

State Water Board Resolution 92-49

Alternative cleanup levels must achieve:

"The best water quality which is reasonable... considering all demands made and to be made on these waters and the total values involved..."

What will adopting this Order accomplish?

Remove 143,000 cubic yards 15 acres dredge footprint

11

Estimated Mass Removed

COC	Pounds	
Copper	114,400	
Mercury	500	
HPAHs	2,860	
PCBs	420	
Tributyltin	210	
Arsenic	4,800	
Cadmium	370	
Lead	33,000	
Zinc	134,200	

Environmental Impact Report

Identified potential impacts Proposed mitigation measures Unavoidable air quality impacts Overriding considerations

Primary COCs	Pre- Remedy Maximum	Post Remedy Maximum	Percent Reduction
Cu (mg/kg)	1,500	320	79%
Hg (mg/kg)	4.5	2.1	53%
HPAH (µg/kg)	52,000	15,850	70%
PCB (µg/kg)	5,450	495	91%
TBT (μg/kg)	3,250	410	87%

Secondary Pre-Remedy Post Remedy Percent **Maximum Maximum Reduction** COCs

As (mg/kg)	73	18	75%
Cd (mg/kg)	3.2	0.46	86%
Pb (mg/kg)	430	100	77%
Zn (mg/kg)	3,450	390	89%

How do we verify the cleanup has been achieved and maintained?

- **1.** Water Quality Monitoring
- **2.** Disposal Monitoring
- **3.** Sediment Monitoring

Water quality monitoring

COLUMN TWO IS

Inner Silt Curtain

Sediment monitoring

Dredging Decision Rules

- Above 120%, re-dredge area and sample
- Below 120%, dredging can stop for that area
 - If no sample due to hard substrate, dredging can stop for that area

120 % Decision Rule does not determine Alternative Cleanup Level compliance

Not a loophole
Merely field guidance
Successfully applied

Post Remedial Verification Monitoring "Heart and Soul of the CAO" •2 years •5 years 10 years if needed

Post Remedial Verification Monitoring

Remediation Goals

Sediment chemistry below SS-MEQ and 60%LAET thresholds

Post Remedial Verification Monitoring

Remediation Goals – Aquatic Life

 Toxicity not significantly different from conditions at the reference stations **Post Remedial Verification Monitoring**

Remediation Goals – Wildlife and Human Health

 Bioaccumulation levels below the pre-remedial levels **Post Remedial Verification Monitoring**

Remediation Goals – Wildlife and Human Health

 Site-wide SWACs are below trigger concentrations

 Trigger concentrations equal the 95% Upper Confidence Level of the predicted postremedial SWACs
Post Remedial Verification Monitoring

SWAC Trigger Concentrations

	Post-Remedial	95% UCL
Primary COC	SWACs	Trigger
Copper mg/kg	159	185
Mercury mg/kg	0.68	0.78
HPAHs µg/kg	2,451	3,208
PCBs μg/kg	194	253
TBT μg/kg	110	156

DTR Figure 33-3 Comparison of Post-Remedial SWACs to Background Sediment Chemistry Levels

Post Remedial Verification Monitoring

Will the cleanup result in the best water quality that is reasonable? (Resolution 92-49)

BENEFICIAL USE IMPAIRMENT

- **Aquatic Life**
- **Aquatic-Dependent Wildlife**
- Human Health

Fish

Birds

Benthic Community

Aquatic Life Beneficial Uses	Wildlife Beneficial Uses	Human Health Beneficial Uses
Estuarine Habitat (EST)	Wildlife Habitat (WILD)	Contact Water Recreation (REC-1)
Marine Habitat (MAR)	Preservation of Biological Habitats of Special Significance (BIOL)	Non-Contact Water Recreation (REC-2)
Migration of Aquatic Organisms (MIGR)	Rare, Threatened or Endangered Species (RARE)	Shellfish Harvesting (SHELL)
		Commercial and Sport Fishing (COMM)

