I. PURPOSE ...2

II. MONITORING PROGRAM ..2
 A. Receiving Waters Monitoring Program ...3
 1. Mass Loading Station (MLS) Monitoring ...3
 2. Stream Assessment Monitoring ...6
 3. Follow-up Analysis and Actions ..9
 4. Regional Monitoring Programs ...10
 B. Wet Weather MS4 Discharge Monitoring ...11
 C. Non-Storm Water Dry Weather Action Levels and IDDE13
 D. High Priority Inland Aquatic Habitat Monitoring15
 E. Special Studies ..17
 F. Monitoring Provisions ...22

III. REPORTING PROGRAM ..24
 A. Monitoring Reporting ...24
 B. Interim Reporting Requirements ..27
 C. Reporting Dates and Frequencies ..27
I. PURPOSE

A. This Receiving Waters and MS4 Discharge Monitoring and Reporting Program (MRP) is intended to meet the following goals:
 1. Assess compliance with Order No. R9-2010-0016;
 2. Measure and improve the effectiveness of the Copermittees’ runoff management programs;
 3. Assess the chemical, physical, and biological impacts to receiving waters resulting from MS4 discharges;
 4. Characterize storm water discharges;
 5. Identify sources of specific pollutants;
 6. Prioritize drainage and sub-drainage areas that need management actions;
 7. Detect and eliminate illicit discharges and illicit connections to the MS4;
 8. Assess the overall health of receiving waters; and
 9. Provide information to implement required BMP improvements.

B. This Receiving Waters and MS4 Discharges Monitoring and Reporting Program is designed to answer the following core management questions¹:
 1. Are conditions in receiving waters protective, or likely to be protective, of beneficial uses?
 2. What is the extent and magnitude of the current or potential receiving water problems?
 3. What is the relative MS4 discharge contribution to the receiving water problem(s)?
 4. What are the sources of MS4 discharge that contribute to receiving water problem(s)?
 5. Are conditions in receiving waters getting better or worse?

II. MONITORING PROGRAM

The Monitoring Program is designed to assess the condition of receiving waters, monitor pollutants in storm and non-storm water effluent from the MS4, and conduct Special Studies to address conditions of concern. Where feasible, the Monitoring Program is designed to allow the Copermittees to combine required monitoring elements or efforts that are not mutually exclusive while still meeting the requirements of the Order.

A. Receiving Waters Monitoring Program

Each Copermittee must collaborate with the other Copermittees to develop, conduct, and report on a year-round watershed based Receiving Waters Monitoring Program. The monitoring program design, implementation, analysis, assessment, and reporting must be conducted on a watershed basis for the Santa Margarita Hydrologic Unit (HU) and must be designed to meet the goals and answer the questions listed in section I above. The monitoring program must include the following components:

1. **Mass Loading Station (MLS) Monitoring**

 a. **Locations:** The following existing mass loading stations must continue to be monitored: Lower Temecula Creek, Lower Murrieta Creek at the USGS Weir, and a permanent reference station. Copermittees may propose, for San Diego Water Board review and approval, changing the location of a mass loading station.

 b. **Frequency:** Each mass loading station must be monitored each year three times during wet weather events and twice during dry weather flow conditions.

 c. **Timing:** Each mass loading station must be monitored for the first wet weather event of the season which meets USEPA’s criteria described in 40 CFR 122.21(g)(7). Monitoring of the third wet weather event must be conducted after February 1. Dry weather mass loading monitoring events must be sampled at least three months apart between May and October. If flows are not evident for the second event, then sampling must be conducted during non-rain events in the following wet weather season.

 d. **Protocols:** Protocols for mass loading sampling and analysis including analytical methods, target reporting limits, and data reporting formats must be compatible with the State Water Resources Control Board’s State Surface Water Ambient Monitoring Program (SWAMP). If the mass loading sampling and analysis are determined to be impracticable with the SWAMP standards, the Copermittees must provide a written explanation and discussion in the submittal of the Planned Monitoring Program. Wet weather samples must be time-weighted composites, collected for the duration of the entire runoff event. Where such monitoring is not practical, such as for large watersheds with significant groundwater recharge flows, composites must be collected at a minimum during the first 3 hours of

2 A map depicting mass loading stations can be found in the Fact Sheet for Order R9-2010-0016.
flow. Dry weather event sampling must be time-weighted composites composed of 24 discrete hourly samples, whereby the mass loads of pollutants are calculated as the product of the composite sample concentration and the total volume of water discharged past the monitoring point during the time of sample collection.

(1) Automatic samplers must be used to collect samples from mass loading stations.

(2) Grab samples must be analyzed for temperature, pH, specific conductance, biochemical oxygen demand, oil and grease, E. coli, fecal coliform, enterococcus and for total petroleum hydrocarbons whenever a sheen is observed.

e. Copermittees must measure or estimate flow rates and volumes for each mass loading station sampling event to determine mass loadings of pollutants. Data from nearby USGS gauging stations may be utilized, or flow rates may be estimated in accordance with the USEPA Storm Water Sampling Guidance Document (EPA-833-B-92-001), Section 3.2.1.

f. In the event that the required number of sampling events are not conducted during one monitoring year at any given station, the Copermittees must provide a written explanation for the reduced number of sampling events in the subsequent Receiving Waters Monitoring Annual Report. The explanation must include, at a minimum, streamflow data from the nearest USGS gauging station, a full description of any equipment failures and subsequent remedies if applicable, efforts made to resample a future event, and any quality assurance or quality control issues encountered. The explanation must also include a description of steps taken to prevent further sampling failures.

g. The following constituents must be analyzed for each monitoring event at each station:
Table 1. Analytical Testing for Mass Loading (II.A.1) and Stream Assessment (II.A.2)

