ATTACHMENT 4

FLOW MINIMIZATION ALTERNATIVES

 THROUGH-SCREEN VELOCITIES \&LONG-TERM WEST BASIN WATER LEVEL ANALYSIS FOR ASSESSING TRESHOLD IMPINGEMENT EFFECTS OF REDUCED INTAKE FLOWS AT AGUA HEDIONDA LAGOON

FLOW MINIMIZATION ALTERNATIVES - THROUGH-SGREEN VELOCITY ASSESSMENT
existing intake pumps, screens and screen velocities

CHANNEL AND SCREEN VELOCITIES WITH ALL PUMPS IN OPERATION - TOTAL INTAKE FLOW OF 794.92 MGD

Channels for Units 1,2 \& 3		Total	Unit 1, 2 \& 3 Flow $=$		322.2	cfs	322.2 cfs (check)	
Channel Bottom Elevation =	-20		$\begin{array}{\|l\|} \hline \text { Low Tide } \\ \text { In-Channel } \end{array}$	Velocity $=$	1.20	fps	Low Tide Through-Screen Velocity $=$	2.10
Channel Width $=$	12.5		$\mathrm{R}=$					
Channel Depth $=$	25				5.7737839			
Water Depth in Channels (Low Tide)	10.73							
Water Depth in Channels (High Tide)	19.93							
			$\begin{aligned} & \text { High Tide } \\ & \text { in-Channe! } \\ & \hline \end{aligned}$	Velocity $=$	0.65	fps	High Tide Through-Screen Velocity $=$	1.13
Channel for Unit 4 Number of Screen Channels $=$	2	Total	Unit 4 Flow $=$		446.0	cfs	446 cfs (check)	
Channel Bottom Elevation =	-20		$\begin{aligned} & \text { Low Tide } \\ & \text { In-Channel } \end{aligned}$	Velocity $=$	1.88	fps	Low Tide Through-Screen Velocity $=$	3.29
Channel Width $=$	11.25		$\mathrm{R}=$		5.439			
Channel Depth $=$	25.75							

Water Depth in Channels (Low Tide)	10.53								
Water Depth in Channels (High Tide)	19.43								
			$\begin{aligned} & \text { High Tide } \\ & \text { In-Channel } \end{aligned}$	Velocity $=$	1.02	fps	$\begin{aligned} & \text { THigh Tide } \\ & \text { Through-Screen Velocily = } \end{aligned}$	1.79	
Channel for Unit 5 Number of Screen Channels =	3	Total	Unit 5 Flow $=$		463.84	cfs	463.84 cfs (check)		
Channel Bottom Elevation $=$	-20		$\begin{aligned} & \text { Low Tide } \\ & \text { In-Channel } \end{aligned}$	Velocity $=$	1.33	fps	Low Tide Through-Screen Velocity =	1.94	
Channel Depth $=$	27.75			$\mathrm{R}=$	6.407599706				
Water Depth in Channels (Low Tide)	10.33								
Water Depth in Channels (High Tide)	19.23								
				High Tide In-Channel	Velocity $=$	0.71	fps	High Tide Through-Screen Velocity $=$	1.04

OPERATIONAL CONDITION 2 - TOTAL INTAKE FLOW = 322.58 MGD

OPERATIONAL CONDITION 3 - TOTAL INTAKE FLOW = $\mathbf{3 2 8 . 3 3}$ MGD

OPERATIONAL CONDITION 5 - TOTAL INTAKE FLOW $=184.32$ MGD

Channel for Unit 5 Number of Screen Channels $=$	3	Total	Unit 5 Flow		231.74	cfs	231.92 cfs (check)	
Channel Bottom Elevation =	-20		$\begin{aligned} & \text { Low Tide } \\ & \text { In-Channel } \end{aligned}$	Velocity $=$	1.07	fps	$\begin{aligned} & \text { Low Tide } \\ & \text { Through-Screen Velocity = } \end{aligned}$	1.57
Channel Width $=$	11.25							
Channel Depth $=$	27.75			$\mathrm{R}=$	4.64017			
Water Depth in Channels (Low Tide)	6.40							
Water Depth in Channels (High Tide)	15.3							
			High Tide in-Channel	Velocity $=$	0.45	fps	\|High Tide Through-Screen Velocity $=$	0.66

