Nautilus Environmental

E.

Stormwater Toxicity Test Results for: Regional Water Quality Control Board San Diego, CA

February 14, 2008 Storm Event

Prepared for:

MACTEC Engineering & Consulting, Inc. 9177 Sky Park Court, Suíte A San Diego, CA 92123

Prepared by:

Nautilus Environmental 5550 Morehouse Drive, Suite 150 San Diego, CA 92121 (858) 587-7333

Submitted: May 19, 2008

Data Quality Assurance:

- Nautilus Environmental is a state-certified laboratory under the California Department of Health Services Environmental Laboratory Accreditation Program (ELAP), Certificate No. 1802.
- All test results included in this report have met internal Quality Assurance requirements, as well as all minimum EPA protocol acceptability criteria for test controls.
- All data have been reviewed and verified.

/erified by:	Chin Stut	Date: 5/19/08
	V	

Enclosure (5)

INTRODUCTION

An acute screening level toxicity test using the mysid shrimp, *Americamysis bahia,* was performed to evaluate the quality of stormwater runoff at one location from the San Diego Regional Water Quality Control Board (RWQCB) parking lot. The sample was collected during a storm event that occurred on February 14th, 2008. Testing was conducted at Nautilus Environmental (Nautilus) in San Diego between February 15th and 19th, 2008.

MATERIALS AND METHODS

The study was performed in accordance with the U.S. EPA protocol "Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms" (EPA/821/R-02/012, October 2002).

TEST MATERIAL

Test material consisted of one stormwater grab sample collected from the RWQCB parking lot in San Diego, CA (Sample ID 7975). Sample collection was performed by MACTEC personnel. Test results are provided in Table 1 and Appendix A. The sample was collected in a 4-L high-density polyethylene cubitainer and delivered to Nautilus in an insulated ice chest containing wet ice on the day of sample collection.

Immediately upon arrival at Nautilus, a photograph was taken for descriptive purposes (Appendix C), and an aliquot of the sample was drawn for measurements of pH, dissolved oxygen (DO), conductivity, temperature, salinity, alkalinity, and hardness (Appendix B). Temperature, conductivity, and salinity were measured with an Orion 130 meter. The DO was measured using a YSI 55 meter, and an Orion 250A+ meter was used to measure pH. Alkalinity (Hach Method 8203) and hardness (Hach Method 8213) were checked using a Hach digital titrator (Model 16900). Artificial sea salts (Crystal Sea Marine Mix®) were added to the sample to raise the salinity to 30 ppt. Salt addition was necessary because stormwater is discharged to a marine environment, which requires use of a marine test species. The sample was received on the day of sample collection and stored at 4°C until they were used for testing the following day. Appropriate chain-of-custody (COC) procedures were followed during all phases of this study (Appendix E).

· _ z

LABORATORY CONTROL WATER

Prior to test initiation, artificial saltwater (Crystal Sea Marine Mix® sea salts mixed into deionized lab water) was prepared and used as a salt control to ensure that any toxicity observed in the sample could not be attributed to the use of artificial sea salts. Consistent with EPA methods, all test results were statistically compared to the salt control, as this best mimics procedures performed on the samples themselves (EPA 2002). A natural seawater (lab) control was also tested for quality assurance purposes and as a measure of the overall organism health. The lab control seawater was obtained from the Scripps Institution of Oceanography intake system in La Jolla, CA. The seawater is held in a re-circulating system with an in-line 20-µm fiber filter and a chiller unit. The salinity of the lab control water was reduced from 34 to 30 ppt (using deionized water) to match the salinity of the test material and the salt control.

