Science to Support Development of Nutrient Objectives in San Francisco Bay Estuary

Meeting of SF Bay Technical Advisory Team

December 4, 2010
Background

• State Water Resources Control Board is developing nutrient objectives for California waterbodies
 – Estuaries currently under development

• An objective of first phase of project activities is to review literature and develop a work plan for San Francisco Bay
 – Review will summarize science available to support nutrient objective development and important data gaps
 – “Workplan” will lay out steps to address data gaps and develop nutrient objectives

• San Francisco Bay Technical Advisory Team (TAT) is being formed to assure use of best available science in this effort
Meeting Goals

• Discuss SF Bay TAT member role and time commitment
• Provide feedback on the State of California’s conceptual approach to setting nutrient numeric objectives
• Recommend geographic scope of SF Bay literature review and work plan
• Recommend indicators to include in review of SF Bay science to support nutrient objective development
Agenda

• Introductions, meeting goals, review of agenda

• Project background and goals
 – California’s conceptual approach to nutrient water quality objectives: Nutrient Numeric Endpoint (NNE) Framework
 – Estuarine NNE Development—Process, approach, and products

• SF Bay literature review and workplan
 – Role of SF Bay Tech Team and time commitment
 – Key review questions

• Discussion
 – Recommendations on geographic scope of effort and candidate indicators

• Wrap up and next steps
Overview of Nutrient Objectives in California

- Defining terms
- California’s conceptual approach – Nutrient Numeric Endpoint (NNE) Framework
- Project organization
- Development of Nutrient Objectives in California estuaries
 - Process
 - Phase I activities
 - Context for work in San Francisco Bay
Defining Terms...

Clean Water Act (CWA) mandates water quality **criteria** (limits) to protect **beneficial uses** (ecosystem services)

EPA has delegated authority for implementing CWA to **California State Water Resources Control Board (SWRCB)**

In California, we use **“objectives”** instead of **“criteria”**

Objectives are found within a package of **water quality standards** in Regional Water Quality Control Board (RWQCB) **Basin plans** and SWRCB Statewide Plans

Objectives can be **narrative** (descriptive) or **numeric**
More on Water Quality Objectives....

Objectives are used to assess the condition of the State’s water bodies.

If **objectives** are violated, then the system is placed on a SWRCB’s **303(d)** list for **impaired** waterbodies.

A **303(d)** listing can result in the process of setting **Total Maximum Daily Loads (TMDL)** for that waterbody.

Objectives are also used to set effluent limits in point source discharge (NPDES) permits.

Objectives are also used in **NPS Pollution Control Program**.
Nutrient Objectives Are Scientifically Challenging

• Nutrients are required to support life
 • How much is too much?

• Toxicity is rarely the endpoint of interest
 • Adverse effects occur at much lower levels

• Using ambient concentrations can give false positives or negatives
EPA Approach to Setting Nutrient Criteria In Florida Illustrates These Challenges

• Lawsuit settlement requires EPA to develop nutrient criteria for Florida
 – Freshwater criteria in 2010
 – Estuarine in 2011

• Focus on concentrations

• Attempted to correlate concentration with biology
 – Works in lakes, but not in streams
 – Fell back to statistical percentile in streams

![Correlation Between Chl a and TP in Lakes](image)

![75th %ile of Panhandle Reference Streams](image)
California Has a Different Approach to Establishing Nutrient Objectives

- Diagnosis based on response indicators
 - More direct linkage to beneficial use
 - More integrative measure than nutrient concentrations
Conceptual Model: Linking Nutrients, Ecological Response, & Beneficial Uses

Co-factors modulate ecological response
Four Tenets of California’s Approach to Nutrient Objectives

• Diagnosis based on response indicators
 – More direct link to beneficial use
 – More integrative measure than nutrient concentrations

• Multiple lines of evidence
 – More robust diagnosis

• Need models to link response indicators to nutrients
 – Nutrient loads rather than ambient concentration

• Use of ranges to accommodate uncertainty in science
Beneficial Use Risk Categories (BURC) Thresholds