<table>
<thead>
<tr>
<th>Conventional, Nutrients, Hydrocarbons</th>
<th>Pesticides</th>
<th>Metals (Total and Dissolved)</th>
<th>Bacteriological (mass loading)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Dissolved Solids</td>
<td>Diazinon</td>
<td>Arsenic</td>
<td>E. coli</td>
</tr>
<tr>
<td>Total Suspended Solids</td>
<td>Chlorpyrifos</td>
<td>Cadmium</td>
<td>Fecal Coliform</td>
</tr>
<tr>
<td>Turbidity</td>
<td>Malathion</td>
<td>Total Chromium</td>
<td>Enterococcus</td>
</tr>
<tr>
<td>Total Hardness</td>
<td>Carbamates</td>
<td>Hexavalent Chromium</td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>Pyrethroids</td>
<td>Copper</td>
<td></td>
</tr>
<tr>
<td>Specific Conductance</td>
<td></td>
<td>Lead</td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td></td>
<td>Iron</td>
<td></td>
</tr>
<tr>
<td>Dissolved Oxygen</td>
<td></td>
<td>Manganese</td>
<td></td>
</tr>
<tr>
<td>Total Phosphorus</td>
<td></td>
<td>Nickel</td>
<td></td>
</tr>
<tr>
<td>Dissolved Phosphorus</td>
<td></td>
<td>Selenium</td>
<td></td>
</tr>
<tr>
<td>Nitrite †</td>
<td></td>
<td>Zinc</td>
<td></td>
</tr>
<tr>
<td>Nitrate †</td>
<td></td>
<td>Mercury</td>
<td></td>
</tr>
<tr>
<td>Total Kjeldahl Nitrogen</td>
<td></td>
<td>Silver</td>
<td></td>
</tr>
<tr>
<td>Ammonia</td>
<td></td>
<td>Thallium</td>
<td></td>
</tr>
<tr>
<td>Biological Oxygen Demand, 5-day</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemical Oxygen Demand</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Organic Carbon</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dissolved Organic Carbon</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methylene Blue Active Substances</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oil and Grease</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfate</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Nitrate and nitrate may be combined and reported as nitrate + nitrite.
h. Toxicity testing must be conducted for each monitoring event at each station according to the following Table 2:

Table 2. Toxicity Testing for Mass Loading (II.A.1) and Stream Assessment (II.A.2)

<table>
<thead>
<tr>
<th>Program Component</th>
<th>Dry Weather Flows</th>
<th>Storm Water Flows</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Freshwater Organisms</td>
<td>Freshwater Organisms</td>
</tr>
<tr>
<td>Mass Loading</td>
<td>3 chronic*</td>
<td>3 acute*</td>
</tr>
<tr>
<td></td>
<td>3 acute*</td>
<td></td>
</tr>
<tr>
<td>Bioassessment**</td>
<td>3 chronic*</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td>3 acute*</td>
<td></td>
</tr>
<tr>
<td>Sediment Toxicity</td>
<td>1 chronic</td>
<td>n/a</td>
</tr>
<tr>
<td>Special Study</td>
<td>1 acute</td>
<td></td>
</tr>
</tbody>
</table>

Table Notes
* Toxicity testing must include use of *Pimephales promelas* (fathead minnow), *Hyalella azteca* and *Pseudokirchneriella subcapitata* (formerly *Selenastrum capricornutum*, unicellular algae).
** Duplicative toxicity testing is not required for Stream Assessment Monitoring stations co-located at mass loading stations since Stream Assessment Monitoring must be conducted in conjunction with dry weather mass loading.

Species Notes:
1. Acute toxicity may be determined during the course of chronic toxicity monitoring per U.S. EPA protocols.

i. The presence of acute toxicity must be determined in accordance with USEPA protocol (EPA-821-R-02-012). The presence of chronic freshwater toxicity must be determined in accordance with USEPA protocol (EPA-821-R-02-013).

2. **Stream Assessment Monitoring**

Copermittees must conduct Stream Assessment Monitoring using multiple lines of evidence to assess the condition of biological communities in freshwater receiving waters. Stream assessment must include the collection and reporting of the following specified instream biological, chemical, and physical (including habitat) data.

a. Locations: At a minimum, the program must consist of station identification, sampling, monitoring, and analysis of data for six stream assessment stations in order to determine the biological, chemical and physical integrity of streams within the County of Riverside. The two existing mass loading stations at Murrieta and Temecula Creeks must continue to be monitored. Two reference stream assessment stations, including the existing Adobe Creek station, must be identified, sampled, monitored, and analyzed. Locations of reference stations
must be identified according to protocols outlined in “A Quantitative Tool for Assessing the Integrity of Southern Coastal California Streams,” by Ode, et al. 2005.³

b. Frequency: Stream assessment stations must be monitored in May or June (to represent the influence of wet weather on the communities) and September or October (to represent the influence of dry weather flows on the communities). The timing of monitoring of stream assessment stations located at mass loading stations must coincide with dry weather monitoring of those mass loading stations.

c. Parameters / Methods: Stream assessment monitoring must include bioassessment, aquatic chemistry, and aqueous toxicity.

(1) Aquatic chemistry and aqueous toxicity must be conducted as outlined in Tables 1 and 2 using the same parameters and methods as the mass loading station monitoring.

(2) Bioassessment analysis procedures must include calculation of the Index of Biotic Integrity (IBI) for benthic macroinvertebrates for all bioassessment stations, as outlined in “A Quantitative Tool for Assessing the Integrity of Southern Coastal California Streams,” by Ode, et al. 2005.

(3) Monitoring of stream assessment stations must be conducted according to bioassessment Standard Operating Procedures (SOP) developed by the Surface Water Ambient Monitoring Program (SWAMP), as amended.⁴ In collecting macroinvertebrate samples, the discharger must use the “Reachwide Benthos (Multihabitat) Procedure.” The discharger must conduct, concurrently with all required macroinvertebrate collections, the “full” suite of physical/habitat characterization measurements specified in the SWAMP Bioassessment SOP, and as summarized in the SWAMP Stream Habitat Characterization Form — Full Version.⁵

(4) Monitoring of stream assessment stations must incorporate assessment of algae using SWAMP’s SOP for Collecting Stream

⁵ Available at: http://www.waterboards.ca.gov/water_issues/programs/swamp/docs/reports/fieldforms_fullversion052908.pdf
Algae Samples. Assessment of freshwater algae must include algal taxonomic composition (diatoms and soft algae) and algal biomass. Future bioassessment must incorporate algal IBI scores, when developed.

d. A qualified professional environmental laboratory must perform all sampling, laboratory, quality assurance, and analytical procedures in accordance with the Southern California Regional Watershed Monitoring Program Bioassessment Quality Assurance Project Plan. The Copermittees must utilize future Quality Assurance Project Plans as developed by SWAMP.

(1) The Copermittees must have and follow a quality assurance (QA) plan that covers the required stream assessment monitoring. External QA checks must be funded by the Copermittees, and performed by the California Department of Fish and Game’s Aquatic Bioassessment Laboratory. An alternate laboratory with equivalent expertise and performance may be used if approved in advance in writing by San Diego Water Board.

