

FINAL HINES GROWERS BIOASSESSMENT REPORT FIELD SURVEY FROM JUNE 2013 FALLBROOK, CALIFORNIA

Prepared for: Hines Growers, Inc. Rainbow Branch Fallbrook, California 92028

Submitted by: AMEC Environment & Infrastructure, Inc. 9210 Sky Park Court, Suite 200 San Diego, California 92123 (858) 300-4300

December 2013

AMEC Project No. 1315102400

TABLE OF CONTENTS

ACRONYMS AND ABBREVIATIONS	-1 -1 2-1 2-1
1.1 Project Location and Background1	-1 2-1 2-1
	2-1 2-1
2.0 METHODS	2-1
2.1 Monitoring Stations and Field Effort Schedule2	?-1
2.2 Delineation of Sampling Reaches and Sampling Approach	
2.3 Water Quality Data Collection2	2-2
2.4 Location of Biological Sample Collections2	2-2
2.4.1 Benthic Macroinvertebrate Collections	2-3
2.4.2 Algae Collections2	2-4
2.5 Physical Habitat Measurements2	2-6
2.6 Benthic Macroinvertebrate Data Analyses2	2-7
2.6.1 Southern California Index of Biological Integrity Metrics	2-8
3.0 RESULTS	
3.1 Water Quality	3-1
3.2 Summary of Benthic Macroinvertebrate Community Composition	3-2
3.2.1 Southern California Index of Biological Integrity Score	3-3
3.2.2 Selected Benthic Macroinvertebrate Metrics	
3.3 Summary of Algal Biomass Data	3-5
3.4 Summary of Algal Taxonomic Data	3-6
3.4.1 Diversity and Dominance	3-7
3.4.2 Diatom Autecology Indicators	3-8
3.5 Physical Habitat Characteristics	
4.0 QUALITY ASSURANCE/QUALITY CONTROL	-1
4.1 Water Chemistry	I-1
4.2 Benthic Macroinvertebrate Sampling4	I-1
4.3 Benthic Macroinvertebrate Identification4	
4.4 Physical Habitat Characterization4	I-1
5.0 DISCUSSION	j-1
5.1 Water Quality	5-1
5.2 Biological Metrics	
5.2.1 Macroinvertebrates5	
5.2.2 Algae	
5.3 Physical Habitat5	
5.4 Integrative Assessment	
5.5 Comparison to Other Historical Bioassessment Sampling in Rainbow Creek5	
6.0 RECOMMENDATIONS	
7.0 REFERENCES	

TABLE OF CONTENTS (Cont.)

Page

LIST OF TABLES

Table 2-1.	Sampling Site ID and Location	2-1
Table 2-2.	Water Quality Measurements	
Table 2-3.	Southern California Index of Biotic Integrity Scoring Ranges	2-8
Table 2-4.	Metrics Incorporated into the Southern California Index of Biological	
	Integrity	2-8
Table 3-1.	In-situ Field Measurements	3-1
Table 3-2.	Water Quality Results Summary	3-1
Table 3-3.	Raw Abundance of Individual Taxa Observed	3-2
Table 3-4.	Summary of Southern California Index of Biological Integrity Metrics and	
	Overall Score	3-3
Table 3-5.	Summary of Select Biological Metrics	3-4
Table 3-6.	Community Composition of Functional Feeding Groups	3-5
Table 3-7.	Chlorophyll a and Ash-Free Dry Mass Results	3-6
Table 3-8.	Summary of Selected Algal Biological Metrics	3-7
Table 3-9.	Summary of Selected Physical Habitat Characteristics	3-10
Table 3-10.	Summary of Substrate Types Observed	3-10
Table 3-11.	Summary of Flow Habitat Types Observed	3-10
Table 5-1.	Summary of Historical Bioassessment Sampling in Rainbow Creek	5-3

LIST OF FIGURES

Figure 1.	Hines Growers, Inc. Bioassessment Monitoring Reach June 2013	A-1
Figure 2.	Freshwater Ostracod	A-3
Figure 3.	Oligochaete	A-3
Figure 4.	Physa sp	A-4

LIST OF APPENDICES

APPENDIX A	FIGURES
APPENDIX B	FIELD DATASHEETS
APPENDIX C	BENTHIC INVERTEBRATE AND ALGAE TAXONOMY LAB REPORT
APPENDIX D	WATER CHEMISTRY LAB REPORT
APPENDIX E	PHOTO LOG
APPENDIX F	CHAIN OF CUSTODY

ACRONYMS AND ABBREVIATIONS

°C	degrees Celsius
%	percent
µg/L	micrograms per liter
μm	micrometer
AFDM	ash free dry mass
AMEC	AMEC Environment & Infrastructure, Inc.
ASTM	American Society for Testing and Materials
BMI	benthic macroinvertebrate
cm	centimeter(s)
cm ²	square centimeters
СРОМ	coarse particulate organic matter
DO	dissolved oxygen
EPT	Ephemeroptera, Plecoptera, and Trichoptera
FFG	functional feeding groups
facility	Hines Growers, Inc. facility
ft/sec	feet per second
g	gram(s)
HBI	Hilsenhoff Biotic Index
I-15	Interstate-15
IBI	Index of Biological Integrity
L	liter(s)
m	meter(s)
mg/L	milligrams per liter
mg	milligram(s)
mL	milliliter(s)
mm	millimeter(s)
MRI	Margalef's Richness Index
NH ₃	Ammonia
NO ₂	Nitrite
NO ₃	Nitrate
рН	Hydrogen Ion Activity
PHAB	physical habitat
ppt	parts per thousand

ACRONYMS AND ABBREVIATIONS (Cont.)

PVC	Polyvinyl chloride
QA	quality assurance
QAPP	Quality Assurance Prevention Plan
RC	Rainbow Creek
RL	reporting limit
RWB	reach-wide benthos
SoCal IBI	Southern California Index of Biotic Integrity
SWAMP	Surface Water Ambient Monitoring Program
SWI	Shannon-Weaver Index
TDS	total dissolved solids
TKN	Total Kjeldahl Nitrogen
TN	total nitrogen
TSS	Total Suspended Solids
TV	tolerance value
umhos	Micro-ohm
WQO	Water Quality Objectives

1.0 INTRODUCTION

Stream bioassessments provide a quantifiable assessment of the resident aquatic organisms in wadeable freshwater streams. Since these organisms live in a given water body for extended periods, they provide an integrative direct assessment of the cumulative impact of water quality over time that other measurements (e.g., water chemistry and toxicity) cannot provide (Karr & Chu 1999). Analysis of the benthic macroinvertebrate (BMI) community leads to the calculation of an Index of Biological Integrity (IBI), which responds predictably to the presence of stresses such as water quality impairment, habitat alteration, and watershed development (Ode et. al. 2005). Analyses of the stream periphyton (algae) community also provide an estimate of water quality, particularly those related to nutrient impairment. Extensive physical habitat (PHAB) characterizations of in-stream and surrounding riparian zones are completed concurrent to BMI and periphyton collections; and are used to describe habitat quality and availability, known to be important drivers in biological community health. This information along with general water quality parameters can assist in explaining changes to the biological community in streams over time (Karr & Chu 1999).

AMEC Environment & Infrastructure, Inc. (AMEC), on behalf of Hines Growers, Inc., conducted bioassessment monitoring in Rainbow Creek (RC). Bioassessment monitoring was required pursuant to the requirements of Conditional Waiver No. 4 for Discharges from Agricultural and Nursery Operations. This report summarizes methods and results from the field survey undertaken in June 2013.

Procedures for collecting biological samples and PHAB data adhered to the Surface Water Ambient Monitoring Program (SWAMP) bioassessment protocols for benthic macroinvertebrates (SWAMP 2007) and algae (SWAMP 2010).

1.1 **Project Location and Background**

The RC watershed in northern San Diego County, flows west from the valley floor of Rainbow, California, then under Interstate-15 (I-15) highway, and finally through the northern portion of Fallbrook, California before converging with the Santa Margarita River. While the watershed supports vital ecological functions and has some limited areas of high quality habitat, RC is listed as an impaired waterbody (303(d)) by the Regional Water Quality Control Board for iron, sulfates, total dissolved solids (TDS), and nutrients. Upstream of the project site, potential impacts to water quality include rural development, agriculture (e.g., avocado groves), and septic systems. The naturally high ground water levels in the Rainbow valley floor are known to be problematic for septic systems in the area, especially during the rainy season, and can be a potential source of pollutants to RC.

The proposed project is on private property within the Hines Growers, Inc. facility (facility) in Rainbow, California (Figure 1 in Appendix A). The 261-acre facility footprint consists of several non-contiguous areas approximately 6 miles northeast of downtown Fallbrook, California. Hines Growers, Inc. grows containerized ornamental plants on the site for subsequent sale and distribution. The facility borders RC for approximately 1.1 miles, just prior to its passing beneath I-15 highway. During the "dry season", the stretch of RC that passes through the facility consists of intermittent flow, with large dry sections separated by small segments of low flow.

This page intentionally left blank

2.0 METHODS

2.1 Monitoring Stations and Field Effort Schedule

Bioassessment monitoring was performed at the facility location on June 27, 2013. The station ID and location of the monitoring station are presented in Table 2-1 and shown in Figure 1 (Appendix A).

Table 2-1.

Sampling Site ID and Location				
Station ID Station Name Location ¹ and Elevation				
HG-062713	Hines Growers, Inc. 33.41683° N –117.15128° W 319 meters			

Notes:

^{1.} Latitude and Longitude, North American Datum 1983.

2.2 Delineation of Sampling Reaches and Sampling Approach

The sampling team delineated a 150-meter (m) stream "reach" from which biological samples were collected and PHAB observations were made. The sampling reach was divided into 11 main transects (A, B, C...K) spaced at 15-m intervals. Transects were established perpendicular to the direction of stream flow (labeled A through K from downstream to upstream), and marked with flags along the stream bank. Inter-transects were established between the 11 main transects (AB, BC, CD...JK), equidistant from the adjacent down and upstream transects and also flagged along the stream bank. The biological sampling team for BMI and algae started the sampling at the downstream end of the sampling reach and progressed upstream in order to avoid influencing portions of the creek not yet sampled. BMI samples were collected first, approximately 1 m downstream of each main transect. Collecting biological samples just downstream of the main transect avoided disturbing sediments along the transects being subsequently assessed by the PHAB team. The biological sampling team would then exit the stream before proceeding to the next upstream transect. The team collecting PHAB measurements then followed the biological sampling team to each main and inter-transect.

Water quality parameters were sampled at the beginning of each field effort just downstream of Transect A prior to sampling to ensure measurements were not affected by collection activities. Representative photos of the stream reach as they existed in June 2013 are shown in Appendix E.

2.3 Water Quality Data Collection

Water quality was measured in conjunction with the bioassessment as outlined in Table 2-2. Measurements included water temperature, Hydrogen Ion Activity (pH), dissolved oxygen (DO), specific conductivity, and salinity. All parameters were measured in the field using calibrated instruments.

For grab samples, pre-cleaned sample bottles were obtained from the analytical laboratory for collection of water quality samples. The following sample handling protocols were utilized when collecting samples to minimize the possibility of contamination:

- When the analytical methods did not require a chemical preservative, the sample bottle was used directly to collect the sample.
- If the analytical method required preservation, a pre-cleaned bottle was used as a secondary container to collect the sample which was then transferred to the laboratory-provided analytical container.

Manual grab samples were collected by inserting the pre-cleaned bottle upside-down into the channel and then inverting at the approximate midway point in the water column (when depth permitted) with the container opening facing upstream.

Sample containers were labeled with a unique sample ID, date, time, project, analyses, and collector's initials. The samples were then packed on ice and transported to AMEC. Samples were held on ice at 4 degrees Celsius (°C) until transferred to a laboratory provided courier.

2.4 Location of Biological Sample Collections

Sample collection for both BMI and periphyton samples within each transect followed the protocol guidance for the Standard Reach-Wide Benthos (RWB) approach. Sampling began on the left side of Transect A (looking upstream), then proceeded to the middle for Transect B, and to the right side of the channel for Transect C. Sampling at Transect D then rotated back to the left side, and sampling continued in this "zig-zag" pattern for the remainder of the 11 main transects. The standard RWB technique employed rotated collection locations at 25 percent (%), 50% and 75% of stream width at each transect.

Detailed information regarding the procedures used to collect BMI samples can be found in the SWAMP bioassessment protocol (SWAMP 2007 and 2010). The following is a summary of collection methods used in the field during sampling activities.

Analyte	Method Number	Units			
Field Measurements					
pН	Field Meter	pH units			
DO	Field Meter	mg/L			
Specific Conductance	Field Meter	umhos/cm			
Salinity	Field Meter	ppt			
Temperature	Field Meter	°C			
Laboratory Analyses					
Sulfate	ASTM D516-02	mg/L			
Ash-free dry mass	SM10300 C(M)	mg/L			
Chlorophyll a	SM10200 H	µg/L			
TDS	SM2540 C	mg/L			
TSS	SM2540 D	mg/L			
Nitrate + Nitrite as N	SM4500-NO3	mg/L			
Chloride	SM4500-CL C	mg/L			
TKN	SM4500 N Org B	mg/L			
Ammonia as N	SM4500-NH3 B/C	mg/L			
Total Phosphorus as P	SM4500 P B/E	mg/L			
Particulate Nitrogen	SM4500 NO3-E	mg/L			
	(M) Calc	iiig/ E			
Particulate Phosphorus	SM4500 P B/E	mg/L			
•	(M) Calc				
Dissolved Organic	SM5310 B	mg/L			
Carbon	0140540.0	_			
Specific Conductance	SM2510 B	umhos/cm			
DO	SM4500-O G	mg/L			
pH	SM4500 H+ B	pH Units			

Table 2-2.Water Quality Measurements

Notes:

°C - degrees Celsius

µg/L - microgram per liter

ASTM - American Society for Testing and Materials

cm - centimeter(s)

DO - Dissolved Oxygen

mg/L - milligram per liter

pH - Hydrogen Ion Activity

ppt - parts per thousand

TDS - Total Dissolved Solids

TKN - Total Kjeldahl Nitrogen

TSS - Total Suspended Solids

umhos - micro-ohms

2.4.1 Benthic Macroinvertebrate Collections

BMI samples were collected at each of the 11 main transects (A through K) by two field staff working in tandem. A 1 square-foot patch of streambed was sampled at each main transect, rotating locations along each transect as described above. All sediments, organic matter, and other substrates within the delineated patch, were agitated to a depth of 10 centimeters (cm) for at least 30 seconds so that all associated organisms were dislodged from the benthos. The natural current of the stream carried the dislodged organisms into a 0.5 millimeter (mm) mesh

D-frame net positioned immediately downstream of the sampling patch. If the sampling points were in a low-flow environment, the sampling team would manually push water through the sampling net to capture dislodged organisms as described in the SWAMP (2007) field manual. Samples from all 11 transects were composited into the D-frame net as the sampling team moved upstream. Once all 11 transects were sampled, the entire contents of the D-frame net was transferred into 1 liter (L) plastic sample jars and preserved in an approximately 70% ethanol solution diluted with stream water. All BMI samples were shipped to EcoAnalysts, Inc. in Moscow, Idaho for taxonomic identification and calculation of BMI metrics. These calculations lead to a final integrative multi-metric score, the Southern California IBI (SoCal IBI), developed specifically for use in coastal Southern California streams (Ode et. al. 2005).

2.4.2 Algae Collections

Algae samples were collected to assess the community structure and biomass within stream environment. Detailed information regarding the procedures used to collect periphyton samples may be found in the SWAMP algal bioassessment protocol (SWAMP 2010). The following is a summary of field collection methods.

One member of the field team collected all periphyton samples from each station immediately after BMI sample collection. A single periphyton sample was taken from each of the 11 main transects, with the collection location along each transect matching that of the BMI samples. Samples were collected slightly upstream of the BMI sampling location to ensure the substrate had not been disturbed. All 11 samples were composited into a single opaque collection container as the team moved upstream. Different sampler types were used dependent upon the substrate present at the collection location as described further below.

2.4.2.1 Polyvinyl Chloride Delimiter

A polyvinyl chloride (PVC) delimiter was used to collect algae from depositional substrates (i.e., sand, silt, and gravel). This type of sampler acted as a coring device, measuring 4 cm in diameter, and was pressed into the sediment 1 cm deep, thereby sampling an area of 12.6 square cm (cm²). Being careful not to disturb the sediment surface, a spatula was worked under the PVC delimiter and the sample was extracted from the streambed and deposited into the collection container. Extra substrate material outside the PVC delimiter was cut away using a razor blade prior to placement in the collection container to ensure a consistent size core was collected across all transects.

2.4.2.2 Rubber Delimiter

A rubber delimiter was used to collect algae from erosional substrates that could be removed from the water (i.e., cobbles or small boulder). The rubber delimiter was constructed from a strip of thick flexible rubber material. A hole was cut out to create a 12.6 cm² sampling area. To sample algae, the delimiter was wrapped around the substrate and the algae within the designated area scrubbed with a clean toothbrush. The substrate, delimiter, and toothbrush were then rinsed with stream water into the sampling tray.

2.4.2.3 Syringe Scrubber

A syringe scrubber consisted of a white scrubbing pad affixed to the plunger of a plastic syringe and was used to remove algae from large boulders and bedrock that could not be physically removed from the stream. The plunger was depressed all the way to the end of the syringe, and the syringe was submerged in the stream and pressed firmly against the substrate. While applying pressure to the plunger, the scrubber was rotated to capture the algae from the substrate surface. The plunger was then retracted slightly and a plastic spatula was slid between the substrate and plunger. The syringe was subsequently removed from the water, and any water present within the syringe was drained into the collection container. The scrubbing pad was detached from the plunger and rinsed over the tray with a bottle containing stream water. Excess water was removed from the pad by wringing it into the tray.

2.4.2.4 Algae Sample Processing

Once all 11 transects were sampled, the composite periphyton sample consisted of a mixture of stream sediments, water and leaf litter. Any leaves or other non-algae organic matter captured were gently rubbed to loosen surficial periphyton material, which was then rinsed into the plastic tray with a light washing of stream water. The organic matter was discarded from the sample. Any filamentous algae captured in the composite sample was cut into fine pieces (approximately 1 mm) with scissors and added back to the composite. The composite sample was then vigorously agitated to remove and suspend periphyton material from small particulate surfaces (i.e., silt and sands). The suspension was then allowed to rest for a few seconds to allow larger particulates to sink and then the water was poured off into a clean graduated cylinder. A small amount of stream water was added to the plastic tray and the process was repeated to remove periphyton not collected in the initial rinse. This was repeated until the sample poured off was relatively clear. This resulted in a composite sample volume of 525 milliliters (mL), which was transferred to a 1 L plastic sample jar for further processing.

After processing, the soft bodied algae sample was collected by pouring 45 mL of the composite into a 50-mL centrifuge tube and immediately placed on ice. Upon arrival back to the laboratory, 5 mL of 25% gluteraldehyde was added to the soft bodied algal sample for preservation. To collect the diatom sample, a 40-mL portion of the processed composite was homogenated and poured into a 50-mL centrifuge tube and preserved with 10 mL of 10% formalin. For full details of the algal sample processing, please see the SWAMP algal bioassessment protocol (SWAMP 2010).

To prepare both the ash free dry mass (AFDM) and chlorophyll a samples, the composite water sample was thoroughly shaken to homogenize the liquid. A 25-mL sub-sample was then quickly poured into a small graduated cylinder. This aliquot was filtered through a 0.7 micrometer (µm) glass fiber filter in the field using a Hach® filter tower driven by a Fisher® vacuum hand-pump. Using forceps, the filter paper was removed from the filter tower, folded in half and placed in a snap lock plastic Petri® dish. The Petri dish was wrapped in foil and placed in a WhirlPak® bag. The procedure was then repeated to collect an additional filter in the same manner. The two samples were stored on wet ice until the team returned to the laboratory at the end of the day.

Once back in the laboratory, the two samples were frozen at -4° C, until they were delivered to Calscience Environmental Laboratories.

2.5 Physical Habitat Measurements

Measurements of PHAB characteristics were performed once biological sampling had been completed and are used to document local conditions which may affect the stream environment. At each main transect, three measurements of stream size were collected, including wetted width, bankfull width, and bankfull height (each to the nearest cm). Wetted width is defined as the width of streambed that is inundated with water at the time of sampling, while bankfull width is defined as the distance between the apparent limits of the stream banks under normal 1 to 2-year storm-flow conditions. The sampling team considered several variables when determining bankfull margins, such as bank slope and morphology, perennial vegetation patterns, transition of soil types, and undercutting of banks. Bankfull height is measured from the water level to the height of the bank at bankfull dimensions. This dimension provides an estimate of stream capacity at the time of sampling, relative to peak flow capacity during 1 to 2-year storm flow conditions.

Once these stream size measurements were collected, water depth and particle size were recorded at five points along each transect and inter-transect at the left bank (point 1), at distances of 25%, 50%, and 75% of stream width (points 2–4), and at the right bank (point 5). A stadia rod was placed at each of these positions, and depth was recorded to the nearest cm. The streambed particle directly at the base of the rod was randomly selected and classified according to particle size categories on the field datasheets. Any particles larger than sand (>2 mm) that could be removed from the stream were measured across the intermediate axis to the nearest mm. In addition to particle size classification, the presence of Coarse Particulate Organic Matter (CPOM), percent cobble embeddedness, microalgae, macroalgae, and macrophytes were recorded at each of the five points. A measure of overhead canopy cover was taken from the center of each main transect with a handheld densiometer while facing upstream, downstream, and towards the left and right banks. Riparian vegetation on each bank, human influence, and instream habitat complexity were all recorded using a categorical scoring system.

At inter-transects, the channel wetted width, depth, particle size characteristics, and presence of organic material were recorded, as well as the flow habitats present in the sampling reach according to a categorical classification system.

Following PHAB observations at each transect, a series of reach-wide characteristics were recorded. These included stream sinuosity, stream discharge, and gradient. Sinuosity is a measure of stream path deviation from the shortest straight-line path length between Transects A and K, and is expressed as the ratio of channel length to straight line reach length. This was measured by taking compass bearings from the center of each main transect to the next downstream main transect across the entire sampling reach. Stream velocity was estimated using a handheld flow meter when flows were sufficiently strong, or alternatively, through the buoyant object method when stream flows were slower. Stream gradient was determined across the sampling reach with a hand level and stadia rod using standard surveying practices.

The final habitat characterization task included scoring each station for three parameters: epifaunal cover, sediment deposition, and channel alteration. Stations were scored from 0 to 20 for each of these parameters, 0 indicating poor conditions and 20 indicating optimal conditions.

2.6 Benthic Macroinvertebrate Data Analyses

BMIs were identified according to Southwest Association of Freshwater Invertebrate Taxonomists Level 2 requirements. This data was then analyzed to produce an IBI score according to the procedures outlined in Ode et. al. (2005), which measures biological stream health by evaluating the composition of the BMI community. The SoCal IBI distills seven key measures of organism abundance and diversity into a single composite score that varies predictably in response to anthropogenic stresses. The SoCal IBI responds to various forms of environmental stress, including water quality impairment or PHAB degradation. The individual metric scores from each of the seven component measures are summed and converted to a 0 to 100 point scale. These scores correspond with one of five classes that convey biological integrity. These include very poor (0 to 19), poor (20 to 39), fair (40 to 59), good (60 to 79), and very good (80 to 100).

The seven key metrics incorporated into the SoCal IBI include the number of Coleopteran taxa; number of Ephemeroptera, Plecoptera, and Trichoptera (EPT) taxa; number of predator taxa; percent collector individuals; percent intolerant individuals; percent non-insect taxa; and percent tolerant taxa. These metrics respond to a range of stresses by either increasing or decreasing. In this way, an analysis of the component species groups in a stream can provide an assessment of whether or not a stream is experiencing stress from anthropogenic or natural processes in the watershed. A summary of how each of these metrics is scored for calculation of the SoCal IBI, and how they are expected to vary in response to water quality or habitat impairment is shown in Tables 2-3 and 2-4 respectively. Each metric is discussed in more depth below.

Score	Number of Coleoptera Taxa	Number of EPT Taxa	Number of Predator Taxa	Percent Intolerant Individuals	Percent Collector Individuals	Percent Non-Insect Taxa	Percent Tolerant Taxa
10	>5	>17	>12	>24	0–59	0–8	0–4
9		16–17	12	23–24	60–63	9–12	5–8
8	5	15	11	21–22	64–67	13–17	9–12
7	4	13–14	10	19–20	68–71	18–21	13–16
6		11–12	9	16–18	72–75	22–25	17–19
5	3	9–10	8	13–15	76–80	26–29	20–22
4	2	7–8	7	10–12	81–84	30–34	23–25
3		5–6	6	7–9	85–88	35–38	26–29
2	1	4	5	4–6	89–92	39–42	30–33
1		2–3	4	1–3	93–96	43–46	34–37
0	0	0–1	0–3	0	>96	>46	>37

 Table 2-3.

 Southern California Index of Biotic Integrity Scoring Ranges

Notes:

* Data from Ode et. al. 2005

> - greater than

EPT - Ephemeroptera, Plecoptera, and Trichoptera taxa

Table 2-4. Metrics Incorporated into the Southern California Index of Biological Integrity

Metric	Description			
Number of Coleopteran ^a Taxa	Generally exhibit a negative relationship with			
Number of EPT ^b Taxa	degraded water quality or habitat impairment			
Number of Predator Taxa	(i.e., component species will be less prevalent			
Percent of Intolerant ^c Taxa Individuals	in impaired streams).			
Percent of Collector ^d Taxa Individuals	Generally exhibit a positive relationship with			
Percent of Non-insect ^e Taxa	degraded water quality or habitat impairment			
Percent of Tolerant ^f Taxa	(i.e., component species will be more prevalent in impaired streams).			

Notes: ^{a.} Beetle taxa.

^{b.} Ephemeroptera, Plecoptera, and Trichoptera Taxa (Mayflies, Stoneflies, and Caddisflies).

^{c.} Taxa intolerant of degraded water quality or other habitat impairment, with low tolerance values of 0–2.

^{d.} Taxa that feed by collecting fine particulate organic matter.

e. Taxa not in the Class Insecta.

Taxa tolerant of degraded water quality or other habitat impairment, with high tolerance values of 8-10.

2.6.1 Southern California Index of Biological Integrity Metrics

2.6.1.1 Number of Coleoptera Taxa

The number of Coleopteran taxa is the measure of the abundance of aquatic beetle taxa present in a stream sample. In the Southern California coastal area, Coleopteran diversity correlate negatively with stresses such as channel alteration, excessive fine sediment loads, and watershed development (Ode et. al. 2005 and Brown 1973) so higher numbers of beetle taxa are typically associated with higher habitat quality and more pristine conditions.

2.6.1.2 Number of Ephemeroptera, Plecoptera, and Trichoptera Taxa

The number of EPT taxa refers to the number of Ephemeroptera (mayfly), Plecoptera (stonefly), and Trichoptera (caddisfly) taxa present in the system. The number of EPT taxa is a widely used indicator of stream quality as these insect families are generally sensitive to various forms of anthropogenic stressors and water quality degradation (Ode et. al. 2005). High numbers of EPT typically indicates a relatively healthy biological community.

2.6.1.3 Number of Predator Taxa

The number of predator taxa is a measure of the number of macroinvertebrate taxa that feed upon other macroinvertebrates. Studies in other ecoregions of California have found the response of this metric to have variable responses to impairment (Harrington 1999). However, this metric exhibits a moderate to strong response to impairment within the Southern California area. In the development of the SoCal IBI, the number of predator taxa in freshwater streams was found to correlate negatively with urban and agricultural development in surrounding watersheds, and the total nitrogen (TN) and TDS concentration in stream waters (Ode et. al. 2005). Thus, higher numbers of predator taxa are consistent with improved water quality and habitat conditions in Southern Californian streams.

