Local Agency Management Program for Onsite Wastewater Treatment Systems (OWTS) in Unincorporated Orange County

Orange County, California

Prepared by: GEI Consulting Engineers and Scientists

March 14, 2018
Table of Contents

List of Figures and Tables.. 4

1. Introduction ... 6

2. Orange County Waterways, Geology, Soils, and Population Trends ... 9
 2.1 Waterways .. 9
 2.1.1 San Gabriel River-Coyote Creek ... 11
 2.1.2 Santa Ana River ... 11
 2.1.3 Santiago Creek ... 11
 2.1.4 San Diego Creek ... 11
 2.1.5 Aliso Creek ... 12
 2.1.6 San Juan Creek .. 12
 2.1.7 Impaired Waters ... 12
 2.1.8 Groundwater .. 13
 2.2 Geology ... 15
 2.3 Soils Relating to OWTS Siting ... 16
 2.4 Population ... 19

3. Existing Septic System Survey and Evaluation .. 22
 3.1 2003 Septic System Performance Evaluation ... 24
 3.2 Survey and Evaluation Update: Gaps and Future Needs .. 27

4. Minimum OWTS Standards... 29
 4.1 Considerations for LAMPs ... 34
 4.1.1 Design and Planning ... 34
 4.1.2 Primary Treatment and Effluent Dispersal .. 36
 4.1.3 Secondary and Advanced Treatment Processes ... 41
 4.1.4 Alternate Treatment Systems .. 42
 4.1.5 Degree of Vulnerability due to Local Hydrogeology ... 43
 4.1.6 Vulnerable Surface Water .. 43
 4.1.7 High Density Areas for OWTS ... 46
 4.1.8 Limits to Parcel Size ... 46
 4.1.9 Areas with OWTS that Predate Adopted Standards ... 47
 4.2 Scope of Coverage ... 48
 4.2.1 Installation and Inspection Permits ... 48
List of Figures and Tables

Figure 1. Regional Map Displaying the Santa Ana (Region 8) and San Diego (Region 9) Regional Board Areas in Orange County, California.. 8
Figure 2. Watersheds and Major Waterways within Orange County, California ... 10
Figure 3. Map of Depths to Groundwater in Orange County, California .. 14
Figure 4. Hydrologic Soil Groups throughout Orange County, California.. 18
Figure 5. Population Growth by Year in Orange County, California from 2010-2016 (State of California, 2017) .. 19
Figure 6. 2010 Census Population Data for Orange County, California... 21
Figure 7. Septic Tank Inventory of Orange County, California (RBF Consulting, 2003) .. 23
Figure 8. Private Water and Sanitation Districts with Highlighted Sewer Mains in Orange County, California .. 26
Figure 9. Silverado Creek with Minimum Setbacks and Parcel Relation using MSLink .. 28
Figure 10. Typical Septic Tank Systems with Conventional Leach Line Dispersal Field (Ventura County Environemtnal Health Division, 2012) ... 30
Figure 11. Cross-section of a Septic System with a Rock-filled Leach Line (Ventura County Environemtnal Health Division, 2012) ... 31
Figure 12. Typical Seepage Pit Layout (Ventura County Environemtnal Health Division, 2012) 32
Figure 13. Typical Cross-section of Seepage Pit Construction (Ventura County Environemtnal Health Division, 2012) .. 33
Figure 14. Map Highlighting Ecological Reserves and Impaired Waterbodies for Nitrogen and Pathogens .. 45
Figure 15. Map of Northwestern Coast of Orange County and Beach Sampling Locations (Report of Waste Discharge, October 2013) .. 59
Figure 16. Map of Southwestern Coast of Orange County and Beach Sampling Locations (Orange County Stormwater Program, 2014) .. 60
Figure 17. Map of 303(d) Listed Impaired Waterbodies in Orange County, California for Nitrogen and Pathogens .. 65
Figure 18. South Orange County Indicator Bacteria Impaired Beaches and Creeks (Orange County Public Works, n.d.) ... 69
Figure 19. Water Quality Monitoring Locations, Existing and New, for the Unincorporated Areas of Orange County .. 73

