #: 0911387

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control

Analyte	Result	MDL	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 9111701											
Duplicate (9111701-DUP1)		Sou	rce: 091138	7-01	Prepared	& Analyze	ed: 11/17/	09			
Di-n-octyl phthalate	ND	4.61	40.0	ug/kg		ND		-		30	
Fluoranthene	ND	3.43	20.0	11		8.00				30	
Fluorene	ND	4.50	20.0	11		ND				30	
Hexachlorobenzene	ND	3.10	20.0	11		ND				30	
Hexachlorobutadiene	ND ·	7.09	20.0	71		ND				30	
Hexachlorocyclopentadiene	ND	6.98	50.0	t!		ND				30	
Hexachloroethane	ND	8.88	20.0	11		ND				30	
Indeno (1,2,3-cd) pyrene	ND	4.33	30.0	**		ND				30	
Isophorone	ND	7.56	20.0	Ħ		ND				30	
2-Methylnaphthalene	ND	7.62	20.0	11		ND				30	
2-Methylphenol	ND	6.56	20.0	"		ND				30	
4-Methylphenol (3-Methylphenol)	ND	6.24	40.0	11		ND				30	
Naphthalene	ND	7.25	20.0	11		ND				30	
2-Nitroaniline	ND	3.91	50.0	**		ND				30	
3-Nitroaniline	ND	6.54	100	H		ND				30	
4-Nitroaniline	ND	5.49	70.0			ND				30	
Nitrobenzene	ND	8.04	20.0	**		ND				30	
2-Nitrophenol	ND	7.56	20.0	TI TI		ND				30	
4-Nitrophenol	ND	2.85	70.0	11		ND				30	
N-Nitrosodimethylamine	ND	8.02	20.0	**		ND				30	
N-Nitrosodiphenylamine	ND	8.02	35.0	tt	•	ND				30	
N-Nitrosodi-n-propylamine	ND	7.90	30.0	11		ND				30	
Pentachlorophenol	ND	6.02	40.0	"		ND				30	
Phenanthrene	ND	1.95	20.0	n		5.69				30	
Phenol	ND	8.81	30.0	a		ND				30	
Pyrene	4.41	2.88	20.0	11		10.7			83	30	QR-02, J
Pyridine	ND	8.85	100	**		ND				30	
1,2,4-Trichlorobenzene	ND	7.08	20.0	n		ND				30	
2,4,5-Trichlorophenol	ND	7.66	30.0	11		ND				30	
2,4,6-Trichlorophenol	ND	5.55	30.0	Ħ		ND				30	
Surrogate: 2-Fluorophenol	234			"	568	<u> </u>	41	25-121			
Surrogate: Phenol-d6	224			"	568		39	24-113			
Surrogate: Nitrobenzene-d5	236			"	568		42	23-120			
Surrogate: 2-Fluorobiphenyl	234			"	568		41	30-115			
Surrogate: 2,4,6-Tribromophenol	152			"	568		27	19-122			
Surrogate: Terphenyl-dl4	228			"	568		40	18-137			