2.6.1.4 Percent Intolerant Individuals

A tolerance value (TV) has been determined for the majority of stream macroinvertebrate genera or species through prior research on the organism's life history and sensitivity to stressors (Hilsenhoff 1987). These TVs range from 0 to 10, with 0 being assigned to species that are highly sensitive to pollutants and 10 being assigned to species that are able to withstand highly polluted streams. Species with a low TV of between 0 and 2 are referred to as intolerant species, as they are highly sensitive to pollution and will be the first to disappear from the community as impairment increases. A station with many intolerant species is considered to be less disturbed than one with few intolerant species. It should be kept in mind that a species could be sensitive to one type of pollutant, while tolerant of another. Therefore, while TVs can provide valuable information on stream quality, this information should be interpreted in light of all other biological and physical data available.

2.6.1.5 Percent Collector Individuals

Collector-gathering or collector-filtering species feed on fine particulate organic matter, periphyton, and various microorganisms. While naturally high levels of organic detritus may be a characteristic of some streams, one would generally expect the amount of fine material entering streams to increase with urbanization in a watershed due to increased impervious area and erosion. Thus, an increase in the number of individuals using the collector feeding strategy may be indicative of watershed urbanization impacting a stream. In Southern California, percent collector individuals has been shown to correlate positively with increasing urbanization and road density, as well as TDS in streams (Ode et. al. 2005).

2.6.1.6 Percent Non-insect Taxa

This metric measures the number of taxa collected that are not of the Class Insecta. Generally, non-insect taxa are relatively tolerant of pollution. A high percentage of non-insect taxa is typically a characteristic of an impacted stream. In Southern California percent non-insect taxa correlates positively with increasing agricultural and urban development in a watershed, and increasing concentrations of fine particulates and TN in streams (Ode et. al. 2005). Higher number of non-insects indicates poorer habitat and/or water quality.

2.6.1.7 Percent Tolerant Taxa

Tolerant taxa are those that have a TV range of 8 to 10 and are relatively insensitive to pollution. Although they can be found in relatively pristine habitats, they will dominate highly impacted streams. Similar to non-insect taxa, percent tolerant taxa increase in Southern California streams with increasing urbanization in surrounding watersheds, and TN in streams (Ode et. al. 2005).

3.0 RESULTS

3.1 Water Quality

The results from the *in-situ* field measurements at the Hines Growers, Inc. bioassessment location are presented in Table 3-1. Results for the corresponding water quality grab samples are provided in Table 3-2.

Analyte	Method	Units	Site HG-062713			
pН	Field Meter	pH units	7.51			
DO	DO Field Meter		8.18			
Specific Conductance	Field Meter	umhos/cm	2106			
Temperature	Field Meter	°C	22.1			
Notes: °C - degrees Celsius DO - Dissolved Oxygen pH - Hydrogen Ion Activity						

Table 3-1. In-situ Field Measurements

cm - centimeter(s)

mg/L - milligram per liter umhos - micro-ohms

Table 3-2. Water Quality Results Summary

Analyte	Method Number	Units	RL	Site HG-062713 Result	WQO ¹
Sulfate	ASTM D516-02	mg/L	50	530	250
Ash-free dry mass	SM10300 C(M)	mg/L	10	3290	N/A
Chlorophyll a	SM10200 H	µg/L	300	9300	N/A
TDS	SM2540 C	mg/L	10	1680	750
TSS	SM2540 D	mg/L	1.0	1.2	N/A
Nitrate + Nitrite as N	SM4500-NO3	mg/L	10	41	10
TKN	SM4500 N Org B	mg/L	0.5	ND	N/A
Total Nitrogen ²	SM4500-NO3 + SM4500 N Org B	mg/L	10	41	1
Chloride	SM4500-CL C	mg/L	2.0	230	250
Total Ammonia as N	SM4500-NH3 B/C	mg/L	0.1	0.11	N/A
Un-ionized Ammonia	Calculated ³	mg/L	N/A	0.0013	0.025
Total Phosphorus as P	SM4500 P B/E	mg/L	0.1	0.24	0.1
Particulate Nitrogen	SM4500 NO3-E (M) Calc	mg/L	0.5	5.0	N/A
Particulate Phosphorus	SM4500 P B/E (M) Calc	mg/L	0.2	0.89	N/A
Dissolved Organic Carbon	SM5310 B	mg/L	0.5	2.9	N/A
Specific Conductance	SM2510 B	umhos/cm	10	2000	N/A
DO	SM4500-O G	mg/L	0.01	7.43	<5.0
рН	SM4500 H+ B	pH Units	0.01	7.42	6.5–8.5

Notes:

San Diego Basin Plan (SDRWQCB 1994 and updates)

2. Sum of TKN and Nitrite/Nitrate

^{3.} Thursby et al (1969) µg/L - microgram per liter

ND	_	Not	detected
		1101	actobica

- ASTM American Society for Testing and Materials N/A Not applicable
- cm centimeter(s)
- Dissolved Oxygen DO

mg/L - milligrams per liter

- pH Hydrogen Ion Activity

RL - reporting limit

SM - Standard Method

TDS - Total Dissolved Solids

TKN - Total Kjeldahl Nitrogen

TSS - Total Suspended Solids

umhos - micro-ohms

WQO - Water Quality Objectives

3.2 Summary of Benthic Macroinvertebrate Community Composition

A list of BMI species present in the sample collected during the June 2013 monitoring event is presented in Table 3-3, with the three most abundant taxa depicted in Figures 2 through 4 (Appendix A). Total abundance (adjusted for percent subsampled) of organisms was 12,468 individuals. The seed shrimp Ostracoda was the overwhelming dominant taxa observed comprising 83.4% of the community. This was followed by annelids of the Class Oligochaeta and gastropods of the genus Physa sp. making up 5.4% and 5.2% of the community, respectively. These top three taxa dominated the site, comprising 94.0% of the entire community. Ostracods can be found in many different substrate types where they eat bacteria. mold, algae, and detritus. Ostracods can be found across a full spectrum of water or habitat conditions; however, dominance by this group is generally an indicator of degraded conditions. Oligochaetes are segmented aquatic worms, generally found in silty substrate and detritus of streams and rivers. Similar to Ostracods, Oligochaetes can be found in both good quality and highly impacted streams. However a stream population dominated by members of this Family is generally an indicator of poor conditions. An overabundance of Oligochaeta can also be an indicator of sedimentation. Physa is a group of freshwater snails that are generally considered scrapers, in that they scour the substrate scraping off algae, diatoms, and detrital material. All three taxa (Ostracods, Oligochaetes, and Physa sp.) are generally considered tolerant taxa (TV between 8 and 10), meaning they are relatively insensitive to anthropogenic stressors and are typically found in higher abundances at disturbed sites.

Taxonomic Group	Taxon	Site HG-062713
Odonata	Coenagrionidae	1
	Apedilum sp.	1
Dintoro	Endotribelos sp.	1
Diptera- Chironomidae	Labrundinia sp.	3
Chilononidae	Micropsectra sp.	1
	Pentaneura sp.	4
	Caloparyphus/Euparyphus sp.	1
Diptera	Dasyhelea sp.	3
	<i>Dixella</i> sp.	1
	Tipulidae	1
Annelida- Oligochaeta	Oligochaeta	33
Mollusc- Gastropoda	Physa sp.	32
Crustacea- Ostracoda	Ostracoda	511
Other	Turbellaria	20
lataa	TOTAL	613

Table 3-3.
Raw Abundance of Individual Taxa Observed

Notes:

Data is a summary of the taxa identified in the subsample aliquot, not the entire sample.

3.2.1 Southern California Index of Biological Integrity Score

A summary of the SoCal IBI metric values, metric scores, and overall categorical ranking is presented in Table 3-4. The overall IBI score is a sum of the individual seven metric scores multiplied by 1.43 to convert to a 100 point scale.

The Hines Growers, Inc. station received an IBI score of 5.7, placing it in the "Very Poor" biological category, indicating a lack of BMI community characteristics typical of reference conditions in Southern California. Six of the seven metrics scored either 0 or 1, with only percent of tolerant taxa receiving a higher score of 3.

 Table 3-4.

 Summary of Southern California Index of Biological Integrity Metrics and Overall Score

Metric	Site HG-062713	
Wethic	Value	Score
Number of Coleoptera Taxa	0	0
Number of EPT Taxa	0	0
Number of Predator Taxa	0	0
Percent of Collector Individuals	94.3	1
Percent of Intolerant Individuals	0.21	0
Percent of Non-Insect Taxa	50.0	0
Percent of Tolerant Taxa	28.6	3
SoCal IBI Score (sum of scores x 1.43)	BI Score (sum of scores x 1.43) 5.7	
SoCal IBI Rank	Very	Poor

Notes:

EPT - Ephemeroptera, Plecoptera, Trichoptera

SoCal IBI - Southern California Index of Biotic Integrity

3.2.2 Selected Benthic Macroinvertebrate Metrics

A summary of selected BMI metrics outside of those used to calculate the SoCal IBI are presented in Table 3-5.

3.2.2.1 Diversity Measures

Diversity metrics provide information about the number of taxa observed and the evenness of the distribution of individuals among those taxa (Washington 1984). Pristine ecosystems are typically expected to have a high diversity of invertebrate species with a relatively even distribution of organisms between those species. In contrast, degraded systems may consist of high numbers of individuals with few tolerant taxa. A summary of the diversity metrics is presented in Table 3-5. Two methods were used to measure invertebrate diversity, including the Shannon-Weaver Index (SWI) and Margalef's Richness Index (MRI). The MRI is a measure of the number of taxa observed at a given site, while the SWI evaluates the number of taxa and the evenness of distribution among them. Typically these index scores are used to compare differences in diversity between several sites along a condition gradient or a potentially impacted site versus reference location. While somewhat less informative when evaluated

without context, the SWI can range from 0 to 4.6, with a score approaching 2.0 typically indicating a diverse community. Typical MRI scores at diverse high quality sites are above 5.0. Diversity index scores calculated for the HG-062713 monitoring site indicate a BMI community with low diversity and dominance by few species. The diversity scores reflect a low number of taxa observed (14) and an unbalanced distribution of individuals among them (i.e., dominance by Ostracoda).

Biological Metric	Site HG-062713
Number of Organisms Sorted	613
Number of Organisms in entire sample ¹	12468
Taxa Richness	14
First Dominant Taxa	Ostracoda
Percent of Top Dominant Taxa	83.4
Percent of 3 Top Dominant Taxa	94.0
Percent of Intolerant Individuals	0.16
Percent of Sensitive EPT Taxa	0.0
Dominant FFG	Collector-Gatherer
Shannon-Weaver Diversity Index (log10)	0.32
Margalef's Richness Index	1.38
Mean HBI	7.83

Table 3-5.Summary of Select Biological Metrics

Notes:

^{1.} Estimate based on number subsampled and percent of sample sorted.

EPT - Ephemeroptera, Plecoptera, Trichoptera

FFG - functional feeding groups

HBI - Hilsenhoff Biotic Index

3.2.2.2 Sensitivity Metrics

The tolerance of many BMI taxa to habitat impairment and water quality has been determined through prior studies (Hilsenhoff 1987). The Hilsenhoff Biotic Index (HBI) ranks BMI taxa on a scale of 0 to 10 regarding their sensitivity to impairment, with a TV of 0 being given to taxa that are highly sensitive to habitat or water quality impairment and a TV of 10 to those that are very insensitive. While organisms with a high TV can be found in streams with good water and habitat quality, they tend to be a lesser proportion of the community. Conversely, taxa with low TVs (i.e., sensitive organisms) will very rarely be found at sites with poor water or habitat quality. Although originally developed to assess low DO caused by organic loading (Hilsenhoff 1977, 1982, and 1987), the HBI may also be sensitive to the effects of impoundment, thermal pollution, and some types of chemical pollution (Hilsenhoff 1988, Hooper 1993). The average of HBI scores for individual taxa within observed at the site was 7.83, indicating mostly tolerant, insensitive organisms. One intolerant individual of the Dipteran genus *Dixella* sp. (TV of 2) was observed at the site, accounting for the 0.16% intolerant individuals metric.

EPT taxa comprise a group of sensitive organisms, which are found worldwide and provide a good estimate of the water and habitat quality in a stream. While some of the taxa from this group are moderately insensitive to impairment, the majority are good indicators of community health. The number of EPT taxa is one of the seven sub-metrics used to calculate the SoCal IBI score. No EPT taxa were found at the HG-062713 site.

3.2.2.3 Functional Feeding Groups

BMI may be grouped according to mode of feeding, referred to as Functional Feeding Groups (FFG). A healthy assemblage will typically contain a variety of FFG, while dominance of the community by few FFG suggests the stream may not support a diversity of ecological niches and may be general indicator of poor community health. The type and relative abundance of groups present can provide valuable insight with regard to ecological integrity, especially when considered with other assessment data.

A summary of the various FFG distributions obtained is presented in Table 3-6. The distribution of FFGs at HG-062713 was rather disproportionate. The collector-gatherer FFG contained the vast majority of taxa present with over 89% of the organisms, 17 times higher than the next highest group. In addition, five of the six remaining FFGs had less than 5% of the community. The collector-gatherer FFG is a subset of a larger collector group, comprised of collector-gatherers and collector-filterers. The collector-gatherers typically acquire fine particulate organic matter from the bottom by ingesting fine sediments, while the collector-filterers use mucous nets or fans to filter out fine particulate organic matter suspended in the passing water column. Both of these collectors are typically found in higher numbers in streams containing a high proportion of fines and sands and/or algal growth.

Metric (%)	Site HG-062713
Collector-Filterers	0.0
Collector-Gatherers	89.6
Predators	4.6
Scrapers	5.2
Shredders	0.2
Piercer-Herbivores	0.0
Unclassified	0.5

Table 3-6.		
Community Composition of Functional Feeding Groups		

3.3 Summary of Algal Biomass Data

Chlorophyll *a* is an important component of algae, and combined with AFDM, provides an indicator of the amount of algae at the sampling location. Due to the relative uniformity of substrate types encountered at the Hines Growers, Inc. sampling location (i.e., sands, fines, and small gravel), only the PVC delimiter algal collection device was used for collections.

Analytical results of chlorophyll a and AFDM samples are presented in Table 3-7. Chlorophyll a and AFDM concentrations were 35.2 micrograms per square centimeter ($\mu q/cm^2$) and 12.5 milligrams per square centimeter (mg/cm²), respectively.

	-
Parameter	Site HG-062713
Total Surface Area Sampled (cm ²)	138.6
Sample Composite Volume (mL)	525
Chlorophyll <i>a</i> (µg/cm²) ^a	35.2
Ash-Free Dry Mass (mg/cm ²) ^a	12.5
Notes [.]	

Table 3-7.
Chlorophyll <i>a</i> and Ash-Free Dry Mass Results

Converted from milligrams per liter to represent concentration of benthic algae per surface area collected.

µg/cm² - microgram per square centimeter

- milliliter mL

mg/cm² - milligram per square centimeter

3.4 Summary of Algal Taxonomic Data

A summary of algal community metrics is presented in Table 3-8. Algae are good indicators of water-quality conditions; notably nutrient and organic enrichment; and also are indicators of major ion, DO, and stream microhabitat conditions. The autecology, or physiological optima and tolerance, of algal species for various water-quality contaminants and conditions is relatively well understood for certain groups of freshwater algae, notably diatoms. These algal characteristics can be used to help understand the condition of a river or stream. An algal IBI is currently in development by the State Water Resources Control Board and the Southern California Coastal Water Research Project and may become a very useful tool in ambient surface water monitoring. Algae respond more guickly and to different ecological stressors than BMI (particularly nutrients and sediment), and there is a general consensus that these two monitoring tools are complementary and should provide a more comprehensive understanding of anthropogenic impacts to the stream biota. The following is a summary of various algal biological metrics which describe the algal community observed at the Hines Growers, Inc. stream monitoring location.

cm - centimeter

 Table 3-8.

 Summary of Selected Algal Biological Metrics

Biological Metric	Site HG-062713
Diatom Taxa Richness	25
First Dominant	Staurosira construens var
Diatom Taxa	venter
Percent of First Dominant Diatom Taxa	33.5
Percent of Top 3 Dominant Diatom Taxa	60.7
Shannon-Weaver Diversity Index (log10) Diatoms	0.96
Margalef's Richness Index Diatoms	3.75
Soft Algae Taxa Richness	10
First Dominant Soft Microalgae Taxa	Heteroleibleinia pusilla
Percent of First Dominant Soft Microalgae Taxa	44.3
Percent of Top 3 Dominant Soft Microalgae Taxa	91.5
Shannon-Weaver Diversity Index (log10) Soft Microalgae	0.61
Margalef's Richness Index Soft Microalgae	1.5
Percent of Motile Diatom Taxa	36.0
Percent of Taxa High Phosphorus Indicators	40.0
Percent of Taxa High Nitrogen Indicators	49.6
Percent of Eutrophic Taxa	57.1
Percent of α-Mesosaprobous & Polysaprobous Diatoms ^a	52.0

Notes:

algal taxa that are typically found in higher densities in streams with degraded water or habitat quality.

3.4.1 Diversity and Dominance

Diatom taxa richness was relatively high with 25 species observed in the sample. The diatom *Staurosira construens* var *venter* was the dominant taxa, comprising 33.5% of the diatom community. This was followed by diatoms *Planothidium frequentissimum* and *Nitzschia inconspicua* making up 15.2% and 12.0% of the community, respectively. These top three taxa comprised the majority of diatom taxa present, at 60.7% of the community. The SWI and MRI diversity indices indicate a diatom community with moderate diversity, yet an unbalanced distribution of individuals among them.

Soft bodied microalgae taxa richness was low with 10 species observed in the sample. *Heteroleibleinia pusilla* was the dominant taxa, comprising 44.3% of the soft bodied microalgal community. This was followed by *Characium* and *Heteroleibleinia kossinskajae* making up 27.8% and 19.5% of the community, respectively. These top three microalgae taxa comprised the vast majority of taxa present, at 91.5% of the community. The SWI and MRI indicate a soft microalgal community with low diversity and dominance by few species.

3.4.2 Diatom Autecology Indicators

It should be noted that while these autecology indicators are general indicators of water and habitat quality, algal species can be found across a spectrum of conditions. For example, an algal species considered pollution tolerant (e.g., polysaprobous and α -mesosaprobous) are frequently found in higher abundances in streams with poor water and habitat quality; however, these taxa can also be found in streams of higher quality. Conversely, taxa considered less tolerant (e.g., oligosaprobous and β -mesosaprobous taxa) will very rarely be found at sites with poor water or habitat quality.

The dominant diatom taxon was *Staurosira construens* var *venter*. This species can be indicative of eutrophic conditions, and is generally tolerant to increases in organically bound nitrogen enrichment. It is somewhat sensitive to pollution and is classified as a β -mesosaprobic diatom, meaning it can be observed in slightly degraded conditions, but will generally not be found in highly impacted sites. The second most dominant diatom taxon, *Planothidium frequentissimum*, can be indicative of high TN conditions. It is considered an α -meso/polysaprobous diatom, able to tolerate moderate to high levels pollution. The third most dominant diatom taxon, *Nitzschia inconspicua*, is a eutrophic diatom indicative of high TN and phosphorus conditions. It is considered a α -mesosaprobous diatom, able to tolerate moderate to high levels pollution.

Motile diatoms accounted for 36% of the diatom community, indicating a moderate level of siltation at this site. The presence of motile diatoms typically increases with increasing siltation. High phosphorus and nitrogen indicator taxa accounted for 40% and 50% of the diatoms present, respectively. Diatom taxa frequently observed in eutrophic conditions comprised 57% of the diatom community at the Hines Grower, Inc. stream monitoring location. Polysaprobous and α -mesosaprobous diatoms (those indicative of highly degraded conditions) accounted for 52% of the diatoms observed.

3.5 Physical Habitat Characteristics

Field data sheets containing PHAB observations are provided in Appendix B. Summaries of the dominant habitat characteristics at the sampling station during the June 2013 bioassessment are provided below in Tables 3-9 through 3-11. Densiometer readings were converted to percent vegetative cover according to the procedures outlined in Strickler (1959).

The average wetted and bankfull width across all transects was 2.0 and 4.7m, respectively, with a mean reach-wide depth of 8.7cm. Substrate within the creek was composed primarily of sand (65%), and almost equal contributions of fines (18%) and gravel (17%). A small amount of CPOM was present in the creek, present at 26% of the point count locations. Instream habitat complexity was composed of a mixture of patch types, including filamentous macroalgae (74% of point count locations), macrophytes (36% of the point count locations), sparse small woody debris, and some overhanging vegetation. The creek banks were a mix of vulnerable and stable areas, some shored with broken concrete pieces or solid concrete bags, and other areas with only grasses. Human influences at various distances from the creek consisted of rip-rap on both banks for almost the entire reach, cleared lot, pipes, trash, nursery operations, and a bridge abutment at Transect D.

Mean canopy cover over the entire reach monitored, as measured with a densiometer, was low, at 36%. The mean coverage estimate of the upper canopy riparian vegetation (trees and saplings >5 m high) was low (0–10%) across the reach assessed. Mean lower canopy riparian vegetation (0.5 m to 5 m high) also had low (0–10%) coverage on both banks. Mean groundcover (<0.5 m high) at transects contained low coverage (0–10%) of woody shrubs, low coverage (0–10%) of herbs/grasses, and very heavy coverage (>75%) barren soil/duff.

Flow habitats across the reach assessed were dominated by glides (shallow / slow flow), covering 97% of the assessed area. The sinuosity ratio was 1.01, indicating a straight stream path. Flow velocity at the Hines Growers, Inc. sampling location was low at 0.125 feet per second (ft/sec). The creek slope was measured at 0.21%, indicating a very low-gradient stream, which is defined as one with a slope less than 0.5%.

In addition to PHAB measurements collected at each transect and inter-transect, a reach-wide characterization (including epifaunal substrate/cover, sediment deposition, and channel alteration) was performed at each station. Epifaunal substrate is defined as the type and variety of habitat within the stream channel. Sediment deposition assesses the amount of fines and sands that have accumulated within the channel and channel alteration characterizes the extent to which the channel has been modified by human activity. The epifaunal substrate and sediment deposition at the Hines Growers, Inc. station were both rated as poor (scored 2 and 1, respectively) due to the high presence of sand and fine benthic substrate, and sparse instream habitat. Channel alteration was also rated in the poor category (scored 5) due to the presence of extensive shoring structures present on both banks and straitening of the channel.

	Table 3-9.	
Summary	of Selected Physical Habitat Characteristics	5

Parameter	Site HG-062713
Dominant Substrate	Sand
Mean Bankfull Width (m)	4.7
Mean Wetted Width (m)	2.0
Mean Water Depth (cm) ¹	8.7
Macroalgae Presence (%) ¹	74.3
Macrophyte Presence(%) ¹	36.2
Densiometer Canopy Cover (%) ²	35.7
CPOM Presence (%) ¹	25.7
Upper Canopy Riparian Cover (%) ³	0–10
Lower Canopy Riparian Cover (%) ³	0–10
Riparian Ground Cover – Shrubs / Saplings (%) ³	0–10
Riparian Ground Cover – Herbs / Grasses (%) ³	0–10
Riparian Ground Cover – Barren (%) ³	>75
Flow Velocity (ft/sec)	0.125
Sinuosity Ratio	1.01
Gradient (%)	0.21

Notes:

^{1.} Derived from discrete 105 point count measurements.

^{2.} Mean of 11 main transects.

^{3.} Mean across entire reach.

% - percent cm - centimeter(s)

ft/sec - feet per second

m - meter(s)

CPOM - Course Particulate Organic Matter

Table 3-10. Summary of Substrate Types Observed

Substrate Type (%)	Site HG-062713			
Fines	18.1			
Sand	64.8			
Gravel	17.1			
Cobble	0			
Boulder	0			
Bedrock	0			
Other	0			

Note: percent of 105 point counts

Table 3-11. Summary of Flow Habitat Types Observed

Flow Habitat (% of reach)	Site HG-062713	
Cascade	0	
Rapid	0	
Riffle	0	
Run	0	
Glide	97.0	
Pool	1.0	
Dry	2.0	

Note: Mean across entire reach

4.0 QUALITY ASSURANCE/QUALITY CONTROL

All of the data presented have been thoroughly reviewed in accordance with our internal quality assurance (QA) program and are deemed acceptable for reporting. Any deviations from the protocol are discussed below, or are otherwise considered minor with no effect upon the assessment.

4.1 Water Chemistry

All samples collected were submitted to the analytical laboratories within 12 hours of collection and met holding time requirements for analysis. Analytical data were thoroughly reviewed and deemed acceptable for reporting purposes with qualifications as noted in the QA section of the individual lab report.

One deviation from the Quality Assurance Prevention Plan (QAPP) was made during analysis of water samples. The QAPP specified the anions nitrate and nitrite be analyzed individually, which would be performed using method EPA 300.0. However, these two constituents were analyzed together using EPA SM 4500-NO3 E, which does not distinguish between them, but produces a sum total. By the time this error was discovered, the sample was out of holding time and could not be reproduced.

In two cases, analytical reporting limits (RL) were above the target RL specified in the QAPP (sulfate and nitrate+nitrite). Laboratory RLs for each analyte were generated depending on performance based criteria per National Environmental Laboratory Accreditation Certification guidelines. In all cases, the RLs were equal to or below water quality objectives (WQO) for these analytes; and measured values exceeded RLs for these measurements; therefore exceeded RLs had no bearing on data interpretation.

4.2 Benthic Macroinvertebrate Sampling

SWAMP sampling protocols were followed throughout the bioassessment. The data is released without qualification.

4.3 Benthic Macroinvertebrate Identification

EcoAnalysts, Inc. performed taxonomic identification and SoCal IBI calculations. QA measures included re-sorting a minimum of 20% of each BMI sample to determine sorting efficacy (which exceeded 90%). Accurate calculation of the SoCal IBI using SWAMP methods under the Standard Taxonomic Effort Level 2 requires a minimum sample size of 600 invertebrates.

4.4 Physical Habitat Characterization

PHAB data were collected in accordance with SWAMP methods and is acceptable without further qualification.

This page intentionally left blank

5.0 DISCUSSION

5.1 Water Quality

Several analytes were found in exceedance of San Diego Basin Plan (SDRWQCB 1994) WQO. These include sulfate, TDS, TN, nitrate+nitrite, and total phosphorus.

While the nitrate+nitrite result of 41 milligrams per liter (mg/L) using EPA SM 4500-NO3 E does exceed the WQO of 10 mg/L for the combined analysis of these two compounds, the individual WQO for nitrite of 1.0 mg/L, may or may not have been exceeded, depending on the ratio of nitrate to nitrite in the sample. The individual WQO for nitrate of 45 mg/L was not exceeded based on the total nitrate+nitrite result of 41 mg/L.

The WQO for ammonia is based on the un-ionized fraction (NH₃). Total ammonia measured in the sample was 0.11 mg/L. Using the pH, temperature, and salinity of the sample water at the time of collection, the un-ionized fraction was calculated to be 0.0013 mg/L, below the un-ionized ammonia WQO of 0.025 mg/L.

5.2 **Biological Metrics**

5.2.1 Macroinvertebrates

The overall SoCal IBI categorical ranking at the Hines Growers, Inc. bioassessment station during the June 2013 sampling event resulted in a classification of "Very Poor". The FFGs present were dominated by the collector groups, specifically the collector-gatherers and the biological community diversity measurements indicated low diversity, with dominance by one taxa.

Abundance measures provide an estimate of the total number of taxa groups and individuals in a stream. A high abundance does not necessarily provide an indication of good water quality. In many cases, as water or habitat quality begins to decline, the number of organisms in a stream will increase. However, this is often observed with a corresponding decrease in total taxa groups, and these groups are dominated by increasingly pollutant-tolerant species. The total abundance of macroinvertebrates at this site (adjusted for percent subsampled) was high at 12,468 individuals, while taxa richness was low at 14. High quality reference sites tend to have low to moderate abundance levels and a relatively high numbers of taxa groups.

There is a close link between the diversity measures observed at a site and the magnitude of dominance observed by the top three most abundant species. This relationship is generally an inverse one. Typically as water or habitat quality decline, measures of species diversity also decrease, with a corresponding increase in dominance of a few more tolerant taxa. The bioassessment station at Hines Growers, Inc. exhibited an elevated dominance of Ostracods making up 83% of the community and the top three species comprising 94% of the individuals present. The SWI and MRI diversity measures at the station both indicated low diversity.