REFERENCE CONDITION

NON-TRIAD DATA APPROACH

- Only sediment chemistry data
- 60% Lowest Apparent Effects Thresholds (LAETs)
- Site-specific Median Effects Quotient (SS-MEQ)

Aquatic Life

Cleanup Team's Triad assumptions protect beneficial uses

- Weighting on chemistry leg
- Bivalve larvae test
- Bioavailability

Possibly Impaired Stations

Sediment Chemistry	Toxicity	Benthic Community	Relative Likelihood of Benthic Community Impairment
Moderate	Moderate	Low	
Moderate	Low	Moderate	Possible
High	Low	Low	

Aquatic Life

Cleanup Team's Triad assumptions protect beneficial uses

- Weighting on chemistry leg
- Bivalve larvae test
- Bioavailability

Aquatic-Dependent Wildlife Risk Assessment

WILDLIFE TIER II RISK RESULTS

Aquatic-dependent wildlife beneficial uses are impaired:

"... ingestion of prey items caught within all four assessment units at the Shipyard Sediment Site poses an increased risk above reference to wildlife receptors other than the sea lion."

Wildlife

Cleanup Team's foraging area assumptions protect beneficial uses

RECEPTOR	CLEANUP TEAM'S AREA USE FACTOR	NASSCO/BAE AREA USE FACTOR
CA Brown Pelican		
CA Least Tern		
Western Grebe	100%	0.2-1%
Surf Scoter		
CA Sea Lion		
East Pacific Green Turtle		

Wildlife

Cleanup Team's effects threshold protects beneficial

uses

Low Adverse Effects Levels (LOAELs)

> No Adverse Effects Levels (NOAELs)

Anglers

Human Health Beneficial Uses

Contact Water Recreation (REC-1)

Non-Contact Water Recreation (REC-2)

> Shellfish Harvesting (SHELL)

Commercial and Sport Fishing (COMM)

RECEPTORS

- Recreational Anglers
 - Eat the fish and/or shellfish they catch recreationally
 - Subsistence Anglers
 - Fish for food for economic and/or cultural reasons
 - Fish and/or shellfish is major source of protein intake

Human Health Risk Assessment

HUMAN HEALTH TIER II RISK RESULTS

 Human health beneficial uses are impaired:

"... ingestion of fish and shellfish caught within all four assessment units at the Shipyard Sediment Site poses a theoretical increased cancer and non-cancer risk greater than that in reference areas to recreational and subsistence anglers."

Human Health

Cleanup Team's fishing area assumption protects beneficial uses

RECEPTOR	CLEANUP TEAM'S FRACTIONAL INTAKE	NASSCO/BAE FRACTIONAL INTAKE
Recreational Angler	100%	0.2 - 3.4%
Subsistence Angler	100%	0.2 - 3.4%

Cleanup Team's risk assumptions protect beneficial uses

- Subsistence anglers consume entire fish and shellfish
 - Maximum tissue chemical concentration used to estimate risk

MNA is not appropriate as the only remedy

Requires longer time frame
 Constituents and site

 activities not favorable
 No substantial evidence
 MNA will work

Receptor	Cu	Hg	HPAHs	PCBs	TBT	Pb	Zn
Brown Pelican	0.059	0.496		0.327			

Receptor	Cu	Hg	HPAHs	PCBs	TBT	Pb	Zn
Least Tern	0.100	0.138		0.415			0.309

Receptor	Cu	Hg	HPAHs	PCBs	TBT	Pb	Zn
Western Grebe	0.066	0.073		0.183			

Receptor	Cu	Hg	HPAHs	PCBs	TBT	Pb	Zn
Surf Scoter	0.272	0.084	0.265	0.059			

Receptor	Cu	Hg	HPAHs	PCBs	TBT	Pb	Zn
Green Turtle						0.245	