Table 1. California Plumbing Code Septic Tank Capacity (Appendix II) (County of Orange Planning Department).. 38
Table 2. Percolation Rate and Absorption Area Requirements for Trench Leach Fields (County of Orange Planning Department).. 39
Table 3. Secondary and Advanced Treatment Technologies (Parten, 2010) .. 41
Table 4. Minimum Depths to Groundwater and Soil Depth from the Bottom of the Dispersal System (State Water Resources Control Board, 2012) ..49

Table 5. Chemical and Physical Characteristics of Domestic Septage (California Wastewater Training and Research Center, 2002) ...52

Table 6. Summary of Roles and Responsibilities by County Department ..54

Table 7. Minimum Setback Requirements for OWTS Treatment Components and Associated Dispersal Systems (State Water Resources Control Board, 2012) ..62

Table 8. List of 303(d) Impaired Waterbodies in Orange County, California ..64

Table 9. Nutrient-Related Number Water Quality Objectives for San Diego Creek and Newport Bay (Orange County Public Works, n.d.) ..67

Table 10. Total Maximum Daily Load (TMDL), Waste Load, Allocations, and Load Allocations for Fecal Coliform in Newport Bay (State Water Resources Control Board, 1989) ..68
1. Introduction

Onsite wastewater treatment systems (OWTS) are defined by the United States Environmental Protection Agency (USEPA) as systems “relying on natural processes and/or mechanical components that are used to collect, treat, and disperse/discharge wastewater from single family dwellings or buildings” (USEPA 2002). OWTS are commonly called “septic systems” and are used to treat sewage from homes and businesses that are not connected to a centralized wastewater treatment plant. These types of systems are managed under a wide range of laws, regulations, policies, plans, and programs in California which includes local, state, and federal agencies.

The Porter-Cologne Water Quality Control Act (California Water Code Division 7) authorizes the State Water Resources Control Board (State Board) to regulate all discharges that could affect the quality of the waters of the state, including groundwater. The policies of the State Board are implemented locally through nine Regional Water Quality Control Boards (Regional Board). Each Regional Board developed a “basin plan” that outlines the beneficial uses, water quality objectives, and a program of implementation for achieving those objectives in its respective jurisdiction.

Discharges are regulated through the use of Waste Discharge Requirements (WDR) that act as discharge permits. The State Board’s regulatory authority extends to individual OWTS; therefore, general guidelines for the siting, design, and construction of new OWTS are part of each Regional Board’s basin plan. The State and Regional Board recognized the advantages and efficiencies of regulation of such systems by local agencies. In June 2012, the State Board adopted the “Water Quality Control Policy for Siting, Design, Operation, and Maintenance of Onsite Wastewater Treatment Systems” (OWTS Policy) (State Water Resources Control Board, 2012). The OWTS Policy was subsequently approved by the Office of Administrative Law on November 13, 2012 and became effective on May 13, 2013. The OWTS Policy allows local agencies to approve OWTS, based on a local ordinance, after approval of a Local Agency Management Program (LAMP) by the Regional Board. Once effective, the Policy established a statewide, risk-based, tiered approach for the regulation and management of OWTS. The full policy is included as Appendix I.

Under the tiered approach of the OWTS Policy, Tier 0 establishes minimum standards for existing OWTS that are properly functioning, and do not meet the conditions of failing systems or otherwise corrective action. Tier 1 establishes minimum standards for low-risk new or replacement OWTS. Tier 2 allows local agencies to develop customized management programs that address the conditions specific to that jurisdiction. These LAMPS must be approved by the appropriate Regional Board, once approved, the standards contained in the LAMP supersede Tier 1 standards (State Water Resources Control Board, 2012). Tier 3 applies special, enhanced standards to both new and existing OWTS located near a waterbody that has been listed as impaired due to nitrogen or pathogens (i.e., primary focus is on fecal indicators) pursuant to Section 303(d) of the Clean Water Act. Tier 4 refers to OWTS that require corrective action or are either presently failing or fail at any time while the OWTS Policy is in effect and must follow the specified requirements (State Water Resources Control Board, 2012).
The LAMP allows local agencies to establish minimum standards that vary from those specified in Tier 1 of the OWTS Policy (State Water Resources Control Board, 2012). This includes areas that do not meet the minimum standards but still achieve the purpose of the OWTS Policy. The State Board recognizes that a single set of criteria for OWTS is inappropriate due to the extreme range of geological and climatic conditions throughout the State of California. In order to accommodate these extreme variances, local agencies may submit an individual LAMP for approval by the Regional Board in an effort to more comprehensively address the site-specific conditions governing the permitting, siting, and maintenance of OWTS in their respective jurisdictions.