TEST ANIMALS

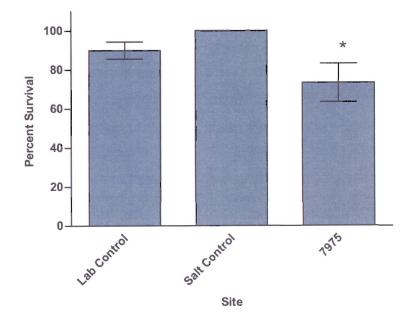
Mysid shrimp (*Americamysis bahia*) were purchased from Aquatic Biosystems of Fort Collins, Colorado. Animals were placed in plastic bags containing air-saturated saltwater, packed in an insulated container, and shipped to Nautilus by overnight delivery service. Upon receipt, each batch of test animals was acclimated to the proper test temperature ($25 \pm 1^{\circ}$ C) and salinity (30 ppt) prior to test initiation. Test organisms were received the same day as testing and were allowed several hours to acclimate prior to test initiation. The organisms were 5 days old at test initiation.

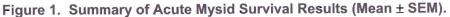
ACUTE SCREENING BIOASSAYS

The test design consisted of six replicates with five organisms each, for a total of 30 organisms per sample. The sample was tested undiluted along with the associated laboratory and artificial salt control. Continuous light aeration was applied, which was required to ensure adequate dissolved oxygen levels to support the test organisms. Test chambers consisted of 350-ml plastic cups each containing 200 ml of test solution. Test solutions were acclimated to $25 \pm 1^{\circ}$ C, and five organisms were added to each test chamber. A second technician verified the counts and condition of the animals following initiation. Organisms were fed approximately ten *Artemia* nauplii per mysid twice per day. The test was conducted in an environmental chamber maintained at $25 \pm 1^{\circ}$ C over a period of 96 hours under static-renewal conditions; an eighty percent renewal of the test solutions was performed at 48 hours. The sample was arranged on a shelf rack within the environmental chamber. Observations were made at 48 hours to determine

the number of surviving organisms; dead mysids and excess food were removed from the test chambers to prevent any negative effects on water quality. The test was monitored daily for pH, DO, salinity, and temperature. Raw bench sheets containing mortality and water quality measurements are provided in Appendix B.

DATA ANALYSIS AND REPORTING


Sample 7975 was associated with a single salt control arranged on its same shelf, against which statistical comparisons were performed. The use of statistical comparisons to infer an effect relative to a control (hypothesis testing) is consistent with EPA whole effluent toxicity testing protocols and guidance (EPA 2002). This also provides a consistent methodology that takes into account control performance for a given test.


Survival data, expressed as a proportion, was arcsin square-root transformed prior to analysis to normalize the distribution of the data and satisfy statistical assumptions for analysis. Following transformation, homogeneity of variance was evaluated using the F test. An unpaired one-tailed Student's t-test was performed between the salt control and the sample. Due to unequal variance, the t-test was performed using Welch's correction (Zar 1984). Statistical analyses were performed using GraphPad Prism software, Version 4.02. The test were considered statistically significant if the p value was less than or equal to 0.05.

RESULTS

Mean survival and statistical differences from control are presented in Figure 1. Error bars display standard error of the mean (SEM). Numerical summaries are provided in Table 1 and Appendix A. Raw datasheets are located in Appendix B.

Mean survival was 73 percent, and was statistically reduced relative to its respective salt control with a mean of 100 percent survival.

* Asterisk indicates a statistically significant decrease compared to salt control (Student's one-tailed ttest, p≤ 0.05).

Table 1. Mean Survival Relative to Control and Statistical Summary of Results

Site Outfall # (Mactec ID)	Mean Percent Survival	% of Salt Control	p value	Statistically Reduced from Salt Control ^a
1 (7975)	73	73	0.017	Yes

^a Student's one-tailed t-test, p≤ 0.05.

QA/QC

The sample was received within an appropriate temperature range and was initiated within 36-hours of sample collection. The natural seawater and artificial salt controls both met the minimum test acceptability criterion of 90 percent mean survival.

A few minor QA/QC deviations from EPA and internal protocols that took place during testing were noted. A thorough review of the data and test procedures did not identify any likely or foreseeable impacts on test results as a result of these deviations; therefore all data were deemed acceptable for reporting purposes. Explanations of specific QA/QC deviations are provided below.

- The sample temperature on the second day of testing, 23.7°C, fell just below the recommended range of 25 ± 1°C. The temperature was immediately adjusted to quickly bring this parameter back within protocol range.
- Due to heavy debris, accurate daily counts were not possible at 24 and 72 hours. Counts at 48 hours were possible due to the removal of solution during the renewal process.