(2) Identified organisms must be archived (i.e., retained) by the Copermittee(s) for a period of not less than three years from the date that all QA steps are completed. The identified organisms must be relinquished to the San Diego Water Board upon request by the San Diego Water Board.

(3) The macroinvertebrate results (i.e., taxonomic identifications consistent with the specified SAFIT STEs, and number of organisms within each taxa) must be submitted to the San Diego Water Board in electronic format. SWAMP is currently developing standardized formats for reporting bioassessment data. All bioassessment data collected after those formats become available must be submitted using the SWAMP formats. Until those formats are available, the biological data must be submitted in MS-Excel (or equivalent) format.

The physical/habitat data must be reported using the standard format titled SWAMP Stream Habitat Characterization Form — Full Version.

7 Version 1.0 of the Southern California Regional Watershed Monitoring Program Bioassessment Quality Assurance Program Plan was released on June 25, 2009.
8 Any version of Excel, 2000 or later, may be used.
3. **FOLLOW-UP ANALYSIS AND ACTIONS (TIE AND TRE TRIAD APPROACH)**

When results from the required monitoring indicate adverse water quality effects at a mass loading station or stream assessment station as defined in Table 3, Cpermittees within the watershed(s) that discharge to that location must evaluate the extent and causes of MS4 discharge pollution to the adverse effects in receiving waters and prioritize and implement management actions to eliminate non-storm water discharges and/or reduce storm water sources from the MS4 as described in Table 3. Toxicity Identification Evaluations (TIEs) must be conducted to determine the cause of toxicity as outlined in Table 3 below. Other follow-up activities, which must be conducted by the Cpermittees, are also identified in Table 3. Once the cause of toxicity has been identified by a TIE, the Cpermittees must perform source identification projects as needed and implement the measures necessary to reduce or eliminate the pollutant discharges and abate the sources causing the toxicity.
Table 3. Triad Approach to Determining Follow-Up Actions

<table>
<thead>
<tr>
<th>Chemistry</th>
<th>Toxicity</th>
<th>Benthic Alteration</th>
<th>Example Conclusions</th>
<th>Possible Actions or Decisions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Exceedance of water quality objectives</td>
<td>Evidence of toxicity</td>
<td>Indications of alteration</td>
<td>Strong evidence of pollution-induced degradation</td>
<td>Use TIE to identify contaminants of concern; based on TIE metric; initiate upstream source identification as a high priority</td>
</tr>
<tr>
<td>2. No persistent exceedances of water quality objectives</td>
<td>No evidence of toxicity</td>
<td>No indications of alteration</td>
<td>No evidence of current pollution-induced degradation; potentially harmful pollutants not yet concentrated enough to cause visible impact</td>
<td>No immediate action necessary; conduct periodic broad scans for new and/or potentially harmful pollutants</td>
</tr>
<tr>
<td>3. Exceedance of water quality objectives</td>
<td>No evidence of toxicity</td>
<td>No indications of alteration</td>
<td>Contaminants are not bioavailable; test organisms not sensitive to problem pollutants</td>
<td>TIE would not provide useful information with no evidence of toxicity; initiate upstream source identification as a low priority; consider whether different or additional test organisms should be evaluated</td>
</tr>
<tr>
<td>4. No persistent exceedances of water quality objectives</td>
<td>Evidence of toxicity</td>
<td>No indications of alteration</td>
<td>Unmeasured contaminant(s) or conditions have the potential to cause degradation; pollutant causing toxicity at very low levels</td>
<td>Recheck chemical analyses; verify toxicity test results; use TIE to identify contaminants of concern; based on TIE metric; initiate upstream source identification as a medium priority</td>
</tr>
<tr>
<td>5. No persistent exceedances of water quality objectives</td>
<td>No evidence of toxicity</td>
<td>Indications of alteration</td>
<td>Alteration may not be due to toxic contamination; test organisms not sensitive to problem pollutants</td>
<td>No action necessary due to toxic chemicals; initiate upstream source identification (for physical sources) as a high priority; consider whether different or additional test organisms should be evaluated</td>
</tr>
<tr>
<td>6. Exceedance of water quality objectives</td>
<td>Evidence of toxicity</td>
<td>No indications of alteration</td>
<td>Toxic contaminants are bioavailable, but in situ effects are not demonstrable; benthic analysis not sensitive enough to detect impact; potentially harmful pollutants not yet concentrated enough to change community</td>
<td>Determine if chemical and toxicity tests indicate persistent degradation; recheck benthic analyses; consider additional data analyses; if recheck indicates benthic alteration, perform TIE to identify contaminants of concern; based on TIE metric; initiate upstream source identification as a high priority; if recheck shows no effect, use TIE to identify contaminants of concern; based on TIE metric; initiate upstream source identification as a medium priority</td>
</tr>
<tr>
<td>7. No persistent exceedances of water quality objectives</td>
<td>Evidence of toxicity</td>
<td>Indications of alteration</td>
<td>Unmeasured toxic contaminants are causing degradation; pollutant causing toxicity at very low levels; benthic impact due to habitat disturbance; not toxicity</td>
<td>Recheck chemical analyses and consider additional advanced analyses; use TIE to identify contaminants of concern; based on TIE metric; initiate upstream source identification as a high priority; consider potential role of physical habitat disturbance</td>
</tr>
<tr>
<td>8. Exceedance of water quality objectives</td>
<td>No evidence of toxicity</td>
<td>Indications of alteration</td>
<td>Test organisms not sensitive to problem pollutants; benthic impact due to habitat disturbance; not toxicity</td>
<td>TIE would not provide useful information with no evidence of toxicity; initiate upstream source identification as a high priority; consider whether different or additional test organisms should be evaluated; consider potential role of physical habitat disturbance</td>
</tr>
</tbody>
</table>

4. REGIONAL MONITORING PROGRAMS

The San Diego Water Board recognizes the importance and advantages of participation by Copermittees in Regional Monitoring Programs. As such, the Copermittees may propose participation in additional regional monitoring programs to supplement and/or replace monitoring required under this Order. The regional monitoring plan must be submitted to the San Diego Water Board for review and approval. Documentation of...
B. Wet Weather MS4 Discharge Monitoring

Each Copermittee must collaborate with the other Cpermittees to develop, conduct, and report on a year-round, watershed-based, Wet Weather MS4 Discharge Monitoring Program. The monitoring program design, implementation, analysis, assessment, and reporting must be conducted on a watershed basis for each of the hydrologic subareas within the Santa Margarita HU under jurisdiction of the Cpermittees. The monitoring program must be designed to meet the goals, and answer the questions, listed in Section I above, as well as to implement required Storm Water Action Levels (SALs) in the Order. The monitoring program must include the following components;

1. MS4 Outfall Monitoring

The Cpermittees must collaborate to develop and implement a monitoring program to characterize pollutant discharges from MS4 outfalls in each watershed during wet weather. The program must include the rationale and criteria for selection of outfalls to be monitored. The program must, at a minimum, include collection of samples for pollutants listed in Table 4 (below). This monitoring program must be designed to sample a representative percentage\(^{11}\) of the major outfalls within each hydrologic subarea and must begin no later than the 2012-2013 monitoring year.

a. The program must comply with Section D of this Order for Storm Water Action Levels (SALs). Samples must be collected during the first 24 hours of the storm water discharge or for the entire storm water discharge if it is less than 24 hours.