Project Name: 27679010

EMA Log #: 0911387

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control

1	Analyte	Result	MDL	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
1	Batch 9111701											
À	Matrix Spike (9111701-MS1)		Sou	rce: 091138	B7-01	Prepared 6	& Analyze	ed: 11/17/0	 09			
.,	Acenaphthene	634	5.12	20.0	ug/kg	568	ND	112	46-140			
1	4-Chloro-3-methylphenol	599	8.34	20.0	**	568	ND	105	42-139			
)	2-Chlorophenol	646	6.48	20.0	**	568	ND	114	30-135			
٠,	Di-n-butyl phthalate	580	3.87	40.0	**	568	9.73	100	24-152			
1	1,4-Dichlorobenzene	472	8.55	20.0	ŧτ	568	ND	83	36-137			
Š	2,4-Dinitrotoluene	490	4.08	20.0	**	568	ND	86	28-145			
	4-Nitrophenol	638	2.85	70.0	**	568	ND	112	23-150			
)	N-Nitrosodi-n-propylamine	714	7.90	30.0	**	568	ND	126	31-161			
1	Pentachlorophenol	436	6.02	40.0	**	568	ND	77	3-159			
1	Phenol	635	8.81	30.0	**	568	ND	112	31-138			
	Pyrene	621	2.88	20.0	tt	568	10.7	107	30-152			
1	1,2,4-Trichlorobenzene	506	7.08	20.0	**	568	ND	89	39-134			
1	Surrogate: 2-Fluorophenol	470	-		n	568		83	25-121			
Ì	Surrogate: Phenol-d6	456		è	"	568		80	24-113			
۳.	Surrogate: Nitrobenzene-d5	473		error - married construction for an about consider		568	W-100. SECTION ASSESSMENT OF THE PR	83	-23-120-		The same the same of the same	
₹.	Surrogate: 2-Fluorobiphenyl	471			"	568		83	30-115			
)	Surrogate: 2,4,6-Tribromophenol	362			n	568		64	19-122	•		
3	Surrogate: Terphenyl-dl4	516			. "	568		91	18-137			4
ノト	Matrix Spike Dup (9111701-MSD1)		Sou	rce: 091138	37-01	Prepared &	& Analyze	ed: 11/17/0	09			
.)	Acenaphthene	597	5.12	20.0	ug/kg	568	ND	105	46-140	6	30	
Ŋ	4-Chloro-3-methylphenol	571	8.34	20.0	**	568	ND	101	42-139	5	30	
or.	2-Chlorophenol	593	6.48	20.0	**	568	ND	104	30-135	9	30	
)	Di-n-butyl phthalate	544	3.87	40.0	"	568	9.73	94	24-152	6	30	
`)	1,4-Dichlorobenzene	431	8.55	20.0	. "	568	ND	76	36-137	9	30	
	2,4-Dinitrotoluene	442	4.08	20.0	**	568	ND	78	28-145	10	30	
)	4-Nitrophenol	619	2.85	70.0	**	568	ND	109	23-150	3	30	
5	N-Nitrosodi-n-propylamine	647	7.90	30.0	"	568	ND	114	31-161	10	30	
أر	Pentachlorophenol	408	6.02	40.0	**	568	ND	72	3-159	7	30	
)	Phenol	587	8.81	30.0	**	568	ND	103	31-138	8	30	
- 1	Pyrene	555	2.88	20.0	n	568	10.7	96	30-152	11	30	
زر	1,2,4-Trichlorobenzene	471	7.08	20.0	۳.	568	ND	83	39-134	7	30	
Ì	Surrogate: 2-Fluorophenol	428			"	568		75	25-121			
٠,	Surrogate: Phenol-d6	409			"	568		72	24-113			
أرار	Surrogate: Nitrobenzene-d5	435			"	568		77	23-120			
`:	Surrogate: 2-Fluorobiphenyl	425			"	568		75	30-115			
./ 	Surrogate: 2,4,6-Tribromophenol	347			"	568		61	19-122			
Ĵ	Surrogate: Terphenyl-dl4	455			"	568		80	18-137			

Project Name: 27679010

EMA Log #: 0911387

TPH by EPA 8015C - Quality Control

Analyte	Result	MDL	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 9111737											
Blank (9111737-BLK1)					Prepared:	11/17/09	Analyzeo	i: 11/18/09			
Gasoline (C6-C10)	ND	4.0	10.0	mg/kg							
Diesel (C10-C28)	ND	4.0	10.0	II							
Extended Range HC (C28-C40)	ND	10.0	10.0	u							
Surrogate: 4-Bromofluorobenzene	47.5			"	50.0		95	75-129			
LCS (9111737-BS1)					Prepared	& Analyzo	ed: 11/17/	09			
Gasoline (C6-C10)	200	4.0	10.0	mg/kg	200		100	75-125			
Diesel (C10-C28)	511	4.0	10.0	II	500		102	75-125			
Surrogate: 4-Bromofluorobenzene	45.1			"	50.0		90	75-129			
LCS Dup (9111737-BSD1)					Prepared	& Analyze	ed: 11/17/	09			
Gasoline (C6-C10)	182	4.0	10.0	mg/kg	200		91	75-125	9	30	
Diesel (C10-C28)	475	4.0	10.0	n	500		95	75-125	7	30	
Surrogate: 4-Bromofluorobenzene	45.5			"	50.0		91	75-129			
Duplicate (9111737-DUP1)		Sou	rce: 091138	37-04	Prepared:	11/17/09	Analyzed	1: 11/18/09			
Gasoline (C6-C10)	ND	4.0	10.0	mg/kg		ND				30	
Diesel (C10-C28)	ND	4.0	10.0	tt.		ND				30	
Extended Range HC (C28-C40)	ND	10.0	10.0	. 11		ND				30	
Surrogate: 4-Bromofluorobenzene	50.4			"	50.0	·	101	75-129	***		
Matrix Spike (9111737-MS1)		Sou	rce: 091138	37-04	Prepared:	11/17/09	Analyzed	1: 11/18/09			
Gasoline (C6-C10)	212	4.0	10.0	mg/kg	200	ND	106	75-125			
Diesel (C10-C28)	497	4.0	10.0	***	500	ND	99	75-125			
Surrogate: 4-Bromofluorobenzene	49.5			"	50.0	······································	99	75-129			
Matrix Spike Dup (9111737-MSD1)		Sou	rce: 091138	37-04	Prepared:	11/17/09	Analyzed	i: 11/18/09			
Gasoline (C6-C10)	186	4.0	10.0	mg/kg	200	ND	93	75-125	13	30	
Diesel (C10-C28)	513	4.0	10.0	11	500	ND	103	75-125	3	30	
Surrogate: 4-Bromofluorobenzene	48.6			"	50.0		97	75-129			
·											