The LAMPs may include any one or a combination of the following to achieve this purpose:

- Differing system design requirements;
- Differing siting controls such as system density and setback requirements;
- Requirements for owners to enter monitoring and maintenance agreements; and/or
- Creation of an onsite management district or zone.

This document is the LAMP for unincorporated Orange County (County) that meets all requirements set forth in the OWTS Policy. Implementation of this LAMP is intended to help protect and enhance ground and surface waters within the unincorporated areas under the County’s jurisdiction. This LAMP also addresses each component required in the basin plan; however, the means and degree to which each component is addressed is flexible. Accordingly, this LAMP may require updates as information is gathered during implementation and the program matures.

The Santa Ana Regional Board will be the responsible agency in reviewing this LAMP (Figure 1), and in doing so shall consider, among other things, the past performance of the local program to adequately protect water quality and where this has been achieved with criteria differing from Tier 1, shall not unnecessarily require modifications to the program for purposes of uniformity, as long as the LAMP meets the requirements of Tier 2 (State Water Resources Control Board, 2012).

This LAMP document provides guidance to owners, designers, and installers of OWTS within the unincorporated areas of the County to facilitate successful applications for the design, installation, and modification and/or repairs to OWTS, as well as describe the procedures and standards necessary to adequately protect public health, safety, and water quality during OWTS installation and repair activities. Section 2 discusses the relevant background for the County and includes the pertinent information on waterways, geology, soils, and population trends. Section 3 includes a summary of the 2003 Septic System Performance and Evaluation conducted by RBF Consulting (RBF). In addition, this section discusses more recent survey data, identifies significant data gaps and explains future data needs for the septic systems within the County’s jurisdiction. Section 4 provides a detailed explanation of the minimum standards outlined in the OWTS Policy which includes considerations for LAMPs, the scope of coverage for this LAMP, local agency responsibilities, variances, and minimum setback requirements. Section 5 reviews the annual reporting requirements that the County must complete and submit to the Regional Board to be considered in compliance with the Policy.
Figure 1. Regional Map Displaying the Santa Ana (Region 8) and San Diego (Region 9) Regional Board Areas in Orange County, California
2. Orange County Waterways, Geology, Soils, and Population Trends

The County is part of the South Coast Hydrologic Region which includes all of Orange County, most of San Diego and Los Angeles counties, part of Riverside, San Bernardino, and Ventura counties, and a small portion of Kern and Santa Barbara counties. The South Coast HR covers approximately 6.78 million acres (10,600 square miles) of the southern California watershed that drains to the Pacific Ocean. The HR is bounded on the west by the Pacific Ocean and the watershed divide near the Ventura-Santa Barbara County line. The northern boundary corresponds to the crest of the Transverse Ranges through the San Gabriel and San Bernardino mountains. The eastern boundary lies along the crest of the San Jacinto Mountains and low-lying hills of the Peninsular Range that form a drainage boundary with the Colorado River HR. The southern boundary is the international boundary with Mexico. Significant geographic features include the coastal plain, the central Transverse Ranges, the Peninsular Ranges, and the San Fernando, San Gabriel, Santa Ana River, and Santa Clara River valleys (State Water Resources Control Board, 2003). The South Coast HR is divided into Los Angeles, Santa Ana, and San Diego subregions, Regional Boards 4, 8, and 9, respectively.