Reference Toxicant Test

A concurrent reference toxicant test using copper chloride $(CuCl_2)$ was conducted to assess the health of the test organisms and soundness of procedures. Mean control survival was 90 percent. A median lethal effect concentration (LC50) of 229 micrograms per liter (µg/L) copper was determined using the Trimmed Spearman-Karber method. This LC50 value is within internal control chart limits of ± two standard deviations (Appendix D). This indicates that the test organism sensitivity was similar to that of organisms historically tested at Nautilus.

REFERENCES

EPA 2002. Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms. EPA/821/R-02/012, October 2002.

GraphPad Software Inc. 1992-2004. GraphPad Prism, Version 4.02.

Zar 1984. Biostatistical Analysis, Second Edition. Prentice-Hall Inc., New Jersey. 718pp.

APPENDIX A

Survival Raw Data Summaries

MACTEC - Navy Stormwater Program - 2008 Toxicity Test Raw Data Summary

RWQCB San Diego

Sample Collected: 2/14/2008 Test Initiated: 2/15/2008

Mysid Shrimp *(Americamysis bahia)* 96-hour Acute Survival

Site Outfall # (Mactec ID)	Replicate	No. Alive	Percent Survival	Mean Percent Survival	% of Salt Control		
	A	5	100				
	В	5	100				
Natural Seawater	С	5	100	00	00		
Control #3	D	4	80	90	90		
	E	4	80				
	F	4	80				
	A	5	100				
	В	5	100				
Salt Control #1	С	5	100	100	NIA		
Sur Sontor in t	D	5	100	100	NA		
	E	5	100				
	F	5	100				
	A	3	60				
	В	3	60				
OF1 (7975)	С	5	100	70	70		
011(1010)	D	5	100	73	73		
	E	4	80				
	F	2	40				

APPENDIX B

Raw Data Sheets and Water Quality

Nautilus Environmental 5550 Morehouse Drive, Suite 150 San Diego, CA 92121

Client: MACTEC - Nav	y Stormwater	Tests Perform	ned: Acute	Mysil		Sample Descriptions:
Project: RWQCB Parki	relat		(s): 0802	/		1)
						2)
Sample ID:	1) 7975 2)	3)	4)	5)	6)	3)
Log-in No. (08-xxxx):	the second secon					4}
Sample Collection Date & Time:	2/14/08 1250					5)
Sample Receipt Date & Time:	2/14/08 2100					6)
Check-in Temp (°C)	19-811.4	3				
DO (mg/L)	6-27 9.8					COC Complete? Y N
pH (units)	6.24					Filtration? Y (N)
Conductivity (µS/cm)	(1)					Pore Size:
Salinity (ppt)	0.1					Organisms or Debris
Alkalinity (mg/L)*	13					Aeration? (D) N Tests conducted
Hardness (mg/L)* *	21					Length of Time:
Total Chlorine (mg/L)	-					Final DO:
Technician Initials	PA					Final pH:
	* = mg/L as CaCO ₃	*= Measured for freshw	ater samples of	nly, NA = Not A	pplicable	pH Adjustment? Y
						Initial pH:
Freshwater Tests:						Final pH:
Control/Dilution Water Source: 8:2	Culligan C	lher;	Alkalinity:	н	ardness:	Cl ₂ Adjustment? Y N
Additional Control? Y N					ardness:	
Marine Tests:	***					
Control/ Dilution Water Source: LAB SW	ART SW)	Other	Alkalinity	124	Salinity: 30ppt	() (i f yes, list free Ci () (i f yes, list
Additional Control? (V) N	= Lab Cont	0			Salinity: 30 ppt	O popp 3) 4)
Sample Salted w/ artificial salt?	If yes, what ppt?	30 ppt			11	s s s s)
Sample salted w/brine? Y	If yes, what ppt?					e)
						Sub-samples for additional chemistry:
Comments: Temperature for sample must b	e 0-6°C if received >	24 hours past collection tir	ne.			
QC Check: <u>QB 3 25 08</u>						Final Review: 12/2/0/08

