Mission Resource Conservation District

Year Totals	8100	46.2	52.4	82.6	(158)
Acre Feet =	18.6	irrigated acreage does not include outbuildings, roads, or landscaping			
Gallons =	6058800			Irrigated Acres =	2.7

Year Totals	6725	46.2	52.4	68.6	(131)
Acre Feet =	15.4	irrigated acreage does not include outbuildings, roads, or landscaping			
Gallons =	5030300			Irrigated Acres =	2.7

.

Year Totals	6900	46.2	52.4	70.4	134
Acre Feet =	15.8	irrigated acreage does not include outbuildings, roads, or landscaping			
Gallons =	5161200			Irrigated Acres =	2.7

•

Year Totals	7602	46.2	(148)		
Acre Feet =	17.5	irrigated acreage does not include outbuildings, roads, or landscaping			
Gallons =	5686296	Irrigated Acres =		2.7	

Irrigation Efficiency

Irrigation System Efficiency

Importance of Distribution Uniformity

FIGURE 2: Depiction of irrigation resulting in poor DU and insufficient irrigation in parts of the field

Irrigation System Efficiency

Importance of Distribution Uniformity

FIGURE 1: Depiction of irrigation resulting in poor DU and excessive watering

Irrigation System Efficiency

Importance of Distribution Uniformity

FIGURE 4: Depiction of irrigation sufficiently watering the entire field with good DU and irrigation efficiency

Importance of Distribution Uniformity

Water	Budget	Analysis -	 Avocados
-------	--------	------------	------------------------------

2006					
System EU	(60%)		Cost Per Unit:	\$1.91	
Trees Per Acre	109		Pump Zone	2	
CIMIS Station:	Temecula		Per Unit:	0.17	
Water Unit:	748	Gallons	Meter Size	2	
District	VCMWD	Stand B	y Charge/Month:	\$75.00	
	Water	Monthly	Effective	Total Cost	Cost
Date	Units	ETc	Rainfall	per Month	per Tree
Jan-06	551	0.80		\$1,223.19	\$1.12
Feb-06	976	1.42		\$2,108.46	\$1.93
Mar-06	1155	1.68		\$2,483.15	\$2.28
Apr-06	1805	2.62		\$3,836.20	\$3.52
May-06	2629	3.81		\$5,554.75	\$5.10
Jun-06	3104	4.50		\$6,545.19	\$6.00
Jul-06	3259	4.73		\$6,867.29	\$6.30
Aug-06	2902	4.21		\$6,123.81	\$5.62
Sep-06	2232	3.24		\$4,727.22	\$4.34
Oct-06	1359	1.97		\$2,906.68	\$2.67
Nov-06	946	1.37		\$2,045.68	\$1.88
Dec-06	620	0.90		\$1,368.00	\$1.26
Leaching	14%			$\langle \rangle$	
Year Totals =	21539	31.2	0.0	\$45,789.60	\$42.01
Acre Feet =	49.4	irrigated a	creage does not inc	lude roads, outbuildi	ngs, landscape, etc.
Gallons =	16110952			Irrigated Acres =	10.0

Importance of Distribution Uniformity

Water Budget Analysis - Avocados						
2006						
System EU	(85%)		Cost Per Unit:	\$1.91		
Trees Per Acre	109		Pump Zone	2		
CIMIS Station:	Temecula		Per Unit:	0.17		
Water Unit:	748	Gallons	Meter Size	2		
District	VCMWD	Stand B	y Charge/Month:	\$75.00		
	Water	Monthly	Effective	Total Cost	Cost	
Date	Units	ETc	Rainfall	per Month	per Tree	
Jan-06	389	0.80		\$885.48	\$0.81	
Feb-06	689	1.42		\$1,510.39	\$1.39	
Mar-06	816	1.68		\$1,774.87	\$1.63	
Apr-06	1274	2.62		\$2,729.97	\$2.50	
May-06	1856	3.81		\$3,943.06	\$3.62	
Jun-06	2191	4.50		\$4,642.19	\$4.26	
Jul-06	2300	4.73		\$4,869.56	\$4.47	
Aug-06	2049	4.21		\$4,344.75	\$3.99	
Sep-06	1576	3.24		\$3,358.92	\$3.08	
Oct-06	959	1.97		\$2,073.83	\$1.90	
Nov-06	667	1.37		\$1,466.07	\$1.35	
Dec-06	438	0.90		\$9 <u>87.7</u> 1	\$0.91	
Leaching	14%			$\langle \rangle$		
Year Totals =	15204	31.2	0.0	\$32,586.78	\$29.90	
Acre Feet =	34.9	irrigated a	creage does not inc	lude roads, outbuildi	ngs, landscape, etc.	
Gallons =	11372468			Irrigated Acres =	10.0	

Irrigation System Efficiency

Importance of Distribution Uniformity

FIGURE 4: Depiction of irrigation sufficiently watering the entire field with good DU and irrigation efficiency

Irrigation System Efficiency

Importance of Distribution Uniformity

FIGURE 1: Depiction of irrigation resulting in poor DU and excessive watering

Common Maintenance Problems Easy Ways to Raise DU

- Repair Leaks
- Replace Plugged Equipment
- Choose the correct sprinklers

Common Design Problems Not as Easy Ways to Raise DU

- Lack of Pressure Regulation
- Matching Precipitation Rates
- Exceeding Design Capacity

Common Design Problems

Lack of Pressure Regulation

Common Design Problems

Lack of Pressure Regulation

Common Design Problems Not as Easy Ways to Raise DU

- Lack of Pressure Regulation
- Matching Precipitation Rates
- Exceeding Design Capacity