 (1) Grab samples may be utilized only for pH, indicator bacteria, DO, temperature and hardness.

 (2) All other constituents must be sampled using 24-hour composite samples or for the entire storm water discharge if the storm event is less than 24 hours.

b. Sampling to compare MS4 outfall discharges with total metal SALs must include a measurement of receiving water hardness at each

\(^{11}\) A representative percentage determination must consider hydrologic conditions, total drainage area of the site, population density of the site, traffic density, age of the structures or buildings in the area, and land use types (commercial, residential and industrial).
outfall. If a total metal concentration exceeds a SAL in Section D of the Order, that concentration must be compared to the California Toxic Rule criteria and the USEPA 1-hour maximum concentration for the detected level of receiving water hardness associated with that sample. If it is determined that the sample’s total metal concentration for that specific pollutant exceeds the SAL but does not exceed the applicable 1-hour criteria for the measured level of hardness, then the SAL shall be considered not exceeded for that measurement.

Table 4. Analytical Testing for Wet Weather MS4 Discharges

<table>
<thead>
<tr>
<th>Conventional, Nutrients, Hydrocarbons</th>
<th>Pesticides</th>
<th>Metals (Total and Dissolved)</th>
<th>Bacteriological</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Total Dissolved Solids</td>
<td>• Diazinon</td>
<td>• Arsenic</td>
<td>• Fecal Coliform</td>
</tr>
<tr>
<td>• Total Suspended Solids</td>
<td>• Chlorpyrifos</td>
<td>• Cadmium*</td>
<td>• Enterococcus</td>
</tr>
<tr>
<td>• Turbidity*</td>
<td>• Pyrethroids</td>
<td>• Chromium</td>
<td>• E. coli</td>
</tr>
<tr>
<td>• Total Hardness</td>
<td></td>
<td>• Copper*</td>
<td></td>
</tr>
<tr>
<td>• pH</td>
<td></td>
<td>• Lead*</td>
<td></td>
</tr>
<tr>
<td>• Specific Conductance</td>
<td></td>
<td>• Nickel</td>
<td></td>
</tr>
<tr>
<td>• Temperature</td>
<td></td>
<td>• Selenium</td>
<td></td>
</tr>
<tr>
<td>• Dissolved Oxygen</td>
<td></td>
<td>• Zinc*</td>
<td></td>
</tr>
<tr>
<td>• Total Phosphorus</td>
<td></td>
<td>• Mercury</td>
<td></td>
</tr>
<tr>
<td>• Dissolved Phosphorus</td>
<td></td>
<td>• Silver</td>
<td></td>
</tr>
<tr>
<td>• Nitrite *</td>
<td></td>
<td>• Thallium</td>
<td></td>
</tr>
<tr>
<td>• Nitrate *</td>
<td></td>
<td>• Iron</td>
<td></td>
</tr>
<tr>
<td>• Total Kjeldahl Nitrogen</td>
<td></td>
<td>• Manganese</td>
<td></td>
</tr>
<tr>
<td>• Ammonia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Biological Oxygen Demand, 5-day</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Chemical Oxygen Demand</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Total Organic Carbon</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Dissolved Organic Carbon</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Oil and Grease</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Sulfate</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Nitrate and nitrate may be combined and reported as nitrate + nitrite.
★ Pollutant for which there is a Storm Water Action Level

2. **Source Identification Monitoring**

The Copermittees must collaborate to develop and implement a monitoring program to identify sources of pollutants causing the priority water quality problems within each hydrologic subarea. The monitoring program must include focused monitoring which moves upstream into each watershed as necessary to identify sources. This monitoring program must be implemented within each hydrologic subarea and must begin no later than the 2012-2013 monitoring year.
3. COMMENCEMENT OF MS4 OUTFALL AND SOURCE IDENTIFICATION MONITORING

The Principal Copermittee must submit to the San Diego Water Board for review and approval, a detailed draft of the wet weather MS4 discharge monitoring program to be implemented. The description must identify and provide the rationale for all constituents monitored, locations of monitoring, frequency of monitoring, and analyses to be conducted with the data generated. The draft must be submitted with the proposed monitoring program (Section III.A.1).

C. Non-Storm Water Dry Weather Action Levels and Illicit Discharge Detection and Elimination

Each Copermittee must collaborate with the other Copermittees to conduct, and report on a year-round watershed based Dry Weather Non-storm Water MS4 Discharge Monitoring Program. The monitoring program’s implementation, analysis, assessment, and reporting must be conducted to assess compliance with section B and C of this Order, meet the goals of the MRP, and conduct Illicit Discharge Detection and Elimination Activities under Section F.4 of this Order. The monitoring program must also be designed to assess the contribution of dry weather flows to Clean Water Act Section 303(d) listed impairments. The monitoring program must include the following components:

1. MS4 OUTFALL MONITORING

Each Copermittee’s program must be designed to determine levels of pollutants in effluent discharges from the MS4 into receiving waters. Each Copermittee must conduct the following dry weather field screening and analytical monitoring tasks:

a. Dry Weather Non-storm Water Effluent Analytical Monitoring Station Identification

(1) Sampling Stations must be located at major outfalls pursuant to section C of this Order. Other outfall sampling points (or any other point of access such as manholes) identified by the Copermittees as potential high risk sources of polluted effluent or as identified under Section C.4 of the Order must be sampled.

