$\mathbf{E}^{\mathbf{x}}$ ponent°

NASSCO and Southwest Marine Sediment Investigation Preliminary Results

Thomas Ginn, Ph.D. Dreas Nielsen

June 18, 2002

Study Goals

Develop cleanup levels that are protective of:

Aquatic life

Aquatic-dependent wildlife

• Human health

Study Components Standard assessment methods used to conduct:

- Sediment chemistry analyses
- Toxicity tests
- Bioaccumulation tests
- Sediment profile image analysis
- Benthic community analysis
- Fish histopathology

- Bioaccumulation by resident biota
- Ecological risk assessment
- Human health risk assessment
- Technological feasibility analysis
- Economic feasibility analysis

Study Overview

ACTIVITY

- Conduct Subsurface Sediment and Supplemental Tissue Sampling (Phase 2)
 - Sediment cores
 - Pore water
 - Tissue sampling
 - · Fish histopathology
- Eelgrass sampling

Develop Cleanup Levels

- Background
- · Protect aquatic life
- Protect human health
- Protect wildlife

Phase 1 Study Design

- Sediment profile images
 - 101 shipyard stations
 - 5 reference stations
- Sediment triad study
 - Chemistry, toxicity, and benthic community analysis
 - 30 shipyard stations
 - 5 reference stations
- Supplemental sediment chemistry
- Bioaccumulation tests
 - 9 shipyard stations
 - 5 reference stations

Phase 1 Target Chemicals

• Metals (10)

- Acid-volatile sulfide and simultaneously extractable metals
- Tributyltin
- Polychlorinated biphenyls
 - Aroclor® mixtures (8)
 - Congeners (41)
- Polychlorinated terphenyls (3)
- Polycyclic aromatic hydrocarbons (17)
- Petroleum hydrocarbons

Phase 1 Toxicity Tests

Amphipod survival

Echinoderm fertilization

• Bivalve larval development

Phase 1 Sampling Locations

Shipyard stations

- Based on previous shipyard data
- Range of concentrations
- Located throughout shipyards
- Reference stations
 - Recommended by SCCWRP and Board staff based on Bight '98 data
 - Data demonstrate low toxicity, low chemical concentrations, and healthy benthic communities

Reference Station Locations

Phase 1 Samples

DOI 1510

Type of sample	Shipyard stations	Reference stations	Replicates	Samples
Sediment profile image	101	5	3*	325
Sediment chemistry	49	5	1	54
Amphipod toxicity test	30	5	5	175
Echinoderm toxicity test	30	5	5	175
Bivalve toxicity test	30	5	5	175
Bioaccumulation test	9	5	5	70
Benthic community	30	5	5	175
Total				1,149

moneur

MODIFED .

*Target numbe

Phase 1 Results Sediment chemistry Amphipod survival test Echinoderm fertilization test • Bivalve larva development test Bioaccumulation test Benthic macroinvertebrate community

Sediment Chemistry: Phase 1 Reference Stations and Background (Robertus 2002)

Sediment Data

Sediment Chemistry Summary

- Footprints show concentration gradients at both shipyards
- Highest concentrations found near shore
- Reference range exceeded at some location for all chemical groups (metals, butyltins, PAH, PCBs, PCTs, petroleum hydrocarbons)

Sediment Toxicity Tests Amphipod survival - Whole sediment tested Echinoderm fertilization Pore water tested Bivalve larva development - Sediment-water interface tested

Amphipod Survival Response by Station

Significantly less than reference stations

Not significantly less than reference stations

Echinoderm Fertility Response by Station

Bivalve Normality Response by Station

Causation: Use of Chemistry and Toxicity Relationships

Amphipod Survival vs. Copper

Echinoderm Fertility vs. Copper

Bivalve Development vs. Copper

Sediment Toxicity Test Summary

- Three toxicity tests at each of 30 shipyard stations
- Statistical comparisons to reference
 - -13 stations had no effect
 - 17 stations had one or more types of effect
- No effects seen at stations with highest concentrations of most shipyard chemicals

Bioaccumulation Testing– Laboratory (Phase 1)

Purpose:

Evaluate bioaccumulation potential, and the need to sample resident biota

Bioaccumulation Tests

- 28-day test using a surface deposit feeding clam (Macoma nasuta)
- Tissues tested for all chemicals measured in sediments
- Tests conducted at 9 shipyard stations and 5 reference stations
- Five replicate tests conducted at each station

Bioaccumulation Exposure-Response Relationship for Lead

Bioaccumulation Exposure-Response Relationship for PCBs

Bioaccumulation Exposure-Response Relationship for Mercury

Bioaccumulation Test Summary

 Statistically significant bioaccumulation exposure-response relationship observed for most chemicals

 No significant bioaccumulation exposure-response relationship for cadmium, chromium, mercury, or PCTs

Benthic Macroinvertebrate Commity Metrics

- Total abundance
- Total richness (number of species)
- Major taxa abundances
 - Crustaceans, polychaetes, molluscs
- Schwartz' Dominance Index (SDI)
- Percent dominance
- Shannon-Wiener diversity index

Benthic Macroinvertebrates: Reference Communities

- Similar abundances—total and major taxa
 - 30-50 species
 - 400-1,000 organisms per sample
- Species change away from mouth of bay
- REF4 dominated by invasive crustacean

- Total abundance: 6,000 to 8,000

Benthic Macroinvertebrates: Shipyard Commities

- Statistical analysis of all 8 metrics
- Multivariate analyses of similarities among stations
- Differences from reference stations
 - Major differences: 8 stations
 - Moderate differences: 2 stations
 - Minor differences: 3 stations
 - No differences: 17 stations

Total Abundance

Total Number of Taxa

Benthic Macroinvertebrates: Notable Conditions

- Northwest end of Southwest Marine (Stations SW02 and SW04)
 - Different from all other stations
 - Higher abundances of crustaceans and polychaetes

Chollas Creek outlet (Station NA22)

- Very different from all other stations
- Seven of 8 metrics are different from reference

Typical Pattern of Benthic Recolonization

Sediment Profile Image Summary

 Mature communities at reference stations

Early communities at 11 shipyard stations

Mature communities at 88 shipyard stations

Human Health and Ecological Risk Assessments

Planned Phase 2 Fieldwork

Pore water

- Supplementary surface sediment sampling
- Sediment coring
- Chemical analyses of resident biota to:
 - Perform risk assessments
 - Assess adverse effects on fish
- Fish histopathology
- Sampling of eelgrass to:
 - Assess adverse effects on sea turtles
 - Assess adverse effects on eelgrass

Cleanup Alternatives Analysis

- Cleanup levels and areas chosen to protect:
 - Aquatic life
 - Aquatic-dependent wildlife
 - Human health
- Technical feasibility analysis
- Economic feasibility analysis
- Alternative remedial designs
- Selection of a cleanup alternative

Summary

• Phase 1 results

- Standard evaluation methods used
- Obtained all planned data
- Shipyard conditions contrasted with reference conditions

• Phase 2 sampling will address:

- Effects on fish
- Effects on aquatic-dependent wildlife
- Effects on human health

• Feasibility analyses and selection of a cleanup alternative will follow