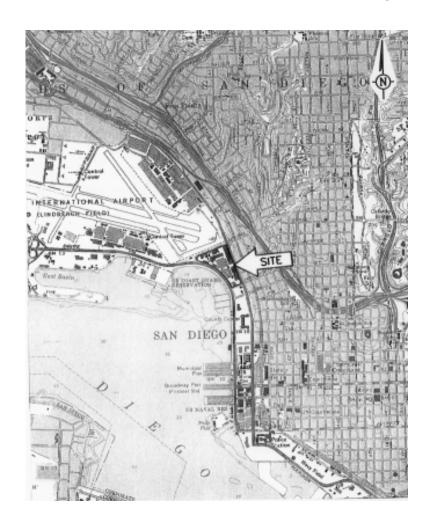
Status of Sediment Cleanup Activities at Solar Turbines & Goodrich Aerostructures

Peter Peuron


SLIC Program

Site Mitigation Unit

San Diego Regional Water Quality

Control Board

Solar Turbines Vicinity Map

Regulatory Context - Solar Turbines

- Designation Process (HSC, Chapter 6.65)
- "The Administering Agency administers all state and local laws, ordinances, regulations, and standards ... at the site". [HSC, section 25264(a)]
- RWQCB and the Department of Fish & Game are support agencies

Status of Ecological Risk/Sediment Quality Assessment

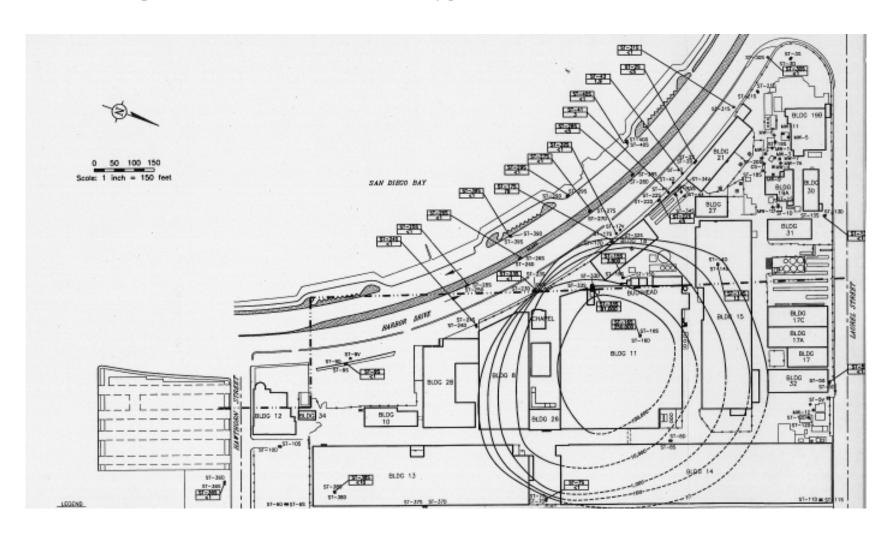
- Basic risk assessment approach was approved in 1998
- Procedure follows DTSC's Guidance for Ecological Risk Assessment
- Report was submitted in May of 2002 and is currently under review
- Risk assessment does not address discharge issues

Manufacturing Processes Related to Gas Turbine Production

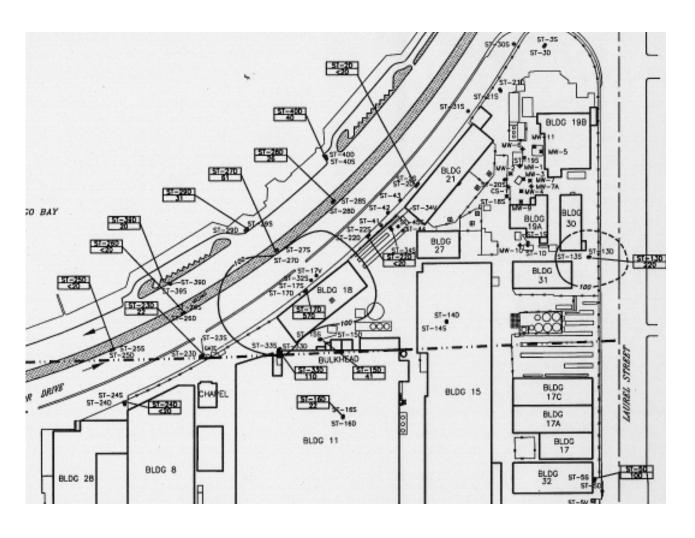
Foundry operations, metal melting, metal casting, degreasing, parts cleaning, plating, milling and painting operations