Client Name: URS Corporation EMA Log #: 0911387

Project Name: 27679010

Notes and Definitions

OR-04 The RPD between the sample and sample duplicate is not valid since both results are below the repo
--

QR-02 The RPD result exceeded the QC limits due to non-homogeneity of sample.

QM-4X The spike recovery was outside of the QC acceptance limits for the MS and/or MSD due to analyte concentration at 4 times or greater

the spike concentration. The QC batch was accepted based on LCS and/or LCSD recoveries within the acceptance limits.

QM-06 Due to noted non-homogeneity of the QC sample matrix, the MS/MSD did not provide reliable results for accuracy and precision.

Sample results for the QC batch were accepted based on LCS/LCSD percent recoveries and RPD values.

Detected but below the Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag).

ND Analyte NOT DETECTED at or above the reporting limit (or method detection limit when specified)

NR Not Reported

dry Sample results reported on a dry weight basis (if indicated in units column)

RPD Relative Percent Difference

MDL Method detection limit (indicated per client's request)

CHAIN-OF-CUSTODY RECORD

9 15.65

Analytical, Inc. —

EMA LOG #: 09/1387		1			434	0 Vie	wrid	ge Av	e., St	e. A	- San	Dieg	zo. C	A 92	123 -	Pho	ne (8	58) 5	60-7	717	Fax	(858)	560-	776藝	Û.	1670
Client: ULS Corporation					1								I	Rea	uest	ted	Ana	ılysi	s							
Attn: Robert Scott (PG)							G.											1	Ť					T	T	T
Samplers(s): Sam Haber					1	l	Nap	l							STLC		lved							- 1		
Address: 1615 Murray Comyon Rd	# 1000)		,	1		ď								D		Dissolved	Œ	E							
					2	۱			les)	ıyls	(\$	i '			$\mathcal{C}_{\mathcal{C}}$	ics	Q D	Σ	rati	l _e		1 1				
Phone: 619-294-9400	Fax;			 	n 1664	EX EX	MTBE	ıly	(Organochlorine Pesticides)	(Polychlorinated Biphenyls)	(Organophosphorus Pesticides)			-NH3	□ TTLC	Organics	Zn	o Fecal (MIFF)	n Enumeration	a Enterolen	_					1 1
Email: Sam_haber@urscorp.com	Re	bert-	200++6	D 45	77	<u></u>	H	I OI	e Pe	d B	est					۵ ر	1	J.F.	Fr	Ent	E	ide	.			1 1
Billing Address:		. 			4	n Diesel	BTXE	n PAH only	orin	nate	us }	ınd	□TDS	o TKN	[eta]	ais	Ag	ł	1	1	1t (F	Cyanide	. 1	- (
							B		chlo	lori	ohor	ıboı	[o T	7 M	□ Metals	ź	Ę	□ P/A	Ή	om					
Project ID:	·				413	Gas	524/8260 (VOC) Full	ହ	gano	ych	hos	IBT (Organotin Compounds)	□ TSS		22/CAM17 Metals	ā	Pb	□ Total (MTF)	1	o MTF	Heterotrophic Plate Count (HPC)		. 1		1	1 1
Project #: 27679010	PO #:				1 🏻		ĺŽ.	(SVOC)	Q.	Pol	dou	Ē	_ l	□ Nitrite	CA	٦		Tot	Colilert, T+E.Coli	l .	Pla Pla	g		1		
275110	10 ".	1	1	<u> </u>	Grease	(TPH)	Įξ	اچّا	Δ		rga	ong.	□ EC		\$ 22	22	ਹ	•	里	cus	वृत			- [-	
			l	1	15	Į Ĕ	182		1808) 809	(8082)	9	Q.		o Nitrate	CAC Title	CCLP (RCRA)	J	Coliform,	п, 1	Enterococcus,	tro		ıl			
Ciliana Garanta III				Container		8015B	4/8	625 /(827) 8	809	8141	3T (Hd o	Z:T	\C.	7	i	1 1 1 1	Jije	iter	ite (а ВОБ	,			
D# Client Sample ID	Date	Time	Matrix	# / Type	ĮΣ		6	126	9		81	E	D.	D		Ľ.	3	ŭ	ŭ	百	ĮĔ.	<u> </u>		 -	-	