OPERATIONAL CONDITION 4 - TOTAL INTAKE FLOW $=\mathbf{2 1 8 . 8 8}$ MGD

Unit 1,2 or 3 (Two Pumps) $=$	69.12 MGD	107.04 cfs
Unit 5 (One Pump) $=$	149.76 MGD	231.92 cfs
Total Pump Flow $=$	218.88 MGD	338.96 cfs

Channels for Units $1,2 \& 3$ Number of Screen Channels =	2
Channel Bottom Elevation =	-20
Channel Width =	12.5
Channel Depth =	25
Water Depth in Channels (Low Tide)	4.937 ft
Water Depith in Channels (High Tde)	13.837 fl

FLOW MINIMIZATION ALTERNATIVES - THROUGH-SCREEN VELOCITY ASSESSMENT
EXISTING INTAKE PUMPS, SCREENS AND SCREEN VELOCITIES

Power Plant Unit Number		mp Size		Maximum V Upstream	ocity (fps) Screens	Maximum Through	ocity (fps) Screens	Size	Screens Number		
	gpm	MGD	cfs	$\begin{aligned} & \text { High Tide } \\ & 4.83 \end{aligned}$	$\begin{aligned} & \text { Low Tide } \\ & -5.07 \end{aligned}$	High Tide 4.83	Low Tide -5.07	(in)			
Unit 1											
Pump 15	24,000	34.56	53.52								
Pump 1 N	24,000	34.56	53.52								
Total Pump Capacity Unit $1=$	48,000	69.12	107.04	0.7		1.2	2.1	3/8-Inches		2	1.75
Unit 2									Shared w/ Units 1\&2		
Pump 2 S	24,000	34.56	53.52								
Pump 2 N	24,000	34.56	53.52								
Total Pump Capacity Unit 2 =	48,000	69.12	107.04	0.7			2.1	3/8-inches		2	1.75
Unit 3									Shared w/ Units 1 \& 3		
Pump 3 S	24,000	34.56	53.52								
Pump 3 N	24,000	34.56	53.52								
Total Pump Capacity Unit 3 =	48,000	69.12	107.04	0.7		1.2	2.1	3/8-Inches		2	1.75
Unit 4									Shared wl		
Pump 4 E	100,000	144.01	223								
Pump 4 W	100,000	144.01	223								
Total Pump Capacity Unit $4=$	200,000	288.02	446	1.0		1.8	2.8	3/8-inches		2	1.75
Unit 5											
Pump 5E	104,000	149.76	231.92								
Pump 5 W	104,000	149.77	231.92								
Total Pump Capacity Unit 5 =	208,000	299.54	463.84	0.7	1.1	1.0	1.6	5/8-Inches		3	1.46

CHANNEL AND SCREEN VELOCITIES WITH ALL PUMPS IN OPERATION - TOTAL INTAKE FLOW OF 794.92 MGD

Channels for Units 1,2 \& 3 Number of Screen Channels $=$	2	Total	Unit 1, 2 \& 3 Flow $=$		322.2	cfs	322.2 cfs (check)	
Channel Bottom Elevation =	-20		$\begin{aligned} & \text { Low Tide } \\ & \text { In-Channe! } \end{aligned}$	Velocity $=$	1.20	fps	Low Tide Through-Screen Velocity $=$	2.10
Channel Width $=$	12.5		$\mathrm{R}=$		5.7737839			
Water Depth in Channels (Low Tide)	10.73							
Water Depth in Channels (Hight Tide)	19.93							
			$\begin{aligned} & \text { High Tide } \\ & \text { In-Channel } \end{aligned}$	Velocity $=$	0.65	fps	\|High Tide Through-Screen Velocity $=$	1.13
Channel for Unit 4 Number of Screen Channels $=$	2	Total	Unit 4 Flow $=$		446.0	cfs	446 cfs (check)	
Channel Bottom Elevation $=$	-20		$\begin{aligned} & \text { Low Tide } \\ & \text { In-Channel } \end{aligned}$	Velocily $=$	1.88	fps	Low Tide Through-Screen Velocity =	3.29
Channel Width =	11.25		$\mathrm{R}=\quad 5.439049587$					
Channel Depth $=$	25.75							