BURC I: beneficial uses sustained; not exhibiting nutrient impairment

BURC II: beneficial uses may be impaired; additional information and analysis required to determine the extent of impairment and whether regulatory action is warranted

BURC III: exhibiting nutrient impairment; regulatory action is warranted
California’s Approach to Nutrient Objectives: Nutrient Numeric Endpoint Framework

SWRCB Staff Strategy: Narrative objectives with numeric guidance (coined as “NNE”)

- **Narrative objectives** promulgated once
- **Numeric guidance** can change as science evolves
- **Guidance** is collectively referred to as the “nutrient numeric endpoint “ (NNE) framework
Indicators Will Vary By Aquatic Habitat

Streams and Rivers

Lakes

Estuaries

Ocean
Stream NNE: Example of 303(d) Algal Biomass Thresholds by Beneficial Use

Benthic Algal Biomass + pH + Dissolved Oxygen

<table>
<thead>
<tr>
<th>Response Indicator</th>
<th>Beneficial Use</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>COLD</td>
</tr>
<tr>
<td>BURC II Benthic Algal Biomass (mg chl a m⁻²)</td>
<td>150</td>
</tr>
</tbody>
</table>
NNE Benthic Biomass Spreadsheet Tool

- Spreadsheet tools to convert response targets to site-specific TN and TP concentration goals
- Account for co-factors that modify biological response to nutrients
- Used for initial screening – defer to more complete modeling / monitoring studies
Take Home Message

NNE “framework” consists of two components:

• Numeric endpoints – ecological response

• Tools to link ecological response indicators back to nutrients and other co-factors controlling response to eutrophication

NNE numeric endpoints assesses “eutrophication”, not nutrient overenrichment
Status of Nutrient Objective Development by Waterbody Type

<table>
<thead>
<tr>
<th>Waterbody Type</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Streams</td>
<td>Endpoints and tools drafted</td>
</tr>
<tr>
<td>Lakes</td>
<td>Endpoints and tools drafted</td>
</tr>
<tr>
<td>Enclosed Bays & Estuaries</td>
<td>Endpoints under development</td>
</tr>
<tr>
<td>Nearshore Coastal Waters</td>
<td>No work undertaken</td>
</tr>
</tbody>
</table>
Project Organization

- Stakeholder Advisory Group (SAG)
- State Water Resources Control Board (SWRCB)
- State & Regional Technical Advisory Group (STRTAG)
Stakeholder Advisory Groups (SAGs)

- **Role:** Provide feedback to SWRCB on NNE science and policy
- **Composed of:** members of regulated community, land owners, environmental NGOs, and interested public
Project Organization

- Stakeholder Advisory Group (SAG)
- State Water Resources Control Board (SWRCB)
- State & Regional Technical Advisory Group (STRTAG)

- Technical Team (TT)
- Science Advisory Board (SAB)
Technical Team

- Role: Synthesize available science relevant for NNE development
- Composed of experts on the ecosystem components impacted by eutrophication
 - Macroalgae
 - Fisheries
 - Hydrodynamics
 - Biogeochemistry/water quality
 - Submerged aquatic vegetation
 - Benthic ecology
 - Phytoplankton/nekton
- Team composition can change as a function of focus of the particular product
E-NNE Technical Team

- Martha Sutula (SCCWRP)
- Karen McLaughlin (SCCWRP)
- Peggy Fong (UCLA)
- John Largier (UC Davis)
- Jim Kaldy (EPA ORD)
- Naomi Dettenbeck (EPA ORD)
- Nicole Beck (Second Nature, Inc.)
- Camm Swift (Entrix, Inc.)
- Lester McKee (SFEI)
- Jerry Smith (SJSU)
- Mike Saiki (USGS)
- Larry Allen (CSUN)
- Ellen Freund (USD)
- Greg Calliet (MLML)
- Glen Thursby (EPA ORD)
Science Advisory Board

- Role: review products and recommendations of the technical team
- Composed of 3-4 nationally recognized experts in eutrophication (outside of California)
- Operate completely independent of technical team
Project Organization- SF Bay

SF Bay SAG

State Water Resources Control Board (SWRCB)

