<u>Toxic Hot Spot – TMDL Study</u> Chollas and Paleta Creeks

Preliminary Phase I Results

Bart Chadwick – Navy Steve Bay - SCCWRP

18 June, 2002

Outline

- Study Background Alan's Talk
- Technical Approach
- Preliminary Results
 - Reference Stations
 - Sediment Chemistry
 - Sediment Bioassays
 - Benthic Community Analysis
 - Bioaccumulation
- Next Steps

Background

- Two sites are being assessed for TMDL and cleanup assessment simultaneously
- Interagency THS-TMDL workgroup approach to pool resources and develop consistent approaches

Site Identification	THS Ranking
Chollas Creek	Moderate
Seventh Street Channel/Paleta Creek	High

Technical Approach

- Comprehensive program integrates requirements for:
 - THS clean up
 - TMDL source control
- Program designed in phases to allow implementation of source control while clean up requirements are determined
- Currently completing Phase I assessment for spatial assessment and screening level impact assessment

Site Conceptual Model

- Focuses on sediment exposure pathway
- Incorporates exposure assessment for aquatic, wildlife and humans

Reference Station Selection

- Reference areas selected from Bight '98 stations
- Station selection based on:
 - Physical properties
 - Low toxicity
 - Low contamination
 - High diversity
 - Spatial location

Reference Station Locations

Sampling Design – Paleta Creek

- Station locations selected to
 - Determine spatial extent of impairment
 - Assist in locating source areas
- Number of stations selected to provide:
 - Adequate spatial assessment
 - Sufficient data for development of clean up levels

Sampling Design – Chollas Creek

Field Program - Sediment Grab Samples

Surface samples

 (2 cm) collected
 by grab for
 chemistry,
 porewater
 toxicity, solid
 phase toxicity
 testing, and
 bioaccumulation

Field Program - Sediment/Water Interface Samples

- New sampling technology allows collection of undisturbed sediment/water interface samples
- Collected samples at 37 stations (Chollas Creek, Paleta Creek and reference) to support sedimentwater interface toxicity testing

Field Program - Benthic Community Sampling

- Benthic community samples collected and sieved at all Chollas Creek, Paleta Creek and reference stations
- All samples sieved and preserved during cruise

Results - Reference Site Properties

- Reference stations should be representative of the study sites absent the local contamination release
 - Evaluate water depth as a general indicator of ecological habitat type
 - Compare grain size and total organic carbon (TOC) content at reference and study sites

Water Depth Comparison

- Water depth is an important parameter for establishing comparable ecological environments
- The range of depths at the reference stations brackets the range of depths encountered at the sites

Results - TOC and Grain Size Comparison

- TOC and grain size are important parameter for establishing comparable geochemical environments
- The range of TOC and grain size at the reference stations brackets the range encountered for most sites

Results - TOC

- TOC at 29 out of 31 site stations falls within statistical range of reference sites
- Inner area of Chollas Creek has high TOC compared to reference
- Important difference to keep in mind during data interpretation

Results - Grain Size

- Grain size at all site stations falls within statistical range of reference sites
- Sandy region at inner/outer boundary of Chollas Creek is still within range of reference

TOC and Grain Size Spatial Distribution

- Inner creek areas have high TOC and % fines
- Boundary between inner and outer creek areas are sandy with low TOC
- Outer creek areas have fine sediment with moderate TOC
- Spatial distribution of many contaminants show similar patterns

Sediment Chemistry Results

- Sediments analyzed for a range of chemicals including metals, PAHs, PCBs and Pesticides based on analysis of historical data
- Provides data for Phase I analysis of TMDLs, aquatic, wildlife, and human health beneficial use assessment
- Phase I analysis to date includes
 - Grouped creek data compared to:
 - reference at 95 and 99% confidence intervals
 - screening levels ERL/ERM
 - Individual station data compared to:
 - reference at 95 and 99% predictive intervals
 - screening levels ERL/ERM
 - Spatial mapping

Zinc - Grouped Station Results

\bigtriangledown	Statistically different from pooled reference at 99% confidence.
\triangle	Statistically different from pooled reference at 95% but not 99% confidence.
\bigcirc	Not statistically different from pooled reference.
	ERL Level
	ERM Level

- Grouped zinc concentrations generally above reference and between ERL and ERM
- No clear differences between outer and inner areas

Zinc - Individual Station Results

 Individual Chollas Creek and Paleta Creek stations generally between ERL and ERM for zinc – some exceed ERM or reference at 99% PI

Zinc – Spatial Distribution

- Elevated levels in inner creek areas possibly reflect storm water sources
- Spatial distribution of zinc in outer creek shows relation to fines
- One elevated sample near end of pier 1

Sediment Metals Summary

* = exceeds reference at 95% confidence

- Chollas Creek Sb, As, Cu, Pb and Zn exceed screening levels and reference
- Paleta Creek As, Cu, Pb, Hg and Zn exceed screening levels and reference
- No clear trends between inner and outer creek areas for most metals

Total PAH - Grouped Station Results

- Inner Chollas Creek area has Total PAH levels exceeding reference and ERL
- Paleta Creek levels generally near ERL but exceeding reference