The distribution of FFGs at the Hines Growers, Inc. station was rather disproportionate. The collector-gatherer FFG contained the majority (89.6%) of individuals present. This unbalanced community suggests some level of stress on the macroinvertebrate community.

Sensitivity metrics calculated for this dataset (e.g., HBI) rank species present based on their tolerance to water or habitat impairment. The average of HBI scores for individual taxa within observed at the site was 7.83, indicating predominantly tolerant organisms. As a basis for comparison, higher quality reference sites would be expected to have HBI scores under 5.0. Adobe Creek, a reference station within the Santa Margarita River Watershed, had an average HBI score of 4.82 when sampled during Spring 2013.

5.2.2 Algae

The Hines Growers, Inc. station had relatively high benthic chlorophyll-*a* concentration of $35.2 \ \mu\text{g/cm}^2$. This concentration of chlorophyll-*a* suggests an increased presence of green algae. This is further supported by the substrate point counts which identified benthic macroalgae at 74% of the locations. Station photos (see Appendix E) show much of the stream surface area with filamentous algae coverage.

The diversity of diatom taxa present was moderate with top three taxa comprising 60% of the community. However, the soft bodied algal taxa community was dominated by the top three taxa at 92%. The three dominant diatom taxa present *Staurosira construens* var *venter*, *Planothidium frequentissimum*, and *Nitzschia inconspicua* all have some characteristics of algae found in eutrophic, moderately degraded streams. Approximately 40% to 60% of the diatom taxa present were indicative of high nitrogen, high phosphorus, eutrophic, or degraded conditions.

5.3 Physical Habitat

Sands and fines accounted for a very high percentage of the particles observed. A number of studies have shown the impact that less than adequate PHAB can have on the stream benthic biological communities, particularly that of excess fines and sand substrate (Munn et. al. 2009, Wilson et. al. 2007, Hall et. al. 2009, Harrison et. al. 2007, and Mazor et. al. 2010). Healthy, diverse benthic macroinvertebrate communities require varied habitat types with an abundance of interstitial spaces. Sands and fines act to fill those spaces, thereby smothering the habitat, leaving a uniform sandy substrate that few species in Southern California are adapted to (Mazor et. al. 2010). Generally, in the absence of water quality degradation, a greater diversity of habitat types and niches will result in a more diverse benthic community (Munn et. al. 2009 and Wilson et. al. 2007). Very little habitat complexity was observed at this location.

In addition, RC along this reach is considered a very low gradient stream (<0.5% slope). Gradient can result in a marked difference in flow regime and availability of microhabitats, relative to higher gradient streams. For bioassessment programs, an important distinction between high and low-gradient streams is the scarcity of riffles and other microhabitats that are typically the richest macroinvertebrate habitats (Mazor et al. 2010). In addition, reduced flow, low gradient streams are generally characterized by settling conditions in which sediment particulates accumulate. This was observed in the current dataset with Hines Growers, Inc.

stream segment being comprised primarily of slow flowing glides. This habitat type does not provide an ideal setting for macroinvertebrates.

5.4 Integrative Assessment

Despite several water quality constituents exceeding San Diego Basin Plan WQO, water quality may not necessarily be the primary driver of the benthic community observed at the Hines Growers, Inc. sampling location on RC. Regardless of water quality, one would not expect a healthy, diverse benthic macroinvertebrate population at this location based on the PHAB conditions alone. The large fraction of sands and fines, along with lack of riparian habitat, lack of instream habitat complexity, very low gradient, and low flow all limit the ability of a stream to sustain a healthy macroinvertebrate community.

As suggested by the sparse riparian vegetative metrics, the stream canopy cover at this site was low at only 35.7% of the stream reach having overhead canopy. This in combination with shallow depth and slow flow enhances conditions that can favor algal growth by increasing temperature and allowing more sunlight to reach the creek surface.

5.5 Comparison to Other Historical Bioassessment Sampling in Rainbow Creek

As part of the County of San Diego's copermittee bioassessment monitoring program, the RC Watershed was sampled in 2008 and 2011. Two stations were sampled downstream of the facility. A summary of the sampling locations and IBI scores for these events is presented in Table 5-1. These bioassessment IBI scores indicate that the BMI community in RC has consistently ranked as "Poor" or "Very Poor". Based on known inherent variability in most biological systems (ex. RC-WGR results below), the single biological integrity score obtained for the Hines Growers, Inc. reach does not categorically differ from scores observed in other monitored portions of the RC watershed.

Sample ID	Sample Date	Location Relative to Site HD-062713	IBI Score Range	Biological Condition
RC-I15	May 2011	Downstream ~ 1100m	9	Very Poor
RC-WGR	May 2008	Downstream ~ 5500m	24	Poor
RC-WGR	May 2011	Downstream ~ 5500m	11	Very Poor

 Table 5-1.

 Summary of Historical Bioassessment Sampling in Rainbow Creek

Notes:

~ - approximately

IBI - index of biological integrity

m - meter(s)

This page intentionally left blank

6.0 **RECOMMENDATIONS**

Without context it is difficult to say whether the facility is having an impact on the stream biological community. While it is clear that this stream does not contain the benthic macroinvertebrate or algal communities that one would expect in a pristine reference stream, many factors are at play (e.g., PHAB constraints and water quality). Some prior bioassessments performed in other portions of RC do show a degraded macroinvertebrate community; however, these are downstream of the current monitored station, and therefore not able to differentiate the contributions of the facility. For greater context, a recommendation for future monitoring would be to conduct bioassessment collections upstream of the facility in a portion of RC with habitat similar to that found in the current monitored location.

This page intentionally left blank

7.0 **REFERENCES**

- Brown, H.P. 1973. Survival records for elmid beetles, with notes on laboratory rearing of various dryopoids (Coleoptera). *Entomological News*. 84: 278–284.
- Hall, L.W., W.D. Killen, R.D. Anderson, and R. W. Alden. 2009 The Influence of Physical Habitat, Pyrethroids, and Metals on Benthic Community Condition in an Urban and Residential Stream in California. *Human and Ecological Risk Assessment*. 15:526–553.
- Harrington 1999 California Stream Bioassessment Procedure. Protocol Brief for Biological and Physical/Habitat Assessment in Wadeable Streams. CA Dept. Fish & Game. Aquatic Bioassessment Laboratory.
- Harrison, E.T., R.H. Norris, and S.N., Wilkinson. 2007 The impact of fine sediment accumulation on benthic macroinvertebrates: implications for river management. Proceedings of the 5th Australian Stream Management Conference. Australian rivers: making a difference. Charles Sturt University
- Hilsenhoff, W.L. 1977. Use of arthropods to evaluate water quality of streams. Tech. Bull. Wisconsin Dept. Nat. Resour. 100. 15pp.
- Hilsenhoff, W.L. 1982. Using a Biotic Index to Evaluate Water Quality in Streams. Tech. Bull. Wisc. Dept. Nat. Res. 132p.
- Hilsenhoff, W.L. 1987. An improved biotic index of organic stream pollution. *Great Lakes Entomology*. 20; 31–39.
- Hilsenhoff, W.L. 1998. A modification of the biotic index of organic stream pollution to remedy problems and permit its use throughout the year. Great Lakes Entomologist. 33:1-12.
- Hooper, A. E. 1993. Effects of season, habitat, and an impoundment on twenty-five benthic community measures used to assess water quality. University of Wisconsin Stevens Point Masters Thesis.Karr, J.R. and E.W. Chu. 1999. *Restoring Life in Running Waters: Better Biological Monitoring*. Island Press, Covelo, California.
- Mazor, R.D., K. Schiff, K. Ritter, A. Rehn, and P. Ode. 2010 Bioassessment tools in novel habitats: an evaluation of indices and sampling methods in low gradient streams in California. Environment Monitoring Assessment 167:91–104.
- Munn, M.D., I.R. Waite, D.P. Larson, and A.T. Herlihy. 2009. The relative influence of geographic location and reach-scale habitat on benthic invertebrate assemblages in six ecoregions. *Environmental Monitoring and Assessment*. 154:1–14.
- Ode, P.R., A.C. Rehn, and J.T. 2005. A qualitative tool for assessing the integrity of southern coastal California streams. *Environmental Management*. 35; 493–504. May 2005.

- San Diego Regional Water Quality Control Board. 1994. *Water Quality Control Plan for the San Diego Basin (9)*. September 8, 1994, amended through April 25, 2007.
- Strickler, G.S. 1959. Use of the densiometer to estimate density of forest canopy on permanent sample plots. United States Department of Agriculture Forest Service, Pacific Northwest Forest and Range Experiment Station. Portland Oregon, December 1959.
- Surface Water Ambient Monitoring Program (SWAMP). 2007. Standard Operating Procedures for Collecting Benthic Macroinvertebrate Samples and Associated Physical and Chemical Data for Ambient Bioassessments in California. February 2007.
- SWAMP. 2010. Standard Operating Procedures for Collecting Stream Algae Samples and Associated Physical and Chemical Data for Ambient Bioassessments in California. May 2010.
- Washington, H.G. 1984. Diversity, biotic and similarity indices: a review with special relevance to aquatic ecosystems. *Water Research*. 18; 653–694.
- Wilson, A.L., Dehaan, R.L., Watts, R.J., Page, K.J., Bowmer, K.H., & Curtis, A. (2007). Proceedings of the 5th Australian Stream Management Conference. Australian rivers: making a difference. Charles Sturt University.

APPENDIX A FIGURES Hines Growers, Inc. Final Hines Growers Bioassessment Report, June 2013 Fallbrook, California December 2013 AMEC Project No. 1315102400

This page intentionally left blank

Hines Growers Inc. June 2013 Water Quality and Bioassessment Monitoring Location

1

Hines Growers, Inc. Final Hines Growers Bioassessment Report, June 2013 Fallbrook, California December 2013 AMEC Project No. 1315102400

This page intentionally left blank

Figure 2. Freshwater Ostracod

Figure 3. Oligochaete

Hines Growers, Inc. Final Hines Growers Bioassessment Report, June 2013 Fallbrook, California December 2013

Figure 4. Physa sp.

Hines Growers, Inc. Final Hines Growers Bioassessment Report, June 2013 Fallbrook, California December 2013

APPENDIX B

FIELD DATASHEETS

Hines Growers, Inc. Final Hines Growers Bioassessment Report, June 2013 Fallbrook, California December 2013 AMEC Project No. 1315102400

This page intentionally left blank

SWAMP Stream Habitat Characterization Form <u>FU</u>	ILL VERSION Revision Date: March 19 th , 2013							
	Length (wetted width ≤ 10 m) = 150 m Distance between transects = 15 m Reach Length (wetted width >10 m) = 250 m Distance between transects = 25 m							
Project Name: Hines Grover,	Date: 06 / 27 / 2013 Sample Collection Time: DFW							
Stream Name: Rainbold Creek	Site Name/Description: Hines Graves							
Site Code: +6-062713	Crew Members: JR, TA, KT, GM							
Latitude (actual – decimal degrees): °N 33. 41683	datum: NAD83							
Longitude (actual – decimal degrees): ºW - 117, N 128	other: GPS Device: Garmin 76							
	silica, oxygen saturation, and air temp are al, calibration date required on page 24 (see reach length guidelines							
Water Temp (Deg C) pH Alkalinity (mg/L)	Turbidity (ntu)* Oxygen Sat. (%)* at top of form)							
7.51 7.51 -	start muses NO							
Dissolved O ² (mg/L) Specific. Salinity (ppt)	Silica (mg/L)* Air Temp (Deg C)*							
8.18 2106 1.1	enante en							
DISCHARGE MEASUREMENTS 1 st measurement = left bank (looking downstream)	check if discharge measurements not possible (explain in field notes section)							
VELOCITY AREA METHOD (preferred)	Transect Width (m): (), () (use ONLY if velocity area method not possible)							
Distance from Depth Velocity Distance fro	m Depth Velocity Elect 1 Elect 2 Elect 3							
Left Bank (cm) (cm) (ft/sec) Left Bank (c 1 0 3.0 0 11	m) (cm) (ft/sec) Distance (m)							
2 10 3.5 O 12	Float Time (sec)							
3 20 5.0 0,38 13	Float Reach Cross Section							
4 30 5.5 0.33 14 5 40 4.5 0.04 15	depth(cm) Section Section Section							
5 40 4.5 0.04 15 6 50 1.6 0 16	Depth 1							
7 17	Depth 2							
18	Depth 3							
9 19	Depth 4							
10 20	Depth 5							
NOTABLE FIELD COND Evidence of recent rainfall (enough to increase surface	ITIONS (check one box per topic) runoff) NO							
Evidence of fires in reach or immediately upstream (<5	N							
Evidence of mes in reach of immediately upsiteant (<	Agriculture X Forest Rangeland							
Dominant landuse/ landcover in area surrounding re	ach Urban/ Industrial Suburb/Town Other							
	5 6 7 8 9 10 11 12 13							
EMBEDDEDNESS MEASURES								
(carry over from transect 14 15 16 17 1 forms if needed to attain target count of 25, measure in %)	18 19 20 21 22 23 24 25							

•

FULL VERSION

Revision Date: March 19th, 2013

Site Code:	HG-0627	/3	Date: 0	1271	2013								
	SLOPE and B	EARING FOI	RM (trar	nsect ba	ised - fo	or Full I	РНАВ	only)		AUTOLEVE CLINOMETE HANDLEVE	R		
		MAIN S Int of Inter-trans	ect distance		ment	(réc	ord percer	nt of inter-trans	OTHER TAL SEGMENT sect distance in each segment				
Starting Transect	Stadia rod measurements	Slope (%) or Elevation Difference	Segment Length (m)	Bearing (0°-359°)	Percent of Total Length (%)	Stadiz measure	a rod	Slope or Elevation Difference	Segment Length (m)	Bearing (0°-359°)	Percent of Total Length (%)		
K	117												
J	IKn	0	N	0	100	- 1							
	119	2	1	0	N								
H	119	0		8		1							
G	122	3		X		1 1 1 1 1 1							
F	125	3		306		1 1 1 1 1				Leg front Bott Lesson au annu agus states			
E	130	5		0									
D	137	7		22		1			en aju cana en anti a canajdagete				
С	147	10		22									
В	149	2		22									
A	\$ 149	0	15	8	00		6 Sec. 2010 Barriel Sec. 2010						
additional calculation area													
Para	ADDITIO meter	NAL HABITAT Optim		-	l uboptima	1		igh Gradier Aarginal	ו <mark>י בו</mark>	Low Gra	<u>جر</u>		
Epifauna	Substrate/	Greater than 70% worable for epifaun and fish cover (50 gradient stream wbmerged logs, un	of substrate al colonization 0% for low- s); mix of derout banks,	40-70% m 50% for l	ix of stable hal ow-gradient sti ed for full color potential	oltat (30- reams);	20-40% mi 30% in lo	x of stable habitat w-gradient stream requently disturbed removed	s); (10 1 or li	ss than 20% sta % in low-gradie ack of habitat is bstrate unstable	able habitat ht streams); obvious;		
Sc	ore: 2	cobble or other st 0 19 18 Ittle or no enlargen	17 16	15 14	1 13 1 new increase i	2 11	10 9	8 7	6 5	4 3 🔇	2 1 0		
Sediment	Deposition	the of no enlargen of point bars and le the bottom affected deposition (<20% in streams	ss than 5% of by sediment low-gradient	formatio sand, or fi the botto	n, mostly from ne sediment; ! m affected (20 gradient strean	gravel, 5-30% of -50% in	sand, or fin 50% of the	eposition of new gr sediment on bars bottom affected (w-gradient stream	30- 130- 50 - mc	vy deposits of f creased bar dev re than 50% of anging frequent low-gradient st	elopment; the bottom y (>80% in		
	Alteration	0 19 18 hannelization or dr or minimal; stream patterr	with normal	(e.g., bridg of past cl	4 13 1 nannelization p e abutments); nannelization () e present but re	evidence 20yrs)	embankmer present on	tion may be extensits or shoring structor both banks; 40 to	tures cem 30% react	4 3 inks shored with ent; Over 80% o n channelized a ream habitat gre	of the stream nd disrupted.		
Sc	ore: 2		17 16		elization not pre		of strea 10 9	am reach disrupted	6	or removed e			

Page 2 of 26

SWAMP Stream Habitat Cha	racterization Form	EULL VERSION Rev	ision Date: March 19 th , 2013
Site Code: H6 - 062.713	Site Name: Hines	Grouters	Date: <u> 6</u> / <u>2</u> 7 / 2013
Wetted Width (m):/, 3	Bankfull Width (m): 5,0	Bankfull Height (m): 0.23	Transect A
	Tra	insect Substrates	
Position Dist from LB (m) Depth siz cla	e Cobble CPOM Th	croalgae iickness Attached Unattach	ac Macrophytes Microalgae Thickness cd Macrophytes 0 = No microalgae present, Feels rough, not slimy

Left Bank	0	2	GF	iteration,	🗗 A D	2	P A D	P A D	PA D	 Peels rough, not slimy 1 = Present but not visible, Feels slimy;
Left Conter	0.33	4	47F 4M	7	P 🔕 D	2	(A D	P 🕢 D	P \land D	2 = Present and visible but <1mm; Rubbing fingers on surface produces a
Center	0.65	ス	SA		₽∰D	2	P A D	P 🕢 D	Р (Д) D	brownish tint on them, scraping leaves visible
Right Center	0.98	3	GF 10mm		₽ ∕]D	2	D A D	P 🔕 D	P 🐼 D	trail 3 = 1-5mm; 4 = 5-20mm;
Right Bank	1.3	ſ	5A		P 🏈 D	2	6 🕢 D	P 🔕 D	D A D	5 = >20mm; UD = Cannot determine if microalgae present,
						it measures of th act measuremen		each particle or	one of the size	substrate too small or covered with silt (formerly Z code) D = Dry, not assessed

RIPARIAN VEGETATION (facing downstream, 5 m u/s, 5 m d/s, 10 m from wetted width)		3 = Heavy (40-75%) 4 = Very Heavy (>75%)	INSTREAM 0.= Absent (0%) HABITAT 1.= Sparse <10%) COMPLEXITY 2.= Moderate (10-40%) (6 m u/s, 6 m d/s) 4.= Very Heavy (875%)	DENSIOMETER READINGS (0-17) count covered dots
Vegetation Class	Left Bank	Right Bank	Filamentous Algae 0 1 2 (3) 4	Center
Uppe	r Canopy (>5 m high)		Aquatic Macrophytes/ Emergent Vegetation 0 1 2 3 4	Left 14
Trees and saplings >5 m high	0 1 2 3 4	0 1 2 (3) 4	Boulders (1) 1 2 3 4	Center Upstream
Lower C	Canopy (0.5 m-5 m high))	Woody Debris >0.3 m 🕥 1 2 3 4	Center
All vegetation 0.5 m to 5 m	0 1 2 3 4	0 1 2 3 4	Woody Debris <0.3 m 0 1 2 3 4	Right //
Groun	d Cover (<0.5 m high)		Undercut Banks 0 1 2 3 4	Downstream 13
Woody shrubs & saplings <0.5 m	0 1 2 3 4	0 🗿 2 3 4	Overhang. Vegetation 0 1 2 3 4	Optional
Herbs/ grasses	0 (1) 2 3 4	0 1) 2 3 4	Live Tree Roots	Left Bank
Barren, bare soil/ duff	0 1 2 3 (4)	0 1 2 3 (4)	Artificial Structures 0 (1) 2 3 4	Right Bank

HUMAN INFLUENCE (circle only the closest to wetted channel; assess 5 m u/s, 5 m d/s)	0 = Not Present: B = On Bank, C = Between Bank & 10m from Channel; P = ≥10m++50m from Channel; Channel (record Yes or No, if Y for an analyte, do not assess banks)												
ura, o m uraj		Left Bank			Cha	nnel	Right Bank						
Walls/ Rip-rap/ Dams	P	Ô	В	0	Y	\bigcirc	0	В	С	Р			
Buildings	Р	С	В	0	Y	\odot	Ø	В	Ċ	Ρ			
Pavement/ Cleared Lot	Р	С	В	Ø			0	В	Ô	Ρ			
Road/ Rallroad	Р	С	В	(0)	Y	G₽	0	В	C	Р			
Pipes (Inlet/ Outlet)	P	С	В	6)	Y	Ø	0	В	С	Ρ			
Landfill/ Trash	Р	С	В	Ø	Y		0	В	С	Р			
Park/ Lawn	P	С	В	0			(0)	В	С	Р			
Row Crop	P	С	В	Q			(0)	В	С	Р			
Pasture/ Range	P	С	В	Ø	175		Ø	В	С	Р			
Logging Operations	P	С	В	0		-	(0)	В	С	Р			
Mining Activity	P	С	В	0	Y	$(\overline{1})$	0	В	С	Р			
Vegetation Management	P	C	B	0			(0)	В	С	Р			
Bridges/ Abutments	Р	С	В	0	Y		Ø	В	С	Р			
Orchards/ Vineyards	Р	С	В	Ø			(0)	В	С	Ρ			

10 Automatic Contraction of the		

SWAMP	Stream H	Habitat C	Charact	erization	Form	<u>FULL V</u>	ERSION	n 19 th , 2013				
		nter-1	lrans	ect: AF		V	Wetted Width (m): 0.3					
	Inter-Transect Substrates											
Position	Dist from LB (m)	Depth (cm)	mm/ size class	% Cobble Embed.	CPOM	Microalgae Thickness Code	Macroalgae Attached	Macroalgae Unattached	Macrophytes	Microalgae Thickness Codes 0 = No microalgae present,		
Left Bank	0	27	S.A		P 🏠 D	2	PA D	P 🔕 D	Р 🔕 D	Feels rough, not slimy; 1 = Present but not visible, Feels slimy;		
Left Center	0,2	17	SA.	· —	🖉 Â D	2	ØA D	PØD	Р 🖉 D	2 = Present and visible but <1mm, Rubbing fingers on surface produces a		
	0,4	15	5A	- Containers	Р Ø D	1	, DA D	P A D	P \land D	brownish tint on them, scraping leaves visible trail.		
Right Center	0.6	0.5	54	~	P 🖉 D	1	Ø A D	P 🔕 D	P 🔕 D	3 = 1-5mm; 4 = 5-20mm;		
Right Bank	(), <i>8</i>	0.5	SA		DA D	2	D A D	Р 🔗 D	Р 🔕 D	5 = >20mm; UD = Cannot determine if microalgae present.		
						t measures of th ect measuremen		each particle or	one of the size	substrate too small or covered with silt (formerly Z code). D = Dry, not assessed.		

J.

FLOW FLASHATS
Channel Type 👘 👘
Glide 00

Page 4 of 26

tted Wic	^{Ith (m):} 1,	8		Bankfull Wie	1th (m): 3,9	(m): 9 Bankfull Height (m): 0,20 Tra				nsect B	
Transect Substrates											
osition	Dist from LB (m)	Depth (cm)	mm/ size class	% Cobble Embed.	СРОМ	Microalgae Thičkness Code	Macroalgae Attached	Macroalgae Unattached	Macrophytes	Microalgae Thickn Codes 0 = No microalgae pres	
Left Bank	0,0	0.5	58		P 🖉 D	2	P 🖉 D	Р 🔗 D	P 🚯 D	Feels rough, not slin 1 = Present but not vis Feels slimy;	
Left enter	0.45	12	SA	-	∲ Ă D	2	Р 🖉 D	Р 📿 D	Р (Д) D	2 = Present and visible <1mm; Rubbing finge on surface produces	
enter	0.9	13	54	-	P 🖗 D	2	D A D	P \land D	(D) A D	brownish tint on the scraping leaves visit	
light enter	1,35	18	SA-	-	P 🖉 D	2	O A D	P 🕢 D	Р 🕭 D	trail 3 = 1-5mm; 4 = 5-20mm;	
tight Bank	1.8	3	FN	144	D A D	00	() A D	P 🔗 D	D A D	5 = >20mm; UD = Cannot determin microalgae present.	
						t measures of the transmission of transmission of the transmission of transmission of transmission of the transmission of transmission of the transmission of transmis	ie median axis of its preferred)	each particle or	one of the size	substrate too small o covered with silt (formerly Z code). D = Dry, not assessed	

Right Bank

1.2

2

1 12 3 4

*(*3) 4

3

4

В

в с р

в С

0

0

0

Y

Ρ

Ρ

С

Filamentous Algae

Boulders

Aquatic Macrophytes/ Emergent Vegetation

Woody Debris >0.3 m

Woody Debris <0.3 m

Overhang. Vegetation

Undercut Banks

e10 III						<u> </u>							
Herbs/ grasses	0	D	2 3	34	0	1	1	3	4		Live Tre	ee Roots	
Barren, bare soil/ duff	0	0 1 2 3 (4) 0 1 2 (3) 4 Artific										al Structures	
HUMAN INFLUENCE (circle only the closest to wetted channel; assess 5 m	B = (C = [P = 2	•10m+	nk; en Bank <50m fr	om Ch									
u/s, 5 m d/s)	Channel (record Yes or No.										ght Bank		
Walls/ Rip-rap/ Dams	P	С	B ($\overline{}$) Y	N	Π	Q	(B)	С	Р	Ra	
Buildings	P	C	В	70)	Y	N		10	R	C	Р	. Filling and	
Pavement/ Cleared Lot	P	·C) в	Ŏ		1		0	В	С	Р		
Road/ Railroad	P	С	В	6	I Y	N		0	В	С	Ρ		
Pipes (Injet/ Outlet)	Р	С	B	0	Y	N		0	В	С	Р		
Landfill/ Trash	P	С	В	0	Y	N		0	В	С	Р		
Park/ Lawn	P	С	В	0				0	В	С	Р		
Row Crop	P	С	В	þ				0	В	С	Р		
Pasture/ Range	P	С	В	þ				0	В	С	Р		
Logging Operations	P	С	В	þ				0	В	С	Р		
Mining Activity	P	C	В	0	Y	N		0	в	С	Ρ	1	

Left Bank

3 4

3 4

3 4

0

0

0 1

Upper Canopy (>5 m high)

Lower Canopy (0.5 m-5 m high)

1

12

2

Ø

Ground Cover (<0.5 m high)

6)

Р С В

РСВ

РСВ

Vegetation Class

All vegetation 0.5 m to 5 m

Woody shrubs & saplings

<0.5 m

Vegetation Management

Bridges/ Abutments

Orchards/ Vineyards

Trees and saplings >5 m high 0 1 2

	BANK : Darsterne Darsterne	STABILITY nilitii downstrefu uli-wetati wrbiji	
Loft Bank	eroded	vulnorable	
Right Bank	eroded	Vulner gie	stati e

(3)4

34

34

34

3 4

3 4

3 4

3 4

Center

Left

Center

Upstream

Center

Right

Center

Downstream

Left Bank

Right Bank

Optional

0

//

5

1 2

2

2

2

2

2 3 4

2

2

0

n

-0-

Ø

0

Ó

0

0 1

0 61

Ø 2

1

1

SWAMP	Stream ⊦	labitat (Charact	erization	Form	FULL V	ERSION	Revisio	n Date: Marcl	h 19 th , 2013
		nter-'l	Frans	ect: BC	2	<u>v</u>	Vetted Width (m	<u>): 2,6</u>	0	
145 1					In	ter-Transect	Substrates			
Position	Dist from LB (m)	Depth (cm)	mm/ size class	% Cobble Embed,	CPOM	Microalgae Thickness Code	Macroalgae Attached	Maeroalgae Unattached	Macrophytes	Microalgae Thickness Codes 0 = No microalgae present,
Left Bank	0	10	GC 18M		PØD	2	DA D	₽ 🅢 D	€DA D	 Feels rough, not slimy; 1 = Present but not visible, Feels slimy;
Left Center	0:65	13	4C 25 man	\sim	P ØD	2	Ø A D	Р 🕭 D	P 🔕 D	2 = Present and visible but <1mm; Rubbing fingers on surface produces a
Center	1.35	13	5A.	₩û _{na} r	PØD	2	🕐 A D	P 🔊 D	P 🐼 D	brownish tint on them, scraping leaves visible trail
Right Center	1,95	6	54	<u> </u>	₽ ⊘ D	2	Ø A D	P 🛷 D	P 🐼 D	3 = 1-5mm; 4 = 5-20mm; 5 = >20mm;
Right Bank	2,6	0,5	FN	<u> </u>	P Ø D	UD	PØD	Р Ø D	ØA D	UD = Cannot determine if microalgae present
						t measures of th act measuremen		each particle or	one of the size	substrate too small or covered with silt (formerly Z code). D = Dry, not assessed

i Lünenne Type	
	a a a a a a a a a a a a a a a a a a a
	1
	1
	1 1
- Circles	100
	1 F F 1 L F 1
	1 F 🖗 🛨 🕴
in the second	•
	r I
·····	