SF RWQCB
STRTAG

SF Bay Technical Team

Science Advisory Board (SAB)
Project Organization – Key Staff

- SWRCB lead - Rik Rasmussen and Steve Camacho
- SF RWQCB lead - Naomi Feger
- EPA Region 9 – Suesan Saucerman and Terry Fleming
- SF Bay and Coastal SAG Lead – Brock Bernstein
- Statewide Technical Team Lead - Martha Sutula (SCCWRP)
- SF Bay Technical Team – Lester McKee (SFEI)
Overview of Nutrient Objectives in California

- Defining terms
- California’s conceptual approach – Nutrient Numeric Endpoint (NNE) Framework
- Project organization
- Development of Nutrient Objectives in California estuaries
 - Process
 - Phase I activities
 - Context for work in San Francisco Bay
Technical Basis to Develop Estuarine NNE Assessment Framework– The Process

1. Develop assessment framework
2. Develop conceptual models, review indicators, and ID data gaps
3. Address data gaps with analysis of existing data and new research
4. Identify target population and propose classification

State Water Board and Advisory Group
Review and Endpoint Selection
E-NNE Development - Two Phases

Phase I:
- Development of NNE for selected indicators based on existing literature
- Majority of effort focused on “other” California estuaries

Phase II:
- Analysis of existing data and research to address data gaps for “other” estuaries
- Nutrient load-response tools
- Elements of work plan focused on San Francisco Bay
Major E-NNE Products- Phase I

Phase I – Development of NNE for selected indicators based on existing literature

• Target definition and estuarine classification
• Literature review of candidate indicators
• Review of dissolved oxygen objectives
• Studies supporting NNE for macroalgae on intertidal flats
• Literature review and work plan for San Francisco Bay
Preliminary Classification

<table>
<thead>
<tr>
<th>Geoform</th>
<th>Tidal Regime</th>
<th>No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enclosed Bay</td>
<td>Perennial</td>
<td>30</td>
</tr>
<tr>
<td>Lagoon</td>
<td>Perennial</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Intermittent</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>Ephemeral</td>
<td>46</td>
</tr>
<tr>
<td>River mouth</td>
<td>Perennial</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Intermittent</td>
<td>270</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>405</td>
</tr>
</tbody>
</table>
Appropriate Indicators Will Vary By Habitat Type

<table>
<thead>
<tr>
<th>Depth</th>
<th>Dominant Primary Producers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intertidal Flats</td>
<td>Microphytobenthos (MPB)</td>
</tr>
<tr>
<td></td>
<td>Macroalgae</td>
</tr>
<tr>
<td>Subtidal</td>
<td>MPB</td>
</tr>
<tr>
<td></td>
<td>Phytoplankton</td>
</tr>
<tr>
<td></td>
<td>Macroalgae</td>
</tr>
<tr>
<td></td>
<td>SAV</td>
</tr>
<tr>
<td>Deepwater or Turbid Subtidal</td>
<td>MPB</td>
</tr>
<tr>
<td></td>
<td>Phytoplankton</td>
</tr>
</tbody>
</table>

- Intertidal Flats: Microphytobenthos (MPB) and Macroalgae
- Subtidal: MPB, Phytoplankton, Macroalgae, SAV
- Deepwater or Turbid Subtidal: MPB, Phytoplankton

Habitat Types:
- Intertidal Flats
- Shallow Subtidal
- Deepwater or Turbid Subtidal
- Marsh

Images:
- Macroalgae
- Microphytobenthos (MPB)
- Seagrass/SAV
- Phytoplankton
Inventory and Classification Study Plan

Goal: Compile *existing* data to develop an inventory and classification of California estuaries

- Enumerate coastal drainages
- Compile existing data (on 190 of 400 drainages)
 - Geomorphology (merged bathymetry topography, wetland habitat distribution, mouth depth and width when open)
 - Tidal forcing (ocean inlet opening timing and duration)
 - Peak freshwater flow
 - Climate (air temperature, no. of cloudy days)
- Preliminary statistical classification
Review of Candidate Indicators for the Estuarine NNE

Two Principle Questions:

• Is the candidate an acceptable indicator
 – Need criteria to define “acceptable”