*Hazardous waste treatment units

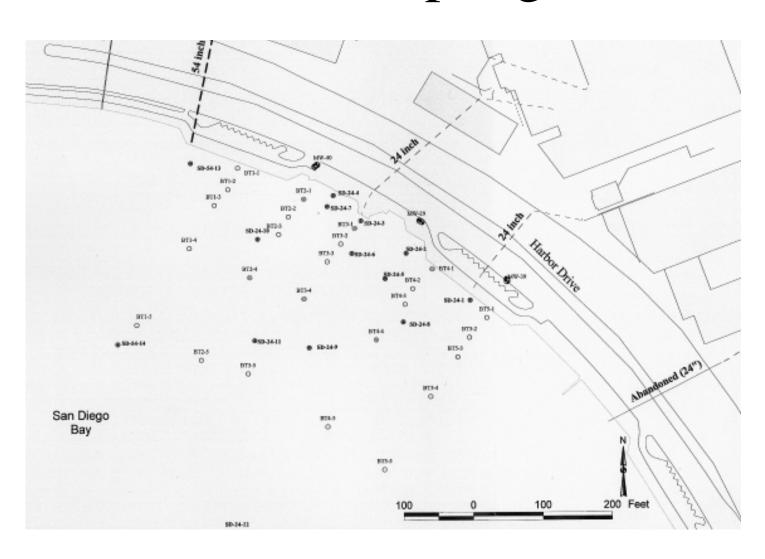
Underground storage tanks

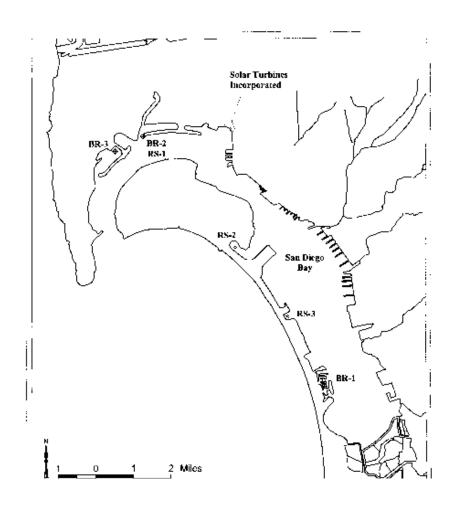

Major Contaminant Impacts - Solar Turbines

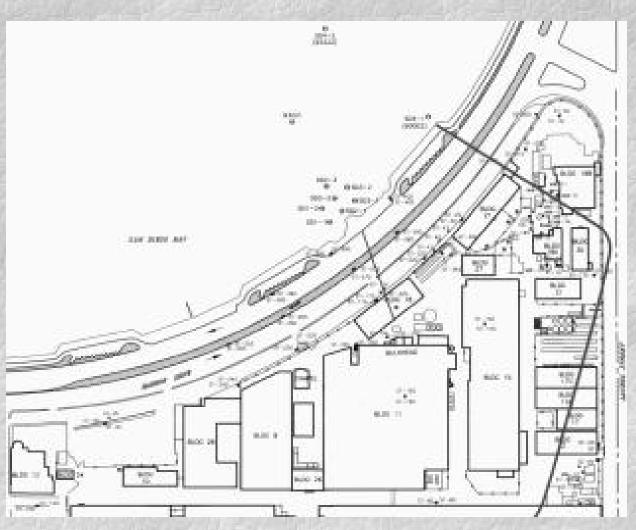
- Chlorinated Solvents (TCE)
- Metals (chromium, lead, zinc, copper & nickel)
- Petroleum Hydrocarbons (Benzene, Polynuclear Aromatic Hydrocarbons)
- Polychlorinated Biphenyls (PCBs)