FULL VERSION

Revision Date: March 19th, 2013

Site Code: 4-6-062713	Site Name: Hines (router	Date: 06 / 27 / 2013
Wetted Width (m):	Bankfull Width (m):5,6	Bankfull Height (m): 0, 27	Transect C

				14.2	1	Transect Su	bstrates			
Position	Dist from LB (m)	Depth (cm)	mm/ size class	% Cobble Embed.	CPOM	Microalgae Thickness Code	Macroalgae Attached	Maeroalgae Unattached	Macrophytes	Microalgae Thickness Codes 0 = No microalgae present Feels rough, not slimy.
Left Bank	0	28	5A	-	Р	2	P A D	P 🔊 D	P 🕢 D	1 = Present but not visible; Feels slimy;
Left Center	0.4	34	SA	gataZ/vier	₽∂) D	2	₽ A D	P 👩 D	P 🛞 D	2 = Present and visible but <1mm, Rubbing fingers on surface produces a
Center	0.8	36	5A	<u> </u>	Р (2) D	2	Р 🖉 D	P 🕢 D	🕐 A D	brownish tint on them, scraping leaves visible trail
Right Center	1:2	37	FN	~	P 🖉 D	VD	Ø A D	Р Ø D	P 🔊 D	3 = 1-5mm; 4 = 5-20mm;
Right Bank	1,6	2	GF 10 mm	uineas.	PØD)	P A D	P 🔕 D	P 🕢 D	5 = >20mm, UD = Cannot determine if microalgae present.
						t measures of th of measuremen	e median axis of ts preferred)	each particle or	one of the size	substrate too small or covered with silt (formerly Z code). D = Dry, not assessed

Riparian Vegetation (facing downstream, 5 m u/s, 5 m d/s, 10 m from wetted width)	1 =	Abse Spar Mode	se (<	<10%	6) -40%)	4 = \	Həavy Very F					INSTREAM HABITAT COMPLEXITY (6 m u/s, 5 m d/s)	0 = Ab 1 = Sp 2 = Mc 3 = He 4 = Ve	irse derate avy	(40-76	0%) 0%) 5%)		DENSIOMET READINGS (0 count covered	-17)
Vegetation Class		Lef	t Ba	ank			Rig	ht B	ank			Filamentous Algae	0 1	2	3 ´	Ð]	Center	0
Uppe	r Car	юру	(>5	m h	igh)							Aquatic Macrophytes/ Emergent Vegetation	00) 2	3	4		Left Center	
Trees and saplings >5 m high	10	1	2	3	4	0	1	\bigcirc	3	4	***	Boulders	Q1	2	3	4	1	Upstream	0
LowerC	anó	oy (0	.5 m	-5 n	n higl	1)				2		Woody Debris >0.3 m	O1	2	3	4		Center	12
All vegetation 0.5 m to 5 m	6	1	2	3	4	0	1	12	3	4		Woody Debris <0.3 m	00) 2	3	4		Right Center	10
Groun	d Co	ver (<0.5	m	nigh)	J		<u></u>				Undercut Banks	0/0) 2	3	4		Downstream	4
Woody shrubs & saplings <0.5 m	Ø	1	2	3	4	0	Ø	2	3	4		Overhang, Vegetation	1	2	3	4		Optional	
Herbs/ grasses	0	D	2	3	4	0	Ø	2	3	4		Live Tree Roots	1	2	3	4		Left Bank	
Barren, bare soil/ duff	0	1	2	3	(4)	0	1	2	3	(4)		Artificial Structures	0 1) 2	3	4	1	Right Bank	

HUMAN INFLUENCE (circle only the closest to wetted channel; assess 5 m u/s, 5 m d/s)	B = (C = P = :	>10m+<	<; 1 Bank 50m fro	om Cha	rom Cha nnel; ;; if Y for			le, do	not as	isess b	anks)
uro, o m uro,		Left	Bank		Cha	nŋq			Righ	t Ban	k
Walis/ Rip-rap/ Dams	P	С	B	0	Y	N	Π	0	ΈB	6	P
Buildings	P	С	В	101	Y	ľN		0	В	С	P
Pavement/ Cleared Lot	Р	С	В	0				10	В	С	Ρ
Road/ Railroad	P	С	В	0/	Y	N		0	В	С	Р
Pipes (inlet/ Outlet)	P	С	₿	ŏ	Y	N		0)	В	С	Р
Landfill/ Trash	(P)	С	В	0	Y	N		ŏ	В	$\langle c \rangle$) P
Park/ Lawn	P	С	В	0		١.		0	В	С	Р
Row Grop	P	С	В	0	1.4	1		0	В	С	Ρ
Pasture/ Range	P	С	В	0		1		0	В	С	Р
Logging Operations	P	С	В	0		1	1	0	В	С	Р
Mining Activity	P	С	В	0	Y	N		0	В	С	Р
Vegetation Management	ÌΡ	С	В	0		Ì	Ì	0	В	С	Р
Bridges/ Abutments	P	С	В	0	Y	N	Π	0	В	С	Р
Orchards/ Vineyards	(P	С	В	0	1.000	¢	<i>"</i>	0	В	С	Р

1					*	
1				t i se	marii II y	
1					97 J K. 1997 F 1991 F . F	
1			i firik li			e -é herregiere a distri
1						
-					STABILITY In Gill Complete Dill-mates and	
1						
1						
1						
1						
1						
		st Br		def d'ut tens (l widnerschile	Castabili i
				44.4.4.4.4.		
1				amaiari	and the entropy of the	a in Indias
1	5.5		A.I. A.ITL	121 121211212		Strict Lating

FULL VERSION

Revision Date: March 19th, 2013

	1	nter-T	Frans	ect: CI)	۱. ۱	Wetted Width (m	1): 4,5	5	
			-		In	ter-Transect	Substrates			
Position	Dist from LB (m)	Depth (cm)	mm/ size class	% Cobble Embed.	СРОМ	Microalgae Thickness Code	Macroalgae Attached	Macroalgae Unattached	Macrophytes	Microalgae Thickness Codes 0 = No microalgae present
Left Bank	0	21	FN		P 🚯 D	UD	Ø A D	P 🔕 D	Р (Д) D	Feels rough, not slimy, 1 = Present but not visible, Feels slimy,
Left Center	1,12	42	_SA	~	₽ØD	2	Ø A D	P 🕢 D	p 🐼 D	2 = Present and visible but <1mm; Rubbing fingers on surface produces a
Center	2,25	15	5A	-	P 🔊 D	ŀ	Ø A D	P 🕢 D	P \land D	brownish tint on them scraping leaves visible trail.
Right Center	3.37	19	FN	~	🗗 D	UD	∲A D	P 🔗 D	P 🕢 D	3 = 1-5mm; 4 = 5-20mm;
Right Bank	4.5	3	SA		🕑 A D	2	D A D	P 🕢 D	🕑 A D	5 = >20mm, UD = Cannot determine if microalgae present
						it measures of th ect measuremen		each particle or	one of the size	substrate too small or covered with silt (formerly Z code), D = Dry, not assessed

ELTON HABITA	
an anna anna anna anna anna anna anna	
<u> </u>	
Channel Tym	
يريد المحال المحال المحالية المحالية المحالية المحالية المحالية المحالية المحالية المحالية المحالية ا	
	I
	. 8
······································	
	-
	ii
	a narra 6
	1
	- A 17.
	00
1341.08	Ø (7
60108 	00
Lature .	
Pos	10
Post	10 10
7001	10 10
Post	
Ficol	
Picol	10
tonde Prod	10 10 10
ros Posl	10 10 70
Rigol Bigol Bity	10 10 10

SWAMP Stream Habitat Chara	cterization Form	ULL VERSION Revis	sion Date: March 19 th , 2013
Site Code: H-6-062713	Site Name: Hinas (Somers	Date: <u>06177</u> 12013
Wetted Width (m): 3, 0	Bankfull Width (m): 5, 2	Bankfull Height (0): 25	Transect D

				1		Transect Su	bstrates			
Position	Dist from LB (m)	Depth (cm)	mm/ size class	% Cobble Embed.	СРОМ	Microalgae Thickness Code	Macroalgae Attached	Macroalgae Unattached	Maerophytes	Microalgae Thicknes Codes 0 = No microalgae presen
Left Bank	0	D	SA		🕑 a d	2	P 🔊 D	P Ø D	Р (Д) Д	 Feels rough, not slimy, 1 = Present but not visible Feels slimy;
Left Center	0,75	2	SA	Carlos and a second sec	🕐 A D	2	DA D	P Ø D	PA D	2 = Present and visible bu <1mm; Rubbing fingers on surface produces a
Center	1.5	l	54	S.Maran.	P 🕢 D	·)	PAD	P 🔗 D	DA D	brownish tint on them, scraping leaves visible
Right Center	2,25	10	SA	the second s	P 🖉 D	2	P 🔗 D	Р 🔗 D	DA D	trail. 3 ≔ 1-5mm; 4 ≔ 5-20mm;
Right Bank	3	1	SA		P 🏾 D	2	P 🕢 D	P 🚯 D	Ø A D	5 = >20mm; UD = Cannot determine if microaldae present,
						t measures of th ect measuremen		each particle or	one of the size	substrate too small or covered with silt (formerly Z code). D = Dry, not assessed

RIPARIAN VEGETATION (facing downstream, 5 m u/s, 5 m d/s, 10 m from wetted width)	1 =	Abse Spar Mode	se (<	:10%	,) 40%	3 = H 4 = V()					INSTREAM HABITAT COMPLEXITY (5 m u/s, 5 m d/s)	1 = 2 = 3 =	Absen Spars Moder Heavy Very H	e ate ((4	40-75	/6) /6)	DENSIOMET READINGS (0 count covered)-17)
Vegetation Class		Lef	t Ba	ink			Rig	ht B	ank		Filamentous Algae	0	1 (2)	3	4	Center	17
Uppe	Can	vqo	(>5	m h	iah)				8		Aquatic Macrophytes/	0	1 (Ð	3	4	Left	19
	<u>~</u> ^-		<u>`_</u>		<u> </u>						Emergent Vegetation	10					Center	17
Trees and saplings >5 m high	0	1	2	3	4	()	1	2	3	4	Boulders	Q	1	2	3	4	Upstream	11
Lower C	anop	oy (0.	<u>5 m</u>	-5 m	hig	<u>n)</u>					Woody Debris >0.3 m	\odot	1	2	.3	4	Center	17-
All vegetation 0.5 m to 5 m	6	1	2	3	4	ത	1	2	3	4	Woody Debris <0.3 m	0	1)	2	3	4	Right	1
	\Box				-	$\square \square$		_		•		Ľ	<u> </u>				Center	17
Groun	d Co	ver (<0.5	m t	ilgh)						Undercut Banks	0	\mathfrak{O}	2	3	4	Downstream	12
Woody shrubs & saplings <0.5 m	Ø	1	2	3	4	\bigcirc	1	2	3	4	Overhang. Vegetation	0	1	2	3	4	Optional	T
Herbs/ grasses	0	0	2	3	4	0	1	2	3	4	Live Tree Roots	3	1	2	3	4	 Left Bank	ļ
Barren, bare soil/ duff	0	1	2	3	(4)	0	1	2	3	(4)	Artificial Structures	0	1	2	3	47	Right Bank	

HUMAN INFLUENCE (circle only the closest to wetted channel; assess 5 m u/s, 5 m d/s)	P = >1	i Banł tweer 0m+<	c 1 Bank 50m fro	m Cha	from Cha innel; 5, If Y for		alyi	te, do	not as	sess b	anks)
a. c1. c		Left	Bank		Char	nnel			Right	Banl	<
Walls/ Rip-rap/ Dams	Р	С	B	R	Y,	N		,Q	В	Ø	Р
Buildings	Р	С	В	101	Y	N		0	В	С	Р
Pavement/ Cleared Lot	Р	С	В	0				0	В	С	Р
Road/ Railroad	Р	С	В	0	Y	Ν		0	В	С	Р
Pipes (Inlet/ Outlet)	Р	С	В	0	Y	Ν		0	В	С	Р
Landfill/ Trash	P	С	В	0	Y	N		0	B	С	Р
Park/ Lawn	Р	C	В	0		\bigcirc		0	В	С	Р
Row Orop	Р	С	В	0				0	В	С	P
Pasture/ Range	Р	С	В	0				0	В	С	Р
Logging Operations	Р	С	В	0		0		0	В	С	Р
Mining Activity	Р	С	В	0	Y	(N)		0	В	С	Р
Vegetation Management	Р	С	В	101	-	~		0	В	С	Р
Bridges/ Abutments	R	С	В	Õ	(7)	<u></u> γN		Q	В	С	P
Orchards/ Vineyards	Ð	Ċ	В	õ	Sec. 1			0	В	С	P)

(10000 7000		STABILITY		
(score zone		nd 5m downstrear full - wetted width)	n or t	ransect
Left Bank	eroded	vulnerable		stable)
Right Bank	eroded	vulnerable	-	stable >

Dunsionleter covered by Bridge

FULL VERSION

Revision Date: March 19th, 2013

		nter-1	rans	ect: DE	2	v	Vetted Width (m	»: 1,3		
					In In	ter-Transect	Substrates			
Position	Dist from LB (m)	Depth (em)	mm/ size class	% Cobble Embed.	CPOM	Microalgae Thickness Code	Macroalgae Attached	Macroalgae Unattached	Macrophytes	Microalgae Thickness Codes 0 = No microalgae present, Feels rough, not slimy;
Left Bank	0	13	GC 26 MM	and the second s	PØD	2	Ø A D	Р (р Д	Ø A D	1 = Present but not visible, Feels slimy;
Left Center	0,33	12	SA	حمييه	₽∕ØD	2	Р Ø D	P 🖉 D	POD	2 = Present and visible but <1mm; Rubbing fingers on surface produces a
Center	0.65	10	5A-		P 🐼 D	2	D A D	P 🥭 D	⊅ A D	brownish tint on them, scraping leaves visible trail
Right Center	0,98	3	SA		₽ ∕ D	2	D A D	р 🕢 D	D A D	3 = 1-5mm; 4 = 5-20mm;
Right Bank	1,3	0,5	FN		P 🖉 D	υD	Ø A D	Р 🕢 D	Ô A D	5 = >20mm; UD = Cannot determine if microalgae present,
						t measures of th act measuremen		each particle or	one of the size	substrate too small or covered with silt (formerly Z code). D = Dry, not assessed

ELDW HABITATS	
Channel Type 🦷 🌾	
l jacora Faix	
······································	
Ron Ron	
Ron	
	0
Ron	ø
Ron	0
Ron	ð
Run	ð
Run	0
Run	0
Run	ð
Run	0
Run	ð
Run	0
Run	ð
Run	0

ite Code: Vetted Wid	<u>HG-0</u> ^{th (m):} 1,	9611 8	//	Site Name: Bankfull Wic		5 Ban	kfull Height (m):	20	Ann	<u>612712013</u> Insect E
						Transect Si	ibstrates			
Position	Dist from LB (m)	Depth (cm)	mm/ size class	% Cobble Embed.	СРОМ	Microalgae Thickness Code	Macroalgae Attached	Macroalgae Unattached	Macrophytes	Microalgae Thickness Codes 0 = No microalgae presen Feels rough, not slimy,
Left Bank	D	2	FN		₽ A D	VD	P Ø D	P ØD	P ØD	1 = Present but not visible Feels slimy;
Left Center	0,45	7	SA	-	PØD	2	🕑 A D	Р 📿 D	ØA D	2 = Present and visible bu <1mm; Rubbing fingers on surface produces a
Center	0.9	6	SA	arana ar	PAD	2	🕐 a d	P \land D	Ø A D	brownish tint on them, scraping leaves visible trail
Right Center	1,35	0,5	5A		P 🏉 D	2	🖉 A D	P ØD	Ø A D	3 = 1-5mm; 4 = 5-20mm;
Right Bank	1,8	1	5 A		DA D	2	Р 🕢 D	P 🅢 D	ØA D	6 = >20mm; UD = Cannot determine if microalgae present.
						measures of t at measurement	ne median axis of hts preferred)	each particle or	one of the size	substrate too small or covered with silt

RIPARIAN VEGETATION (facing downstream, 5 m u/s, 5 m d/s, 10 m from wetted width)	0 = A 1 = S 2 = N	Spars	e (<	10%))	3 = H 4 = Ve						INSTREAM HABITAT COMPLEXITY (5 m u/s, 5 m d/s)	1 = 2 = 3 =	= Spa = Moc = Hea	deratə avy		Ó%) 0%) 5%)		DENSIOMET READINGS (0 count covered	-17)
Vegetation Class		Left	Bai	nk			Rig	ht B	ank			Filamentous Algae	0	1	2	Ō	74		Center	0
Uppe	r Canc	ору (>5 n	n hig	gh)							Aquatic Macrophytes/ Emergent Vegetation	0	1	2	Ō	4		Left	
Trees and saplings >5 m high	0	1	2	3	4	0	' 1	2	3	4		Boulders	0) 1	2	3	4	-	Center Upstream	0
LowerC	anopy	/ (0,5	5 m-	5 m	high	1)		1				Woody Debris >0.3 m	0	21	2	3	4		Center	
All vegetation 0.5 m to 5 m	B	1	2	3	4	0	1	2	3	4		Woody Debris <0.3 m	0	1 and the	7)2	3	4		Right	0
Groun		'er (<	0.5	m h	igh)							Undercut Banks	Ø	$\frac{\mathcal{L}}{1}$	2	3	4		Center Downstream	0
Woody shrubs & saplings <0.5 m	Ø	1	2	3	4	Ø	1	2	3	4		Overhang. Vegetation	C) 1	2	3	4		Optional	
Herbs/ grasses	0	A)	2	3	4	0	1	(²)	3	4	1	Live Tree Roots	6) 1	2	3	4		Left Bank	
Barren, bare soil/ duff	0	1	2	3	17	0	1	2	3	Đ		Artificial Structures	0	a	2	3	4		Right Bank	

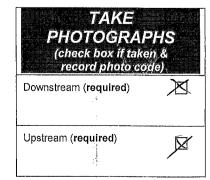
HUMAN INFLUENCE (circle only the closest to wetted channel; assess 5 m u/s, 5 m d/s)	P = >1	n Ban⊦ atweer 0m+≺		om Cha	annel;			ialy	te, do	not as	isøss b	anks)
uis, o muisj		Left	Bank		С	har	Juél			Right	t Ban	k
Walls/ Rip-rap/ Dams	Р	С	Ø	R	\ \	ΥÌ	N		0	В	C) P
Buildings	Р	С	В	0)		Y	N		10	В	С	Ρ
Pavement/ Cleared Lot	Р	С	В	0					0	В	С	Ρ
Road/ Railroad	Р	С	В	0		Y	N		0	В	С	Ρ
Pipes (Inlet/ Outlet)	P	С	В	0		Υ.	N		10	В	С	Р
Landfill/ Trash	P	С	В	õ	2	Ø	'N		0	В	С	Р
Park/ Lawn	P	С	В	(0)					0	В	С	Р
Row Crop	P	С	В	0	14193				0	В	С	Р
Pasture/ Range	P	С	В	0			•		0	В	С	Р
Logging Operations	P	С	В	0			$\overline{\cap}$		0	В	С	Р
Mining Activity	P	С	В	0		Υ	N		10	В	С	Р
Vegetation Management	Р	С	В	0					0	В	С	Р
Bridges/ Abutments	P	С	В	0		Y	N		10	В	С	Р
Orchards/ Vineyards	Ø	С	В	Õ			U		Ő	В	С	PD

BANK Broth some official earling theorem ban	-O I ACIUNI T Anil II - Maishean Kili - Maishean dh	96
Lnft Bank eroded	wurnerable	CTILD
Right Bank eroded	Cvulnerga	stable

FULL VERSION

Revision Date: March 19th, 2013

	J	nter-J	Frans	ect: EF	7		Wetted Width (n	n): /	19	
					In	ter-Transec	t Substrates			
Position	Dist from LB (m)	Depth (cm)	mm/ size class	% Cobble Embed,	CPOM	Microalgae Thickness Code	Macroalgae Attached	Macroalgae Unattached	Macrophytes	Microalgae Thickness Codes 0 = No microalgae present.
Left Bank	0	1	Fix		ØA D	VD	P 🐼 D	P 🏠 D	P 🔕 D	 Feels rough, not slimy; 1 = Present but not visible; Feels slimy;
Left Center	0.47	13	SA-		DA D	2	OP A D	P 🏠 D	PAD	2 = Present and visible but <1mm; Rubbing fingers on surface produces a
	0,95	12	SA	1380mm.	PAD	1	P A D	P 🖉 D	P 🕢 D	brownish tint on them, scraping leaves visible trail.
Right Center	1.47	11	54	-	PAD	2	P A D	P 🔗 D	Р (Д) D	3 = 1-5mm; 4 = 5-20mm;
Right Bank	1.9	1	FN	-	Ø A D	UD	🕐 A D	P 🖉 D	P 🔗 D	5 ≠ >20mm; UD = Cannot determine if microalgae present,
						t measures of t of measureme	he median axis of nts preferred)	feach particle or	one of the size	substrate too small or covered with silt (formerly Z code), D = Dry, not assessed


FLOW HASITATE
Constrained of the second s
Channel Type
Children and the second s
- Enge
SH# /00
,
hip which have a second s

Positionfrom LB (m)Depth (cm)size classCobble Fimbed.CPOM CodeThickness CodeMadroargae AttachedMadroargae UnattachedMacrophytesCodes $D = No microalgae orFeels rough, not siLeftBank\mathcal{O}1SA P \oslash D\mathcal{Q}P \oslash DP \oslash D\mathcal{O} A DP eels rough, not siLeftCenter\mathcal{O}.5\mathcal{I}SA P \oslash D\mathcal{Q}\mathcal{O} A DP \oslash D\mathcal{O} A DP eels rough, not siCenter\mathcal{O}.5\mathcal{I}\mathcal{I}\mathcal{I}\mathcal{P} \oslash D\mathcal{Q}\mathcal{O} A DP \oslash D\mathcal{O} A DP eels rough, not siRightCenter\mathcal{O}.5\mathcal{I}\mathcal{I}\mathcal{I}\mathcal{P} \oslash D\mathcal{I}\mathcal{P} \oslash D\mathcal{P} \oslash D\mathcal{P} \oslash D\mathcal{I}RightCenter\mathcal{O}.75\mathcal{S}\mathcal{A} P \oslash D\mathcal{I}\mathcal{P} \oslash DP \oslash DP \oslash D\mathcal{I}RightCenter\mathcal{O}.75\mathcal{S}\mathcal{A} P \oslash D\mathcal{Q}\mathcal{P} \oslash DP \oslash D\mathcal{P}RightCenter\mathcal{O}.75\mathcal{S}\mathcal{A} \mathcal{P} \oslash D\mathcal{Q}\mathcal{P} \oslash D\mathcal{P} \odot D\mathcal{I}RightCenter\mathcal{O}.75\mathcal{S}\mathcal{A} \mathcal{P} \oslash D\mathcal{Q}\mathcal{P} \oslash D\mathcal{P} = \mathcal{O} D\mathcal{I}RightCenter\mathcal{O}.75\mathcal{S}\mathcal{A} \mathcal{P} \oslash D\mathcal{Q}\mathcal{P} \oslash D\mathcal{P} = \mathcal{O} D\mathcal{I}$	Site Code:	HG-00	527L	3	Site Name:	Hines	1 Grow	UN .		Date: 🙋	6/27/2013
Dist from LB (m)Depth (cm)mm/ size class $\%$ Cobble Embed.Microalgae Thickness CodeMacroalgae AttachedMacroalgae UnattachedLeft Center Center Center 7.5 5.4 $$ POD 2 POD P O P P 2	Vetted Wid	h (m):	1.0		Bankfull Wid	lth (m): L	1.98 Bank	full Height (m):	0.20	Tra	insect F
Positionfrom LB (m)Depth (cm)size classCobble Embed.CPOM CodeThickness CodeMacroalgae AttachedMacroalgae UnattachedMacrophytesCodesLeft Bank \mathcal{O} 1 \mathcal{SA} $ \mathcal{P} \oslash D$ \mathcal{Q} $\mathcal{P} \oslash D$ $\mathcal{P} \oslash D$ $\mathcal{P} \oslash A$ \mathcal{D} \mathcal{P} \mathcal							Transect Su	bstrates			
Left Bank \mathcal{O} $/$ SA $ P \oslash D$ \mathcal{Q} $P \oslash D$ $P \oslash D$ $\mathcal{O} A D$ $1 = Present but not vFeels silmy;$ Left Center $\eta.15$ 5 $5A$ $ P \oslash D$ \mathcal{Q} $\mathcal{O} A D$ $P \oslash D$ $\mathcal{O} A D$ $1 = Present but not vFeels silmy;$ Center $\eta.5$ 5 $5A$ $ P \oslash D$ \mathcal{Q} $\mathcal{O} A D$ $P \oslash D$ $\mathcal{O} A D$ $rest ind visitconsultation foron surface producebrownish lint on thsaraping leaves vittrailRightCenter\eta.7555A P \oslash D\mathcal{Q}\mathcal{O} A DP \oslash DP \oslash Dsaraping leaves vittrailRightCenter\eta.7555A P \oslash D\mathcal{Q}\mathcal{O} A DP \oslash DP \oslash D3 = 1-5mm;4 = 5.20mm;$	Position	from	•	size	Cobble	CPOM	Thickness			Macrophytes	0 = No microalgae preser
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		D	l	54		PAD	2	P 🔊 D	P 🖉 D	ØA D	1 = Present but not visible Feels slimy;
Center 0.5 10 55 $ POD$ I OAD POD POD POD $scraping leaves viltrailRightCenter0.75555A POD2OADPODPODscraping leaves viltrailRightCenter0.75555A POD2OADPODPODscraping leaves viltrailNote:0.755A POD2OADPODPODscraping leaves viltrailNote:0.755A POD2OADPODPODscraping leaves viltrailNote:0.755A POD2OADPODscraping leaves viltrail0.110.755A POD2OADPODscraping leaves viltrail0.110.750.750.750.750.750.75$		ŋ.V5	5	SA.		P 🖉 D	2	Ø A D	P 🕢 D	Ø A D	2 = Present and visible b <1mm; Rubbing fingers on surface produces a
Kight Center 0.75 5 $5A$ $ POD$ 2 OAD POD $3 = 1.5 \text{mm};$ $4 = 5-20 \text{mm};$ Piable i i i i i i i i i		*		GF	#500mg.	P 🕢 D	1	Ø A D	P 🕢 D	Р Д Д	brownish tint on them, scraping leaves visible
	Center	0.75	5	-	-	P	2	ØA D	P 🔕 D	P 🖉 D	3 = 1-5mm;
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Right Bank	1.0	1	CTF 7 Ann	tanne.	P 🏈 D	2	Ø A D	P 🖉 D	🏟 A D	5 = >20mm; UD = Cannot determine microalgae present

RIPARIAN VEGETATION (facing downstream, 5 m u/s, 5 m d/s, 10 m from wetted width)	0 = Absent (0%) 1 = Sparse (<10%) 2 = Moderate (10-40%	3 = Heavy (40-75%) 4 = Very Heavy (>75%))	INSTREAM 0 = Absent (0%) HABITAT 2 = Moderate (10-40%) 2 = Moderate (10-40%) COMPLEXITY 3 = Heavy (40-76%) (5 m b/s, 5 m d/s) 4 = Very Heavy (>75%) 1	DENSIOMETER READINGS (0-17) count covered dots
Vegetation Class	Left Bank	Right Bank	Filamentous Algae 0 1 2 3 4	Center
Uppe	r Canopy (>5 m high)		Aquatic Macrophytes/ Emergent Vegetation 0 1 2 3 4	Left
Trees and saplings >5 m high	01234	0 1 (2) 3 4	Boulders 10 1 2 3 4	Center Upstream
LowerC	anopy (0.5 m-5 m hig	h)	Woody Debris >0.3 m	Center
All vegetation 0.5 m to 5 m	0 1 2 3 4	0 1 2 3 4	Woody Debris <0.3 m 0 0 2 3 4	Right /
Groun	d Cover (<0.5 m high		Undercut Banks 071 2 3 4	Downstream
Woody shrubs & saplings <0,5 m	0 1 2 3 4	0.1 ② 3 4	Overhang. Vegetation 01 2 3 4	Optional
Herbs/ grasses	0 (1) 2 3 4	0 1 2 3 4	Live Tree Roots	Left Bank
Barren, bare soil/ duff	0 1 2 3 4	0 1 2 3/4	Artificial Structures 0 (7) 2 3 4	Right Bank