Total PAH - Individual Station Results

- Individual Chollas Creek and Paleta Creek stations generally between ERL and ERM for total PAH
- One station exceeds ERM and some exceed reference, especially inner Chollas Creek

Total PAH – Spatial Distribution

- Highest levels in inner Chollas Creek – primarily driven by one sample
- Other areas of both creeks have fairly uniform distributions that correspond with distribution of TOC and fines

Sediment PAH Summary

NAP C1N ACY ACE FLO ANT PHE FLA PYR BAA CRY BBF BKF BAP DAH TOT LMWHMW

generally higher

•

Total Chlordane - Grouped Station Results

\bigtriangledown	Statistically different from pooled reference at 99% confidence.
\triangle	Statistically different from pooled reference at 95% but not 99% confidence.
\bigcirc	Not statistically different from pooled reference.
	ERL Level
	ERM Level

- Chollas Creek has Total Chlordane levels exceeding reference and ERM
- Inner Paleta Creek levels generally lower than Chollas but exceeding reference and ERM

Total Chlordane - Individual Station Results

- Individual Chollas Creek stations generally exceed ERM and reference
- Stations in Inner Paleta Creek exceed ERM but are generally near reference levels

Total Chlordane – Spatial Distribution

- Highest levels in inner Chollas Creek – strong upcreek gradient
- Other areas of both creeks have fairly uniform distributions that correspond with distribution of TOC and fines

Sediment PCB & Pesticide Summary

* = exceeds reference at 95% confidence

- Chollas Creek A range of PCBs and pesticide exceed screening levels and reference, especially inner creek
- Paleta Creek HQs are generally lower than Chollas, but some levels exceed screening levels and reference, inner creek generally higher

Sediment Bioassay Results

- Sediment toxicity bioassays provide data for Phase I analysis of TMDLs and aquatic beneficial use assessment
 - Short-term response
 - Evaluates current sediment quality
 - Relatively few impacts of non-contaminant factors
- Bioassay Methods
 - Whole sediment Amphipod survival (*Eohaustorius estuarius*)
 - Pore water Sea urchin egg fertilization
 - Sediment-water interface Sea urchin embryo development

Sediment Bioassay Data Analysis

- Phase I analysis to date includes:
 - Normalize results to control
 - For comparisons between experiments
 - Comparison to control (t-test)
 - Identifies presence of toxicity
 - Station classification
 - Addresses test reproducibility and confounding factors
 - Toxic: significant t-test and <80% of control
 - Marginal: t-test only but > 80% of control
 - Ammonia interference

Amphipod Survival – Spatial Distribution

• Reference stations generally had good survival except R1

• Chollas Creek – About half the stations in both inner and outer areas showed toxicity compared to controls and 80% threshold

• Paleta Creek – Two stations in the inner creek showed toxicity

Sea Urchin Fertilization – Spatial Distribution

• Chollas Creek – One station in inner creek showed toxicity compared to controls and 80% threshold

• Paleta Creek – Two stations in the outer creek showed toxicity compared to controls and 80% threshold

• Some toxicity at reference stations

Sea urchin embryo development – Spatial Distribution

• Reference stations generally had good survival except R1

• Chollas Creek – About half the stations in both inner and outer areas showed toxicity compared to controls and 80% threshold

• Paleta Creek – Most stations in the inner creek showed toxicity compared to controls and 80% threshold

Bioassays - Grouped Station Results

Percent

- Chollas Creek General trends show more toxicity at inner Chollas Creek for all tests compared to reference
- Paleta Creek Sea Urchin development test shows more toxicity at inner creek compared to reference
- However, no grouped areas had toxicity statistically different than reference

Benthic Community Results

- Benthic Community analysis provide data for Phase I analysis of TMDLs and aquatic beneficial use assessment
 - Reflects chronic exposure
 - May reflect past events or conditions
 - Integrates contamination and other factors
- Benthic Community Methods
 - 0.1 m² V an Veen Grab (1.0 mm screen)
 - Identify to species
 - Record abundance

Benthic Community Data Analysis

- Community measures
 - Abundance, number of taxa
 - Shannon Wiener diversity, evenness
- Indicator species
 - Brittle stars (sensitive)
 - *Capitella capitata* (indicative)
 - Streblospio benedicti (tolerant)
- Station classification
 - Low: below 10th percentile of reference
 - High: above 90th percentile

Infauna Abundance – Spatial Distribution

• Chollas Creek – Most stations in both inner and outer areas showed reduced abundance compared to reference

• Paleta Creek – Most stations showed reduced abundance compared to reference

Number of Species – Spatial Distribution

• Chollas Creek – Most stations in both inner and outer areas showed reduced number of species compared to reference

• Paleta Creek – Most stations showed reduced number of species compared to reference

Capitella capitata – Spatial Distribution

- Chollas Creek Stations in inner creek area had presence of Capitella
- Paleta Creek No Capitella found in Paleta Creek sediments