Water Quality Measurements & Test Organism Survival

Client: Mactec	Test Species: A. bahia				Tee	ch Initi	ials	
Sample ID: RWQCB Stormwater	Start Date/Time: 2/N/08	1430		0	24	48	72	96
Test No.: 0802-5078	End Date/Time: 2/15/08	1530	Counts:	ES	-	E6	-	KF
			Readings:	JR	AL	E6	ES	KF

Concentration	Rep			ber o ganis				ş	Salinit (ppt)	У			Ten	npera (°C)	ture				lved C (mg/L		n			pH (units)	
10070		0	24	48	72	96	0	24	48	72	96	0	24	48	72	96	0	24	48	72	96	0	24	48	72	96
Lab Control	A	5	~	5	-	5	300	30,3	30.0	30.0	25,1	24.6	25.1	24.3	24,9	25.6	6.9	6.1	5,2	7.7	7.6	7.87	7.63	77.4	3,02	8.11
#3	в	5	-	5	-	2			30.3					25.1					6.5					8.11		
	С	5	-	5	-	4																				
	D	5	-	5	-	4																				
	Е	5	-	4	-	4																				
	F	5	-	5	-	4								24.6												
Salt Control	A	5	-	5	-	5	50.0	50.3	500	30.3	29.9	245	24 .8	3.0	24.4	24,6	76	6.4		8.0	7.4	8,13	7.82		7.93	7.94
#1	В	5	-	5		5			305					24.0					6.8					3.97		
	С	5	~	5	-	5																				
	D	5	-	5	-	5																				
	E	5	-	5	-	5																				
	F	5	-	2	-	5																				
7975	Α	5	-	4	-	3	29.4	25.3	25,1	29.3	25:4	24.9	24,4	24.9	24.4	24.8	8.4	6.1	43	7.9	7.3	8:27	7.81	8.18	7.94	7.91
OF1	В	5	-	4	-	3			25.7					23.76					6.4					3.25	1	
	С	5	-	5	-	5																				
	D	5	-	5	-	5																		ļ		ļ
	E	5	-	4	-	4			1																	
-	F	5	-	2	-	2																				
	A			1					٤					1					1					1		ļ
	В								Ľ					1					f					1		
	С																									
	D																						ļ			<u> </u>
	E																									
	F																								ļ	-
	A								ľ					1					1					ľ		
	В			1					1				L	1	_									ľ		
	С											<u> </u>														
	D			-					ļ		-						ļ			ļ						
	E							<u> </u>		-		ļ	ļ										-			-
	F											1									1					

Animal Source/Date Received: $ABS \frac{2}{15}/08$ Age at Initiation: 5 dgys

Comments:

QC Check:

I = initial reading in fresh test solution, f = final reading in test chamber prior to renewal temp slightly below range, lamps turned on

Feeding Times 24 48 72 0 96 0915 0830 0505 0820 AM: _ PM: 1500 16NT 1825 1330

E6 3/26/01

Nautilus Environmental, LLC. 5550 Morehouse Drive, Suite 150. San Diego, CA 92121.