1 PC-02-01.0	11/16/0	1000	5011	1/4	╄	忟	┡	1	X	X	<u> </u>	-			×		-	┡	├	ـــ	<u> </u>	\vdash	\vdash	\dashv	4	-
2 PC-02-05.0		1045		2/9	↓_	X	<u> </u>	X	Ϋ́	X				ļ	X	_	 	ļ	ļ	┞-	 _	<u> </u>			4	
3 PC-01-05.0		1100		1/3	↓_	1×	↓_		X			<u> </u>	<u> </u>	<u> </u>	X	<u> </u>	 	<u> </u>	<u> </u>	<u> </u>	<u> </u>	 	 	_	_	\perp
4 PC-01-10.0	V	1115	5011	119	↓_	X	<u> </u>	X	X	X				_	×		_	<u> </u>	<u> </u>	<u> </u>		igspace			\bot	\perp
5		<u> </u>	<u> </u>		igspace	1_	<u> </u>					<u> </u>		<u> </u>			L	L		<u> </u>	<u> </u>	igspace	\sqcup			
6 .		<u> </u>		<u> </u>	L		L	<u>L</u>											L		<u> </u>			\bot	丄	
7																										
8													Г				F			Π	Π		Π	\top	T	
9		1						T			Γ			Г					1				П	$\neg \vdash$	\neg	
10		1	T T		T	Т		1					1					1	T		1			\neg	_	
Matrix Codes: A = Air, DW = Drinking Water, GW = Groundwater	r. SW = Storm	Water			1			LINC							DA	TE/T	IME					RC	DV EI	ЭВҮ		
WW = Wastewater, S = Soil, SED = Sediment, SD = Solid, T = Tist	ue, O = Oil, I.	. = Liquid			Sign	nature					٦.			N	/16	109	1		Sign	aldre	$\Box Z$		<u> </u>			
Shipped By: @ Courier @ UPS @ FedEx @ USPS Client Dr					Prin	ı S	an	· H	abe	er									Prin	N	at	12	<u> 24</u>	cly	<u> </u>	
"Turn-Around-Time: 🗆 Same Day 🗅 24 hr 🗆 48 hr 🗀 3 day 🗀 4	day 🗅 5 day	XSTD (7	day)		Cor	npany:	UK	۲2	Ce	~P	Marie II and Alexander		ingline), y a la	U	537		ini wando	and the same age.	Con	pany:		> V	W	magaje vista anaziria	a de constantes de la constante	
Reporting Requirements: DFax >PDF X Excel DGcotracke	r/EDF o Har	d Copy DE	DT		Sign	nature													Sign	ature						
Sample Disposal: By Laboratory 12 Return to Client: P/U or	Delivery 13 A	Archive			Prir	nt													Prin	t						
Sample Integri	ty				Cor	npany:		in and the second	energale :	o and the second	elie austage	war arraig			corane la	erajo e jiras	n en en en en en en	n nine was making	Con	npany			and the same of	March March		K livering and the live
Correct Containers (Yes No N/A	Container	s Properly Pr	eseved: Ye	s No N/A	Sign	nature								1					Sign	aturc						
Custody Seals Intact (Yes) No N/A	Temp@F				Prir														Prin							
COC/Labels Agree (Yes) No N/A	Sampled I	By: Client E	MA Autos	ampler	Cor	npany:	:	at the same				-	-					. 200100	Соп	npany		· ·		Managara and and		200 00 00 00 00 00 00 00 00 00 00 00 00
Project/Sample Comments:																						2				
											11	°C	_													1
											1 (. C	W	} {	R										
f																_										,

^{&#}x27;Additional costs may apply, consult a project manager for details

¹EMA reserves the right to return any samples that do not match our waste profile.

NOTE: By relinquishing samples to EMA, Inc., client agrees to pay for the services requested on this COC form and any additional analyses performed on this project. Payment for services is due within 30 days from date of invoice. Samples will be disposed of 7 days after report has been finalized unless otherwise noted. All work is subject to EMA's terms and conditions