Benthic Community Analysis - Grouped Station Results

- Chollas Creek All areas, and particularly inner creek show altered benthos compared to reference
- Paleta Creek Abundance and taxa are reduced compared to reference, no clear differences between inner and outer

* Sig. Difference from reference

Effects Summary

- Toxicity present at both study areas when compared to controls and 80% threshold
 - Inner Chollas sediments most toxic
 - Different responses obtained with each test
- Benthic community impacted at both areas
 - Fewer organisms and taxa
 - Fewer brittle stars
 - Inner Chollas is most severely affected

Bioaccumulation Results

- Tissues analyzed for a range of chemicals including metals, PAHs, PCBs and Pesticides based on analysis of historical data
- Provides data for Phase I wildlife and human health beneficial use assessment
- Phase I analysis to date includes
 - Grouped creek data compared to reference
 - Individual station data compared to reference
 - Tissue vs. Sediment Correlations

Lead Bioaccumulation - Grouped Station Results

Statistically different from pooled reference at 99% confidence.

 \bigvee

Statistically different from pooled reference at 95% but not 99% confidence.

Not statistically different from pooled reference.

- Lead bioaccumulation in outer Chollas Creek exceeds reference
- Inner Paleta Creek levels exceed reference

Lead Bioaccumulation - Individual Station Results

- Individual Chollas Creek stations are generally comparable to reference except one outer creek station
- Two stations in inner Paleta Creek exceed reference level at 95%

Lead Bioaccumulation – Sediment-Tissue Correlation

- Good correlation between bulk tissue and sediment concentrations
- Relationship is not improved by normalization to lipid and TOC content
- Provides means of extending analysis to other stations where sediment chemistry is available

Tissue Metals Summary

- In general, bioaccumulation of metals was comparable to reference
- Cd, Cr, Hg, Ni, Se, Ag and Zn usually below reference envelope
- As, Cu, Pb and Sb sometimes above reference, especially inner Paleta Creek

REF	
>95%	
>99%	

Chollas

Paleta

Analyte	CH CHo		Ho	С	Hi	Ρ	Ά	P	٩o	PAi		
	REF95	REF99	REF95	REF99	REF95	REF99	REF95	REF99	REF95	REF99	REF95	REF99
AI												
Sb												
As												
Ba												
Be												
Cd												
Cr												
Cu												
Fe												
Pb												
Hg												
Ni												
Se												
Ag												
Zn												

Tissue PAH Summary

- A range of tissue PAHs exceed reference
- Highest accumulation is in inner creek areas
- Good correlations between sediment and tissue

REF	
>95%	
>99%	

Analyte	СН		CH Cho		С	Chi		Α	A PAo		PAi	
	REF95	REF99	REF95	REF99	REF95	REF99	REF95	REF99	REF95	REF99	REF95	REF99
Naphthalene												
C1-Naphthalenes												
Acenaphthylene												
Acenaphthene												
Fluorene												
Anthracene												
Phenanthrene												
Fluoranthene												
Pyrene												
Benzo[a]anthracene												
Chrysene												
Benzo[a]pyrene												
Dibenzo[a,h]anthracene												
Low Molecular Weight PAH												
High Molecular Weight PAH												
Priority Polutant PAH												

Chollas

Dalata

Chlordane Bioaccumulation - Grouped Station Results

Statistically different from pooled reference at 99% confidence.

 \bigvee

Statistically different from pooled reference at 95% but not 99% confidence.

Not statistically different from pooled reference.

- Chlordane bioaccumulation in outer and inner Chollas Creek exceeds reference
- Inner Paleta Creek levels also exceed reference

Chlordane Bioaccumulation - Individual Station Results

- Individual Chollas Creek stations are generally comparable to reference
- Three stations in inner Paleta Creek exceed reference level at 95%

Chlordane Bioaccumulation – Sediment-Tissue Correlation

- Some correlation between bulk tissue and sediment concentrations
- Relationship is improved by normalization to lipid and TOC content
- Inner Chollas Creek stations have low accumulation relative to sediment levels

Tissue PCB & Pesticide Summary

- Tissue PCBs and DDTs don't exceed reference envelope in • Chollas Creek
- Chlordane is above reference in Chollas Creek \bullet

- PCBs, Chlordane and DDT are above reference for inner Paleta Creek area
- Most PCBs and pesticides have useful correlations between • sediment and tissue

			C	.no	llas		Paleta						
	Analyte	Analyte C				Chi		PA		ΡΑο		P	Ai
REF		REF95	REF99	REF95	REF99	REF95	REF99	REF95	REF99	REF95	REF99	REF95	REF99
050/	Total PCBs												
>95%	Total Chlordane												
>99%	Total DDT												

11

Next Steps

- Impact assessment by indicator
 - Reference site comparisons
 - Confounding factors
- Impairment determination
 - Combine indicator results
 - Weight of evidence approach
- Spatial evaluation
 - Mapping
 - Identify sources
- Screening Level Wildlife and Human Health Risk Assessment

Phase I Schedule

Chollas/Reference Field Survey Paleta Field Survey Laboratory Analysis Phase I Data Analysis & Draft Report

July 2001 August 2001 Aug-Jan 2002 July 2002