Final Review: KL 3/26/08

APPENDIX C

Sample Photographs

APPENDIX D

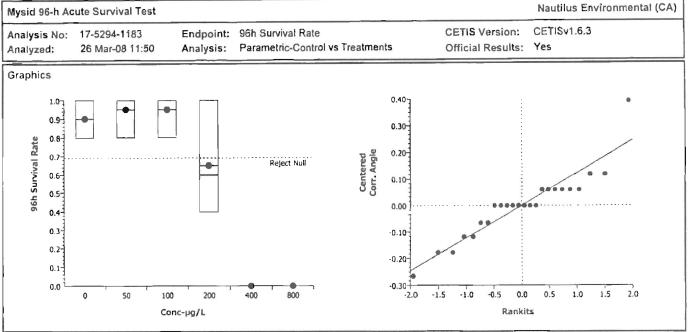
Reference Toxicant Results

CETIS Summary Report

26 Mar-08 11:51 (p 1 of 1) Report Date: Link/Link Code:

18-0802-2158/080215myra

Mysid 96-h Ac	ute Survival Te	st							Nautilu	s Environ	mental (CA)
Start Date:	10-0468-7179 15 Feb-08 21:0 19 Feb-08 22:0 4d 1h		Test Type: Protocol: Species: Source:	Survival (96h) EPA/821/R-02 Americamysis Aquatic Biosys	bahia	-	Anal Dilu Brin Age:	ent: e:	Diluted Natural Not Applicable 5 d	Seawater	
Sample No: Sample Date: Receive Date: Sample Age:	15 Feb-08		Code: Material: Source: Station:	080215myra Copper chlorid Reference Tox Copper Chlorid	ticant		Clier Proj		Internal		
Comparison S Analysis No 17-5294-1183	Summary Endpoint 96h Survival R	ate		NOEL 100	LOEL 200	TOEL 141	PMSD 23.4%	Metho	od ett's Multiple Cor	mparison T	est
Point Estimate Analysis No 01-7966-3647	Endpoint	ate		Effect-%	Conc-µg/L 229	95% LCL 199	95% UCL 264		od ned Spearman-K	(ärber	
96h Survival F	Rate Summary										
Conc-µg/L	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std E	rr Std Dev	CV%	Diff%
0	Lab Control	4	0.9	0.857	0.943	0.8	1	0.021	1 0.115	12.8%	0.0%
50		4	0.95	0.913	0.987	0.8	1	0.018	3 0.1	10.5%	-5.56%
100		4	0.95	0.913	0.987	0.8	1	0.018	3 0.1	10.5%	-5.56%
200		4	0.65	0.556	0.744	0.4	1	0.045	9 0.252	38.7%	27.8%
400		4	0	0	0	0	0	0	0		100.0%
800		4	0	0	0	0	0	0	0		100.0%
96h Survival F	Rate Detail										
Conc-µg/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4						
0	Lab Control	0.8	0.8	1	1						
50		1	1	1	0.8						
100		1	1	1	0.8						
200		0.4	0.6	0.6	1						
400		0	0	0	0						
800		0	0	0	0						