Water Depth in Channels (Low Tide) $\quad 10.53$
Water Depth in Channels (Hight Tide) 19.43

Channel for Unit 5	
Number of Screen Channels $=$	3
Channel Bottom Elevation $=$	-20
Channel Width $=$	11.25
Channel Depth $=$	27.75
Water Depth in Channels (Low Tide)	10.33

$\begin{aligned} & \text { High Tide } \\ & \text { In-Channel } \end{aligned}$	Velocity $=$	1.02	fps	\|High Tide Through-Screen Velocity $=$	1.79
Unit 5 Flow $=$		463.84	cfs	463.84 cfs (check)	
$\begin{aligned} & \text { Low Tide } \\ & \text { Ln-Channel } \end{aligned}$	Velocity $=$	1.33	fps	$\begin{aligned} & \text { Low Tide } \\ & \text { Through-Screen Velocity = } \end{aligned}$	1.94
	$\mathrm{R}=$	6.40759			
High Tide				\|High Tide	

OPERATIONAL CONDITION 1 - TOTAL INTAKE FLOW $=\mathbf{3 1 6 . 9 6}$ MGD

Unit 1 (Both Pumps) $=$	69.12 MGD	107.04 cfs						
Unit 2 (One Pump) =	34.56 MGD	53.52 cfs						
Unit 3 (Both Pumps) $=$	69.12 MGD	107.04 cfs						
Unit 4 (One Pump) =	144.01 MGD	223 cfs						
Total Pump Flow =	316.82 MGD		6 cfs					
Channels for Units 1,2 \& 3		Total	Unit 1, 2 \& 3 Flow $=$		267.6	cfs	267.6 cfs (check)	
Number of Screen Channels =	2							
Channel Bottom Elevation $=$	-20		Low Tide				Low Tide	
			In-Channel	Velocity $=$	1.14	fps	Through-Screen Velocity $=$	2.00
Channel Width $=$	12.5		$\mathrm{R}=$					
					5.3555			
Channel Depth $=$	25							
Water Depth in Channels (Low Tide)	9.37 \%							
Water Deph in Channels (High Tide)	18.27 tt							
			$\begin{aligned} & \text { High Tide } \\ & \text { In-Channel } \end{aligned}$	Velocity $=$	0.59	fps	\|High Tide Through-Screen Velocity =	1.03
Channel for Unit 4		Total	Unit 4 Flow $=$		223.0	cfs	223 cfs (check)	
Number of Screen Channels =	2							
Channel Bottom Elevation $=$	-20		$\begin{aligned} & \text { Low Tide } \\ & \text { In-Channel } \end{aligned}$	Velocity $=$	1.55	fps	Low Tide Through-Screen Velocity $=$	2.72
Channel Width $=$	11.25							
			$\mathrm{R}=$		4.073220868			
Channel Depth $=$	25.75							
Water Depth in Channels (Low Tide)	6.39							
Water Depth in Channels shigh Tide)	15.29							
		High Tide			\|high Tide			

Џn-Channel Velocity $=0.65 \quad$ ips \quad Through-Screen Velocily $=$ 1.13)

OPERATIONAL CONDITION 2 - TOTAL INTAKE FLOW $=322.58$ MGD

OPERATIONAL CONDITION $3-$ TOTAL INTAKE FLOW $=328.33 \mathrm{MGD}$

Unit 1, 2 or 3 (One Pump) $=$	34.56 MGD							
Unit 4 (One Pump) $=$	144.01 MGD	$\begin{array}{r} 53.52 \mathrm{cfs} \\ 223 \mathrm{cfs} \end{array}$						
Unit 5 (One Pump) =	149.76 MGD	231.92 cfs						
Total Pump Flow =	328.33 MGD	508.44 cfs						
Channels for Units 1,2 \& 3		Total	Unit 1,2 or	low =	53.5	cfs	53.52 cfs (check)	
Number of Screen Channels =	2							,
Channel Bottom Elevation =	-20		Low Tide In-Channel	Velocity $=$	0.69	fps	Low Tide Through-Screen Velocity $=$	1.20
Channel Width $=$	12.5							
Channel Depth =	25			$\mathrm{R}=$	2.49			