Approximately half of California’s population (about 17 million people) resides within the boundaries of the South Coast HR. The combination of multiple major population centers and a relatively small surface area in this region, results in the highest population density of any in California. According to the 2012 census, approximately three million people live in within the boundaries of the County which makes it the third-most populous county in California.

2.1 Waterways

Several major waterways flow from the higher elevation mountainous areas on the northeastern border of the County and contribute critical surface runoff which flows through both unincorporated and incorporated areas of the County, eventually flowing to the Pacific Ocean. While the County covers an area encompassing both the Santa Ana and a small portion of the San Diego Regional Board’s jurisdiction, the majority of the jurisdiction sits within the boundaries of the Santa Ana Regional Board (Region 8), and therefore is considered to be entirely under their purview for the purposes of the OWTS regulations. More information on these Boards and their jurisdictions can be found in Appendix I.

There are 11 watersheds within the County and are divided into North, Central, and South Watershed Management Areas. These watersheds include San Gabriel River – Coyote Creek, Anaheim Bay Huntington Harbor, Santa Ana River, Newport Bay, Newport Coastal Streams, Laguna Coastal Streams, Aliso Creek, Dana Point Coastal Streams, San Juan Creek, San Clemente Coastal Streams, and San Mateo Creek (Figure 2). The first five watersheds listed are regulated by the Santa Ana Regional Board, and the remaining six are regulated by the San Diego Regional Board.

Major waterways flowing through the County include Santa Ana River, Santiago Creek, San Diego Creek, Aliso Creek, and San Juan Creek. All of these waterways flow in a southwesterly direction across Orange County and outlet into the coastal bays and into the Pacific Ocean. There have been substantial alterations to watershed hydrology within this region over the past 150 years, first by agriculture and subsequently by increasing urbanization (Trimble 1998).
Figure 2. Watersheds and Major Waterways within Orange County, California
2.1.1 **San Gabriel River-Coyote Creek**
The San Gabriel River-Coyote Creek watershed covers 85.49 square miles in the northwest corner of the County. This watershed includes the cities of Fullerton, Buena Park and parts of the cities of Anaheim, Brea, Cypress, Fullerton, La Habra, La Palma, Los Alamitos, Placentia and Seal Beach. Coyote Creek, its main tributary, flows from the border of Los Angeles and Orange counties, rises in two forks in the northwestern corner of Orange County and continues southwest, combining with multiple tributaries along the way it eventually empties into the San Gabriel River.

2.1.2 **Santa Ana River**
With its headwaters in the San Bernardino Mountains, the Santa Ana River travels 75 miles to the Pacific Ocean. In San Bernardino County, river flows consist mainly of snowmelt and storm runoff from the lightly developed San Bernardino National Forest (Orange County Public Works, 2013). From San Bernardino to Riverside counties, the River flows perennially, and includes treated discharges from wastewater treatment plants, urban and irrigation runoff, and groundwater. Near the City of Corona, the River is impounded by Prado Dam before flowing into the County’s coastal plain. The County’s portion of the watershed includes segments of the cities of Anaheim, Brea, Fountain Valley, Huntington Beach, Orange, Placentia, Santa Ana, Villa Park, and Yorba Linda. Much of the Santa Ana River channel above the City of Santa Ana is used for groundwater recharge and there is generally no dry weather flow below Ball Road. The lower River from the City of Santa Ana to the ocean is largely a concrete-lined channels. The only major tributary of the Santa Ana River in Orange County is Santiago Creek, which joins the River in the City of Santa Ana.

2.1.3 **Santiago Creek**
The Santa Ana River is fed by several significant tributaries which originate within the Santiago Creek watershed. The Santiago Creek watershed covers about 100.6 square miles in the northern portion of the County. Much of the upper course of the Creek remains in its natural state, while the lower section is now urbanized and includes parts of the cities of Orange, Santa Ana and Villa Park as well as significant areas of unincorporated Orange County.