Analyst: 56 QA: 1/4 730/08

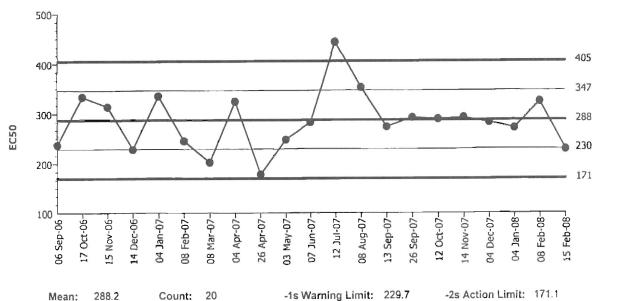
CETIS Ana	alytical Rep	ort			Report Date: 26 Mar-08 11:51 (p 1 of 2) Link/Link Code: 18-0802-2158/080215myra						
Mysid 96-h A	cute Survival To	est							Nautilu	s Environ	mental (CA)
Analysis No: Analyzed:	17-5294-1183 26 Mar-08 11:	50		ametric-Co		atments		TIS Version: icial Results		1.6.3	
Data Transfo	orm	Zeta	Alt Hyp	Monte Ca	lo	NOEL	LOEL	TOEL	TU	PMSD	
Angular (Corr	ected)		C > T	Not Run		100	200	141	1	23.4%	
Dunnett's Mi	ultiple Comparis	on Test	1								
Control	vs Conc-µg	g/L	Test Stat	Critical	MSD	P-Value	Decision	(5%)			
Lab Control	50		-0.582	2.41	0.246	0.9500	Non-Sign	ificant Effect			
	100		-0.582	2.41	0.246	0.9500	Non-Sign	ificant Effect			
	200°		2.7	2.41	0.246	0.0286	Significar	nt Effect			
	400*		9.78	2.41	0.246	0.0000	Significar	nt Effect			
	800*		9.78	2.41	0.246	0.0000	Significar	nt Effect			
ANOVA Tabl	e										
Source	Sum Sq	uares	Mean Square	DF	F Stat	P-Value	Decision	(5%)			
Between	5.23890	3	1.047781	5	50.1	0.0000	Significar	nt Effect			
Error	0.37656	33	0.0209202	18			_				
Total	5.61546	7	1.068701	23							
ANOVA Assu	umptions										
Attribute	Test			Test Stat	Critical	P-Value	Decision	(1%)			
Variances	Mod Lev	ene Equ	ality of Varianc	1.36	4.25	0.2860	Equal Va	riances			
Distribution	Shapiro	Wilk No	rmality	0.893		0.0153	Normal D	listribution			
96h Survival	Rate Summary										
Conc-µg/L	Control Type	Count	t Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
0	Lab Control	4	0.9	0.856	0.944	0.8	1	0.0214	0.115	12.8%	0.0%
50		4	0.95	0.912	0.988	0.8	1	0.0186	0.1	10.5%	-5.56%
100		4	0.95	0.912	0.988	0.8	1	0.0186	0.1	10.5%	-5.56%
200		4	0.65	0.554	0.746	0.4	1	0.0467	0.252	38.7%	27.8%
400		4	0	0	0	0	0	0	0	29.170	100.0%
800		4	0	0	0	0	0	0	0		100.0%
Angular (Cor	rrected) Transfo	rmed S	ummary								
Conc-µg/L	Control Type	Count		95% LCL	95% UCL	Min	Max	Std Err	Std Dev	C)/9/	D:669/
0	Lab Control	4	1.23	1.17	1.28	1.11	1.35	0.0255	0.137	CV%	Diff%
50		4	1.29	1.24	1.33	1.11	1.35	0.0255	0.137	9.26%	
100		4	1.29	1.24	1.33	1.11	1.35	0.0221	0.119		-4.86%
200		4	0.951	0.844	1.06	0.685	1.35			9.26%	-4.86%
400		4	0.226	0.226	0.226	0.885		0.0519	0.28	29.4%	22.5%
800		4	0.226	0.226	0.226		0.226	0	0	0.0%	81.6%
			0.220	0.220	U.220	0.226	0.226	0	0	0.0%	81.6%

18-0802-2158/080215myra

Analyst: 25 0A: 144/30/08

CETIS Anal	ytical Rep	ort						ort Date: /Link Code:			1:51 (p 1 of 1) 8/080215myra
Mysid 96-h Acu	ute Survival T	est							Nautilu	s Enviro	nmental (CA)
Analysis No: Analyzed:	01-7966-3647 26 Mar-08 11			ih Survival Ri immed Spea		51		IS Version: ial Results		.6.3	
Spearman-Kärl	ber Estimates	5									
Threshold Opti	ion	Threshold	Trim	Mu	Sigma		EC/LC50	95% LCL	95% UCL		
Control Thresho	bld	0.1	0.00%	2.36	0.031		229	199	264		
96h Survival R	ate Summary	1			Calc	ulated Varia	ate(A/B)				
Conc-µg/L Co	ontrol Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	Diff%	A	в
0 La	b Control	4	0.9	0.8	1	0.0211	0.115	12.8%	0.0%	18	20
50		4	0.95	0.8	1	0.0183	0.1	10.5%	-5.56%	19	20
100		4	0.95	0.8	1	0.0183	0.1	10.5%	-5.56%	19	20
200		4	0.65	0.4	1	0.0459	0.252	38.7%	27.8%	13	20
400		4	0	0	0	0	0		100.0%	0	20
800		4	0	0	0	0	0		100.0%	0	20
96h Survival R	ate Detail										
Conc-µg/L Co	ontrol Type	Rep 1	Rep 2	Rep 3	Rep 4						
	b Control	0.8	0.8	1	1		-				
50		1	1	1	0.8						
100		1	1	1	0.8						
200		0.4	0.6	0.6	1						
400		0	0	0	0						
800		0	0	0	0						
Graphics 1.0 0.9 0.8 0.8 0.8 0.8 0.8 0.8 0.6 0.5 0.5 0.5 0.5 0.5 0.5 0.2 0.1 0.0 0.2 0.1 0.0 0.2 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	200	400 Conc-µg/L	600								