Water Depth in Channels (Low Tide) $\quad 3.12 \mathrm{ft}$
Water Deplh in Channels (High Tide) $\quad 12.02 \mathrm{ft}$

Channel for Unit 4	
Number of Screen Channels =	2
Channel Bottom Elevation =	-20
Channel Width =	11.25
Channel Depth =	25.75
Water Depth in Channels (Low Tide)	6.39
Water Depth in Channels (High Tide)	15.29

Channel for Unit 5	
Number of Screen Channels =	3
Channel Bottom Elevation =	-20
Channel Width =	11.25
Channel Depth =	27.75
Water Depth in Channels (Low Tide)	6.40
Water Depih in Channels (High Tide)	15.3

	High Tide In-Channe!	Velocity $=$	0.18	fps	High Tide Through-Screen Velocity $=$	0.31
Total	Unit 4 Flow =		223.0	cfs	223 cfs (check)	
	$\begin{array}{\|l\|} \hline \text { Low Tide } \\ \text { In-Channe: } \end{array}$	Velocity $=$	1.55	fps	Low Tide Through-Screen Velocity $=$	2.72
		$\mathrm{R}=$	4.07322			
	$\begin{aligned} & \text { High Tide } \\ & \text { in-Channel } \end{aligned}$	Velocity $=$	0.65	fps	\|High Tide Through-Screen Velocity =	1.13
Total	Unit 5 Flow =		231.74	cfs	231.92 cfs (check)	
	$\begin{aligned} & \text { Low Tide } \\ & \text { In-Channel } \\ & \hline \end{aligned}$	Velocity $=$	1.07	fps	Low Tide Through-Screen Velocity $=$	1.57
		$R=$	4.64017			
	High Tide In-Channel	Velocity $=$	0.45	fps	\mid High Tide Through-Screen Velacity $=$	0.66

OPERATIONAL CONDITION 5 - TOTAL INTAKE FLOW $=184.32$ MGD

Tide Level @ Screen Velocity of $0.5 \mathrm{fps}=\quad-0.687 \mathrm{ft}$

Channel for Unit 5 Number of Screen Channels $=$	3	Total	Unit 5 Flow		231.74	cfs	231.92 cfs (check)	
Channel Bottom Elevation $=$	-20		$\begin{array}{\|l\|} \hline \text { Low Tide } \\ \text { In-Channel } \end{array}$	Velocity $=$	1.07	fps	Low Tide Through-Screen Velocity =	1.57
Channel Widh $=$	11.25							
Channel Depth $=$	27.75			$\mathrm{R}=$	4.64017			
Water Depth in Channels (Low Tlde)	6.40							
Water Depth in Channels (High Tide)	15.3							
			High Tide In-Channe!	Velocity $=$	0.45	fps	\|High Tide	66

OPERATIONAL CONDITION $\mathbf{4}$ - TOTAL INTAKE FLOW $=\mathbf{2 1 8 . 8 8}$ MGD

Unit 1,2 or 3 (Two Pumps) $=$	69.12 MGD	107.04 cfs
Unit 5 (One Pump) $=$	149.66 MGD	231.92 cf
Total Pump Flow $=$	218.88 MGD	338.96 cfs

Channels for Units $1,2 \& 3$ Number of Screen Channels $=$	2
Channel Bottom Elevation =	-20
Channel Width =	12.5
Channel Depth =	25
Water Deplh in Channels (Low Tlde)	4.937 ft

Total Unit 1, $2 \& 3$ Flow $=\quad 107.0 \quad \mathrm{cfs} \quad 107.04 \mathrm{cfs}$ (check)

Low Tide In-Channel	Velocity $=$	0.87	fps	Low Tide Throught-Screen Velocity $=$
	$\mathrm{R}=$	3.539169582		

Channel for Unit 5	
Number of Screen Channels =	3
Channel Bottom Elevation =	-20
Channel Width =	11.25
Channel Depth =	27.75
Water Depth in Channels (Low Trde)	6.40
Water Depth in Channels (High Tide)	15.3

Unit 5 Flow $=$		231.74	cfs	231.92 cfs (check)	
Low Tide In-Channe	Velocity $=$	1.07	fps	Low Tide Through-Screen Velocity $=$	1.57
	$\mathrm{R}=$	4.640171858			
High Tide				\|High Tide	
In-Channel	Velocity $=$	0.45	fps	Through-Screen Velocity =	0.66