Common Design Problems Matching Precipitation Rates

Common Design Problems Not as Easy Ways to Raise DU

- Lack of Pressure Regulation
- Matching Precipitation Rates
- Exceeding Design Capacity

Common Design Problems Design Capacity: Water Source

1" Water Meter = 50 GPM

72 GPM > 50 GPM

Demand Exceeds Capacity of Water Source

1 ½ " Water Meter = 100 GPM

72 GPM < 100 GPM

Demand Below Capacity of Water Source

48 Sprinklers @ 1.5 GPM each = 72 GPM

1" Water Meter = 50 GPM

48 GPM < 50 GPM

Demand Below Capacity of Water Source

48 Sprinklers @ 1 GPM each = 48 GPM

Common Design Problems Design Capacity: Piping Material

Total Capacity = 2 GPM

TOTAL DEMAND = 6 GPM

Common Design Problems Design Capacity: Piping Material

Total Capacity = 2 GPM

TOTAL DEMAND = 1.5 GPM

Irrigation System Efficiency Distribution Uniformity

System Operating At Low Level of Efficiency

Irrigation System Efficiency

Importance of Distribution Uniformity

FIGURE 1: Depiction of irrigation resulting in poor DU and excessive watering

Irrigation System Efficiency Distribution Uniformity

System Operating At High Level of Efficiency

Irrigation System Efficiency

Importance of Distribution Uniformity

FIGURE 4: Depiction of irrigation sufficiently watering the entire field with good DU and irrigation efficiency

When and For How Long do I Irrigate?

- Need to know 4 things:
 - How much water does my cup (soil reservoir) hold?
 - How fast am I losing that water?
 - How much water can be removed from my cup (soil reservoir) before I need to refill it?
 - How long will it take my sprinklers to refill it?

How Much Water Does My Soil Reservoir Hold?

How Much Water Does My Soil Reservoir Hold?

Efficient Water Management How Much Water Does My Soil Reservoir Hold?

Soil series and map symbols	Depth to hard rock or hardpan	Depth from surface (typical profile)	Classification			Available
			Dominant USDA texture	Unified	Permeability	water capacity
	<u>Ft.</u>	In.			In./hr.	In./in. of soil
Bosanko: BsC, BsD, BsE, BtC	1 ¹ / ₂ -3	0-30 30	Clay and sandy clay loam. Decomposed granite.	CL	0.06-0.2	0.14-0.16
Bull Trail: BuB, BuC, BuD2,	>5	0-10	Sandy loam	SM	2.0-6.3	0.11-0.13
BuE2.		10-32 32-60	Sandy clay loam Loamy sand and sand	SC SM	0.2-0.63 6.3-20.0	0.14-0.16 0.06-0.08
Calpine: CaB, CaC, CaC2, CaD2.	>5	0-34 34-64	Coarse sandy loam Fine gravelly loamy sand.	SM SM	2.0-6.3 2.0-6.3	0.10-0.12 0.05-0.07
Carlsbad: CbB, CbC, CbD, CbE.	12-32	0-21 21-39 39-50	Gravelly loamy sand Loamy sand Weakly cemented hard- pan.	SM SM	2.0-6.3 2.0-6.3 <0.06	0.05-0.07 0.07-0.09
Carrizo: CeC	>5	0-60	Very gravelly sand	GP or GW	>20.0	0.03-0.05

When and For How Long do I Irrigate?

- Need to know 4 things:
 - How much water does my cup (soil reservoir) hold?
 - How fast am I losing that water?
 - How much water can be removed from my cup (soil reservoir) before I need to refill it?
 - How long will it take my sprinklers to refill it?

How Fast is Water Being Used by the Crop and Evaporated by the Sun's Heat

http://wwwcimis.water.ca.gov/cimis/welcome.jsp

How Fast is Water Being Used by the Crop and Evaporated by the Sun's Heat

http://wwwcimis.water.ca.gov/cimis/welcome.jsp

Stn Id	Station	Date	CIMIS ETo (in)	Precip (in)
62	Temecula	7/10/2007	0.16	0
62	Temecula	7/11/2007	0.2	0
62	Temecula	7/12/2007	0.22	0
62	Temecula	7/13/2007	0.24	0
62	Temecula	7/14/2007	0.19	0
62	Temecula	7/15/2007	0.2	0
62	Temecula	7/16/2007	0.19	0

When and For How Long do I Irrigate?

- Need to know 4 things:
 - How much water does my cup (soil reservoir) hold?
 - How fast am I losing that water?
 - How much water can be removed from my cup (soil reservoir) before I need to refill it?
 - How long will it take my sprinklers to refill it?

How much water can be removed from the soil reservoir before I need to refill it?

» Avocados - at 30% depletion

» Citrus – at 50% depletion

» Nursery crops – variable (50%)

When and For How Long do I Irrigate?

- Need to know 4 things:
 - How much water does my cup (soil reservoir) hold?
 - How fast am I losing that water?
 - How much water can be removed from my cup (soil reservoir) before I need to refill it?
 - How long will it take my sprinklers to refill it?

How Long Will My Sprinklers Take to Refill It?

When and For How Long do I Irrigate?

- Need to know 4 things:
 - How much water does my cup (soil reservoir) hold?
 - How fast am I losing that water?
 - How much water can be removed from my cup
 - (soil reservoir) before I need to refill it?
 - How long will it take my sprinklers to refill it?

Riverside County (3 labs in county)

East County/High Desert (760) 347-7658

West County (909) 683-7691 http://www.rcrcd.com/

South East County (909) 654-7733

http://wwwcimis.water.ca.gov/cimis/infoIrrSchedule.jsp