Analyst: EG 0A: 1/4.4/50/08


CETIS QC Plot

Mysid 96-h Acute Survival Test

Nautilus Environmental (CA)

Test Type: Survival (96h)	Organism:	Americamysis bahia (Opossum Shri	Material:	Copper chloride
Protocol: EPA/821/R-02-012 (2002)	Endpoint:	96h Survival Rate	Source:	Reference Toxicant-REF

Mysid 96-h Acute Survival Test

Mean:	288.2	Count:	20	-1s Warning Limit:	229.7	-2s Action Limit:	171.1
Sigma:	58.54	CV:	20.30%	+1s Warning Limit:	346.7	+2s Action Limit:	405.3
Quality Control Data							

Point	Year	Month	Day	QC Data	Delta	Sigma	Warning	Action	Link No	Analysis No
1	2006	Sep	6	238.1	-50.07	-0.8554			10-7601-4711	07-9688-3591
2		Oct	17	334.4	46.15	0.7884			03-8653-6688	07-4968-0172
3		Νον	15	314.7	26.47	0.4522			17-1105-8528	08-4548-2558
4		Dec	14	229.7	-58.46	-0.9986			19-6835-8485	06-1310-3313
5	2007	Jan	4	336.4	48.16	0.8227			07-8571-0243	08-0025-8153
6		Feb	8	246.2	-41.97	-0.717			00-6682-2702	04-7122-7536
7		Mar	8	203.7	-84.52	-1.444	(-)		03-8099-5618	15-0422-2541
8		Apr	4	324.9	36.7	0.6269			07-2249-3404	04-5480-1590
9			26	179.4	-108.8	-1.859	(-)		13-0264-0673	13-6748-2170
10		May	3	248.6	-39.65	-0.6772			11-0913-6772	15-8109-4996
11		Jun	7	282.8	-5.357	-0.09152			17-7607-2134	18-3456-9207
12		Jul	12	443.8	155.6	2.658	(+)	(+)	11-8980-4154	20-4540-7224
13		Aug	8	353.2	64.96	1.11	(+)		21-4360-0746	04-5371-7203
14		Sep	13	273.8	-14.4	-0.246			19-0570-1682	20-6165-5813
15			26	292.8	4.617	0.07887			05-2902-0147	04-6896-2913
16		Oct	12	289.9	1.672	0.02856			06-6710-9548	05-8627-2723
17		Nov	14	293.1	4.877	0.08332			16-4362-8020	12-3241-5879
18		Dec	4	282.8	-5.357	-0.09152			21-3723-5303	10-0331-7759
19	2008	Jan	4	271.5	-16.66	-0.2846			17-3829-5557	01-4160-5576
20		Feb	8	324.9	36.7	0.6269			17-6573-0671	11 -0 587-1515
21			15	229.2	-59.03	-1.008	(-)		18-0802-2158	01-7966-3647

Analyst: EC 0A: Nir4/50/08

Water Quality Measurements & Test Organism Survival

Client: Internal	Test Species: A. bahia	Tech Initials
Sample ID: CuCl ₂	Start Date/Time: 2/15/2008 00	0 24 48 72 96 4
Test No.: 080215myrQ	End Date/Time: 2/19/2008 2200	Counts: NH AHSC ES
NA		Readings: ACNA 26 ES AT
		A