HUMAN INFLUENCE (circle only the closest to wetted channel; assess 5 m u/s, 5 m d/s)	B = C C = B P = >	≕ Not Present; = On Bank, = Between Bank & 10m from Channel; = >10m+≺50m from Channel; hannel (record Yes or No: if Y for an analyte, do not assess banks									
aloy of maloy		Left Bank				nnel	Right Bank				
Walls/ Rip-rap/ Dams	Р	Ø	В	0	Υ	Ń	0	В	Ċ	DР	
Buildings	Ρ	С	В	10	Y	N)	10	В	С	Р	
Pavement/ Cleared Lot	Р	С	В	0	1. E.		0	В	С	Р	
Road/ Railroad	Р	С	В	0)	Y	[N]]	0	В	С	P	
Pipes (Inlet/ Outlet)	Р	С	В	N.	(8)	M	0	B	С	Р	
Landfill/ Trash	Ρ	С	(B)	Ø	Ý	\overline{N}	Q	B	С	Р	
Park/ Lawn	P	С	В	D		<u> </u>	10	В	С	Р	
Row Crop	P	С	В	0			0	В	С	Р	
Pasture/ Range	P	С	В	0			0	В	С	Р	
Logging Operations	P	С	В	0			0	В	С	Р	
Mining Activity	Р	С	В	0	Y	M	0	В	С	Р	
Vegetation Management	Р	С	В	0		11	0	В	С	Р	
Bridges/ Abutments	P	C	В	0)	Y	(M	0	В	Ç	Р	
Orchards/ Vineyards	P	7c	В	ð			Ő	В	С	Ø	

BANKS		
1557. Kar State foreitenstreinen i		
i de la companya de l		
	i in the second s	
CONTRACTOR DEPOSIT		
Lagard Control of Cont		

FULL VERSION

Revision Date: March 19th, 2013

en al la compañía de la compañía de Compañía de la compañía	I e	nter-T	Trans	ect: FG			Netted Width (m	1): 2,2	2	
					In	ter-Transect	Substrates			
Position	Dist from LB (m)	Depth (cm)	nm/ size class	% Cobble Embed.	СРОМ	Microalgae Thickness Code	Macroalgae Attached	Maeroalgae Unattached	Macrophytes	Microalgae Thickness Codes 0 = No microalgae present, Feels rough, not slimy;
Left Bank	0	2	FN	State State State	PBD	UD	Ø A D	P 🔗 D	P 🖉 D	1 = Present but not visible, Feels slimy;
Left Center	0.55	2	5R	-	₽ Ø D	2	P ØD	р 62 D	P ØD	2 = Present and visible but <1mm, Rubbing fingers on surface produces a
Center	1,1	4	6 F 10 MM	-	PØD	2	D A D	P 🔗 D	P 🔗 D	brownish tint on them, scraping leaves visible trail.
Right Center	1,65	3	5A		PØD	2	Ø A D	Р ДР D	P Ø D	3 = 1-5mm; 4 = 5-20mm;
Right Bank	2,2	1	FN	-	₽∕∂ D	UD	Ø A D	P \land D	P A D	 5 = >20mm; UD = Cannot determine if microalgae present,
						t measures of th of measurement		feach particle or	one of the size	substrate too small or covered with silt (formerly Z code) D = Dry, not assessed

10122222242221	12512021203	и наега	
	ALLEAST STATES AND ALLEAST	States and states and a state of the state	
(100010000000)	i ci		menumenter and the second s
		н Туре	
111111111111111		17 - 1 - 18	
	TALL RECORD		
_			
			5 A 10
	111111111111111111111111111111111111111		

amanatic			
12241211111111111			
		1	
Calification (12)		1112001-1011111110-0-1-00-0-0000	
			1
			1 A 1
			15 A B
*************	**********************	122111111111111111111111111111111111111	

SWAMF	^{>} Stream I	labitat	Chara	cterization	Form	F	ULL	VEI	RSION	Rev	isio	<u>n Date: March</u>	n 19 th , 2013
Site Code:	H6-	0627	18	Site Name:	Hinas	600	ve	15				Date: 🙋 🧕	<u>5127</u> 12013
Wetted Wid	^{dth (m):}			Bankfull Wid	Ith (m): \mathcal{H}	,4	Bank	ɗull	Height (m):	20		Tra	nsect G
						Transo	ect Su	bst	rates				
Position	Dist from LB (m)	Depth (cm)	mm/ size class	% Cobble Embed.	CPOM	Micros Thick Cou	ness		acroalgae Attached	Macroalg Unattach		Macrophytes	Microalgae Thickness Codes 0 = No microalgae present.
Left Bank	0	1	54	-	РØD)]	? (3) D	РØ I	D	P 🔊 D	Feels rough, not slimy, 1 = Present but not visible, Feels slimy;
Left Center	0.27	в	50 170m	-	₽ ⊘ D	Q	2	l	J AD	Р 🖉 І	С	ØA D	2 = Present and visible but <1mm, Rubbing fingers on surface produces a
Center	0 0.55	12	5A	Consultation"	P Ø D	2) 11 King,	6) A D	Р 💋 І)	DA D	brownish tint on them, scraping leaves visible trail.
Right Center	0,82	10	5A	Kanzou.	Р (37 D	1		4	ÀD	P 🙆 I	>	ØA D	3 = 1-5mm; 4 = 5-20mm;
Right Bank	kil	_1	5g	State of the second sec	РØД	1			PØD	Р 🔗 1		P 🕢 D	5 = >20mm; UD = Cannot determine if microalgae present,
	Note: Sub class cate	strate sizi gories list	es can be ted on the	recorded eith supplementa	ner as direc al page (dire	t measun ect measi	es of th iremen	ie m its pi	edian axis of eferred)	each particl	e or c	ne of the size	substrate too small or covered with silt (formerly Z code).
				a tuli de la seconda de la									D = Dry, not assessed
(facing do	N VEGETA wnstream, 5 10 m from w width)	m u/s,	1 = Spa	ent (0%) rse (<10%) lerate (10-409	3 = Heav 4 = Very %)	∧y (40-75 Heavy (>	%) 75%)		INSTR HABI COMPL (5 m u/s,	TAT EXITY	1 = S 2 = N 3 = H	bsent (0%) parse (<10%) loderate (10-40%) eavy (40-75%) ery Heavy (>75%)	DENSIOMETER READINGS (0-17) count covered dots
Vege	tation Cla			ft Bank		jht Ban	k		Filamentous Aquatic Mac	Algae	0	1 2 3 4	Center Left
Treeser	and in an 1.5			(>5 m high)		6.	4		Emergent Ve	egetation	0	1 @ 3 4	Center 4
Trees and	saplings >5		<u>()</u> 1 anopy (0	2 3 4 1.5 m-5 m hi	0 1 gh)	<u>(2)</u> 3	4		Boulders Woody Debr		96	1 2 3 4 1 2 3 4	
All veget	ation 0.5 m t	o 5 m	1 1	234	0 1	(2) 3	4		Woody Deb		00	D 2 3 4	Center Right
		Ground	d Cover	(<0.5 m high	l)	<u> </u>			Undercut B	anks	Ø	1 2 3 4	Center Downstream
Woody s	shrubs & sap <0.5 m	lings	Ø 1	2 3 4	0 0) 2 3	4		Overhang. \	/egetation	0 (1)2 3 4	Optional Left Bank

0 🔿 2 3 4

3 🗗

1 2

Live Tree Roots

Artificial Structures

HUMAN INFLUENCE (circle only the closest to wetted channel; assess 5 m u/s, 5 m d/s)	B = 0 C = B P = >	0 = Not Present, B = On Bank, C = Between Bank & 10m from Channel, P = >10m+<50m from Channel, Channel (record Yes or No; if Y for an analyte, do not assess banks)										
		Left I	Bank		Chan		Right	Ban	k			
Walls/ Rip-rap/ Dams	Р	(ç)	В	,Q	Y	N/	Ø	<u>B</u>	С	Р		
Buildings	P	С	В	10	Y	NÌ	Yo	В	С	Р		
Pavement/ Cleared Lot	P	С	В	0			0	В	С	Ρ		
Road/ Rallroad	Р	С	В	10	Y	N	0	В	С	Р		
Pipes (iniet/ Oullet)	P	С	B	0	8	Ņ	Q	В	С	Р		
Landfill/ Trash	P	C	B	0	Y	N)	10	ΪВ	С	Р		
Park/ Lawn	Р	C	B	6		1. J	0	В	С	Р		
Row Crop	P	С	В	0			0	В	С	Р		
Pasture/ Range	Р	C.	В	0			0	В	С	Р		
Logging Operations	P	С	В	0		e٦	0	В	С	Р		
Mining Activity	Р	С	В	0	Y	Ń	0	В	С	Р		
Vegetation Management	Р	С	В	10			0	В	С	Р		
Bridges/ Abutments	P	С	В	0	Y	N	6	ЛВ	С	Р		
Orchards/ Vineyards	Ø	С	В	Ő		V	0	B	С	(P)		

0 🕖 2 3 4

0 1 2 3 (4) 0

Herbs/ grasses

Barren, bare soil/ duff

		STABILITY nd En scordram al-anosc artic	te se la provincia de la compañía d
Left Bank	eroded	Summatia A	stabla
Right Bank	eroded	vulnerabie	Citabo

34

0 Ø 2

Left Bank

Right Bank

FULL VERSION

Revision Date: March 19th, 2013

	J.	nter-1	rans	ect: GI	I.		Vetted Width (m	n): ZO		
					In	ter-Transect	Substrates			
Position	Dist from LB (m)	Depth (cm)	mm/ size class	% Cobble Embed.	CPOM	Microalgae Thickness Code	Macroalgae Attached	Macroalgae Unattached	Macrophytes	Microalgae Thickness Codes 0 = No microalgae present, Feels rough, not slimy;
Left Bank	0	2	54	branes.	DA D	2	P 🐼 D	P 🕢 D	P 🔕 D	1 = Present but not visible, Feels slimy;
Left Center	015	9	FN	100 personal	P 🖉 D	ÓD	ØA D	P 🙆 D	ØA D	2 = Present and visible but <1mm; Rubbing fingers on surface produces a
Center	1.0	4	SA-	'	₽ ⊘ D	2	P 🕢 D	P 🕢 D	Ø A D	brownish tint on them, scraping leaves visible trail.
Right Center	1.5	6	5A-	Magazara an	₽ØD	2	Ø A D	P 🔗 D	Ø A D	3 = 1-5mm; 4 = 5-20mm;
Right Bank	20	1	FN		P 🖉 D	UD	P 🔊 D	P 🕢 D	Ø A D	5 = ≥20mm, UD = Cannot determine if microalgae present,
						t measures of th ect measuremen	e median axis of ts preferred)	each particle or	one of the size	substrate too small or covered with silt (formerly Z code). D = Dry, not assessed

ELCON HABITATS	
e dinarra Toma - 20 - 21	
Rot	
Rung	
Rufe Ruf	
Gide 700	
Gide 700	

SWAMP	Stream	Habitat	Charac	terization	Form	FULL	VERSION	Revisi	on Date: Marc	h 19 th , 2013			
Site Code:			13	Site Name:	Hine	, Grow	urs		Date: <u>Ø</u>	612712013			
Wetted Wid	th (m): 4	1.0		Bankfull Wic	^{1th (m):} 4	R Banl	kfull Height (m)	.2	Tra	insect H			
						Transect St	ibetratee						
	Dist	Depth	mm/	%		Microalgae	Macroalgae	Macroalgae		Microalgae Thickness			
Position	from LB (m)	(cm)	size class	Cobble Embed.	CPOM	Thickness Code	Attached	Unattached	Macrophytes	Codes 0 = No microalgae present, Feels rough, not silmy,			
Left Bank	0	6	FN		Р () D	UD	P, 🔕 D	Р (Д) D	DA D	 1 = Present but not visible, Feels slimy; 			
Left Center	1	Ì	SA-	~	PØD	2	Ø A D	P Ø D	(DA D	2 = Present and visible but <1mm, Rubbing fingers on surface produces a			
Center	2	0	3A	A	P AD	Ð	PA Ø	P A D	P A D	brownish tint on them, scraping leaves visible			
Right Center	3	3	5A		DA D	1	Р 🚫 D	P 🍙 D	Ø A D	trail. 3 = 1-5mm 4 = 5-20mm:			
Right Bank	4	12	5A		P A D	2	P 🕢 D	Р 🕢 D	P (Å) D	5 = >20mm; UD = Cannot determine if			
						t measures of the transmission of transmission of the transmission of transmission of the transmission of transmission of transmission of the transmission of transmission of transmission of transmission of transmission of transmission of the transmission of transmission	te median axis of ts preferred)	each particle o	rone of the size	microalgae present, substrate too small or covered with silt (formerly 2 code).			
								and the second		D = Dry, not assessed			
	N VEGET/ vnstream, 5		0 = Abse			y (40-75%)	INSTF Hab		= Absent (0%) = Sparse (<10%) = Moderate (10-40%)	DENSIOMETER READINGS (0-17)			
	10 m from w width)			se (<10%) erate (10-40'		Heavy (>75%)	COMPL (5 m u/s,	EXITY	= Heavy (40-75%) = Very Heavy (>75%)	count covered dots			
Veget	tation Cla	SS	Lef	t Bank	Rig	ht Bank	Filamentou		1 2 3 4	Center ,			
		Upper	Canopy	(>5 m high)		Aquatic Mac Emergent V		1 2 🗿 4	Left /			
Trees and	saplings >5	m high	O /1	2 3 4	00	2 3 4	Boulders	0) 1 2 3 4	Upstream			
		Lower C	anopy (0	.5 m-5 m hi	gh)		Woody Deb			Center /			
All vegeta	tion 0.5 m	to 5 m	01	234	0 1	C) 3 4	Woody Deb	oris <0.3 m [🗿	1 2 3 4				
			l Cover (<0.5 m higi	1)	~	Undercut B	anks 👩) 1 2 3 4	Downstream			
Woody s	hrubs & sap <0.5 m	lings	6) 1	234	0 1	3 4	Overhang.	Vegetation 0	1 🖉 3 4	Optional			
Her	bs/ grasses		00	2 3 4	00	7 ₂ 3 4	Live Tree R	toots	1 2 3 4	Left Bank			
Barren	, bare soil/ o	duff	0 1	2 3 4	0 1	2 13 4	Artificial St	ructures 0	2 3 4	- Rìght Bank			

HUMAN INFLUENCE (circle only the closest to wetted channel; assess 5 m u/s, 5 m d/s)	B = Or C = Be P = >1	0 = Not Present; B = On Bank; C = Between Bank & 10m from Channel; P = >10m+<50m from Channel; Channel (record Yes or No. if Y for an analyte, do not assess banks)										
ura, o moraj		Left	Bank		Char	inel		Right	Ban	k		
Walls/ Rip-rap/ Dams	P	С	(B)	l Q	Y	(N)	10	(B)	° C	Р		
Buildings	P	С	B	101	Y	N	10)	B	С	Ρ		
Pavement/ Cleared Lot	P	С	В	0			0	В	С	Ρ		
Road/ Railroad	Р	С	В	10/	Y	W	0	В	С	Ρ		
Pipes (Inlet/ Outlet)	Р	С	В	ğ		N	R	В	С	Ρ		
Landfill/ Trash	Р	С	В	0	Ý	\bigcirc	10	В	С	Р		
Park/ Lawn	Р	С	В	10			0	В	С	Ρ		
Row Crop	P	С	В	0			0	В	С	Ρ		
Pasture/ Range	Р	С	В	0			0	В	С	Ρ		
Logging Operations	P	С	В	0		m.	0	В	С	Р		
Mining Activity	P	С	В	0	Y	M	0	В	С	Ρ		
Vegetation Management	Р	С	В	0		11	0	В	С	Р		
Bridges/ Abutments	R	С	В	V	Y	N	0	В	С	P		
Orchards/ Vineyards	(P)	С	В	0		\sum	0	В	С	Ð		

centra rona 5 C	nupurearna Priseri Luna	a faran kara a	
Lott Dank	eroded	vuinenable	Campy
Right Bark	erated	vuirvenable	CALLER

FULL VERSION

Revision Date: March 19th, 2013

<u>Estate</u>		nter-'	Frans	sect: H		V States	Wetted Width (m	»: 2,C	, <u>, , , , , , , , , , , , , , , , , , </u>	
					In	ter-Transect	Substrates			
Position	Dist from LB (m)	Depth (cm)	mm/ size class	% Cobble Embed.	CPOM	Microalgae Thickness Code	Macroalgae Attached	Macroalgae Unattached	Macrophytes	Microalgae Thickness Codes 0 = No microalgae present
Left Bank	Ь	15	GF 10Am		P 🔊 D	2	🖉 A D	РЮО	P 🏠 D	 Feels rough, not slimy; 1 = Present but not visible, Feels slimy;
Left Center	0.65	12	5Ą		P 🏟 D	2	Ø A D	P ₿D	P 🕢 D	2 = Present and visible but <1mm; Rubbing fingers on surface produces a
Center	1,3	9	SA-		Р (⁄) D	2	DA D	P 💋 D	P 🔕 D	brownish tint on them, scraping leaves visible trail
Right Center	1,95	3	5A-	La rosser	Р <i>Ø</i> D	2	Ø A D	Р 🕖 D	P ØD	3 = 1-5mm; 4 = 5-20mm;
Right Bank	2.4	2	FN	Accessory	Ъ.	UD	Ø A D	P 🕢 D	🕐 a d	5 = >20mm; UD = Cannot determine if microalgae present,
	Note: Sub class cate	strate size gories liste	is can be ad on the	recorded eit supplement	her as direc al page (dire	t measures of th of measuremen	e median axis of ts preferred)	each particle or	one of the size	substrate too small or covered with silt (formerly Z code). D = Dry, not assessed

	terter comercia
- Ponkianyte	
Channel Type 24	
91da / / %	
	:
	:
	1
	1
114-14-14-14-14-14-14-14-14-14-14-14-14-	
	1
The second s	1

/etted Width	<u> </u>	1627 <u>[]</u> , 8		Site Name: Bankfull Wid	Hine th (m): 4	3 Bank	full Height (m):	25	<u> 6」 こ7</u> / 2013 ansect I		
						Transect Su	bstrates				
Position	Dist from LB (m)	Depth (em)	mm/ size class	% Cobble Embed.	СРОМ	Microalgae Thickness Code	Macroalgae Attached	Macroalgae Unattached	Macrophytes	Microalgae Thickne Codes 0 = No microalgae prese	
Left Bank	0	7	54	~	р () Д	2	@ A D	р (Д) D	🕐 A D	Feels rough, not slimy 1 = Present but not visit Feels slimy;	
Left Center (Dit	17	54	all the second	PØD	1	P A D	P 🙆 D	Р 🔗 D	2 = Present and visible I <1mm; Rubbing finger on surface produces a	
Center	1,4	12	SA-	Entrik-	₽ØD	2	(D) A D	P 🙆 D	P 🔕 D	brownish tint on them scraping leaves visibl trail	
Right Center	2.1	13	54	4	₽ØD	2	Ø A D	P 🕢 D	P 🕢 D	3 = 1-5mm; 4 = 5-20mm;	
Right Bank	2,8	0.5	FN	Concernance of the Concernance	р () D	00	(A D	P \land D	PAD	5 = >20mm; UD = Cannot determine microalgae present.	

RIPARIAN VEGETATION (facing downstream, 5 m u/s, 5 m d/s, 10 m from wetted width)	0 = Absent (0% 1 = Sparse (<1) 2 = Moderate ()%) 4 =	= Heavy (40 • Very Heav		INSTREAM HABITAT COMPLEXITY (5 m u/s, 5 m d/s)	0 = Absent (0%) 1 = Sparse (<10%) 2 = Moderate (10-40%) 3 = Heavy (40-75%) 4 = Very Heavy (>75%)	DENSIOMET READINGS (0 count covered	-17)
Vegetation Class	Left Ban	k	Right E	Bank	Filamentous Algae	0 1 2 3 (4)	Center	
Uppe	r Canopy (>5 m	high)			Aquatic Macrophytes/ Emergent Vegetation	0 1 ② 3 4	Left Center	0
Trees and saplings >5 m high	<u>(0)</u> 1 2	34 (<u>6</u>) 1 2	3 4	Boulders	(0) 1 2 3 4	Upstream	0
LowerC	anopy (0.5 m-5	m high)			Woody Debris >0.3 m	(0) 1 2 3 4	Center	0
All vegetation 0.5 m to 5 m	(0) 1 2	34	6) 1 2	3 4	Woody Debris <0.3 m	0(1) 2 3 4	Right	<u> </u>
Groun	d Cover (<0.5 n	n high)	*		Undercut Banks	0 1 2 3 4	Center Downstream	0
Woody shrubs & saplings <0.5 m	1 2	34 C	9 1 2	34	Overhang. Vegetation	0 1 2 3 4	Optional	Γ
Herbs/ grasses	0 1 2	34	0 1 🧷	3 4	Live Tree Roots	0 1 2 3 4	Left Bank	
Barren, bare soil/ duff	0 1 2	3 (4)	0 1 2	3 🗭	Artificial Structures	0 (1) 2 3 4	Right Bank	

 β_{T}

HUMAN INFLUENCE (circle only the closest to wetted channel; assess 5 m u/s, 5 m d/s)	0 = Not Present: B = On Bank: C = Between Bank & 10m from Channel; P = >10m+<50m from Channel Channel (record Yes or No; if Y for an analyte, do not assess ba										anks)
uloy of maloy		Left	Char	Channel			Right Bank				
Walls/ Rip-rap/ Dams	Р	С	B)	R	Y	M)	ŀ	Q	В	(3)	Р
Buildings	P	С	В	60	Y	N		101	В	C	Ρ
Pavement/ Cleared Lot	P	С	В	0		11		0	В	С	Ρ
Road/ Railroad	Р	С	В	0	Y	N		0	В	C	Ρ
Pipes (Inlet/ Outlet)	P	С	В	0	Y	N		0	В	\odot	Ρ
Landfill/ Trash	Р	С	В	0	Y	N		0	В	E)	Ρ
Park/ Lawn	Р	С	В	0		П		0	В	С	Р
Row Crop	Р	С	В	0		Π		0	В	С	Р
Pasture/ Range	Р	С	В	0		Π		0	В	С	Р
Logging Operations	Р	С	В	0	1.8			0	В	С	Ρ
Mining Activity	P	С	В	0	Y	N		0	В	С	Р
Vegetation Management	Р	С	В	0				0	В	С	Ρ
Bridges/ Abutments	Р	С	В	0	Y	N)		0	В	С	P
Orchards/ Vineyards	P) C	В	0		$\overline{\mathbf{v}}$		0	В	С	(P)
	0										9

	H A BILITY	

 \hat{z}_{i}

FULL VERSION

Revision Date: March 19th, 2013

		Inter-'	Trans	sect: IJ		NAME OF V	Netted Width (n	1): 1,3		
					In	ter-Transect	Substrates			
Position	Dist from LB (m)	Depth (em)	mm/ size class	% Cobble Embed.	СРОМ	Microalgae Thickness Code	Macroalgae Attached	Maeroalgae Unattached	Macrophytes	Microalgae Thickness Codes 0 = No microalgae present, Feels rough, not slimy.
Left Bank	0	4	SA	Quanta and	🖗 A D	1	Ø A D	Р 💋 D	Р 🕢 D	1 = Present but not visible, Feels slimy;
Left Center	0.45	20	5A	****	Р 🕖 D	1	(DAD	Р 🕢 D	P 🔗 D	2 = Present and visible but <1mm; Rubbing fingers on surface produces a
Center	0,9	20	5A	Contraction of the Institution	РØD	2	Ø A D	P 🙆 D	Р 🕢 D	brownish tint on them, scraping leaves visible trail.
Right Center	1,35	18	GIL	~	P 🔕 D	2	Ø A D	P 🔗 D	Р 🔕 D	3 = 1-5mm, 4 = 5-20mm;
Right Bank	1,8	1	GC 35 mm	-	DA D	0	Р 🙆 D	P 🔕 D	Ø A D	 5 = >20mm; UD = Cannot determine if microalgae present,
						t measures of th act measuremen		feach particle or	one of the size	substrate too small or covered with silt (formerly Z code). D = Dry. not assessed

i 👘 Flow Haer	
a literatur and a second state of the state of the second state of the second state of the second state of the	
the state of the second st	
Channel Type	
a af the state of	
jaktodal Falls	
	515111
.	
E	
Keidin	
	une.
	12171
E7.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	111111
······································	
	<i>180</i>
ente en ente	
······································	
Periode and the second of PTL 10:10 in the second s	

etted Wic	HG - M	3		Bankfull Wid	Site Name: Hines Growing Date: 0.						
					/(Transect Su	bstrates				
Position	Dist from I.B (m)	Depth (cm)	mm/ size elass	% Cobble Embed.	СРОМ	Microalgae Thickness Code	Macroalgae Attached	Macroalgae Unatfached	Macrophytes	Microalgae Thickne Codes 0 = No microalgae prese	
Left Bank	0	1	FN	-	DA D	UD	(2) A D	р (5) D	P 🔗 D	Feels rough, not slimy 1 = Present but not visib Feels slimy;	
Left Center	0,57	19	SA	No.	PØD	2	Ø A D	Р 🕖 D	P 🖉 D	2 = Present and visible I <1mm; Rubbing finger on surface produces a	
Center	1,15	10	SA-	-ucesar	P 🖉 D	2	ØA D	P 🖉 D	P 🕢 D	brownish tint on them scraping leaves visible	
Right Center	1,73	7	SA-		DA D	1	DA D	P ØD	P \land D	trail 3 = 1-5mm; 4 = 5-20mm;	
Right Bank	2,3	3	GC BOMM	_	PA D	2	P 🕢 D	P 🖉 D	P \land D	5 = >20mm; UD = Cannot determine microalgae present,	
						t measures of th of measuremen	e median axis of its preferred)	each particle or	one of the size	substrate too small or covered with slit (formerly Z code). D = Dry, not assessed	

5 m d/s, 10 m from wetted width)	1 = Sparse (<10%) 2 = Moderate (10-40%)	4 ≕ Very Heavy (>75%) }	COMPLEXITY 3 = Heavy (40-75%) (5 m u/s, 5 m d/s) 4 = Very Heavy (>75%)	count covered
Vegetation Class	Left Bank	Right Bank	Filamentous Algae 0 1 2 3 4	Center
Uppe	r Canopy (>5 m high)		Aquatic Macrophytes/ Emergent Vegetation 0 1 2 3 4	Left Center
Trees and saplings >5 m high	0 1 2 3 4	O 1 2 3 4	Boulders (0/1) 2 3 4	Upstream
LowerC	apppy (0.5 m-5 m hig	h)	Woody Debris >0.3 m Ø 1 2 3 4	Center
All vegetation 0.5 m to 5 m	1 2 3 4	0 1 2 3 4	Woody Debris <0.3 m 0 1 2 3 4	Right Center
Groun	d Cover (<0.5 m high		Undercut Banks 🕥 1 2 3 4	Downstream
Woody shrubs & saplings <0.5 m	$\begin{pmatrix} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 4$	0 1 2 3 4	Overhang. Vegetation 0 1 2 3 4	Optional
Herbs/ grasses	0 1 2 3 4	0 1 2 3 4	Live Tree Roots 0 1 2 3 4	Left Bank
Barren, bare soil/ duff	0 1 2 3 🙆		Artificial Structures 0 (1) 2 3 4	Right Bank