Long-Term West Basin Water Level Analysis for Assessing Threshold Impingement Effects of Reduced Intake Flows at Agua Hedionda Lagoon

Submitted by:
Scott A. Jenkins, Ph. D. and Joseph Wasyl
Dr. Scott A. Jenkins Consulting
14765 Kalapana Street, Poway, CA 92064
Submitted to:

Poseidon Resources, Suite 840
501 West Broadway
San Diego, CA 92101
21 January 2007

1) Introduction:

This study evaluates the long term water level variation in the West Basin of Agua Hedionda Lagoon. The objective of this analysis is to determine the persistence of water levels occurring higher than the threshold elevation for impingement losses during reduced flow rate operations of a stand alone desalination plant co-located at Encina Generating Station. There are two threshold water levels of interest for reduced flow operations ranging from 149.8 mgd to 304 mgd . These thresholds are -0.687 ft MSL and +4.83 ft MSL. The persistence analysis of these thresholds is performed by hydrodynamic model simulation of the water elevation history in the West Basin due to tidal forcing at the ocean inlet by historic ocean water levels measured at the nearby Scripps Pier tide gage (NOAA \# 931-0230) during the period of record 1980-2000. This time period was chosen because it coincides with the period of record used in the hydrodynamic studies in

Appendix E of the certified EIR (Jenkins and Wasyl, 2005). The verified ocean water level data on which this analysis is based was obtained from NOAA (2006).

Because of tidal muting by frictional losses through the ocean inlet of Agua Hedionda, it is not possible to use the Scripps Pier tide gage measurements directly to determine persistence analysis of. Such a simple approach would err on the side of over-estimating the percentage of time the water elevation in the West Basin of the lagoon met or exceeded the two threshold elevations of interest. Instead the tidal muting of the measured ocean water levels was determined through computer simulation of the lagoon tidal hydraulics. The TIDE_FEM tidal hydraulics model presented in Jenkins and Inman (1999) was gridded for a computational mesh of Agua Hedionda Lagoon as shown in Figure 1, using pre- and post dredging bathymetry from the 2002 dredge event from Jenkins and Wasyl (2003). The pre-dredging bathymetry featured the inlet bar in the west basin that was mapped during the October 2002 sounding shown in Figure 2. The postdredging survey performed in April 2003 indicated uniform deep water throughout the west basin with depths ranging from -20 ft NGVD to -30 ft NGVD, similar to that found in Figure 2-2 of Elwany, et al (2005). The lagoon model was excited at the ocean inlet by the ocean water level elevation time series measured by the Scripps Pier tide gage for the period 1980-2000. The simulated lagoon water levels in the west basin of Agua Hedionda were then sampled at 1 hour intervals, resulting in 183,432 separate outcomes of water elevation that could be subject to statistical analysis of persistence at or above the threshold elevations of interest.

Figure 1. Computational mesh for TIDE_FEM tidal hydraulics model of Agua Hedionda Lagoon.

Figure 2. Location key for 12 October 2002 bottom sediment sampling.

2) Results:

Time series of the simulated West Basin water levels for each from 1980 through 2000 are given in the upper panel of Figures A-1 through A-21 in Appendix-A. The lower panel of these Figures gives the west basin water level variation for the month containing the highest water level occurring that particular year. Figure 3 presents the probability density function (defined by red histogram bars) resulting from the 183,432 hourly realizations of West Basin water level. The blue curve in Figure 3 is the cumulative probability that the water level will be greater than or equal to a particular water level. The vertical dashed green line in Figure 3 defines the water elevation at -0.687 ft MSL, above which intake flow velocities at the Unit 1 intakes are below the impingement threshold. From the cumulative probability curve, we find that water elevations equal or exceed the -0.687 ft MSL threshold 67% of the time during this 21 year period of record. Thus it is more probable that impingement would not occur at the Unit 1 intakes. On the other hand, there was only one hourly outcome in the 21 year period of record when water elevations exceeded the Unit 5 threshold elevation at +4.83 (light blue dashed vertical line); and hence impingement would remain a definite possibility for nearly any tidal regime around the Unit 5 intake.

a
Figure 3. Probability density function and cumulative probability of the water level in the West Basin of Agua Hedionda Lagoon for the period of record 1980-2000.