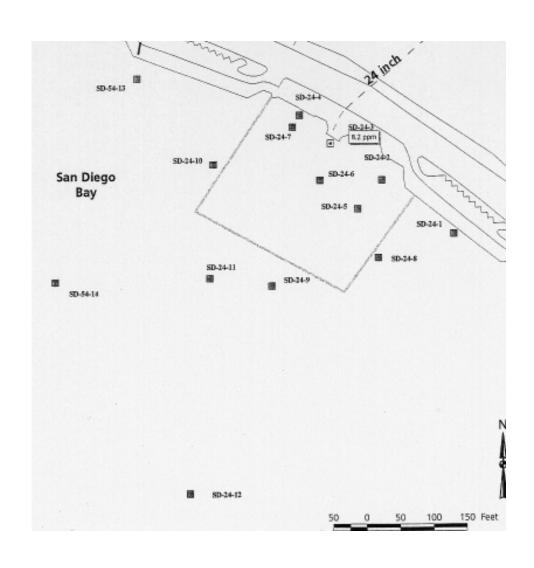

Sediment Impacts

- Polychlorinated Biphenyls (PCBs)
- Metals (chromium, lead, zinc, copper & nickel)
- Polynuclear Aromatic Hydrocarbons (PAHs)
- Chlorinated Hydrocarbons (VOCs)


TCE Plume at Solar Turbines


Zinc Plume in Groundwater


Groundwater Migration Pathway-25 Porewater Sampling Locations


Pore Water Reference Sites


24-Inch Drain Pathway

14 Sediment Sampling Locations Near the 24-Inch Drain

Solar Turbines Regional Reference Sites

Basic Elements of Tiered Approach to Ecological Risk

Tier 1 Screening

- Compares conservative reference values to worst case contaminant concentrations
- Contaminant concentrations that exceed screening levels are carried into Tier 2 analysis

Tier 2 Risk Assessment

- Attempts a more realistic, yet conservative analysis of actual risk
- Contaminants failing Tier 2 require cleanup

Exposure Pathways & Receptors

- Pore water exposure (via groundwater flow)
 - Direct exposure to benthic community
 - Food chain exposure to fish, birds & humans
- Sediment exposure (24-Inch Drain area)
 - Direct exposure to benthic community
 - Food chain exposure to fish & birds

Tier 1 - Groundwater Migration Pathway (Pore Water)

Se Considers:

- METALS IN PORE WATER (bay bottom samples)
- VOCs IN POREWATER (shore line well data)

₩ IF MAX CONCENTRATION > AWQCs GO TO TIER 2

Tier 1 - 24-Inch Drain Pathway

- Considers measured sediment concentrations outside the 24-inch drain
- ₩IF MAX CONCENTRATION > ERL GO TO TIER 2 If no ERL, GO TO Tier 2
- ► For PAHs & PCBs
 - Models pore water concentrations
 - IF MAX CONCENTRATION > AWQCs
 GO TO TIER 2

Overview Ecological Risk Assessment - Tier 2

- Toxicity data from literature used to set Threshold Limit Values (TLVs)
- **☼** Contaminant levels are 95% UCL
- Models bioaccumulation using Toxicity Reference Values (TRVs)
- **♦** Calculates Hazard Quotient (HQ)
 - HQ = Pore Water Concentration/TLVw or
 - HQ = Sediment Concentration/TLVsd or
 - HQ = Tissue Concentration/TRV

Tier 2 - Groundwater Migration Pathway <u>Direct Exposure</u>

- Pore water 95% UCL > TLVw?
 - For benthic community
 - For demersal fish

Porewater concentrations also compared to background concentrations

Tier 2- Groundwater Migration Pathway Food Chain Exposure

- Modeled tissue levels > TRV?
 - For fish
 - For fish-eating birds
 - For fish-eating humans

Tissue levels modeled using standard bioconcentration factors (BCFs)

Tier 2 - 24-Inch Drain Pathway <u>Direct Exposure</u>

Sediment 95% UCL > TLVsd?

№ Modeled pore water 95% UCL (PCBs) > TLVw?