The main stem of Santiago Creek originates in the Cleveland National Forest. From the steep and narrow canyon between Santiago and Modjeska peaks, the Creek runs south-southwest then turns northwest near Portola Hills. Once out of the National Forest it passes through several small urban areas and eventually joins with Baker and Silverado creeks. The primary flow from Santiago Creek sinks into sedimentary deposits and is typically dry by the time it reaches the first crossing of Santiago Canyon Road, near the incorporated area of Modjeska Canyon.

2.1.4 **San Diego Creek**
San Diego Creek is the principal watercourse of the Newport Bay watershed and is approximately a 16-mile waterway, with a drainage area that covers approximately 122 square miles of the Newport Bay watershed. The San Diego Creek watershed contributes approximately 80 percent of the discharges into the Upper Newport Bay (County of Orange, 2007). The main tributary to San Diego Creek is Peters Canyon Wash; smaller tributaries include Serrano Creek, Borrego Canyon Wash, Agua Chinon Wash, Bee Canyon Wash, Sand Canyon Wash, and Bonita Canyon Creek (Orange County Public Works, 2003). San
Diego Creek is highly urbanized and has undergone extensive channelization for flood control measures (Trimble, 1998).

2.1.5 Aliso Creek
Aliso Creek is the main waterbody in the Aliso Creek watershed; it is a long, narrow coastal canyon with headwaters in the Cleveland National Forest. The Creek ultimately discharges into the Pacific Ocean at Aliso Beach. The watershed is approximately 35 square miles with portions of the cities of Aliso Viejo, Dana point, Laguna Beach, Laguna Hills, Laguna Niguel, Laguna Woods, Lake Forest, and Mission Viejo. The watershed is largely developed, with the exception of the Cleveland National Forest in the upper watershed and the Aliso Wood Canyon Regional Park in the lower watershed. The watershed is within the jurisdiction of the San Diego Regional Board.

2.1.6 San Juan Creek
San Juan Creek is a 29-mile-long stream which originates in the Santa Ana Mountains section of the Cleveland National Forest in the easternmost part of the County. From its headwaters, San Juan Creek winds west and south through San Juan Canyon, where it is joined by many small tributaries, and is joined by its main branch, Arroyo Trabuco Creek, in San Juan Capistrano.

Arroyo Trabuco Creek is a 22-mile-long stream beginning in a rugged canyon in the Santa Ana Mountains of the County, the Creek flows west and southwest before emptying into San Juan Creek in the City of San Juan Capistrano. Arroyo Trabuco Creek's watershed drains 54 square miles of hilly, semi-arid land and lies mostly within the County.

San Juan Creek flows into the Pacific Ocean at Doheny State Beach. The entire watershed covers approximately 160 square miles and includes portions of the cities of Dana Point, Laguna Hills, Laguna Niguel, Mission Viejo, Rancho Santa Margarita, and San Juan Capistrano as well as significant areas of unincorporated Orange County.

2.1.7 Impaired Waters
States are required to “identify those waters within its boundaries for which [discharge] effluent limitations...are not stringent enough to implement any water quality standard applicable to such waters” (Clean Water Act (CWA) Section 303(d)). The CWA also requires states to establish a priority ranking for waters on the CWA 303(d) List of Impaired Waters and establish total maximum daily loads (TMDLs) for such waters. For those waters that are on the CWA 303(d) List of Impaired Waters, especially those being addressed by a TMDL, more stringent requirements apply.

Based on the OWTS Policy, existing, new, and replacement OWTS that are near CWA 303(d)-listed waterbodies may be addressed by a TMDL and its implementation program, or by special provisions under a LAMP (State Water Resources Control Board, 2012). If there is no TMDL or special provisions, new or replacement OWTS within 600 feet of an impaired waterbody must meet the specific requirements detailed under Tier 3. These specific requirements include the formulation of an Advanced Protection Management Program (APMP) (State Water Resources Control Board, 2012). Details on the APMP are found in Section 4.6.
2.1.8 **Groundwater**

The County’s groundwater basin is a critical resource. While the San Juan Hydrologic Basin in the southern portion of the County has a limited groundwater aquifer, the northern and central portions of the County have a groundwater basin with a deep aquifer (up to 2000 feet) that provides approximately 60 to 70 percent of the water supply demand within the Orange County Water District (OCWD) jurisdiction (State Water Resources Control Board, 2012). Nineteen major producers, including cities, water districts, and private waters, pump water from the basin. There are approximately 200 small wells that pump water primarily for irrigation. In order to meet ever-increasing water supply demands, the OCWD maintains groundwater recharge facilities throughout the groundwater basin. The southern portion of the County, outside OCWD jurisdiction, relies heavily upon imported water from other regions.