(2) Each Copermittee must clearly identify each dry weather effluent analytical monitoring station on its MS4 Map as either a separate GIS layer or a map overlay hereinafter referred to as a Dry Weather
Non-storm Water Effluent Analytical Stations Map.

b. Develop Dry Weather Non-storm Water Effluent Analytical Monitoring Procedures

Each Copermittee must develop and/or update written procedures for effluent analytical monitoring including field observations, monitoring, and analyses to be conducted. These procedures must be consistent with 40 CFR part 136. At a minimum, the procedures must meet the following guidelines and criteria:

(1) Determining Sampling Frequency: Effluent analytical monitoring must be conducted at major outfalls and identified stations. The Copermittees must sample a representative number of major outfalls and identified stations within each hydrologic subarea. The sampling must be done to assess compliance with dry weather non-storm water action levels pursuant to section C of this Order. All monitoring conducted must be preceded by a minimum of 72 hours of dry weather.

(2) Sampling of non-storm water discharges may be done utilizing grab samples. If a ponded MS4 discharge is observed at a monitoring station, the Copermittee(s) must record the observation and collect at least one (1) grab sample. If flow is evident, a 1-hour composite sample may be taken. The Copermittee(s) must estimate the flow by measuring the width of water surface, approximate depth of water, and approximate flow velocity.

(3) Effluent samples must undergo analytical laboratory analysis for (a) all constituents described in Table 1. Analytical Testing for Mass Loading and Stream Assessment of this Order; (b) Constituents with assigned non-storm water action levels under Section C of this Order; and (c) Total Residual Chlorine.

(4) If the station is dry (i.e. no flowing or ponded MS4 discharge is observed), the Copermittee(s) must make and record all applicable observations on the MS4 outfall and receiving waters, including any evidence of past non-storm water flows and the presence of trash.

A representative percentage determination must consider hydrologic conditions, total drainage area of the site, population density of the site, traffic density, age of the structures or buildings in the area, and land use types (commercial, residential and industrial).
2. **SOURCE IDENTIFICATION MONITORING**

The Copermittees must collaborate to develop and implement a monitoring program to identify sources of pollutants in non-storm water discharges in accordance with Sections C and F.4 of this Order. The source identification portion of the monitoring program must include: the following components:

a. Development and/or update of response criteria for dry weather non-storm water effluent analytical monitoring results:

1. Response criteria must include action levels described in Section C of this Order.

2. Response criteria must include evaluation of LC$_{50}$ levels for toxicity to appropriate test organisms.

b. Develop and/or update Illicit Discharge Detection and Elimination response procedures for source identification follow up investigations and elimination in the event of exceedance of dry weather non-storm water effluent analytical monitoring response criteria (see above). These procedures must be consistent with procedures required in section C, F.4.d, and F.4.e. of this Order.

3. **COMMENCEMENT OF MS4 OUTFALL AND SOURCE IDENTIFICATION MONITORING**

The Copermittees must commence implementation of dry weather effluent analytical monitoring under the requirements of this Order no later than **July 1, 2012**. If monitoring indicates an illicit connection or illegal discharge, the Copermittee(s) must conduct the follow-up investigation and elimination activities described in sections C, F.4.d and F.4.e of this Order. In the interim period until the dry weather non-storm water effluent analytical monitoring program of this Order is implemented, each Copermittee must continue to implement dry weather field screening and analytical monitoring as it was most recently implemented pursuant to Order No. 2004-001.

D. High Priority Inland Aquatic Habitat Monitoring

The Copermittees must develop and submit to the San Diego Water Board by April 01, 2012, an inland aquatic habitat monitoring program for areas supporting high priority aquatic and/or riparian species. The goal of the monitoring program is to assess if MS4 storm water and non-storm water discharges are affecting high priority inland aquatic habitat. The monitoring
will assist the Copermittees in preventing the degradation of high quality waters within the jurisdiction of this Order that support high priority species by identifying discharges from MS4s which may cause or have the potential to cause impairment of beneficial uses within these areas. High priority species include those federally and/or state listed as endangered, threatened, or as a species of concern. The design and goal of the monitoring program must be consistent with the criteria listed in Section I.B of this Monitoring Program, including evaluation of the protection of high priority species in receiving waters. The Copermittees must implement the program unless otherwise directed in writing by the San Diego Water Board.

The monitoring program must include the following components:

1. OUTFALL AND RECEIVING WATER MONITORING

The program must be designed to determine levels of pollutants in storm water and non-storm water effluent discharges from the MS4 discharged into high priority inland aquatic habitat(s) and the level of those pollutants found in ambient receiving waters subject to the discharge. The Copermittees must conduct the following field screening and analytical monitoring tasks:

a. MS4 and Receiving Waters Monitoring Station Identification

 (1) MS4 discharge stations must be major outfalls that directly discharge into high priority inland aquatic habitat. MS4 discharge stations may be selected in conjunction with monitoring required under Section II.B and II.C of the Receiving Waters and MS4 Discharge Monitoring Program.

 (2) Receiving water station(s) must be located upstream and downstream of the discharge within the high priority inland aquatic habitat. Receiving water stations must be located to prevent any significant co-mingling of receiving water flows with other sources.

b. Develop Analytical Monitoring Procedures

Each Copermittee must develop procedures for analytical monitoring (these procedures must be consistent with 40 CFR part 136), including field observations, pollutants to be monitored, analyses to be conducted, and quality assurance/control. At a minimum, the procedures must meet the following guidelines and criteria:

13 In accordance with requirements of State Water Resources Control Board Resolution No. 68-16, Statement of Policy with Respect to Maintaining High Quality Waters in California.
(1) Determining Sampling Frequency: The Copermittees must sample a representative number of major outfalls and receiving waters that are considered high priority inland aquatic habitat. Sampling of the discharge and receiving waters must be paired and occur during both storm and non-storm conditions.

(2) Sampling in receiving waters may be done utilizing grab samples, though composite samples are encouraged. Sampling of storm and non-storm water discharges from the MS4 must be done in accordance with Section II.B and II.C. If ponded receiving waters is/are observed at a monitoring station, the Copermittees must make written observations and collect at least one (1) grab sample. The Copermittee(s) must estimate the flow by measuring the width of water surface, approximate depth of water, and approximate flow velocity.

(3) The proposed constituents for which samples will undergo analytical laboratory analysis.

(4) Procedures for recording applicable observations when monitoring stations are dry (i.e. no flowing water or ponded conditions).

3. ASSESSMENT OF MONITORING RESULTS

The program must include a discussion of monitoring results within the monitoring annual report. The discussion must include an evaluation of the contribution of MS4 discharges to ambient water conditions within high priority inland aquatic habitats, as well as any actions taken to prevent and/or reduce sources of those pollutants.