Sediment levels also compared to background concentrations

Tier 2 - 24 - Inch Drain Pathway Food Chain Exposure

- Modeled tissue levels > TRV?
 - For benthic-feeding birds (lesser scaup)

Tissue levels modeled using standard bioconcentration factors (BSAFs)

Also in Tier 2 - Benthic Community Analysis

- Six sediment samples from upper 6 inches compared with 3 bay-wide reference samples
- Species richness, abundance and evenness were similar to reference sites
- Species diversity and dominance were slightly lower at Solar Turbines
- **TOC and grain size were similar to reference sites

Results: Groundwater Migration Pathway

HQ for TCE in pore water was 7 for benthic community and 2 for fish exposure

- Conclusion in report: No significant risk
 - Use of well data to represent pore water data is too conservative
 - Risk assessment assumptions are conservative

Results: 24-Inch Storm Drain Pathway

HQ for lead in sediment (benthic invertebrates exposure) was 1.2

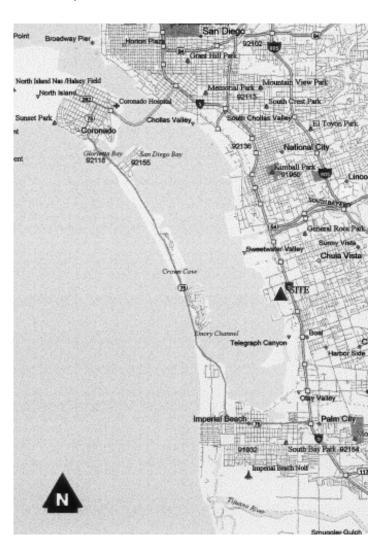
- Se Conclusion: No significant risk
 - Regional background samples were about the same as the lead sediment value
 - HQ not significantly above 1

Results (continued): 24-Inch Storm Drain Pathway

HQ for PCBs in pore water (benthic invertebrates exposure) were 1.3

No significant risk:

"small exceedence of a highly conservative toxicity threshold concentration in a small spatial area is not likely to result in significant impacts"


BERA Tier 2 - Spatial PCB Risk Analysis Solar Turbines, Incorporated, San Diego, California Table 3-20.

		1	Individual	Sample Lo	Individual Sample Location PCB Analysis	Analysis
			Sediment	ent	Modeled Porewater	orewater
		Modeled				
	Sediment	Porewater	TLV _{8d} -		TLV _w .	
Sample Location	Concentration	Concentration	invertebrate	웃	invertebrate	Invert HQ
PBCs						
SD-24-1*	1.2	4.79E-05	2.8	6.0	0.00016	0.30
SD-24-2	1.2	4.91E-05	2.8	0.4	0.00016	0.31
SD24-3*	8.2	6.50E-04	2.8	200	0.00016	1.7
SD-24-4	1.4	8.84E-05	2.8	0.5	0.00016	0.55
SD-24-5	1.9	1.08E-04	2.8	0.7	0.00016	99.0
SD-24-6	1.8	1.28E-04	2.8	0.7	0.00016	0.80
SD-24-7	2.4	1.79E-04	2.8	6.0	0.00016	
SD-24-8	1.6	8.69E-05	2.8	9.0	0.00016	0.54
SD-24-9	0.55	4.16E-05	2.8	0.2	0.00016	0.26
SD-24-10	1.9	1.66E-04	2.8	0.7	0.00016	1.0
SD-24-11	0.72	5.12E-05	2.8	0.3	0.00016	0.32
SD-24-12*	0.46	2.28E-05	2.8	0.2	0.00016	0.14
SD-54-13	0.29	1.87E-05	2.8	0.1	0.00016	0.12
SD-54-14	0.37	2.29E-05	5.8	0.1	0.00016	0.14
RR-1	1.2	7.10E-05	2.8	0.4	0.00016	0.44
RR-2	0.49	1.30E-05	2.8	0.2	0.00016	80.0

Solar Turbines Ecological Risk Assessment Issues

- Is the 95% UCL acceptable?
- Are literature-derived TLVs acceptable?
- Should water quality objectives be in Tier 1?
- Are background samples acceptable?
- Are shoreline wells representative of Bay pore water?
- Discharges through shoreline wells must still be addressed.