Reference:

EIR (2005) "Precise Development Plan and Desalination Plant," EIR 03-05Sch \#2004041081, prepared for City of Carlsbad by Dudek and Associates, December, 2005.

Elwany, M. H. S., R. E. Flick, M. White, and K. Goodell, 2005, "Agua Hedionda Lagoon Hydrodynamic Studies," prepared for Tenera Environmental, $39 \mathrm{pp} .+$ appens.

Jenkins, S. A. And J. Wasyl, 2005, "Hydrodynamic Modeling of Dispersion and Dilution of Concentrated Seawater Produced by the Ocean Desalination Project at the Encina Power Plant, Carlsbad, CA, Part II: Saline Anomalies due to Theoretical Extreme Case Hydraulic Scenarios," submitted to Poseidon Resources, 97pp.

Jenkins, S. A. and D. W. Skelly, 1988, "An Evaluation of the Coastal Data Base Pertaining to Seawater Diversion at Encina Power Plant Carlsbad, CA," submitted to San Diego Gas and Electric, Co., 56 pp.

Jenkins, S. A., D. W. Skelly, and J. Wasyl, 1989, "Dispersion and Momentum Flux Study of the Cooling Water Outfall at Agua Hedionda," submitted to San Diego Gas and Electric, Co., 36 pp. + appens.

Jenkins, S. A. and J. Wasyl, 1993, "Numerical Modeling of Tidal Hydraulics and Inlet Closures at Agua Hedionda Lagoon," submitted to San Diego Gas and Electric, Co., 91 pp.

Jenkins, S. A. and J. Wasy1, 1994, "Numerical Modeling of Tidal Hydraulics and Inlet Closures at Agua Hedionda Lagoon Part II: Risk Analysis," submitted to San Diego Gas and Electric, Co., 46 pp. + appens.

Jenkins, S. A. and J. Wasyl, 1995, "Optimization of Choke Point Channels at Agua Hedionda Lagoon using Stratford Turbulent Pressure Recovery," submitted to San Diego Gas and Electric, Co., 59 pp.

Jenkins, S. A. and J. Wasyl, 1997, "Analysis of inlet closure risks at Agua Hedionda Lagoon, CA and potential remedial measures, Part II,"
submitted to San Diego Gas and Electric, Co., 152 pp. + appens. Jenkins, S. A. and J. Wasyl, 1998a, Analysis of Coastal Processes Effects Due to the San Dieguito Lagoon Restoration Project: Final Report, submitted to Southern California Edison Co., 333 pp.

Jenkins, S. A. and J. Wasyl, 1998b, Coastal Processes Analysis of Maintenance Dredging Requirements for Agua Hedionda Lagoon, submitted to San Diego Gas and Electric Co., 176 pp. + appens.

Jenkins, S. A. and D. L. Inman, 1999, A Sand transport mechanics for equilibrium in tidal inlets, Shore and Beach, vol. 67, no. 1, pp. 53-58.

Jenkins, S. A. and J. Wasyl, 2001, Agua Hedionda Lagoon North Jetty Resoration Project: Sand Influx Study, submitted to Cabrillo Power LLC., 178 pp. + appens.

Jenkins, S. A. and J. Wasyl, 2003, Sand Influx at Agua Hedionda Lagoon in the Aftermath of the San Diego Regional Beach Sand Project, submitted to Cabrillo Power LLC., $95 \mathrm{pp} .+$ appens

Jenkins, S. A. and D. L. Inman, 2006, "Thermodynamic solutions for equilibrium beach profiles", Jour. Geophys. Res., v.3, C02003, doi:10.1029, 21pp.

NOAA, 2006, Verified/Historical Water Level Data@ http://www.opsd.nos.noaa.gov/data res.html

APPENDIX-A: Time Series of West Basin Water Levels

Figure A-1. Water level in West Basin of Agua Hedionda Lagoon derived from TIDE FEM simulation using 1980 ocean water level measurements from Scripps Pier tide gauge (NOAA \# $\overline{9} 31-0230$).