• If so, does science exist to help develop an assessment framework (with thresholds)?
 – If not, what scientific studies are required?
Indicator Review Criteria

- Clear understanding of how indicator changes along disturbance gradient (pristine to most disturbed)
- Dose – response relationship exists between indicator & higher trophic level (link to beneficial use)
- Can develop predictive model between nutrient loads, other co-factors, and ecological response (statistical, spreadsheet, or dynamic simulation models)
- Scientifically sound and practical measurement process
- Show a detectable trend in eutrophication (signal: noise ratio is acceptable)
Conceptual Model: Linking Nutrients, Ecological Response, & Beneficial Uses

Co-factors modulate ecological response
Estuarine NNE Framework: Candidate Indicators

Primary Producers Indicators
- Phytoplankton biomass and/or community composition
- Macroalgal biomass
- Submerged aquatic vegetation
- Microphytobenthos (MPB) biomass and/or comm. composition

Physiochemical Indicators
- Dissolved oxygen
- Ammonia
- Water clarity
- Toxic metabolites (HAB toxins, sulfide)
- Sediment organic matter accumulation
- Benthic/pelagic metabolism

Consumer Indicators
- Benthic macro-invertebrates
Candidate Indicator Review Report

- Introduction and purpose
- Conceptual models, beneficial uses, list of candidate indicators, & indicator review criteria
 - Macroalgae
 - Seagrass and Brackish SAV
 - Phytoplankton
 - Microphytobenthos
 - Sediment and water chemistry
 - Benthic macroinvertebrates
- Synthesis, data gaps and recommendations

Completed January 2010
Review Identifies Promising Indicators & Is Template for Research Over Next 5 Years

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Tidal Flats</th>
<th>Subtidal Unveg</th>
<th>Seagrass</th>
<th>Deep/turbid subtidal</th>
<th>Subtidal Unveg.</th>
<th>Subtidal Brackish SAV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open Estuaries</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Closed Estuaries</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dissolved Oxygen</td>
<td></td>
<td>Funded</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Macroalgal biomass/ cover</td>
<td></td>
<td>Funded</td>
<td>Possible</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phytoplankton Biomass</td>
<td></td>
<td>Funded</td>
<td>Possible</td>
<td></td>
<td>In Planning</td>
<td></td>
</tr>
<tr>
<td>Phytoplankton Taxonomy</td>
<td></td>
<td>Funded</td>
<td>Possible</td>
<td></td>
<td>In Planning</td>
<td>Possible</td>
</tr>
<tr>
<td>HAB toxins /sp. abundance</td>
<td></td>
<td>Funded</td>
<td>Possible</td>
<td></td>
<td>In Planning</td>
<td></td>
</tr>
<tr>
<td>Macrobenthos taxonomy /biomass</td>
<td></td>
<td>Funded</td>
<td>Possible</td>
<td></td>
<td>In Planning</td>
<td>Possible</td>
</tr>
</tbody>
</table>

Not Applicable **Funded** **In Planning** **Possible** **Uncertain**
Review of Science for NNE in Estuaries: Example for Mudflat Habitat

Macroalgal Mats in Mugu Lagoon, Southern California (Photo Credit L. Green)
Indicator Review Criteria

- Clear understanding of how indicator changes along disturbance gradient (pristine to most disturbed)
- Dose – response relationship exists between indicator & higher trophic level (link to beneficial use)
- Scientifically sound and practical measurement process
- Show a detectable trend in eutrophication (signal: noise ratio is acceptable)
- Can develop **predictive model** between nutrient loads, other co-factors, and ecological response (statistical, spreadsheet, or dynamic simulation models)
Conceptual model of relationships among N-loading rate and the community composition of primary producers in shallow subtidal and intertidal flats of perennially tidal estuaries (Adapted from Valiela et al. 1997)

* depends on tidal elevation and water residence time
+ mediated by herbivory
depends on benthic topography
Conceptual Model of Effects of Macroalgae On Infauna in Intertidal Flats

Minimally Disturbed

Nutrient load → Light → N Loss → O₂ respiration → Anaerobic Respiration → N cycling and loss → Anoxic Respiration