4. SOURCE IDENTIFICATION MONITORING

The Copermittees must collaborate to conduct source identification monitoring in accordance with Section II.B and II.C of the Monitoring and Reporting Program of this Order.

E. Special Studies

1. The Copermittees must conduct special studies, including any monitoring and/or modeling required for TMDL development and implementation, as directed by the San Diego Water Board.
2. Sediment Toxicity Study

The Copermittees must develop and submit to the San Diego Water Board by April 01, 2012, a special study workplan to investigate the toxicity of sediment in streams and potential impact on benthic macroinvertebrate IBI scores. The Sediment Toxicity Special Study must be implemented in conjunction with the Stream Assessment Monitoring in II.A.2. The Copermittees must implement the special study unless otherwise directed in writing by the San Diego Water Board.

The Sediment Toxicity Special Study must include the following elements:

a. Sampling Locations: At least 4 stream assessment locations must be sampled, including 1 reference site and 1 mass loading site. Selection of sites must be done with consideration of subjectivity of receiving waters to discharges from residential and agricultural land uses.

b. Frequency: At a minimum, sampling must occur once per year at each site for at least 2 years. Sampling must be done in conjunction with the stream assessment sampling required under Section II.A.2 of the Monitoring and Reporting Program of this Order.

c. Parameters/Methods: At a minimum, sediment toxicity analysis must include the measurement of metals, pyrethroids and organochlorine pesticides. The analysis must include estimates of bioavailability based upon sediment grain size, organic carbon and receiving water temperature at the sampling site. Acute and chronic toxicity testing must be done using *Hyalella azteca* in accordance with Table 2.

d. Results: Results and a Discussion must be included in the Monitoring Annual Report (see III.A). The Discussion must include an assessment of the relationship between observed IBI scores under Section II.A.2 and all variables measured.

3. Trash and Litter Investigation

The Copermittees must develop and submit to the San Diego Water Board by September 01, 2012, a special study workplan to assess trash (including litter) as a pollutant within receiving waters on a watershed based scale. Litter is defined in California Government Code 68055.1g as “...improperly discarded waste material, including, but not limited to, convenience food, beverage, and other product packages or container constructed of steel, aluminum, glass, paper, plastic and other natural and synthetic, materials, thrown or deposited on lands and waters of the state,
but not including the properly discarded waste of the primary processing of agriculture, mining, logging, sawmilling, or manufacturing.” A lead Copermittee must be selected for the Santa Margarita HU for the purposes of this Special Study. The Copermittees must implement the special study unless otherwise directed in writing by the San Diego Water Board.

The Trash and Litter Investigation must include the following elements:

a. **Locations:** The lead Copermittee must identify suitable sampling locations within the Santa Margarita HU.

b. **Frequency:** Trash at each location must be monitored a minimum of twice during the wet season following a qualified monitoring storm event (minimum of 0.1 inches preceded by 72 hours of dry weather) and twice during the dry season.

c. **Protocol:** The lead Copermittee for the Santa Margarita HU must use the “Final Monitoring Workplan for the Assessment of Trash in San Diego County Watersheds” and “A Rapid Trash Assessment Method Applied to Waters of the San Francisco Bay Region” to develop a monitoring protocol for the Santa Margarita HU.

d. **Results and Discussion from the Trash and Litter Study** must be included in the Monitoring Annual Report. The Results and Discussion must, at a minimum, include source identification, an evaluation of BMPs for trash reduction and prevention, and a description of any BMPs implemented in response to study results.

4. **Agricultural, Federal and Tribal Input Study**

The Copermittees must develop and submit to the San Diego Water Board by September 01, 2012, a special study workplan to investigate the water quality of agricultural, federal and tribal runoff that is discharged into their MS4 (see Finding D.3.c of the Order). The Copermittees must implement the special study unless otherwise directed in writing by the San Diego Water Board.

The Agricultural, Federal and Tribal Input Special Study must include the following elements:

a. **Locations:** The Copermittees must identify a representative number of sampling stations within their MS4 that receive discharges of agricultural, federal, and tribal runoff that has not co-mingled with any
other source. At least one station from each category must be identified.

b. Frequency: One storm event must be monitored at each sampling location each year for at least 2 years.

c. Parameters/Methods: At a minimum, analysis must include those constituents listed in Table 1 of the MRP (see II.A.1). Grab samples may be utilized, though composite samples are preferred. Copermittees must also measure or estimate flow rates and volumes of discharges into the MS4.

d. Results: Results and Discussion from the Agricultural, Federal and Tribal Input Study must be included in the Monitoring Annual Report.

5. MS4 and Receiving Water Maintenance Study

The Copermittees must develop and submit to the San Diego Water Board by April 01, 2012, a special study workplan to investigate receiving waters that are also considered part of the MS4 (see Finding D.3.c of the Order) and which are subject to continual vegetative clearance activities (e.g. mowing). The study must be designed to assess the effects of vegetation removal activities and water quality, including, but not limited to, modification of biogeochemical functions, in-stream temperatures, receiving water bed and bank erosion potential and sediment transport. The Copermittees must implement the special study unless otherwise directed in writing by the San Diego Water Board.

The MS4 and Receiving Water Maintenance Special Study must include the following elements:

a. Locations: The Copermittees must identify suitable sampling locations, including at least one reference system that is not subject to maintenance activities.

b. Parameters/Methods: At a minimum, the Copermittees must monitor pre and post maintenance activities for indicator bacteria, turbidity (NTU), temperature, dissolved oxygen and nutrients (Nitrite, Nitrate, Total Kjeldahl Nitrogen, Ammonia and Total Phosphorous). Copermittees must also measure or estimate flow rates and volumes.

c. Results and Discussion from the MS4 and Receiving Water Maintenance Study must be included in the Annual Monitoring Report. The Discussion must include relevance of findings to CWA Section
6. Intermittent and Ephemeral Stream Perennial Conversion Study

The Copermittees must develop and submit to the San Diego Water Board by April 01, 2013, a special study workplan to investigate the extent of any impacts to beneficial uses from the conversion of historically ephemeral or intermittent receiving waters to perennially flowing waters due to the continued discharge of currently exempted non-storm water from the MS4 and/or discharges into MS4s covered under a separate NPDES permit into receiving waters. The goal of the study is to assess if any impacts to beneficial uses, including, but not limited to, WILD, WARM, COLD or RARE, have occurred due to continuous discharge of currently exempted non-storm water discharges, and if the discharges should no longer be exempt. The Copermittees must implement the special study unless otherwise directed in writing by the San Diego Water Board.