Figure A-2. Water level in West Basin of Agua Hedionda Lagoon derived from TIDE FEM simulation using 1981 ocean water level measurements from Scripps Pier tide gauge (NOAA \#931-0230).

Figure A-3. Water level in West Basin of Agua Hedionda Lagoon derived from TIDE FEM simulation using 1982 ocean water level measurements from Scripps Pier tide gauge (NOAA \# 931-0230).

Figure A-4. Water level in West Basin of Agua Hedionda Lagoon derived from TIDE FEM simulation using 1983 ocean water level measurements from Scripps Pier tide gauge (NOAA \#931-0230).

Figure A-5. Water level in West Basin of Agua Hedionda Lagoon derived from TIDE FEM simulation using 1984 ocean water level measurements from Scripps Pier tide gauge (NOAA \# $\overline{9} 31-0230$).

Figure A-6. Water level in West Basin of Agua Hedionda Lagoon derived from TIDE FEM simulation using 1985 ocean water level measurements from Scripps Pier tide gauge (NOAA \# $931-0230$).

Figure A-7. Water level in West Basin of Agua Hedionda Lagoon derived from TIDE FEM simulation using 1986 ocean water level measurements from Scripps Pier tide gauge (NOAA \# $\overline{9} 31-0230$).

Figure A-8. Water level in West Basin of Agua Hedionda Lagoon derived from TIDE FEM simulation using 1987 ocean water level measurements from Scripps Pier tide gauge (NOAA \# $\overline{931-0230 \text {). }}$

Figure A-9. Water level in West Basin of Agua Hedionda Lagoon derived from TIDE FEM simulation using 1988 ocean water level measurements from Scripps Pier tide gauge (NOAA \# $\overline{9} 31-0230$).

Figure A-10. Water level in West Basin of Agua Hedionda Lagoon derived from TIDE FEM simulation using 1989 ocean water level measurements from Scripps Pier tide gauge (NOAA \# 931-0230).

Figure A-11. Water level in West Basin of Agua Hedionda Lagoon derived from TIDE_FEM simulation using 1990 ocean water level measurements from Scripps Pier tide gauge (NOAA \# 931-0230).

Figure A-12. Water level in West Basin of Agua Hedionda Lagoon derived from TIDE FEM simulation using 1991 ocean water level measurements from Scripps Pier tide gauge (NOAA \# 931-0230).

Figure A-13. Water level in West Basin of Agua Hedionda Lagoon derived from TIDE FEM simulation using 1992 ocean water level measurements from Scripps Pier tide gauge (NOAA \#931-0230).

Figure A-14. Water level in West Basin of Agua Hedionda Lagoon derived from TIDE FEM simulation using 1993 ocean water level measurements from Scripps Pler tide gauge (NOAA \# 931-0230).

Figure A-15. Water level in West Basin of Agua Hedionda Lagoon derived from TIDE_FEM simulation using 1994 ocean water level measurements from Scripps Pler tide gauge (NOAA \#931-0230).

Figure A-16. Water level in West Basin of Agua Hedionda Lagoon derived from TIDE FEM simulation using 1995 ocean water level measurements from Scripps Pier tide gauge (NOAA \#931-0230).

Figure A-17. Water level in West Basin of Agua Hedionda Lagoon derived from TIDE_FEM simulation using 1996 ocean water level measurements from Scripps Pier tide gauge (NOAA \# 931-0230).

Figure A-18. Water level in West Basin of Agua Hedionda Lagoon derived from TIDE FEM simulation using 1997 ocean water level measurements from Scripps Pier tide gauge (NOAA \# 931-0230).

Figure A-19. Water level in West Basin of Agua Hedionda Lagoon derived from TIDE_FEM simulation using 1998 ocean water level measurements from Scripps Pier tide gauge (NOAA \# $9 \overline{3} 1-0230$).

Figure A-20. Water level in West Basin of Agua Hedionda Lagoon derived from TIDE FEM simulation using 1999 ocean water level measurements from Scripps Pier tide gauge (NOAA \#931-0230).

Figure A-21. Water level in West Basin of Agua Hedionda Lagoon derived from TIDE FEM simulation using 2000 ocean water level measurements from Scripps Pier tide gauge (NOAA \#931-0230).