Low Organic Matter Burial

Increased Nutrient Loading

Undergoing Eutrophication

Nutrient load → Light → N Loss → O₂ respiration → N cycling & loss → Anoxic Respiration (Sulfide)

High Organic Matter Burial
Documented Link with Beneficial Uses: Two Tests

- Weight of scientific evidence demonstrating linkage?
- Dose-response data that support selection of a threshold?
Effects on Management Endpoints of Concern

- Poor surface water quality (strong diel DO fluctuations and hypoxia, increased bacterial growth) and aesthetics: REC1, REC2, EST, MAR, SPWN, RARE, COMM
- Poor benthic habitat quality (Increased sediment organic matter accumulation, increased pore water sulfide, ammonia, etc.): EST, MAR, RARE, COMM, AQUA
- Changes in food web (shifts in food supply for upper trophic levels)
- Loss of critical habitat for fisheries, birds, esp. T&E species
Summary of Studies Documenting Effects of Macroalgae on Infauna on Intertidal Flats

[See Table in Handout]

- Lots of studies demonstrating effects
- Comparison difficult because of disparate methods
- Studies cannot be used to evaluate thresholds, with exception of:
 - Green 2010 (Mugu Lagoon, so. Calif.)
 - Bona et al. 2006 (European Mediterranean)
Macroalgal Blooms on Intertidal Flats Cause Declines in Benthic Infauna Diversity and Abundance

Lauri Green, Ph.D. Dissertation, UCLA Department of Biology (Spring 2010)
Macroalgal Blooms Reduce in Availability of Invertebrate Forage Food for Birds and Fish
Indicators of Macroalgal community structure

Abundance—Scientifically well-vetted means of measuring
 • Biomass (thickness)
 • Percent cover

Taxonomic composition
 – not relevant for California estuaries
Macroalgae Has A Well-Documented Relationship with Nutrient Loading

- Yes - best example is Waquoit Bay (MA)
 - Total nutrient loads predict algal biomass in 3 sub-basins with differing loads
 - But the relationship is complex (easiest where river sources are dominant)

- Data to establish empirical load-macroalgal response relationships for California estuaries do not exist

- Few examples of use dynamic simulation modeling exist, none local
Information Needs to Be Synthesized into an Assessment Framework

Example of Macroalgal Assessment Framework From EU WDR (from Scalan et al. 2007)

<table>
<thead>
<tr>
<th>ALGAL BIOMASS</th>
<th>MODERATE</th>
<th>POOR</th>
<th>BAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 3000 g m²</td>
<td>GOOD/MODERATE entailed algae - monitor</td>
<td>MODERATE</td>
<td>POOR</td>
</tr>
<tr>
<td>> 1000 to 3000 g m²</td>
<td>GOOD/MODERATE entailed algae - monitor</td>
<td>MODERATE</td>
<td>POOR</td>
</tr>
<tr>
<td>500 to <1000 g m²</td>
<td>GOOD</td>
<td>GOOD/MODERATE entailed algae - monitor</td>
<td>MODERATE</td>
</tr>
<tr>
<td>100 to <500 g m²</td>
<td>HIGH</td>
<td>HIGH/GOOD entailed algae - monitor</td>
<td>GOOD</td>
</tr>
<tr>
<td><100 g m²</td>
<td>HIGH</td>
<td>GOOD</td>
<td>MODERATE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>% COVER</th>
<th>MODERATE</th>
<th>POOR</th>
<th>BAD</th>
</tr>
</thead>
<tbody>
<tr>
<td><=5%</td>
<td>MODERATE</td>
<td>POOR</td>
<td>BAD</td>
</tr>
<tr>
<td>5 to 15%</td>
<td>MODERATE</td>
<td>POOR</td>
<td>BAD</td>
</tr>
<tr>
<td>15 to 25%</td>
<td>MODERATE</td>
<td>POOR</td>
<td>BAD</td>
</tr>
<tr>
<td>25 to 75%</td>
<td>MODERATE</td>
<td>POOR</td>
<td>BAD</td>
</tr>
<tr>
<td>>75 to 100%</td>
<td>MODERATE</td>
<td>POOR</td>
<td>BAD</td>
</tr>
</tbody>
</table>
Macroalgae on Intertidal Flats: Summary