HUMAN INFLUENCE (circle only the closest to wetted channel; assess 5 m u/s, 5 m d/s)	B = 0 C = B P = >	o = Not Present; B = On Bank; C = Between Bank & 10m from Channel; P =>10m+<50m from Channel; Channel (record Yes or No, if Y for an analyte, do not assess banks)										
		Left E	Bank		Char	Channel			Right Bank			
Walls/ Rip-rap/ Dams	Р	(ি)	В	A	Y	/N		A	働	С	P	
Buildings	Р	č	В	(0)	Y	N		101	В	С	Р	
Pavement/ Cleared Lot	P	С	В	0				0	В	С	Р	
Road/ Railroad	Р	С	В	0	Y	N	Π	V	B	С	Р	
Pipes (Inlet/ Outlet)	Р	С	В	0	Y	N	Π	0	B	С	Р	
Landfill/ Trash	P	С	В	0	Y	N	Π	እ	B	С	Р	
Park/ Lawn	Р	С	В	0		1		10	В	С	Р	
Row Crop	Ρ	С	В	0				0	В	С	Р	
Pasture/ Range	Р	С	В	0		1		0	В	С	Ρ	
Logging Operations	Р	С	В	0		1		0	В	С	Ρ	
Mining Activity	P	С	В	0	Y	N		0	В	С	Р	
Vegetation Management	P	С	В	0				10	В	С	Р	
Bridges/ Abutments	Р	С	В	6	Y	(N)		0	В	С	P	
Orchards/ Vineyards	P	С	В	0		~		б'	В	С	P	

BANK STABILITY Jeture zone Um unsueeri ehe für sovintingen ef Um voor booween benkfun werten wahn
BANK STABILITY (acume zone Bri unatwarit and Trin downstream of transport bowcen barkfuir- wetted wain)
Loft Bank eroded
Right Bank eroded winerable stable

. - North-

0

0

0

 \mathcal{O}

FULL VERSION

Revision Date: March 19th, 2013

	J	nter-T	Frans	ect: Jk		V	Vetted Width (m	n): 1,0		and the second state of the se
					In	ter-Transect	Substrates			
Position	Dist from LB (m)	Depth (cm)	mm/ size class	% Cobble Embed,	CPOM	Microalgae Thiokness Code	Macroalgae Attached	Macroalgae Unattached	Macrophytes	Microalgae Thickness Codes 0 = No microalgae present,
Left Bank	6	1	FN		🕑 A D	UD	Р (2) D	P 🕭 D	Ø A D	 Feels rough, not slimy; 1 = Present but not visible, Feels slimy;
Left Center),25	10	GC		₽ ⊘ D	2	🕐 A D	Р 🔗 D	P 🔊 D	2 = Present and visible but <1mm; Rubbing fingers on surface produces a
Center ().5	17	40 mm	án an	PØD	え	() A D	PØD	🖗 A D	brownish tint on them scraping leaves visible trail.
Right Center), 75	19	SA	Waterson,	PØ D	2	(D A D	P Ø D	P ØD	3 = 1-5mm; 4 = 5-20mm;
Right Bank	1	1	FN	~	🖗 A D	0 U	P 🔗 D	Р 🕢 D	₿A D	 5 = >20mm; UD = Cannot determine if microalgae present,
						t measures of th act measuremen		each particle or	one of the size	substrate too small or covered with silt (formerly Z code). D = Dry, not assessed

Channel Type 🚽 🏁
ferrette fer
Le le caracter de la company de la compan
Gice / 00
NEAL 1997 1997 1997 1997 1997 1997 1997 199
Elga -
an tersene and a second a second and an

te Code:	HG -	062	7]]3	Site Name:	Hine	v 61	ove.	15		Date: <u>Ø</u>	612712013		
Wetted Width (m): 1,4 Bankfull Width (m): 4,8						,8	Bankf	ull Height (m):	Tra	ansect K			
						Trans	ect Sul	ostrates					
Position	Dist from LB (m)	Depth (cm)	mm/ size class	% Cobble Embed.	CPOM	Miero Thick Co	ness	Macroalgae Attached	Maeroalgae Unattached	Macrophytes	Microalgae Thickness Codes 0 = No microalgae presen		
Left Bank	0	4	5A	میں <u>میں میں میں میں میں میں میں میں میں میں </u>	(P A D	2		P A D	P 🖉 D	PØD	Feels rough, not slimy; 1 = Present but not visible Feels slimy;		
Left Center	0:35	18	GGC 40mm	-	PØ D	2	-	Ø A D	P 🖉 D	P 🐼 D	2 = Present and visible bu <1mm, Rubbing fingers on surface produces a		
Center	0.7	12	SA-	ALCONO.	(D) A D	1		P A D	P 🐼 D	P ØD	brownish tint on them, scraping leaves visible		
Right Center	1105	9	3A	the same of the sa	P 🖉 D			🖉 A D	P Ø D	P 🔕 D	trail. 3 = 1-5mm; 4 = 5-20mm;		
Right Bank	1,4	1	5A		ØA D	2	<u> </u>	(DAD	P 🔕 D	Ø A D	5 = >20mm; U = Cannot determine if microalgae present,		
					her as direc al page (dire				f each particle or	one of the size	substrate too small or covered with silt		
											(formerly Z code). D = Dry, not assessed		
(facing do	N VEGETA wnstream, 5 10 m from w width)	m u/s,		int (0%) se (<10%) erate (10-40	4 = Very	∧y (40-75 Heavy (≽		INSTE HAB COMP (5 m u/s,	ITAT 2= IEXITY 4=	Absent (0%) Sparse (<10%) Moderate (10-40%) Heavy (40-75%) Very Heavy (>75%)	DENSIOMETER READINGS (0-11 count covered dou		
Vege	tation Cla			t Bank		ght Ban	k	Filamentous Algae 0 1 2 3			Center Left		
		<u>.</u>	1.3	(>5 m high	().	<u>,</u>		Aquatic Macrophytes/ Emergent Vegetation					
Trees and	saplings >5	m hiah	(0)1	2 3 4	0 19) 2 3	4	Boulders	Q	1 2 3 4	_ Center : Upstream —		

0 (1) 2

1

0

0

Ø 2

2

34

34

3 4

Undercut Banks

Live Tree Roots

Artificial Structures

5

Overhang. Vegetation

KO

0

6

1

0 (1

2

2

2

2

3 4

3 4

34

3 4

HUMAN INFLUENCE (circle only the closest to wetted channel; assess 5 m u/s, 5 m d/s)		0 = Not Present; B = On Bank; C = Between Bank & 10m from Channel; P = >10m+<50m from Channel; Channel (record Yes or No; if Y for an analyte, do not assess banks)										
und, o in und,		Left	Bank		Cha	nnel	Right Bank					
Walls/ Rip-rap/ Dams	Р	С	(8)	<u>،0</u>	Y	N	, Q,	<u>(B)</u>	С	Ρ		
Buildings	Р	С	B	10)	Y	N	[/0]	B	С	Ρ		
Pavement/ Cleared Lot	Р	С	В	0			0	В	С	Р		
Road/ Railroad	P	С	В	0	Y	N/	Ø	В	С	Р		
Pipes (Inlet/ Outlet)	P	С	В	8		Ň	0	В	С	Ρ		
Landfill/ Trash	Р	С	В	6	Ý	N	10	В	С	Р		
Park/ Lawn	Р	С	В	þ			0	В	С	Р		
Row Crop	P	С	В	þ	1.104		0	В	С	Ρ		
Pasture/ Range	P	С	В	0			0	В	С	Р		
Logging Operations	Р	С	В	0	-	1	0	В	С	Р		
Mining Activity	Р	С	В	0	Y	NN \	0	В	С	Ρ		
Vegetation Management	Р	С	В	0			0	В	С	Р		
Bridges/ Abutments	B	С	В	6	Y	N/	0	В	С	P		
Orchards/ Vineyards	(P)	С	В	0		~	8	В	С	P)		

(1) 2 3 4

3

4

(1) 2

1

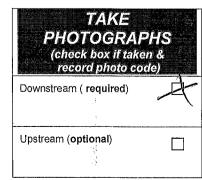
2 3

Ground Cover (<0.5 m high)

0

0

0


Woody shrubs & saplings

<0.5 m

Herbs/ grasses

Barren, bare soil/ duff

BAN (soon cont tim diseas) batwaen t	K STABILITY mand data isometrifen toktul – vysted widna	r chirageact
Laft Bank eroded	I wolfflorg500	stable
Right Bank eroded	i vuinenaible	<u>~aadd</u>
		×

Page 23 of 26

Ó

Downstream

Left Bank

Right Bank

Optional

SWAMP Stream Hab	itat Characterization	<u>Form</u>	<u>FULL V</u>	ERSION	Revis	sion Date: M	arch 19 th , 2013		
Site Code: #6-06Z	.713	Date	e: <u>0 6 1 7</u>	<u>7</u> / 201	3	Analyte	Equipment & Calibr Date	ation	
	BENTHIC INVERT	EBRATE S	AMPLES	dara darah		pН			
Co	llection Method					Wat	Cal date: / /		
	ard or margin-cente	r-margin)	Re	plicate	# Jars	temp	Cal date: / /	· · · · · · · · · · · · · · · · · · ·	
RWB (standard)	RWB (MCM)	TR	c	1	4	dissolved oxygen	Cal date: / /		
RWB (standard)	RWB (MCM)	TR	с	2	q .	oxygen			
······································						sat specific	Cal date: / /		
RWB (standard)	RWB (MCM)	TR	<u> </u>		IT INDEP GI	cond	Cal date: / /		
RWB (standard)	RWB (MCM)	TR	c			Salinity	Cal date: / /		
Field Notes/ Con				Solitan to to the	A	Alkalinity			
Was macroalgae (e.g., If YES, how many of the	ilamentous algae) coll 11 transect samples	lected in the contained m	composite a acroalgae?	ilgae samp 9	le? (Yes)/ No	•	Cal date: / /		
If YES, what was the or		oalgae cylind	der roll befor	e sectionir	ig into ¼ and	Turbidity	Cal date: / /		
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			A *		1	Silica		×	
no additi	inal cost	e not	ed In	Lev Vev	$c \sim$	Ainteres	Cal date: / /		
no addin	Vit all Carps	3 0				Air temp	Cal date: / /		
						Velocity	Cal date: / /		
	ALGAE	SAMPLE	s				a Velange the second second second second		
Collection	Method	(SWAMP	SWAMP	SWAMP	SWAMP	and the second	er and Sedimen mistry Samples		
circle one or write new Collection		EMAP Rep.	EMAP Rep.	EMAP Rep.	EMAP Rep.				
(sum # of transec		1	2		IVeb:	grab sampl	e was collected	X	
Rubber Delimiter (area						(nutrients, S	SSC. etc.)		
PVC Delimiter (area=1 Syringe Scrubber (are		11				Ohneli Kar F		· · ·	
		11				chemistry g	UPLICATE WATER	×	
		11				chemistry g collected	DUPLICATE WATER rab sample was	X	
Other area=	ea=5.3cm ²)	11		· · · · · · · · · · · · · · · · · · ·		chemistry g collected Check if a S	eck if a SEDIMENT chemistry mple was collected eck if a DUPLICATE SED emistry sample was collected d Coll		
Other area=	sampled (0-11)					chemistry g collected Check if a S sample was Check if a E	DUPLICATE WATER rab sample was SEDIMENT chemistry s collected DUPLICATE SED		
Other area= Number of transects	ea=5.3cm²) sampled (0-11) mL) (diatoms)	11 525				chemistry g collected Check if a S sample was Check if a E	DUPLICATE WATER rab sample was SEDIMENT chemistry s collected DUPLICATE SED ample was collected		
Other area= Number of transects Composite Volume (r	ea=5.3cm ²) sampled (0-11) mL) (diatoms) (50 mL tube) (soft algae)	11 525 40				chemistry g collected Check if a S sample was Check if a E chemistry s Sed Coll Device:	DUPLICATE WATER rab sample was SEDIMENT chemistry s collected DUPLICATE SED ample was collected SCOOP CORE	GRAB	
Other area= Number of transects Composite Volume (r Assemblage ID volume Assemblage ID volume	sampled (0-11) mL) (diatoms) (50 mL tube) (soft algae) (50 mL tube)	11 525				chemistry g collected Check if a S sample was Check if a E chemistry s Sed Coll Device: Material:	DUPLICATE WATER rab sample was SEDIMENT chemistry collected DUPLICATE SED ample was collected SCOOP CORE Stainless Steel Polyeth Polycarbonate Of	GRAB	
Other area= Number of transects Composite Volume (r Assemblage ID volume	ea=5.3cm ²) sampled (0-11) mL) (diatoms) (50 mL tube) (soft algae) (50 mL tube) ae sample was e/diatom sample	11 525 40				chemistry g collected Check if a S sample was Check if a E chemistry s Sed Coll Device:	DUPLICATE WATER rab sample was SEDIMENT chemistry s collected DUPLICATE SED ample was collected SCOOP CORE Stainless Steel Polyeth Polycarbonate Of	GRAB	
Other area= Number of transects Composite Volume (r Assemblage ID volume Assemblage ID volume Check if Qualitative Alg collected with soft algae	ea=5.3cm ²) sampled (0-11) mL) (diatoms) (50 mL tube) (soft algae) (50 mL tube) ae sample was b/diatom sample ae not visible) integrated sample	11 525 40 45				chemistry g collected Check if a S sample was Check if a L chemistry sa Sed Coll Device: Material: Sediment Co Depth (cm): Create Lab Co	DUPLICATE WATER rab sample was SEDIMENT chemistry s collected DUPLICATE SED ample was collected SCOOP CORE Stainless Steel Polyeth Polycarbonate Of	GRAB ylene her 5	
Other area= Number of transects Composite Volume (r Assemblage ID volume Assemblage ID volume Check if Qualitative Alg collected with soft algae (required even if macroalg Check if a water chem. was collected (chl, AFD Chlorophyll a volume (25 mL (pref	ea=5.3cm ²) sampled (0-11) mL) (diatoms) (50 mL tube) (soft algae) (50 mL tube) ae sample was e/diatom sample ae not visible) integrated sample M) use GF/F filter ferred volume)	11 525 40 45 X				chemistry g collected Check if a S sample was Check if a E chemistry s Sed Coll Device: Material: Sediment Co Depth (cm): Create Lab Co box for integral	DUPLICATE WATER rab sample was SEDIMENT chemistry collected DUPLICATE SED ample was collected SCOOP CORE Stainless Steel Polyeth Polycarbonate Of flection 2 or	GRAB ylene her 5	
Other area= Number of transects Composite Volume (r Assemblage ID volume Assemblage ID volume Check if Qualitative Alg collected with soft algae (required even if macroalg Check if a water chem. was collected (chl, AFD Chlorophyll a volume (25 mL (pref Ash Free Dry Mass	ea=5.3cm ²) sampled (0-11) mL) (diatoms) (50 mL tube) (soft algae) (50 mL tube) ae sample was e/diatom sample ae not visible) integrated sample M) use GF/F filter	11 525 40 45 45 45 45 45 45 45 45 45 45 45 45 45				chemistry g collected Check if a S sample was Check if a E chemistry s Sed Coll Device: Material: Sediment Co Depth (cm): Create Lab Co box for integral	DUPLICATE WATER rab sample was SEDIMENT chemistry collected DUPLICATE SED ample was collected SCOOP CORE Stainless Steel Polyeth Polycarbonate Of flection 2 or	GRAB ylene her 5	
Other area= Number of transects Composite Volume (r Assemblage ID volume Assemblage ID volume Check if Qualitative Alg collected with soft algae (required even if macroalg Check if a water chem. was collected (chl, AFD Chlorophyll a volume (25 mL (pref Ash Free Dry Mass	ea=5.3cm ²) sampled (0-11) mL) (diatoms) (50 mL tube) (soft algae) (50 mL tube) ae sample was e/diatom sample ae not visible) integrated sample M) use GF/F filter ferred volume) use GF/F filter mL (preferred vol)	11 525 40 45 25 25 25 25		OTOGRAPH		chemistry g collected Check if a S sample was Check if a E chemistry s Sed Coll Device: Material: Sediment Co Depth (cm): Create Lab Co box for integral	DUPLICATE WATER rab sample was SEDIMENT chemistry collected DUPLICATE SED ample was collected SCOOP CORE Stainless Steel Polyeth Polycarbonate Of flection 2 or	GRAB ylene her 5 sked	

138,6

FULL VERSION

Revision Date: March 19th, 2013

Flow Habitat Type	DESCRIPTION					
Cascades	Short, high gradient drop in stream bed elevation often accompanied by boulders and considerable turbulence					
Falls	High gradient drop in elevation of the stream bed associated with an abrupt change in the bedrock					
Rapids	Sections of stream with swiftly flowing water and considerable surface turbulence. Rapids tend to have larger substrate sizes than riffles					
Riffles	Shallow sections where the water flows over coarse stream bed particles that create mild to moderate surface turbulence; (< 0.5 m deep, > 0.3 m/s).					
Runs	Long, relatively straight, low-gradient sections without flow obstructions. The stream bed is typically even and the water flows faster than it does in a pool; (> 0.5 m deep, > 0.3 m/s). A step-run is a series of runs separated by short riffles or flow obstructions that cause discontinuous breaks in slope					
Glides	A section of stream with little or no turbulence, but faster velocity than pools; (< 0.5 m deep, < 0.3 m/s)					
Pools	A reach of stream that is characterized by deep, low- velocity water and a smooth surface; (> 0.5 m deep, < 0.3 m/s)					

Size Class Code	Size Class Range	Size Class Description	Common Size Reference
RS	> 4 m	bedrock, smooth	larger than a car
RR	> 4 m	bedrock, rough	larger than a car
ХВ	1 - 4 m	boulder, large	meter stick to car
SB	25 cm - 1.0 m	boulder, small	basketball to meter stick
СВ	64 - 250 mm	cobble	tennis ball to basketball
GC	16 - 64 mm	gravel, coarse	marble to tennis ball
GF	2 16 mm	gravel, fine	ladybug to marble
SA	0.06 – 2 mm	sand	gritty to ladybug
FN	< 0.06 mm	fines	not gritty
HP	< 0.06 mm	hardpan (consolidated fines)	
WD	NA	wood	
RC	NÄ	concrete/ asphalt	
ОТ	NA	other	

provide clues category wh	BANK STABILITY s measure of the degree of erosive potential is subjective, it can to the erosive potential of the banks within the reach. Assign the lose description best flits the conditions in the area between the etted channel and bankfull channel (see figure below)
Eroded	Banks show obvious signs of erosion from the current or previous water year; banks are usually bare or nearly bare
Vulnerable	Banks have some vegetative protection (usually annual growth), but not enough to prevent erosion during flooding
Stable	Bank vegetation has well-developed roots that protect banks from erosion; alternately, bedrock or artificial structures (e.g., concrete/ rip-rap) prevent bank erosion

CPOM/ COBBLE EMBEDDEDNESS

CPOM: Record presence (P) or absence (A) of coarse particulate organic matter (>1.0 mm particles) within 1 cm of each substrate particle; if point is dry, record Dry (D)

Cobble Embeddedness: Visually estimate % embedded by fine particles (record to nearest 5%)

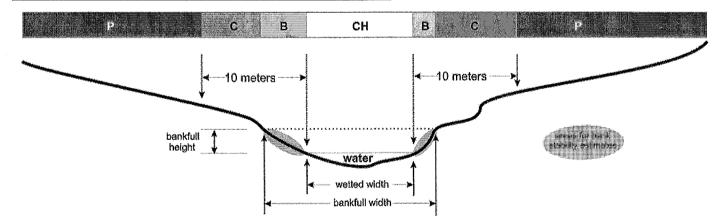
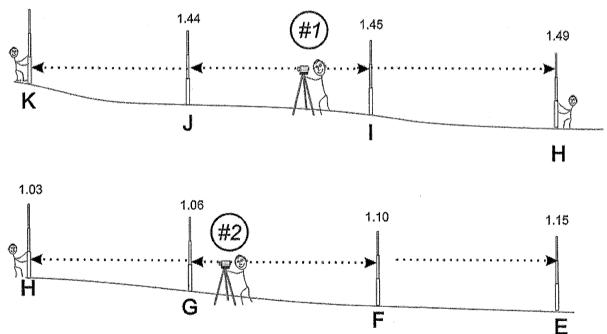


Figure 1. Cross-sectional diagram of stream transect indicating regions for assessing human influence measures:


- The measurement zone extends 5 meters upstream and 5 meters downstream of each transect
- Record one category for each bank and for the wetted channel (3 values possible)
- In reaches with wide banks, region "C" may be entirely overlapped by region "B"; in these cases, circle "B"
- Region "P" extends from 10 meters to the distance that can be seen from the channel, but not greater than 50 m

FULL VERSION

Revision Date: March 19th, 2013

		SLOPE	and BEARI	NG FORM	n l	EXA	MPLE		с	UTOLEV LINOMET IANDLEV	ER	
Starting Transect	(rec	ord perce	MAIN SI nt of inter-trans upplemental se	EGMENT ect distance	in each seg e used)	SUPPLEMENTAL SEGMENT (record percent of inter-transect distance in each segment if supplemental segments are used)						
	Stadi measur		Slope (%) or Elevation Difference Cm	Segment Length (m)	Bearing (0°-359°)	Percent of Total Length (%)	Stadia rod measurements	Slope or Elevation Difference	Ségment Length (m)	Bearing (0°-359°)	Percent of Total Length (%)	
K	1.41											
J	1.44		3	15	140	100						
[1.45		1	15	145	100						
Н	1.49	1.03	4	15	150	100						
G		1.06	3	15	143	100						
F		1.10	4	15	187	100	317-117-117-117-117-117-117-117-117-117-	n da da da da ka da k			Ar finishe dha fan sin stad gwy an far an dae synw	
E		1.15	5	15	195	100						

- 1. Level the autolevel at Position #1
- 2. Place base of stadia rod at water level every time
- 3. Sight to stadia rod at Transect K, then Transect J
- 4. Rotate scope and sight to Transects I and H.
- 5. Move level to Position #2 and re-level
- 6. Re-sight to stadia rod at Transect H, then Transect G 7. Rotate scope and sight to Transects F and E

Note: Sites will vary in the number of separate level positions needed to survey the reach.

APPENDIX C

BENTHIC INVERTEBRATE AND ALGAE TAXONOMY LAB REPORT

Hines Growers, Inc. Final Hines Growers Bioassessment Report, June 2013 Fallbrook, California December 2013 AMEC Project No. 1315102400

This page intentionally left blank

								Estimated	Estimated				
EcoA Sample	9	Collection						Pre-Rinse	Post-Rinse			Estimated	Es
ID	Sample Station ID	Time	Collection Date	Sorter	Sort Date	% Subsampled	Primary Matrix	Volume (L)	Volume (L)	QC Sorter	QC Date	%Recovery1	%
						// / / / / / / / / / / / / / / / / / / /		()	()	• · -			

EstimatedEstimated%Recovery2%Recovery30N/A

AMEC Hines Nursery SWAMP Benthos 2013 *Data are not adjusted for subsampling*

Sample Station ID Collection Time Collection Date Percent Subsampled EcoAnalysts Sample ID	8:45
Odonata Coenagrionidae	1
Diptera-Chironomidae Apedilum sp.	1
Endotribelos sp.	1
Labrundinia sp.	3
Micropsectra sp.	1
Pentaneura sp.	4
Diptera Caloparyphus/Euparyphus sp.	1
Dasyhelea sp.	3
Dixella sp.	1
Tipulidae	1
Annelida-Oligochaeta Oligochaeta	33
Mollusca-Gastropoda Physa sp.	32
Crustacea-Ostracoda Ostracoda	511
Turbellaria Turbellaria	20
TOTAL	613

AMEC Hines Nursery SWAMP Benthos 2013 *Data are adjusted for subsampling* **Calculations use EcoAnalysts Inc. standard attributes**

	Sample Station ID Collection Time Collection Date Percent Subsampled	8:45
	Percent Subsampled EcoAnalysts Sample ID	6568.1-1
Abundance Measures Corrected Abundance EPT Abundance		12468.42 0.00
Dominance Measures		Ostrosodo
Dominant Taxon Dominant Abundance		Ostracoda 10393.74
nd Dominant Taxa		Oligochaeta 671.22
Ird Dominant Taxa Ird Dominant Abundance		Physa sp. 650.88
6 Dominant Taxon		83.36
6 2 Dominant Taxa 6 3 Dominant Taxa		88.74 93.96
Richness Measures		
Species Richness PT Richness		14.00 0.00
Ephemeroptera Richness		0.00 0.00 0.00 0.00
Plecoptera Richness Trichoptera Richness		0.00
Chironomidae Richness Digochaeta Richness		5.00 1.00
Ion-Chiro. Non-Olig. Richness		8.00
Rhyacophila Richness		0.00
Community Composition 6 Ephemeroptera		0.00
6 Plecoptera 6 Trichoptera		0.00 0.00 0.00 0.00 2.61
6 EPT		0.00
6 Coleoptera 6 Diptera		U.00 2.61
6 Oligochaeta 6 Baetidae		5.38 0.00 0.00
6 Brachycentridae		0.00
6 Chironomidae 6 Ephemerellidae		1.63
6 Hydropsychidae		0.00
6 Odonata 6 Perlidae		0.16 0.00
6 Pteronarcyidae 6 Simuliidae		0.00 0.16 0.00 0.00 0.00
unctional Group Composition		
6 Filterers		0.00 89.56
6 Gatherers 6 Predators		4.57
6 Scrapers 6 Shredders		5.22 0.16
6 Piercer-Herbivores		0.00
6 Unclassified ilterer Richness		0.16 0.00 0.49 0.00
Satherer Richness Predator Richness		5 00
Scraper Richness		4.00 1.00
Shredder Richness Piercer-Herbivore Richness		1.00 0.00
Inclassified		3.00
Diversity/Evenness Measures		0.00
Shannon-Weaver H' (log 10) Shannon-Weaver H' (log 2)		0.32 1.06
Shannon-Weaver H' (log e)		0.73 1.38
Aargalef's Richness Pielou's J'		0.28
Simpson's Heterogeneity		0.30
Biotic Indices 6 Indiv. w/ HBI Value		99.02
lilsenhoff Biotic Index 6 Indiv. w/ MTI Value		7.83 4.40
Aetals Tolerance Index		3.56
6 Indiv. w/ FSBI Value ine Sediment Biotic Index		0.00 N/A
SBI - average SBI - weighted average		N/A N/A
6 Indiv. w/ TPM Value		0.65
emp. Pref. Metric - average PM - weighted average		0.14 2.00
Carr BIBI Metrics		
ong-Lived Taxa Richness Clinger Richness		0.00 2.00
6 Clingers ntolerant Taxa Richness		5.38
6 Tolerant Individuals		4.67
6 Tolerant Taxa Coleoptera Richness		28.57 0.00
Nontana DEQ Metrics		
AT Biotic Index C-Gatherers + C-Filterers		7.83 89.56
6 Scraper + % Shredder		5.38
6 Univoltine 6 Multivoltine		0.65 87.11
6 Semivoltine		0.00 N/A
Community Tolerance Quotient 6 Hydropsychinae		N/A 0.00
ake Metrics		
6 Orthocladiinae Drthocladiinae Richness		0.00 0.00
6 Chironomini Chironomini Richness		0.33
6 Tanytarsini		0.16
6 Chironomus 6 Tanytarsus		0.00
6 Dicrotendipes		0.00
6 Dicrotendipes + Chironomus 6 Corbicula		0.00
6 Manayunkia speciosa		0.00
6 Intolerant 6 Intolerant Indiv. (S.CA)		0.16 0.16
6 Intolerant Indiv. (S.CA) 6 Individuals w/ CAHBI value 6 Intolerant Indiv. (CAHBI)		90.21 0.00
6 Sensitive EPT (CAHBI)		0.00
6 Non-Insect Individuals (S.CA) 6 Non-Insect Taxa		97.23 28.57
6 Crustacea + Mollusca		88.58
Average Abundance (per Taxon)		890.60
VDEC PMA Metrics 6 Crustacea		83.36
6 Mollusca		5.22