Goodrich Aerostructures Chula Vista, CA

Regulatory Context

RWQCB is the informal lead agency

The California Department of Fish & Game and the US Fish & Wildlife Service are support agencies

Goodrich Aerostructures Site Location Map

Aerial View of Outfall 1 Estuary

View Looking Toward Outfall 1

Big Differences Between This Site & Other Sediment Sites

- **Estuarine conditions**
 - Different receptors
 - Different physical & chemical environment
 - Dynamic, often non-equilibrium conditions
- Small impacted area
- Easy access to sediment

Processes Associated With Aerospace Production Activities

Foundry operations, metal melting, metal casting, degreasing, parts cleaning, plating, anodizing, milling and painting operations

*Hazardous waste treatment units

Underground storage tanks

Major Contaminant Impacts - Goodrich Aerostructures

- Chlorinated Solvents (TCE, PCE, TCA, etc.)
- Metals (chromium, lead, zinc, copper & nickel)
- Petroleum Hydrocarbons (Benzene, Polynuclear Aromatic Hydrocarbons)

Sediment Contaminants

- Metals (chromium, lead, zinc, copper & nickel)
- Polychlorinated Biphenyls (PCBs)
- Polynuclear Aromatic Hydrocarbons (PAHs)

Metals Levels Found in Sailfin Mollies From Marsh (2000 Data)

	Chromium (mg/kg)	Copper (mg/kg)	Lead (mg/kg)	Nickel (mg/kg)
Tissue Level (mg/kg)	0.89	4.39	0.472	0.232
95% EDL (mg/kg)	0.25	3.96	0.53	0.42

Summary of Results of Sediment Testing Near Outfall 1

- 10 samples obtained within 160 feet of the outfall exceeded ERLs for at least one contaminant
- *8 out of 10 samples obtained within 160 feet of the outfall exceeded ERMs for at least one contaminant
- All 5 samples obtained from 178 feet to 500 feet downstream were below ERLs

Aerial View of Outfall 1 Estuary

Status of Sediment Approach at Goodrich Aerostructures

- Work plan is currently under review by SDRWQCB, the Department of Fish and Game and the US Fish & Wildlife Service
- The work plan proposes:
 - Additional site assessment
 - Approach to ecological risk based on DTSC's Guidance for Ecological Risk Assessment

Additional Assessment

- Resampling to determine lateral and vertical extent of impacts
- Benthic community data
- Sampling of reference areas to determine background concentrations

Risk Assessment Protocol

- Scoping Assessment
- **5** Tier 1 -
 - (1) Assess feasibility of cleaning up to background levels
 - (2) Assess feasibility of cleaning up to ERLs
 - (3) Determine bioaccumulative risks using TRVs
- **5** Tier 2 -
 - (1) Sediment Quality Triad
 - (2) Impacts Assessment

Scoping Assessment

- Conceptual Site Model which links contaminant pathways to receptors
- Important receptors include:
 - Fiddler crab
 - Fish (Sailfin Molly)
 - Great blue heron
 - Coyote
 - Endangered species (least tern & clapper rail)

Tier 1 - Assessment of feasibility of cleaning up to background

- Will obtain background samples in similar areas and compare with sediment chemistry They propose:
 - Two locations at Gunpowder Point
 - One location near the Sweetwater River

If it is feasible they will excavate all impacts - no further actions required

Tier 1 - Assessment of the feasibility of cleaning up to ERLs

- If it is feasible and acceptable they will remove all contamination that exceeds ERL
- Would still need to evaluate bioaccumulative risks separately
- Alternative screening criteria for contaminants that don't have ERLs can be proposed

Tier 1 - Screening Level Assessment of Bioaccumulative Risks

- Risks will be determined using appropriate Toxicity Reference Values (TRVs)
- Tissue concentrations will be calculated using EPA standard partitioning values and/or measured tissue concentrations
- ► HQ = Tissue Concentration/TRV

Possible Outcomes of Tier 1 Screening Analysis

1. No further action

2. Removal of sediment to meet cleanup levels

3. Additional assessment of risks

Tier 2 - Baseline Risk Assessment

Sediment Quality Triad

- Chemistry
- Benthic community analysis
- Toxicity testing

Possible outcomes:

- No further action
- Removal of sediment to meet cleanup levels
- Additional Risk Assessment

Tier 2 - Impacts Assessment

Fill any data gaps in Triad analysis

Bioacumulation tests may be done

Additional tissue tests may be performed

Goodrich Aerostructures Issues

- Much depends on determination of background concentrations a difficult task
- Still need to complete assessment of the extent of contamination
- Still need to address three other outfalls at this facility