- Macroalgae meets criteria as “acceptable” indicator
- Additional data on effects of macroalgal mats on infauna in intertidal flats
 - Need various treatment levels and duration
 - Response may vary by sediment type and organic matter content, time of year, estuarine class, climate, etc.
- Lack of information on range of biomass and % cover found over disturbance gradient in California estuaries
- Lack of information on precision and accuracy of nutrient load-response models
Review Identifies Promising Indicators & Is Template for Research Over Next 5 Years

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Tidal Flats</th>
<th>Subtidal Unveg</th>
<th>Seagrass</th>
<th>Deep/turbid subtidal</th>
<th>Subtidal Unveg.</th>
<th>Subtidal Brackish SAV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open Estuaries</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Closed Estuaries</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dissolved Oxygen</td>
<td></td>
<td>Green</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Macroalgal biomass/cover</td>
<td>Green</td>
<td>Green</td>
<td>Yellow</td>
<td>Not Applicable</td>
<td>Yellow</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Phytoplankton Biomass</td>
<td>Yellow</td>
<td>Yellow</td>
<td>Green</td>
<td>In Planning</td>
<td>Yellow</td>
<td>In Planning</td>
</tr>
<tr>
<td>Phytoplankton Taxonomy</td>
<td>Yellow</td>
<td>Yellow</td>
<td>Yellow</td>
<td>In Planning</td>
<td>Yellow</td>
<td>In Planning</td>
</tr>
<tr>
<td>HAB toxins /sp. abundance</td>
<td>Yellow</td>
<td>Yellow</td>
<td>Yellow</td>
<td>In Planning</td>
<td>Yellow</td>
<td>In Planning</td>
</tr>
<tr>
<td>Macrobenthos taxonomy/biomass</td>
<td>Yellow</td>
<td>Yellow</td>
<td>Yellow</td>
<td>In Planning</td>
<td>Yellow</td>
<td>In Planning</td>
</tr>
</tbody>
</table>

- **Funded**: Green
- **In Planning**: Yellow
- **Possible**: Orange
- **Uncertain**: (Not applicable)

Review identifies promising indicators and provides a template for research over the next 5 years.
Major E-NNE Products- Phase I

<table>
<thead>
<tr>
<th>Product</th>
<th>Timeframe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classification study</td>
<td>Spring 2011</td>
</tr>
<tr>
<td>Indicator literature review and broad technical framework</td>
<td>Initial draft late fall 2010</td>
</tr>
<tr>
<td></td>
<td>Final draft spring 2011</td>
</tr>
<tr>
<td>Bight ‘08 eutrophication assessment</td>
<td>Oral presentation Fall 2010-Fall 2011</td>
</tr>
<tr>
<td></td>
<td>Final report Spring 2012</td>
</tr>
<tr>
<td>Literature and work plan for SF Bay</td>
<td>Preliminary work plan Spring 2011</td>
</tr>
<tr>
<td></td>
<td>Final work plan Spring 2012</td>
</tr>
<tr>
<td>Review of estuarine dissolved oxygen objectives</td>
<td>Preliminary report Spring 2011</td>
</tr>
<tr>
<td></td>
<td>Revised report Spring 2012</td>
</tr>
<tr>
<td>Studies supporting macroalgal endpoint for intertidal flats</td>
<td>Proposed framework Spring 2012</td>
</tr>
</tbody>
</table>

Results of Phase I will drive work plan for Phase II
Summary

- SWRCB has unified conceptual approach to developing nutrient objectives
 - Central tenets: response indicators, multiple lines of evidence, load-response tools
 - Flexibility in how concept applied given
- Statewide Phase I work provides conceptual framework and broad summary of science to support NNE development in SF Bay
 - Need specific review of SF Bay science, analysis of data gaps, and recommended studies to move forward
For More Information...

Martha Sutula – 714-755-3222 or marthas@sccwrp.org

http://californiaestuarinenenneproject.shutterfly.com/
Questions? Comments?

- Feedback on California’s conceptual approach to nutrient objectives?