The Intermittent and Ephemeral Stream Perennial Conversion Special Study must include the following elements:

a. Locations: The Copermittees must investigate their MS4 and adjacent downstream receiving waters to identify portions that have historically been ephemeral or intermittent but currently exhibit perennial flow due to exempted non-storm water discharges. Investigation must include historic habitat assessments, USGS gauging information, and historic aerial photography. Sampling must occur at a minimum of 2 identified perennially converted locations. Should the Copermittees be unable to locate any converted waters, a full description of the investigation must be documented in the annual report.

b. Parameters/Methods: The Copermittees must conduct water quality monitoring of the non-storm water discharge in accordance with Section C of this Order. In addition, the Copermittees must select a minimum of 2 downstream sampling points within the receiving waters subject the discharge and conduct the following:

(1) Grab samples must be taken and analyzed for indicator bacteria, nutrients (Nitrite, Nitrate, Total Kjeldahl Nitrogen, Ammonia and Total Phosphorous), turbidity (NTU), temperature, dissolved oxygen, total hardness, pH and 303(d) listed pollutants for all receiving waters at or downstream of the sampling site. The Copermittees must measure or estimate flow rates and volumes at each sampling point.
(2) Sampling at each site must include a quantitative and qualitative evaluation of beneficial uses. At a minimum, sampling must include observation estimation of active bed and bank erosion and erosion potential, invasive/non-native plant cover, aquatic non-native species, and potential vector control requirements.

c. Results and Discussion from the Intermittent and Ephemeral Stream Perennial Conversion Study must be included in the Annual Monitoring Report.

F. Monitoring Provisions

All monitoring activities must meet the following requirements:

1. Where procedures are not otherwise specified in this Receiving Waters Monitoring and Reporting Program, sampling, analysis and quality assurance/quality control must be conducted in accordance with the Quality Assurance Management Plan (QAMP) for the State of California’s Surface Water Ambient Monitoring Program (SWAMP), adopted by the State Water Resources Control Board (SWRCB).

2. Samples and measurements taken for the purpose of monitoring must be representative of the monitored activity [40 CFR 122.41(j)(1)].

3. The Copermittees must retain records of all monitoring information, including all calibration and maintenance of monitoring instrumentation, copies of all reports required by this Order, and records of all data used to complete the Report of Waste Discharge and application for this Order, for a period of at least five (5) years from the date of the sample, measurement, report, or application. This period may be extended by request of the San Diego Water Board or USEPA at any time and must be extended during the course of any unresolved litigation regarding this discharge. [40 CFR 122.41(j)(2), CWC section 13383(a)]

4. Records of monitoring information must include [40 CFR 122.41(j)(3)]:
 a. The date, exact place, and time of sampling or measurements;
 b. The individual(s) who performed the sampling or measurements;
 c. The date(s) analyses were performed;
 d. The individual(s) who performed the analyses;
 e. The analytical techniques or methods used; and
 f. The results of such analyses.
5. All sampling, sample preservation, and analyses must be conducted according to test procedures approved under 40 CFR part 136, unless other test procedures have been specified in this Receiving Waters Monitoring and Reporting Program or approved by the San Diego Water Board [40 CFR 122.41(j)(4)].

6. The CWA provides that any person who falsifies, tampers with, or knowingly renders inaccurate any monitoring device or method required to be maintained under this Order must, upon conviction, be punished by a fine of not more than $10,000, or by imprisonment for not more than two years, or both. If a conviction of a person is for a violation committed after a first conviction of such person under this paragraph, punishment is a fine of not more than $20,000 per day of violation, or by imprisonment of not more than four years, or both. [40 CFR 122.41(j)(5)]

7. Calculations for all limitations which require averaging of measurements must utilize an arithmetic mean unless otherwise specified in this Receiving Waters Monitoring and Reporting Program. [40 CFR 122.41(l)(4)(iii)]

8. All chemical, bacteriological, and toxicity analyses must be conducted at a laboratory certified for such analyses by the California Department of Health Services or a laboratory approved by the San Diego Water Board.

9. For priority toxic pollutants that are identified in the California Toxics Rule (CTR) (65 Fed. Reg. 31682), the Copermittees must instruct their laboratories to establish calibration standards that are equivalent to or lower than the Minimum Levels (MLs) published in Appendix 4 of the Policy for Implementation of Toxics Standards for Inland Surface Waters, Enclosed Bays, and Estuaries of California (SIP). If a Copermittee can demonstrate that a particular ML is not attainable, in accordance with procedures set forth in 40 CFR 136, the lowest quantifiable concentration of the lowest calibration standard analyzed by a specific analytical procedure (assuming that all the method specified sample weights, volumes, and processing steps have been followed) may be used instead of the ML listed in Appendix 4 of the SIP. The Copermittee must submit documentation from the laboratory to the San Diego Water Board for approval prior to raising the ML for any priority toxic pollutant.

10. The San Diego Water Board may make revisions to this Receiving Waters and MS4 Discharge Monitoring and Reporting Program at any time during the term of Order No. R9-2010-0016 and may include a reduction or increase in the number of parameters to be monitored, locations monitored, the frequency of monitoring, or the number and size of
samples collected.

11. The Clean Water Act provides that any person who knowingly makes any false statement, representation, or certification in any record or other document submitted or required to be maintained under this permit, including monitoring reports or reports of compliance or non-compliance must, upon conviction, be punished by a fine of not more than $10,000 per violation, or by imprisonment for not more than six months per violation, or by both. [40 CFR 122.41(k)(2)]

12. Monitoring must be conducted according the USEPA test procedures approved under 40 CFR 136, “Guidelines Establishing Test Procedures for Analysis of Pollutants under the Clean Water Act” as amended, unless other test procedures have been specified in this Receiving Waters and MS4 Discharge Monitoring and Reporting Program, in Order No. R9-2010-0016, or by the San Diego Water Board.

13. If a Copermittee(s) monitors any pollutant more frequently than required by the permit using test procedures approved under 40 CFR part 136, unless otherwise specified in the Order, the results of this monitoring must be included in the calculation and reporting of the data submitted in the reports requested by the San Diego Water Board. [40 CFR 122.41(l)(4)(ii)]

III. REPORTING PROGRAM

A. Monitoring Reporting

1. Planned Monitoring Program: The Principal Copermittee must submit to the San Diego Water Board by June 1, 2012, a proposed workplan describing the Receiving Waters and MS4 Discharge Monitoring Program to be implemented. Any updates to the planned monitoring program workplan proposed by the Copermittees shall be submitted with each Monitoring Annual Report. The Copermittees shall implement the proposed workplan unless otherwise directed in writing by the San Diego Water Board.