Concentration (µg/L)	Rep			ber o ganis				ļ	Salinit (ppt)	у		8	Ter	npera (°C)	ture				lved O (mg/L		n			pH (units)	
		0	24	48	72	96	0	124	48	72	96	0	24 ·	48	72	96	0	24	48	72	96	0	24	48	72	96
Lab Control	A	5	5	5	5	4	30.1	30.0	349	19.0	85	246	સ્મય	254	249	252	10	6.3	7.8	70	7.0	7.72	770	775	771	7.8
	В	5	B	4	ч	4			300	*~	~7.	-		24.9					64		ľ			7.de		
	С	5	5	542	5	5											1									
	D	5	5	5	5	5											1									
50	A	5	5	5	5	5	39.4	29.6	30,0	29.0	287	94.3	250	252	249	25.2	72	62	17.8	7.1	7.4	774	7.75	3.74	?74	78
	В	5	5	5	5	5			298					25.2	N.				4.7				and the owner of the local division of the l	5 102		
	С	5	9	5	5	5							1		١											
	D	5	5	4	4	4												**	-							
100	Α	5	5	5	5	5	298	29.6	¥1.6	24.0	28.5	24.5	250	245	250	25.2	7.0	6.3	7.7	7.2	7.6	1.73	7,76	7.80	776	7.80
	в	5	5	5	5	5			29.6					253					47					5.45	-	
	С	5	5	5	5	5										-			Ì							
	D	5	5	4	4	4																				
200	A	5	5	4	3	2	2-94	29.2	396	24.0	283	245	25.0	254	25.0	25.1	$\overline{1}$	6.3	178	74	7.5	279	7.70	1.750	776	7.89
	В	5	4	3	3	3			29.4					\$5.3					49					17.06		
	С	5	5	3	3	3																		-		
	D	5	5	5	5	5																				
400	Α	5	3	0	-	-	2-8.8	28.7	29.1	29	-	249	250	25.7	250	-	73	64	17.8	7.2	-	7.73	7.76	7.78	775	-
	В	5	4	0	-	-			28.9					35.					5.3					5.75	1	
	С	5	4	1	0	-																				
	D	5	2	0	-	-							1	1				1								
800	A	5	3	0	-	-	278	27.7	18.1		_	25.1	25.1	251	-	-	7.3	6.5	17.7		-	7.69	7.7.4	271		~
	в	5	2	0	-	-			27.8					35.4					5.6					7.73		
	С	5	2	0	-	-													•							
	D	5	0	0	-	-									-											

Animal Source/Date Received: ABS 2/15/08

Age at Initiation: 5 days

Comments:

i = initial reading in fresh test solution, f = final reading in test chamber prior to renewal

* animals feed prortbiggithe initiation

Feeding Times 0 24 48 72 96 0415 830 805 0820 ____ AM: PM: 2100 1615 1815 1330

3/19/08 DF QC Check:

Nautilus Environmental, LLC. 5550 Morehouse Drive, Suite 150. San Diego, CA 92121.

Final Review: MA

APPENDIX E

100

Chain-of-Custody Forms

\bigcirc
[I]
H
9
I

CHAIN OF CUSTODY

MACTEC Engineering and Consulting, Inc. • 9177 Sky Park Court. Sunte A. • San Diego, CA. 92123. • Phone: (858) 278-3600. • FAX: (858) 278-3300

			Project Information	rmation			Sampling Information	nformation			
- <i>L</i>	Laboratory Name of Fa	y <u>N</u> acility R	aboratory Nautilus Vame of Facility RWQCB Parking Lot	Lot		Description <u>Storm</u> Sample Matrix <u>Water</u>	Water Sa	Team Number Team Leader's	Feam Number 1 Feam Leader's Initials JEU	EW	
ŝ.	ample ID	Outfall	Sample ID Outfall Sample Date Sample Time	Sample Time		Analysis Required	Required	~	Container Type Preservative	Preservative	
<	7975	-	2/14/2008	12:50	Acute Toxicity				HDPE 4-L cube	None	

Time Time Relinquished by: Received by: Name Date Date and and 200 2100 is , Received by: NameOurrs_Strangy Signature CALLAR Relinquished by: CALLAR Name All IC SHIRR 21 Signature Date 2/14/09 Time Time Date 2-14-08 CHARLE OF 2000 Time 2000 Signature Time Received by: NameS ROLES SHIRNER Signat Date 2/14/08 Relinquished by HI 80/H/HOma NanJENNICH

Comments

 $\lambda = \chi$

Ŧ