AMEC Hines Nursery SWAMP Benthos 2013 Southern California B-IBI (calculated using Region 6 Chaparral and Oak Woodlands) *Metrics used are those calculated using the CAMLnet attributes

Sample Station ID Collection Time Collection Date Percent Subsampled EcoAnalysts Sample ID	HG-062713-BMI 8:45 06-27-2013 4.92 6568.1-1		
	Value	Score	
Coleoptera Taxa	0	0	
EPT Taxa	0	0	
Predator Taxa	0	0	
% Collector Individuals	94.32	1	
% Intolerant Individuals	0.21	0	
% Non-Insect Taxa	50.00	0	
% Tolerant Taxa	28.57 3		
SoCal B-IBI	5.	71	

Score	Rating
0 - 19	Very Poor
20 - 39	Poor
40 - 59	Fair
60 - 79	Good
80 - 100	Very Good

AMEC Hines Nursery SWAMP Algae 2013

Sample Station ID	HG-062713
Collection Time	8:45
Collection Date	06-27-2013
EcoAnalysts Sample ID	6568.1-1

Algal Type	Sample Type	Area Sampled	Таха	Count	Volume	Unit
Soft Algae	Qualitatative	138.6 cm2	Cladophora glomerata			count
Soft Algae	Qualitatative	138.6 cm2	Microspora amoena			count
Soft Algae	Qualitatative	138.6 cm2	Oedogonium sp 2			count
Soft Algae	Macroalgae	138.6 cm2	Plant Matter		360750361	um3/cm2
Soft Algae	Macroalgae	138.6 cm2	Cladophora glomerata		1.804E+10	um3/cm2
Soft Algae	Macroalgae	138.6 cm2	Microspora amoena		1.407E+10	um3/cm2
Soft Algae	Macroalgae	138.6 cm2	Oedogonium sp 2		3.608E+09	um3/cm2
Soft Algae	Epiphyte	138.6 cm2	Characium sp1_EcoA	70		count
Soft Algae	Epiphyte	138.6 cm2	Heteroleibleinia kossinskajae	30		count
Soft Algae	Microalgae	138.6 cm2	Microspora amoena	6	17884468	um3/cm2
Soft Algae	Microalgae	138.6 cm2	Scenedesmus communis	4	179419.83	um3/cm2
Soft Algae	Microalgae	138.6 cm2	Cladophora glomerata	6	878842695	um3/cm2
Soft Algae	Microalgae	138.6 cm2	Characium sp1_EcoA	111	8951454.2	um3/cm2
Soft Algae	Microalgae	138.6 cm2	Scenedesmus intermedius	5	179864.48	um3/cm2
Soft Algae	Microalgae	138.6 cm2	Oedogonium sp 2	7	318836349	um3/cm2
Soft Algae	Microalgae	138.6 cm2	Merismopedia punctata	1	19636.364	um3/cm2
Soft Algae	Microalgae	138.6 cm2	Leptolyngbya foveolarum	5	12449.745	um3/cm2
Soft Algae	Microalgae	138.6 cm2	Heteroleibleinia kossinskajae	78	50487.273	um3/cm2
Soft Algae	Microalgae	138.6 cm2	Heteroleibleinia pusilla	177	13552.836	um3/cm2
Diatoms	Integrated	138.6 cm2	Cyclotella meneghiniana	39		count
Diatoms	Integrated	138.6 cm2	Planothidium frequentissimum	91		count
Diatoms	Integrated	138.6 cm2	Staurosira construens var venter	201		count
Diatoms	Integrated	138.6 cm2	Halamphora veneta	10		count
Diatoms	Integrated	138.6 cm2	Nitzschia inconspicua	72		count
Diatoms	Integrated	138.6 cm2	Nitzschia frustulum	61		count
Diatoms	Integrated	138.6 cm2	Undetermined PennateB5_EcoA	4		count
Diatoms	Integrated	138.6 cm2	Navicula veneta	12		count
Diatoms	Integrated	138.6 cm2	Nitzschia amphibia	26		count
Diatoms	Integrated	138.6 cm2	Planothidium lanceolatum	5		count
Diatoms	Integrated	138.6 cm2	Synedra ulna	2		count
Diatoms	Integrated	138.6 cm2	Achnanthidium exiguum	2		count
Diatoms	Integrated	138.6 cm2	Navicula tenelloides	2		count
Diatoms	Integrated	138.6 cm2	Nitzschia supralitorea	12		count
Diatoms	Integrated	138.6 cm2	Gomphonema spB5_EcoA	4		count
Diatoms	Integrated	138.6 cm2	Eolimna subminuscula	10		count
Diatoms	Integrated	138.6 cm2	Nitzschia desertorum	2		count
Diatoms	Integrated	138.6 cm2	Nitzschia valdestriata	2		count
Diatoms	Integrated	138.6 cm2	Amphora pediculus	1		count
Diatoms	Integrated	138.6 cm2	Nitzschia capitellata	2		count
Diatoms	Integrated	138.6 cm2	Rhoicosphenia abbreviata	2		count
Diatoms	Integrated	138.6 cm2	Mayamaea permitis	2		count
Diatoms	Integrated	138.6 cm2	Gomphonema parvulum	4		count
Diatoms	Integrated	138.6 cm2	Eolimna minima	2		count
Diatoms	Integrated	138.6 cm2	Nitzschia rosenstockii	30		count

APPENDIX D

WATER CHEMISTRY LAB REPORT

Hines Growers, Inc. Final Hines Growers Bioassessment Report, June 2013 Fallbrook, California December 2013 AMEC Project No. 1315102400

This page intentionally left blank

Supplemental Report 1

The original report has been revised/corrected.

CALSCIENCE WORK ORDER NUMBER: 13-06-1879

The difference is service

AIR | SOIL | WATER | MARINE CHEMISTRY

Analytical Report For Client: AMEC Environment & Infrastructure Client Project Name: Hines Growers Bioassessment Sampling 2013 Attention: John Rudolph 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Danella joner-

Approved for release on 07/26/2013 by: Danielle Gonsman **Project Manager**

ResultLink ▶

Email your PM >

Calscience Environmental Laboratories, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

	ject Name: er Number:	Hines Growers Bioassessment Sampling 2013 13-06-1879
1	Work Ord	der Narrative
2	Sample S	Summary
3	3.1 AST 3.2 SM 1 3.3 SM 2 3.4 SM 2 3.5 SM 2 3.6 SM 2 3.6 SM 2 3.7 SM 2 3.8 SM 2 3.9 SM 2 3.10 SM 3.11 SM 3.12 SM	Imple Data.M D516-02 Sulfate (Aqueous).10300C (M) (Aqueous).2510 B Specific Conductance (Aqueous).2540 C Total Dissolved Solids (Aqueous).2540 D Total Suspended Solids (Aqueous).2540 D Total Suspended Solids (Aqueous).4500 H+ B pH (Aqueous).4500 N Org B Total Kjeldahl Nitrogen (Aqueous).4500 P B/E Total Phosphorus (Aqueous).4500-CL C Chloride (Aqueous).4500-NH3 B/C Ammonia (Aqueous).4500-NO3 E Nitrate + Nitrite (Aqueous).4500-O G Dissolved Oxygen (Aqueous).5310 B Dissolved Organic Carbon (Aqueous).
4	Particulat	te Nitrogen and Particulate Phosphorus
5	5.1 MS/N 5.2 Sam	Control Sample Data
6	Glossary	of Terms and Qualifiers
7	Chain of	Custody/Sample Receipt Form

Contents

.

.

.

.

.

.

.

.

.

.

Work Order: 13-06-1879

Page 1 of 1

Condition Upon Receipt:

Samples were received under Chain of Custody (COC) on 06/27/13. They were assigned to Work Order 13-06-1879.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Additional Comments:

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

Ĉ	alscience nvironmental aboratories, Inc.	Sample Summary	
Client:	AMEC Environment & Infrastructure	Work Order:	13-06-1879
	9210 Sky Park Court, Suite 200	Project Name:	Hines Growers Bioassessment Sampling 2013
	San Diego, CA 92123-4302	PO Number:	
		Date Received:	06/27/13
Attn:	John Rudolph		
Sample lo	dentification Lab Number	Collection Date ar	nd Time Number of Matrix Containers

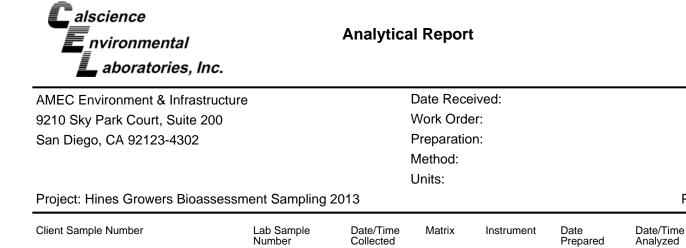
06/27/13 08:45

06/27/13 08:45

13-06-1879-1

13-06-1879-2

Return to Contents


Page 4 of 46

Aqueous

Aqueous

13

13

13-06-1879-1-D

HG-062713-01

Parameter

Parameter Sulfate

Parameter Sulfate

Sulfate

06/27/13 08:45

Result

Result

Result

ND

570

530

UV 8

N/A

<u>DF</u>

25

<u>DF</u>

25

DF

1

Aqueous

<u>RL</u>

50

<u>RL</u>

50

RL

2.0

06/27/13

N/A

mg/L

13-06-1879

ASTM D516-02

QC Batch ID

D0628SO4L1

Page 1 of 1

Qualifiers

Qualifiers

Qualifiers

06/28/13 15:30

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

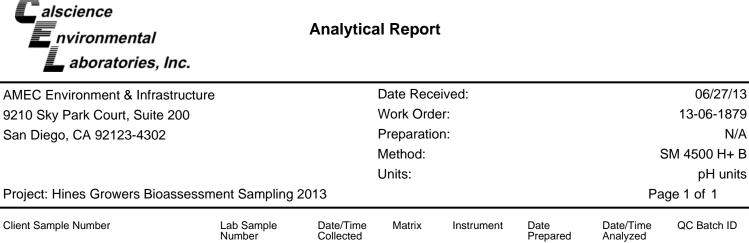
AMEC Environment & Infras	tructure		Date Received:			06/27/13		
9210 Sky Park Court, Suite 2	200		Work Order:			13-06-1879		
San Diego, CA 92123-4302			Preparatio	n:		N/A		
						SM 10300C (M)		
		Units:			mg/L			
Project: Hines Growers Bioa	013				Ра	ge 1 of 1		
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID	
HG-062713-01	13-06-1879-1-M	06/27/13 08:45	Aqueous	N/A	07/25/13	07/25/13 17:00	D0725VSSB1	
Parameter		Result	<u>R</u>	L	DF	Qua	lifiers	
Ash Free Dry Weight		3290	10	0.0	1			
Parameter		Result	<u>R</u>	<u> </u>	DF	Qua	lifiers	
Ash Free Dry Weight		4010	10	0.0	1			
Parameter		Result	<u>R</u>	<u>L</u>	DF	Qua	lifiers	
Ash Free Dry Weight		ND	1.	0	1			

Return to Contents

AMEC Environment & Infrastructur	е		Date Received:			06/27/13	
9210 Sky Park Court, Suite 200			Work Order:			13-06-1879	
San Diego, CA 92123-4302		Preparation	ו:		N/A		
			Method:				SM 2510 B
			Units:				umhos/cm
Project: Hines Growers Bioassess	ment Sampling 2	013				Pa	ge 1 of 1
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
HG-062713-01	13-06-1879-1-D	06/27/13 08:45	Aqueous	SC 5	N/A	06/28/13 17:58	D0628SCD1
Parameter		Result	RL	:	DF	Qua	lifiers
Specific Conductance		2000	10		1		
Parameter		Result	RL	-	DF	Qua	lifiers
Specific Conductance		2100	10		1		

			Data Daga	v o di			00/07/40
AMEC Environment & Infrastru			Date Received:				06/27/13
9210 Sky Park Court, Suite 20	0		Work Orde	r:			13-06-1879
San Diego, CA 92123-4302			Preparation	ו:			N/A
			Method:				SM 2540 C
			Units:				mg/L
Project: Hines Growers Bioass	essment Sampling 20	013				Pa	age 1 of 1
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
HG-062713-01	13-06-1879-1-G	06/27/13 08:45	Aqueous	SC 5	07/01/13	07/01/13 16:50	D0701TDSL2
Parameter		Result	RL		DF	Qua	alifiers
Solids, Total Dissolved		1680	10	.0	1		
Parameter		Result	<u>RL</u>		DF	Qua	alifiers
Solids, Total Dissolved		1640	10	.0	1		
Parameter		Result	RL	-	DF	Qua	alifiers
Solids, Total Dissolved		ND	1.0)	1		

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.


Return to Contents

AMEC Environment & Infrastruc	ture		Date Recei	ved:	06/27/13		
9210 Sky Park Court, Suite 200			Work Orde	r:		13-06-1879	
San Diego, CA 92123-4302 Preparation:				N/A			
			Method:				SM 2540 D
			Units:				mg/L
Project: Hines Growers Bioasse	Project: Hines Growers Bioassessment Sampling 2013					Pa	ge 1 of 1
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
HG-062713-01	13-06-1879-1-F	06/27/13 08:45	Aqueous	N/A	07/01/13	07/01/13 15:30	D0701TSSL1
Parameter		Result	RL	:	DF	Qualifiers	
Solids, Total Suspended		1.2	1.0)	1		
Parameter		Result			DF	Qua	lifiers
Solids, Total Suspended		1.0	1.0)	1		
Parameter		Result	RL	•	DF	Qua	lifiers
Solids, Total Suspended		ND	1.0)	1		

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Return to Contents

06/27/13 08:45

Result

Result

7.37

7.42

PH 1

Aqueous

<u>RL</u>

0.01

<u>RL</u>

0.01

N/A

<u>DF</u>

<u>DF</u>

1

1

13-06-1879-1-D

HG-062713-01

Parameter

Parameter pН

pН

06/27/13 18:49

N/A

D0627PHD1

Qualifiers

Qualifiers

Return to Contents

RL: Reporting Limit. MDL: Method Detection Limit. DF: Dilution Factor.

AMEC Environment & Infrastructur	е		Date Recei	ved:	06/27/13		
9210 Sky Park Court, Suite 200			Work Orde	r:	13-06-1879		
San Diego, CA 92123-4302			Preparation	ו:			N/A
			Method:			SM	4500 N Org B
			Units:				mg/L
Project: Hines Growers Bioassessment Sampling 2013						Pa	ge 1 of 1
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
HG-062713-01	13-06-1879-1-H	06/27/13 08:45	Aqueous	BUR05	07/03/13	07/03/13 18:07	D0703TKNB1
Parameter		Result	<u>RL</u> <u>DE</u>		DF	Qualifiers	
Total Kjeldahl Nitrogen		ND	0.5	50	1		
Parameter		<u>Result</u>	RL	:	DF	Qua	lifiers
Total Kjeldahl Nitrogen		ND	0.5	50	1		
Parameter		Result	RL	:	DF	Qua	lifiers
Total Kjeldahl Nitrogen		ND	0.5	50	1		

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

AMEC Environment & Infrastru	ucture		Date Rece	ived:		06/27/13	
9210 Sky Park Court, Suite 20	0		Work Orde	er:	13-06-1879		
San Diego, CA 92123-4302 Preparation:					N/A		
Method:			S	M 4500 P B/E			
		Units:					mg/L
Project: Hines Growers Bioass	sessment Sampling 2	013				Pa	ige 1 of 1
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
HG-062713-01	13-06-1879-1-B	06/27/13 08:45	Aqueous	UV 7	06/28/13	06/28/13 19:11	D0628TPL1
Parameter		Result	R	<u>RL</u> <u>DF</u>		Qua	alifiers
Phosphorus, Total		0.24	0.	10	1		
Parameter		Result	<u>R</u>	 _	DF	Qua	alifiers
Phosphorus, Total		0.25	0.	10	1		
Parameter		Result	R		DF	Qua	alifiers
Phosphorus, Total		ND	0.	10	1		

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

AMEC Environment & Infrastruct	ure		Date Recei	ved:	06/27/13		
9210 Sky Park Court, Suite 200			Work Order	r:	13-06-1879		
San Diego, CA 92123-4302			Preparation	n:	N/A		
-			Method:				SM 4500-CI C
			Units:				mg/L
Project: Hines Growers Bioasses	ssment Sampling 2	013				Pa	ige 1 of 1
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
HG-062713-01	13-06-1879-1-D	06/27/13 08:45	Aqueous	BUR02	N/A	06/28/13 17:05	D0628CLCB1
Parameter		Result	<u>RL</u> <u>DF</u>		Qua	alifiers	
Chloride		230	2.0)	1		
Parameter		Result	RL		DF	Qua	alifiers
Chloride		230	2.0)	1		
Parameter		Result	RL	:	DF	Qua	alifiers
Chloride		ND	2.0)	1		

Return to Contents

AMEC Environment & Infrastructure			Date Received:			06/27/13			
9210 Sky Park Court, Suite 200			Work Order:			13-06-1879			
San Diego, CA 92123-4302			Preparation	ו:			N/A		
			Method:			SM 4	SM 4500-NH3 B/C		
			Units:				mg/L		
Project: Hines Growers Bioassessr	013				Pa	ge 1 of 1			
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID		
HG-062713-01	13-06-1879-1-H	06/27/13 08:45	Aqueous	BUR05	07/01/13	07/01/13 17:00	D0701NH3L2		
Parameter		Result	RL	<u>RL</u> <u>DF</u>		Qua	Qualifiers		
Ammonia (as N)		0.11	0.1	10	1				
Parameter		Result	<u></u>		DF	Qua	lifiers		
Ammonia (as N)		0.11	0.1	10	1				
Parameter		Result	RL	:	DF	Qua	lifiers		
Ammonia (as N)		ND	0.1	10	1				

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

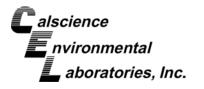
Return to Contents

AMEC Environment & Infrastruc	ture		Date Recei	ved:	06/27/13		
9210 Sky Park Court, Suite 200			Work Orde	r:	13-06-1879		
San Diego, CA 92123-4302 Preparation:					N/A		
			Method:			SI	/ 4500-NO3 E
			Units:				mg/L
Project: Hines Growers Bioassessment Sampling 2013					Pa	ige 1 of 1	
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
HG-062713-01	13-06-1879-1-A	06/27/13 08:45	Aqueous	UV 7	06/28/13	06/28/13 13:15	D0628NO3L1
Parameter		Result	RL	:	DF	Qualifiers	
Nitrate-Nitrite (as N)		41	10		100		
Parameter		Result	<u>RL</u>		DF	<u>Qua</u>	alifiers
Nitrate-Nitrite (as N)		37	10		100		
Parameter		Result	RL	<u>.</u>	DF	Qua	alifiers
Nitrate-Nitrite (as N)		ND	0.1	0	1		

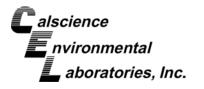
RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

AMEC Environment & Infrastruct	ture		Date Received:			06/27/13	
9210 Sky Park Court, Suite 200			Work Order:			13-06-1879	
San Diego, CA 92123-4302			Preparation	ו:			N/A
			Method:				SM 4500-O G
	Units:				mg/L		
Project: Hines Growers Bioassessment Sampling 2013					Pa	ge 1 of 1	
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
HG-062713-01	13-06-1879-1-E	06/27/13 08:45	Aqueous	BOD 1	06/27/13	06/27/13 19:12	D0627DOD1
Parameter		Result	RL	-	DF	Qua	lifiers
Dissolved Oxygen		7.43	0.0	0100	1		
Parameter		<u>Result</u>	RL	-	DF	Qua	lifiers
Dissolved Oxygen		7.53	0.0	0100	1		

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.


AMEC Environment & Infrastru	icture		Date Recei	ived:	06/27/13		
9210 Sky Park Court, Suite 20	0		Work Orde	r:		13-06-1879	
San Diego, CA 92123-4302			Preparation	า:		N/A	
-			Method:				SM 5310 B
			Units:				mg/L
Project: Hines Growers Bioass	essment Sampling 2	013				Pa	age 1 of 1
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
HG-062713-01	13-06-1879-1-C	06/27/13 08:45	Aqueous	TOC 8	06/27/13	07/01/13 16:01	D0701DOCL1
Parameter		Result	RL	=	DF	Qua	alifiers
Carbon, Dissolved Organic		2.9	0.5	50	1		
Parameter		Result	<u>RL</u>	=	DF	Qua	alifiers
Carbon, Dissolved Organic		1.3	0.9	50	1		
Parameter		Result	RL	_	DF	Qua	alifiers

ND


0.50

1

Parameter	
Carbon, Dissolved Organic	

LABORATORY ID: 13-06-1879							
		Method: SM 4500 P B/E (M) (
CLIENT:	Amec	Matrix: Water/Aqueo	bus				
PROJECT:		bassessment Sampling 2013					
		Results					
Sample ID		Particulate Phosphorus	RL	DF	Volume		
		(mg/L)	(mg/L)		Filtered (L)		
HG-062713-01		0.89	0.20	2	4.5		
HG-062713-02		0.29	0.10	1	4.5		
Method Blank		ND	0.10	1			
		Laboratory Not	es				
Key: Rec=Re	coverv. ND=Not Dete	ected at the reporting level					

LABORAT	ORY ID: 13-06	-1879				
		Method: SM 4500 NO3-E (M)				
CLIENT:	Amec	Matrix: Water/Aque	ous			
PROJECT:	Hines Growers Bi	oassessment Sampling 2013				
		Results				
Sample ID		Particulate Nitrogen (mg/L)	RL (mg/L)	DF	Volume Filtered (L)	
HG-062713-01		5.0	0.50	5	2.0	
HG-062713-02		5.0	0.50	5	2.0	
Method Blank		ND	0.10	1		
		Laboratory No	tos			
		Laboratory No				
ev: Rec=Rec	covery, ND=Not Det	ected at the reporting level				

AMEC Environment & Infrastructure	Date Received:	06/27/13
9210 Sky Park Court, Suite 200	Work Order:	13-06-1879
San Diego, CA 92123-4302	Preparation:	N/A
	Method:	ASTM D516-02
Project: Hines Growers Bioassessment Sampling 2	2013	Page 1 of 5

Quality Control Sample ID		Matrix		Instrument	Date P	repared	Date Analyzed	MS	/MSD Batch	Number
HG-062713-01		Aqueou	IS	UV 8	N/A		06/28/13 15:30	D06	628SO4S1	
Parameter	<u>Sample</u> Conc.	<u>Spike</u> Added	<u>MS</u> Conc.	<u>MS</u> <u>%Rec.</u>	MSD Conc.	<u>MSD</u> %Rec.	<u>%Rec. CL</u>	<u>RPD</u>	<u>RPD CL</u>	Qualifiers
Sulfate	525.5	375.0	882.5	95	897.5	99	70-130	2	0-25	

AMEC Environment & Infrastructure	Date Received:	06/27/13
9210 Sky Park Court, Suite 200	Work Order:	13-06-1879
San Diego, CA 92123-4302	Preparation:	N/A
	Method:	SM 4500 P B/E
Project: Hines Growers Bioassessment Sampling 2013	3	Page 2 of 5

Quality Control Sample ID		Matrix		Instrument	Date Pi	repared	Date Analyzed	MS	MSD Batch	Number
13-06-1877-1		Aqueou	IS	UV 7	06/28/1	3	06/28/13 19:11	D0(628TPS1	
Parameter	<u>Sample</u> <u>Conc.</u>	<u>Spike</u> Added	<u>MS</u> Conc.	<u>MS</u> <u>%Rec.</u>	MSD Conc.	<u>MSD</u> %Rec.	<u>%Rec. CL</u>	<u>RPD</u>	RPD CL	Qualifiers
Phosphorus, Total	0.1687	0.4000	0.5280	90	0.5250	89	70-130	1	0-25	

AMEC Environment & Infrastructure	Date Received:	06/27/13
9210 Sky Park Court, Suite 200	Work Order:	13-06-1879
San Diego, CA 92123-4302	Preparation:	N/A
	Method:	SM 4500-NH3 B/C
Project: Hines Growers Bioassessment Sampling 2	2013	Page 3 of 5

Quality Control Sample ID		Matrix		Instrument	Date P	repared	Date Analyzed	MS	/MSD Batch	Number
13-06-1568-8		Aqueou	us	BUR05	07/01/1	3	07/01/13 17:00	D07	701NH3S2	
Parameter	<u>Sample</u> <u>Conc.</u>	<u>Spike</u> Added	<u>MS</u> Conc.	<u>MS</u> %Rec.	<u>MSD</u> Conc.	<u>MSD</u> %Rec.		<u>RPD</u>	<u>RPD CL</u>	<u>Qualifiers</u>
Ammonia (as N)	25.82	5.000	30.24	4X	30.13	4X	70-130	4X	0-25	Q

AMEC Environment & Infrastructure	Date Received:	06/27/13
9210 Sky Park Court, Suite 200	Work Order:	13-06-1879
San Diego, CA 92123-4302	Preparation:	N/A
	Method:	SM 4500-NO3 E
Project: Hines Growers Bioassessment Sampling	2013	Page 4 of 5

Quality Control Sample ID		Matrix		Instrument	Date P	repared	Date Analyzed	MS	/MSD Batch	Number
13-06-1877-1		Aqueou	ıs	UV 7	06/28/1	3	06/28/13 13:15	DO	628NO3S1	
Parameter	<u>Sample</u> Conc.	<u>Spike</u> Added	<u>MS</u> Conc.	<u>MS</u> <u>%Rec.</u>	<u>MSD</u> Conc.	<u>MSD</u> %Rec.		<u>RPD</u>	<u>RPD CL</u>	<u>Qualifiers</u>
Nitrate-Nitrite (as N)	4.038	5.000	8.700	93	8.760	94	70-130	1	0-25	

AMEC Environment & Infrastructure	Date Received:	06/27/13
9210 Sky Park Court, Suite 200	Work Order:	13-06-1879
San Diego, CA 92123-4302	Preparation:	N/A
	Method:	SM 5310 B
Project: Hines Growers Bioassessment Sampling 2	013	Page 5 of 5

Quality Control Sample ID		Matrix		Instrument	Date P	repared	Date Analyzed	MS	/MSD Batch	Number
HG-062713-01		Aqueou	us	TOC 8	06/27/1	13	07/01/13 16:01	D07	701DOCS1	
Parameter	<u>Sample</u> <u>Conc.</u>	<u>Spike</u> Added	<u>MS</u> Conc.	<u>MS</u> %Rec.	<u>MSD</u> Conc.	<u>MSD</u> %Rec.	<u>%Rec. CL</u>	<u>RPD</u>	<u>RPD CL</u>	<u>Qualifiers</u>
Carbon, Dissolved Organic	2.940	10.00	12.00	91	11.80	89	70-130	2	0-25	

Quality Control - Sample Duplicate

AMEC Environment & Infrastructure	Date Received:	06/27/13
9210 Sky Park Court, Suite 200	Work Order:	13-06-1879
San Diego, CA 92123-4302	Preparation:	N/A
	Method:	SM 2510 B
Project: Hines Growers Bioassessment Sampling 2013		Page 1 of 7

Project: Hines Growers Bioassessment Sampling 2013

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	Duplicate Batch Number
HG-062713-02	Aqueous	SC 5	N/A	06/28/13 17:58	D0628SCD1
Parameter	Sample Conc	<u>.</u> <u>DUP Conc.</u>	<u>RPD</u>	<u>RPD CL</u>	Qualifiers
Specific Conductance	2060	2060	0	0-25	

Quality Control - Sample Duplicate

AMEC Environment & Infrastructure	Date Received:	06/27/13
9210 Sky Park Court, Suite 200	Work Order:	13-06-1879
San Diego, CA 92123-4302	Preparation:	N/A
	Method:	SM 2540 C
Project: Hines Growers Bioassessment Sampling 2013		Page 2 of 7

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	Duplicate Batch Number
13-06-1693-1	Aqueous	SC 5	07/01/13 00:00	07/01/13 16:50	D0701TDSD2
Parameter	Sample Conc	<u>.</u> <u>DUP Conc.</u>	<u>RPD</u>	<u>RPD CL</u>	<u>Qualifiers</u>
Solids, Total Dissolved	1200	1170	3	0-20	