2. Monitoring Annual Report: The Principal Copermittee must submit the Receiving Waters and MS4 Discharge Monitoring Annual Report to the San Diego Water Board on October 1 of each year, beginning on October 1, 2013. Receiving Waters and MS4 Discharge Monitoring Annual Reports must meet the following requirements:
a. Annual monitoring reports must include the data/results, methods of evaluating the data, graphical summaries of the data, and an explanation/discussion of the data for each monitoring program component.

b. Annual monitoring reports must include a watershed-based analysis of the findings of each monitoring program component (mass loading, bioassessment, etc…). Each watershed-based analysis must include:

(1) Identification and prioritization of water quality problems within each watershed.
(2) Identification and description of the nature and magnitude of potential sources of the water quality problems within each watershed.
(3) Evaluation and presentation of pollutant load and concentration increases or decreases at each mass loading station over time.
(4) Evaluation of pollutant loads and concentrations measured at mass loading stations with respect to land use, population, sources, and other characteristics of watersheds using tools such as multiple linear regression, factor analysis, and cluster analysis.
(5) Identification of links between source activities/conditions and observed receiving water impacts.
(6) Identification of recommended future monitoring to identify and address sources of water quality problems.
(7) Results and discussion of any TIE conducted, together with actions that will be implemented to reduce the discharge of pollutants in storm water, eliminate any discharge of pollutants in non-storm water, and abate the sources causing the toxicity.

c. Annual monitoring reports must include an analysis and interpretation of the data for each watershed with respect to the management questions listed in section I.B of this Receiving Waters Monitoring and Reporting Program.

d. Annual monitoring reports must include a discussion describing how each of the goals listed in section I.A of this MRP is addressed by the Copermittees' monitoring program for the monitoring year covered by the report.

e. Annual monitoring reports must include identification and analysis of any long-term trends in storm water or receiving water quality. Trend analysis must use nonparametric approaches, such as the Mann-Kendall test, including exogenous variables in a multiple regression model, and/or using a seasonal nonparametric trend model, where
f. Annual monitoring reports must provide an estimation of total pollutant loads (wet weather loads plus dry weather loads) due to MS4 Discharge for each of the hydrologic subareas, including for 303(d) pollutants specified in Table 2 of the Order.

g. Annual monitoring reports must, for each monitoring program component listed above, include an assessment of compliance with applicable water quality standards.

h. Annual monitoring reports must describe monitoring station locations by latitude and longitude coordinates, frequency of sampling, quality assurance/quality control procedures, and sampling and analysis protocols.

i. Annual monitoring reports must use a standard report format and include the following elements:

 (1) A stand alone comprehensive executive summary addressing all sections of the monitoring report;
 (2) Comprehensive interpretations and conclusions; and
 (3) Recommendations for future actions.

j. All monitoring reports submitted to the Principal Copermittee or the San Diego Water Board must contain the certified perjury statement described in Attachment B of this Order No. R9-2010-0016.

k. Annual monitoring reports must be reviewed prior to submittal to the San Diego Water Board by a committee of the Copermittees (consisting of no less than three different Copermittee members).

l. Annual monitoring reports must be submitted in both electronic and paper formats. Electronic formats must be CEDEN or SWAMP-uploadable.\(^{14}\)

3. Monitoring programs and reports must comply with section II.F of Receiving Waters and MS4 Discharge Monitoring and Reporting Program No. R9-2010-0016 and Attachment B of this Order.

4. Following completion of an annual cycle of monitoring in October, the Copermittees must make the monitoring data and results available to the San Diego Water Board at the San Diego Water Board’s request.

\(^{14}\) For updates to the SWAMP templates and formats, see http://www.waterboards.ca.gov/swamp.
B. Interim Reporting Requirements

For the October 2010 to October 2012 monitoring period, the Principal Copermittee must submit the Receiving Waters Monitoring Annual Report as required under Order No. 2004-0001. The Receiving Waters Monitoring Annual Report must address the monitoring conducted to comply with the requirements of Order No. 2004-0001.

C. Reporting Dates

Table 5. Table of Required MRP Reporting Dates and Frequencies.

<table>
<thead>
<tr>
<th>Submittal</th>
<th>Section</th>
<th>Completion Date</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description of Proposed Monitoring Program</td>
<td>III.A.1</td>
<td>June 1, 2012</td>
<td>One Time</td>
</tr>
<tr>
<td>Receiving Waters and MS4 Discharge Monitoring Annual Reports, Including Proposed Updates to the Monitoring Program</td>
<td>III.A.2</td>
<td>Starting October 1, 2013</td>
<td>Annual</td>
</tr>
<tr>
<td>Copermittees submit Interim Monitoring Program Annual Report</td>
<td>III.B</td>
<td>As required under Order No. 2004-001</td>
<td>One Time</td>
</tr>
<tr>
<td>Draft Wet Weather MS4 Discharge Monitoring Program</td>
<td>II.B</td>
<td>June 01, 2012</td>
<td>One Time</td>
</tr>
<tr>
<td>Draft High Priority Inland Aquatic Habitat Monitoring</td>
<td>II.D</td>
<td>April 01, 2012</td>
<td>One Time</td>
</tr>
<tr>
<td>Draft Sediment Toxicity Special Study</td>
<td>II.E.2</td>
<td>April 01, 2012</td>
<td>One Time</td>
</tr>
<tr>
<td>Draft Trash and Litter Impairment Special Study</td>
<td>II.E.3</td>
<td>September 01, 2012</td>
<td>One Time</td>
</tr>
<tr>
<td>Draft Agricultural, Federal and Tribal Input Study</td>
<td>II.E.4</td>
<td>September 01, 2012</td>
<td>One Time</td>
</tr>
<tr>
<td>Draft MS4 and Receiving Water Maintenance Study</td>
<td>II.E.5</td>
<td>April 01, 2012</td>
<td>One Time</td>
</tr>
<tr>
<td>Draft Intermittent and Ephemeral Stream Perennial Conversion Study</td>
<td>II.E.6</td>
<td>April 01, 2013</td>
<td>One Time</td>
</tr>
</tbody>
</table>