06/27/13

N/A

13-06-1879

SM 2540 D

Quality Control - Sample Duplicate

AMEC Environment & Infrastructure	Date Received:	06/27
9210 Sky Park Court, Suite 200	Work Order:	13-06-18
San Diego, CA 92123-4302	Preparation:	1
-	Method:	SM 254
Project: Hines Growers Bioassessment Sampling 2	2013	Page 3 of 7

Project: Hines Growers Bioassessment Sampling 2013

Quality Control Sample ID	Matrix Instrument Date Prepared		Date Prepared	Date Analyzed	Duplicate Batch Number
13-06-1769-4	Aqueous	N/A	07/01/13 00:00	07/01/13 15:30	D0701TSSD1
Parameter	Sample Cond	<u>. DUP Conc.</u>	<u>RPD</u>	<u>RPD CL</u>	<u>Qualifiers</u>
Solids, Total Suspended	5997	6140	2	0-20	

AMEC Environment & Infrastructure	Date Received:	06/27/13
9210 Sky Park Court, Suite 200	Work Order:	13-06-1879
San Diego, CA 92123-4302	Preparation:	N/A
	Method:	SM 4500 H+ B
Project: Hines Growers Bioassessment Sampling 2013		Page 4 of 7

Quality Control Sample ID	Matrix	x Instrument Date Prepared		Date Analyzed	Duplicate Batch Number
13-06-1787-1	Aqueous	PH 1	N/A	06/27/13 18:49	D0627PHD1
Parameter	Sample Conc	<u>. DUP Conc.</u>	<u>RPD</u>	<u>RPD CL</u>	Qualifiers
рН	7.450	7.450	0	0-25	

AMEC Environment & Infrastructure	Date Received:	06/27/13
9210 Sky Park Court, Suite 200	Work Order:	13-06-1879
San Diego, CA 92123-4302	Preparation:	N/A
	Method:	SM 4500 N Org B
Project: Hines Growers Bioassessment Sampling 20	013	Page 5 of 7

Quality Control Sample ID	Matrix Instrument Date Prepared Date Ar		Date Analyzed	Duplicate Batch Number	
13-06-1877-1	Aqueous	BUR05	07/03/13 00:00	07/03/13 18:07	D0703TKND1
Parameter	Sample Conc	. <u>DUP Conc.</u>	<u>RPD</u>	<u>RPD CL</u>	<u>Qualifiers</u>
Total Kjeldahl Nitrogen	ND	ND	N/A	0-25	

AMEC Environment & Infrastructure	Date Received:	06/27/13
9210 Sky Park Court, Suite 200	Work Order:	13-06-1879
San Diego, CA 92123-4302	Preparation:	N/A
	Method:	SM 4500-CI C
Project: Hines Growers Bioassessment Sampling 20	13	Page 6 of 7

Quality Control Sample ID	Matrix Instrument Date Prepared		Date Analyzed	Duplicate Batch Number	
13-06-1808-1	Aqueous	BUR02	N/A	06/28/13 17:05	D0628CLCD1
Parameter	Sample Conc	<u>.</u> <u>DUP Conc.</u>	<u>RPD</u>	<u>RPD CL</u>	Qualifiers
Chloride	128.6	128.6	0	0-25	

AMEC Environment & Infrastructure	Date Received:	06/27/13
9210 Sky Park Court, Suite 200	Work Order:	13-06-1879
San Diego, CA 92123-4302	Preparation:	N/A
	Method:	SM 4500-O G
Project: Hines Growers Bioassessment Sampling 20	13	Page 7 of 7

Quality Control Sample ID	Matrix Instrument Da		Date Prepared Date Analyzed		Duplicate Batch Number
HG-062713-01	Aqueous	BOD 1	06/27/13 00:00	06/27/13 19:12	D0627DOD1
Parameter	Sample Conc	<u>.</u> <u>DUP Conc.</u>	<u>RPD</u>	<u>RPD CL</u>	Qualifiers
Dissolved Oxygen	7.430	7.350	1	0-25	

Quality Control - LCS/LCSD

AMEC Environment & Infrastructure	Date Received:	06/27/13
9210 Sky Park Court, Suite 200	Work Order:	13-06-1879
San Diego, CA 92123-4302	Preparation:	N/A
	Method:	ASTM D516-02
Project: Hines Growers Bioassessment Sampling	2013	Page 1 of 7

Quality Control Sample ID		Matrix		Instrument	Date Prepa	ared Date	Analyzed	LCS/LCSD Ba	atch Number
099-05-091-1889		Aqueou	s	UV 8	N/A	06/28	8/13 15:30	D0628SO4L1	
Parameter	<u>Spike</u> Added	LCS Conc.	<u>LCS</u> %Rec.	LCSD Conc.	<u>LCSD</u> <u>%Rec.</u>	<u>%Rec. CL</u>	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
Sulfate	20.00	19.20	96	19.30	96	80-120	1	0-20	

Quality Control - LCS/LCSD

AMEC Environment & Infrastructure	Date Received:	06/27/13
9210 Sky Park Court, Suite 200	Work Order:	13-06-1879
San Diego, CA 92123-4302	Preparation:	N/A
	Method:	SM 2540 C
Project: Hines Growers Bioassessment Sampling 2	013	Page 2 of 7

Quality Control Sample ID		Matrix		Instrument	Date Prepa	red Date A	Analyzed	LCS/LCSD Ba	tch Number
099-12-180-3733		Aqueou	s	SC 5	07/01/13	07/01/	/13 16:50	D0701TDSL2	
Parameter	<u>Spike</u> Added	<u>LCS</u> Conc.	<u>LCS</u> <u>%Rec.</u>	LCSD Conc.	<u>LCSD</u> %Rec.	<u>%Rec. CL</u>	<u>RPD</u>	<u>RPD CL</u>	Qualifiers
Solids, Total Dissolved	100.0	105.0	105	100.0	100	80-120	5	0-20	

Quality Control - LCS/LCSD

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Date Received:	06/27/13
Work Order:	13-06-1879
Preparation:	N/A
Method:	SM 2540 D
	Page 3 of 7

Project: Hines Growers Bioassessment Sampling 2013

Quality Control Sample ID		Matrix		Instrument	Date Prepa	red Date A	Analyzed	LCS/LCSD Ba	tch Number
099-09-010-6338		Aqueous	5	N/A	07/01/13	07/01/	13 15:30	D0701TSSL1	
Parameter	<u>Spike</u> Added	<u>LCS</u> Conc.	<u>LCS</u> %Rec.	LCSD Conc.	LCSD %Rec.	<u>%Rec. CL</u>	<u>RPD</u>	<u>RPD CL</u>	Qualifiers
Solids, Total Suspended	100.0	92.00	92	90.00	90	80-120	2	0-20	

06/27/13

N/A

13-06-1879

SM 4500 P B/E

Page 4 of 7

Quality Control - LCS/LCSD

AMEC Environment & Infrastructure	Date Received:
9210 Sky Park Court, Suite 200	Work Order:
San Diego, CA 92123-4302	Preparation:
	Method:

Project: Hines Growers Bioassessment Sampling 2013

Quality Control Sample ID		Matrix		Instrument	Date Prepa	red Date A	Analyzed	LCS/LCSD Ba	tch Number
099-05-098-2457		Aqueous	S	UV 7	06/28/13	06/28/	/13 19:11	D0628TPL1	
Parameter	<u>Spike</u> Added	LCS Conc.	<u>LCS</u> %Rec.	LCSD Conc.	LCSD %Rec.	<u>%Rec. CL</u>	<u>RPD</u>	<u>RPD CL</u>	Qualifiers
Phosphorus, Total	0.4000	0.3920	98	0.4090	102	80-120	4	0-20	

Quality Control - LCS/LCSD

AMEC Environment & Infrastructure	Date Received:	06/27/13
9210 Sky Park Court, Suite 200	Work Order:	13-06-1879
San Diego, CA 92123-4302	Preparation:	N/A
	Method:	SM 4500-NH3 B/C
Project: Hines Growers Bioassessment Sampling 2	2013	Page 5 of 7

Quality Control Sample ID		Matrix		Instrument	Date Prepa	ared Date	Analyzed	LCS/LCSD Ba	atch Number
099-12-814-1666		Aqueous	s	BUR05	07/01/13	07/01/	/13 17:00	D0701NH3L2	
Parameter	<u>Spike</u> Added	<u>LCS</u> Conc.	<u>LCS</u> <u>%Rec.</u>	LCSD Conc.	LCSD %Rec.	<u>%Rec. CL</u>	<u>RPD</u>	RPD CL	Qualifiers
Ammonia (as N)	5.000	4.704	94	4.760	95	80-120	1	0-20	

AMEC Environment & Infrastructure	Date Received:	06/27/13
9210 Sky Park Court, Suite 200	Work Order:	13-06-1879
San Diego, CA 92123-4302	Preparation:	N/A
	Method:	SM 4500-NO3 E
Project: Hines Growers Bioassessment Sampling 201	3	Page 6 of 7

Quality Control Sample ID		Matrix		Instrument	Date Prepa	ared Date	Analyzed	LCS/LCSD Ba	tch Number
099-14-282-202		Aqueous	S	UV 7	06/28/13	06/28/	/13 13:15	D0628NO3L1	
Parameter	<u>Spike</u> Added	<u>LCS</u> Conc.	<u>LCS</u> %Rec.	LCSD Conc.	LCSD %Rec.	<u>%Rec. CL</u>	<u>RPD</u>	<u>RPD CL</u>	Qualifiers
Nitrate-Nitrite (as N)	0.5000	0.5010	100	0.4930	99	80-120	2	0-20	

Quality Control - LCS/LCSD

AMEC Environment & Infrastructure	Date Received:	06/27/13
9210 Sky Park Court, Suite 200	Work Order:	13-06-1879
San Diego, CA 92123-4302	Preparation:	N/A
	Method:	SM 5310 B
Project: Hines Growers Bioassessment Sampling 2	013	Page 7 of 7

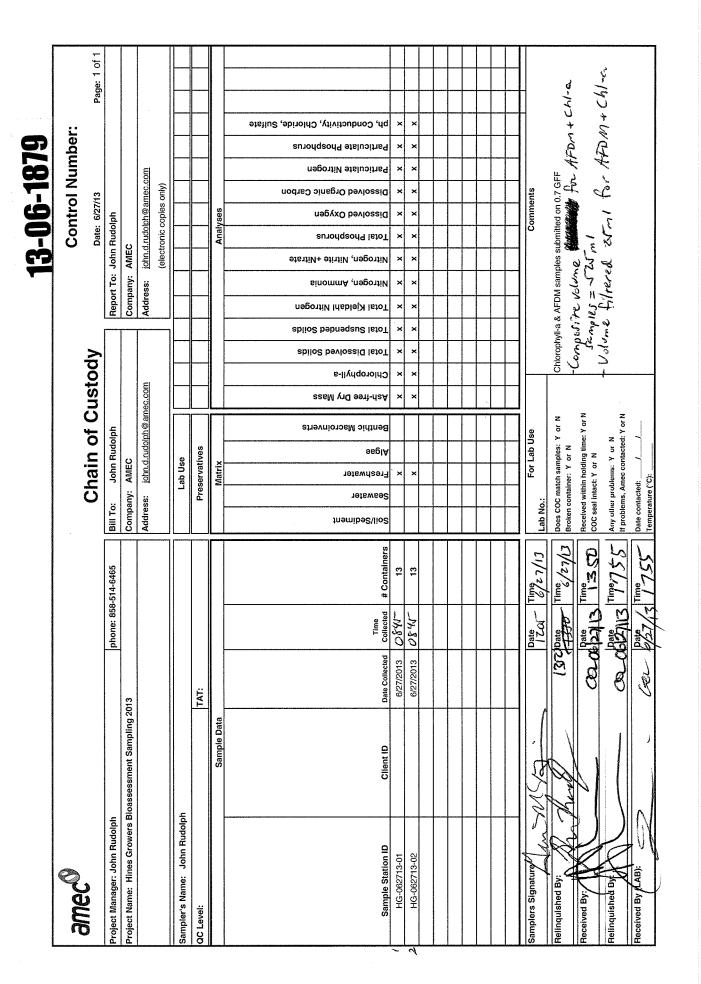
Quality Control Sample ID		Matrix		Instrument	Date Prepa	ared Date	Analyzed	LCS/LCSD Ba	atch Number
099-05-115-1268		Aqueou	S	TOC 8	06/27/13	07/01/	/13 16:01	D0701DOCL1	I
Parameter	<u>Spike</u> <u>Added</u>	LCS Conc.	<u>LCS</u> %Rec.	LCSD Conc.	<u>LCSD</u> <u>%Rec.</u>	<u>%Rec. CL</u>	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
Carbon, Dissolved Organic	10.00	10.20	102	10.10	101	80-120	1	0-20	

Return to Contents

alscience nvironmental aboratories, Inc.

Work Order: 13-06-1879

Page 1 of 1 Qualifiers Definition * See applicable analysis comment. Less than the indicated value. < Greater than the indicated value. > Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without further 1 clarification. 2 Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification. 3 Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to suspected matrix interference. The associated LCS recovery was in control. Δ The MS/MSD RPD was out of control due to suspected matrix interference. The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected matrix interference. 5 6 Surrogate recovery below the acceptance limit. 7 Surrogate recovery above the acceptance limit. В Analyte was present in the associated method blank. ΒU Sample analyzed after holding time expired. ΒV Sample received after holding time expired. Е Concentration exceeds the calibration range. FT Sample was extracted past end of recommended max. holding time. HD The chromatographic pattern was inconsistent with the profile of the reference fuel standard. HDH The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but heavier hydrocarbons were also present (or detected). HDL The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but lighter hydrocarbons were also present (or detected). Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is J estimated. ME LCS Recovery Percentage is within Marginal Exceedance (ME) Control Limit range (+/- 4 SD from the mean). Parameter not detected at the indicated reporting limit. ND Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike Q concentration by a factor of four or greater.


Glossary of Terms and Qualifiers

- SG The sample extract was subjected to Silica Gel treatment prior to analysis.
- Х % Recovery and/or RPD out-of-range.
- 7 Analyte presence was not confirmed by second column or GC/MS analysis.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

N

Page 40 of 46

Return to Contents

	RK ORDER #: 13-0	Page 41 of 46 6-1 8 7 9
Laboratorles, Inc. SAMPLE REC		Cooler _2 of 2
CLIENT: AMEC		06 /2] / 13
TEMPERATURE: Thermometer ID: SC1 (Criteria: 0.0 °	C – 6.0 °C, not frozen except s	ediment/tissue)
Temperature• 🔗 °C - 0.2 °C (CF) =	<u>↓.6</u> °C ⊡ Blank	□ Sample
□ Sample(s) outside temperature criteria (PM/APM conta		
□ Sample(s) outside temperature criteria but received on		bling.
□ Received at ambient temperature, placed on ice f		
Ambient Temperature: Air Filter		Initial:
CUSTODY SEALS INTACT:		
□ Cooler □ □ No (Not Intact)	☑ Not Present □ N/A	Initial:
□ Sample □ □ No (Not Intact)	☑ Not Present	Initial: JH
SAMPLE CONDITION:	Yes	No N/A
Chain-Of-Custody (COC) document(s) received with sa	mples	
COC document(s) received complete	p /	
Collection date/time, matrix, and/or # of containers logged in I	based on sample labels.	
□ No analysis requested. □ Not relinquished. □ No date	e/time relinquished.	
Sampler's name indicated on COC	🖵	
Sample container label(s) consistent with COC	🖻	
Sample container(s) intact and good condition		
Proper containers and sufficient volume for analyses re	quested	
Analyses received within holding time	····· Ø	
pH / Res. Chlorine / Diss. Sulfide / Diss. Oxygen receive	ed within 24 hours…	
Proper preservation noted on COC or sample container	·	
□ Unpreserved vials received for Volatiles analysis		
Volatile analysis container(s) free of headspace		
Tedlar bag(s) free of condensation		
Solid: 40zCGJ 80zCGJ 160zCGJ Sleeve	() □EnCores [®] □Terra	aCores [®] □
Water: DVOA DVOAh DVOAna ₂ D125AGB D125/	AGBh □125AGBp □1AGB	□1AGBna₂ ⊡1AGBs
Ø500AGB □500AGJ □500AGJs Ø250AGB □250	CGB 2250CGBs 21PB	□1PB na 2500PB
□250PB □250PBn □125PB □125PBznna □100P	I □100PJ na₂ Ø <u>lGallon ub</u> e□_	
Air: ☐Tedlar [®] ☐Canister Other: ☐ <u>))K</u> Trip Black Container: C: Clear A: Amber P: Plastic G: Glass J: Jar B: Bottle Z: Ziplo Preservative: h: HCL n: HNO ₃ na ₂ :Na ₂ S ₂ O ₃ na: NaOH p: H ₃ PO ₄ s: H ₂ SO ₄ u:	oc/Resealable Bag E: Envelope	Reviewed by:

Return to Contents

Calscience pvironmental	WOF	RK ORDER #:	13-00		3 12 of 46
Laboratories, Inc.	MPLE REC	EIPT FOF	RM c	ooler _	1 of <u>2</u>
CLIENT: ANEC			DATE:	06 <i> </i> 9	7/13
TEMPERATURE: Thermometer ID				diment/tis	sue)
Temperature <u><u></u>.<u></u>°C - (</u>	0.2°C (CF) =	<u>1.7</u> °C E	Blank	🗌 Sam	ple
Sample(s) outside temperature cr	iteria (PM/APM contac	ed by:).			
□ Sample(s) outside temperature cr	iteria but received on ic	e/chilled on same d	ay of samp	ing.	
□ Received at ambient temperatu	re, placed on ice fo	r transport by Co	urier.		
Ambient Temperature: Air	□ Filter			Init	tial: <u>N6)</u>
CUSTODY SEALS INTACT:					16
	□ No (Not Intact)	■ Not Present	□ N/A		tial:
□ Sample □	□ No (Not Intact)	Not Present		Ini	tial:
SAMPLE CONDITION:			Yes	No	N/A
Chain-Of-Custody (COC) document	(s) received with san				
COC document(s) received complet					
□ Collection date/time, matrix, and/or #			•		
□ No analysis requested. □ Not relin					
Sampler's name indicated on COC.			R		
Sample container label(s) consisten			•		
Sample container(s) intact and good					
Proper containers and sufficient volu					
Analyses received within holding tim	•				
pH / Res. Chlorine / Diss. Sulfide / [Diss. Oxygen receive	d within 24 hours	. 🗖		
Proper preservation noted on COC	or sample container.		Z		
□ Unpreserved vials received for Vol	atiles analysis				
Volatile analysis container(s) free of	headspace		. 🗆 👘 👘		Z
Tedlar bag(s) free of condensation			. 🗆		Ø
Solid:					1121
Water: DVOA DVOAh DVOAna ₂					
⊠500AGB □500AGJ □500AGJs				□1PB na	500PB
□250PB □250PBn □125PB □12	25PB znna □100PJ	□100PJ na₂	allon cube	.	
Air: ☐Tedlar [®] ☐Canister Other: Container: C: Clear A: Amber P: Plastic G: Gla Preservative: h: HCL n: HNO ₃ na ₂ :Na ₂ S ₂ O ₃ na: N	ss J: Jar B: Bottle Z: Ziploc	/Resealable Bag E: En	velope	Reviewed	by: NC

s ha kantan katil dan karawa ta na am

Return to Contents

Laboratory Report Report ID: 129053

Calscience Environmental Laboratories, Inc. Attn: Danielle Gonsman 7440 Lincoln Way Garden Grove, California 92841-1427
 Date:
 7/11/2013

 Client:
 CSE-841

 Taken by:
 Client

 PO #:
 13-06-1879

Date:

7/11/2013

Dear Danielle Gonsman,

It is the policy of Sierra Environmental Monitoring, Inc to strictly adhere to a comprehensive Quality Assurance Plan that insures the data presented in this report are both accurate and precise. Sierra Environmental Monitoring, Inc. maintains accreditation in the State of Nevada (NV-15 and NV-921) and the State of California (ELAP 2526).

The data presented in this report were obtained from the analysis of samples received under a chain of custody. Unless otherwise noted below, samples were received in good condition, properly preserved and within the hold time for the requested analyses. Any anomalies associated with the analysis of the samples have been flagged with appropriate explanation in the Analysis Report section of this Laboratory Report.

General Comments:

Sampler did not sign COC

Individual Sample Comments:

- There are no specific comments that are associated with these samples.

Approved By:

Sierra Environmental Monitoring, Inc.

This report is applicable only to the sample received by the laboratory. The liability of the laboratory is limited to the amount paid for this report. This report is for the exclusive use of the client to whom it is addressed and upon the condition that the client assumes all liability for the further distribution of the report or its contents.

	Page 1 of 3		
John Kobza, Ph.D	1135 Financial Blvd.		John C. Seher
Laboratory Director	Reno, Nv 89502-2348 Phone (775) 857-2400		Special Consultant
	Fax (888) 398-7002		Quality Assurance Manager
	7440 Lincoln Way, Garden Grove, CA:02@sem427alyticalEbm(714) 895-5494	•	FAX: (714) 894-7501

Laboratory Report Report ID: 129053

Environmental Monitoring, Inc.

Calscience Environmental Laboratories, Inc. Attn: Danielle Gonsman 7440 Lincoln Way Garden Grove, California 92841-1427
 Date:
 7/11/2013

 Client:
 CSE-841

 Taken by:
 Client

 PO #:
 13-06-1879

Analysis Report

• •									
Laboratory Sample ID	Custo	omer Sample ID		Date Sam	oled Time Sar	npled Date F	leceived		
S201307-0168	HG	-062713-01		6/27/201	3 8:45 A	M 7/3/	2013		
· ·				Reporting		Date	Data		
Parameter	Method	Result	Units	Limit	Analyst	Analyzed	Flag		
Chlorophyll a	SM 10200 H	9300	ug/L	300	Keller	7/10/2013			
· · ·	-			14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-				
Laboratory Sample ID	Custo	omer Sample ID		Date Samp	oled Time Sar	npled Date R	leceived		
S201307-0169	HG	-062713-02		6/27/201	3 8:45 A	M 7/3/	7/3/2013		
				Reporting	•	Date	Data		
Parameter	Method	Result	Units	Limit	Analyst	Analyzed	Flag		
Chlorophyll a	SM 10200 H	7600	ug/L	300	Keller	7/10/2013	·		
Data Flag Legend:				· ·					
		•	 ,						
				1					
	·								
	• .		•						
		-		• •					
· ·	·								
				- x					
· · · · · ·									
				•					

John C. Seher Special Consultant Quality Assurance Manager 394-7501

Laboratory Report Report ID: 129053

Calscience Environmental Laboratories, Inc.	Date:	7/11/2013
Attn: Danielle Gonsman	Client:	CSE-841
7440 Lincoln Way	Taken by:	Client
Garden Grove, California 92841-1427	PO #:	13-06-1879

Quality Control Report

Parameter	LCS, % Recovery	MS, % Recovery	MSD, % Recovery	<i>RPD, %</i>	Method Blank
Chlorophyll a	99.0			6.06	<2 ug/L
Legend:	LCS- Laboratory Control Standard RPD- Relative Percent Difference	MS- Ma	trix Spike	MSD- Matrix S	Spike Duplicate

	Page 3 of 3		
John Kobza, Ph.D	1135 Financial Blvd,		John C. Seher
Laboratory Director	Reno, Nv 89502-2348 Phone (775) 857-2400		Special Consultant
	Fax (888) 398-7002		Quality Assurance Manager
	7440 Lincoln Way, Garden Grove, CA992@acn42ralyticatEom(714) 895-5494	•	FAX: (714) 894-7501

6
()
0
0
_
(D)
∩ Y
_

(Signature	E	scie nvir ab	nce onm orat	toria	tal es, l	nc.						USE UNCY	RWQCB REPORTING A	SAME DAY	(714) 895-5494	Garden Grove, CA 92841-1427 TEL: E-M/	7440 Lincoln Way	LABORATORY CLIENT: Calscience Envir ADDRESS:	-aboratories, Inc.
	(Signature)	Hand (HG-062713-02	HG-062713-01	SAMPLE ID	archive samples until	SAME DAY24 HR48HR72 HR	DD	92841-1427 E-MAIL		LABORATORY CLIENT: Calscience Environmental Laboratories, Inc.	GARDEN GROVE, CA 92841-1427 ^{IC.} TEL: (714) 895-5494 . FAX: (714) 894-7501
		(CALSCIENCE)								06/27/13	06/27/13	SAMPLING DATE	JNTIL /	5 DAYS	dgonsman@calscience.com				-1427 714) 894-7501
	<u> </u>	IENCE)				-				0845	0845	IG TIME		X STANDARD	ience.cor				Λ
Received by	Received by	Received by						 		(FW)	(FW)	tinew.		DARD					Ō
Received by / Affiliation: (Sigr	y / Affiliation: (Sig	O					1			-		1000th							TO: Sierra Lab, Reno, NV
(Signature)	lignature)	522								×	×	Chlor	ophyll-a			SAMPLER(S): (PRINT)	PROJECT CONTACT:	13-06-1879	Reno, NV
		1812				-								-		(PRINT)	INTACT:	JECT NAME	
		Š								 						nielle G		NUMBER:	V
					 					 				REQUE		Danielle Gonsman			200
										 				REQUESTED ANALYSIS		ň			AGE: 1 06/28/13
Da														NALYSI					m m
ē.	Date: 7/3/13	070113								 				- v			TEMP BLANK	P.O. NO.:	
										-						LAB USE ONLY	ANK:	o.: 13-06-1879	06/28/13 0F
ne:	Time:	1500							· · ·		 			- , -				-1879	
	2													1					

alscience

7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL: (714) 895-5494 • FAX: (714) 894-7501

APPENDIX E PHOTO LOG Hines Growers, Inc. Final Hines Growers Bioassessment Report, June 2013 Fallbrook, California December 2013 AMEC Project No. 1315102400

This page intentionally left blank

Transect A looking upstream

Transect F looking downstream

Hines Growers, Inc. Final Hines Growers Bioassessment Report, June 2013 Fallbrook, California December 2013

Transect F looking upstream

Transect K looking downstream

Hines Growers, Inc. Final Hines Growers Bioassessment Report, June 2013 Fallbrook, California December 2013

APPENDIX F

CHAIN OF CUSTODY

Hines Growers, Inc. Final Hines Growers Bioassessment Report, June 2013 Fallbrook, California December 2013 AMEC Project No. 1315102400

This page intentionally left blank

əmec [®]		Chain of Custody									Date: 6/27/13 Page: 1 of 1										1 of 1				
Project Manager: John Rudolph			phone: 85	8-514-6465	14-6465 Bill To: John Rudolph									Report To: John Rudolph											
Project Name: Hines Growers Bi	loassessment Sampling 2013				Company: AMEC								Company: AMEC												
					Address: john.d.rudolph@amec.com							Address: john.d.rudolph@amec.com (electronic copies only)													
Sampler's Name: John Rudolph	1					1	Lab Us	e													1				
QC Level:			Pre	servat	ives																				
	Sample Data						Matri	-			_			-	-		Analy	ses	-		- 17	-	-	-	
Sample Station ID HG-062713-BMI HG-062713-SBA HG-062713-DIA	Client ID	Date Collected 6/27/2013 6/27/2013 6/27/2013	Time Collected 845 845 845	# Containers 4 2 1	Soil/Sediment	Seawater	Freshwater	x x Algae	× Benthic Macrolinverts	Taxonomy, 600 Count SWAMP, SAFIT 2	× × Standard SWAMP Taxonomy														
Samplers Signature	10		Date/ /	Time			For	Lab l	Jse								Co	omme	nts						
Relinquished By:	Date Date 7/1/13	Time 1330	Broke	COC m n conta	alch sa ainer: Y	nples: or N	Y or N			Calculate SoCal IBI for BMI, voucher BMI samples															
Received By:	mye Reynoldo	ElaA	Date Date	Time	COC seal intact: Y or N Qualitativ Any other problems: Y or N					alitativ at bodie	canted prior to shipment tive and Quantitative soft bodied algae samples included died sample preserved with Gluteraldehyde tive sample not preserved (stored at 4 degrees C)														
Received By (LAB):			Date	Time	-	ontact	ed:	1	1		1 C		preserv		1000				THE ST ST	1					