Figure 3 illustrates depth to groundwater data throughout the County. This figure focuses on shallow groundwater depths of five feet or less. Soils that have a water table at a shallow depth may become waterlogged during periods of heavy precipitation and are slow to drain. The contamination of groundwater is a concern in areas with these soils and can result in OWTS failure. Areas with shallow groundwater depths should be evaluated closely prior to the installation of a new OWTS. Groundwater infiltration into the OWTS dispersal field could result in wastewater surfacing due to poor percolation, resulting in the need for major repairs to the OWTS.
Figure 3. Map of Depths to Groundwater in Orange County, California

Note: Impaired waters displayed are from Regional Water Control Board Regions 8 and 9 and are listed in Attachment 2 of the Onsite Wastewater Treatment Policy published in June of 2012.

Setback Distance: If there is no TMDL or special provision, new or replacement OWTS within 600 feet (red hatch) of impaired waters must meet the specific requirements of Tier 3.
2.2 Geology

The County covers an area from the Santa Ana Mountains, which run north to south along the eastern edge of the County, to the broad Coastal Plain, which spans the western portion of the County. A large portion of the County sits within the Tustin Plain which is part of the coastal section of the Peninsular Range Province, a geomorphic province that extends 900 miles south from the Los Angeles basin to the tip of Baja California (Morton & Miller, 2006). The Peninsular Range Province is characterized by elongated northwest-trending mountain ridges separated by sediment-floored valleys. The Tustin Plain separates the Santa Ana Mountains, to the north and east, from the San Joaquin Hills to the south. The northwest trending Santa Ana Mountains have uplifted on their eastern side along the Whittier-Elsinore Fault Zone, producing a tilted, irregular, and complex highland that slopes westward toward the sea. Regional tectonic activity has uplifted the San Joaquin Hills and Newport Mesa between the Santa Ana River and San Juan Capistrano. This folding has occurred as this entire section of the coast has been uplifted by the San Joaquin Hills blind thrust fault.

Sediments eroded from the Santa Ana Mountain and the San Joaquin Hills have been deposited by streams emanating from these highlands (Santiago Creek, Peters Canyon Wash, Rattlesnake Canyon Wash, San Diego Creek, etc.) and the lower reach of the Santa Ana River to produce the broad, complex, alluvial fan of the Tustin Plain, which consists of relatively flat-lying unconsolidated to semi-consolidated sediments that are approximately 30 to over 1,200 feet thick (Herndon & Bonsangue, 2006). These deposits include strata of the upper member of the Pliocene Fernando Formation (approximately 2 to 3 million years old) and Pleistocene (10,000 to 2 million years old) older alluvium. The near-surface, unconsolidated Holocene sediments predominately consist of young alluvial fan deposits (Herndon & Bonsangue, 2006).

The groundwater basin is essentially an alluvial basin where differential subsidence and uplifting have occurred since the late Cretaceous period (Herndon & Bonsangue, 2006). The geologic substructure is subject to considerable tectonic stress and numerous faults traverse the region (Herndon & Bonsangue, 2006). The Newport-Inglewood Fault zone along the coast creates a barrier for the western edge of the coastal groundwater basin. The Santa Ana Mountains form the eastern edge of the groundwater basin. The Loma Ridge and San Joaquin Hills form the impermeable barrier to the south of the groundwater basin.

The groundwater basin is over 2,000 feet deep and consists of a complex series of interconnected sand and gravel deposits with discontinuous clay and silt layers (Herndon & Bonsangue, 2006). In the coastal and central portions of the groundwater basin, the lenses of lower-permeability clay and silt deposits become more common, creating lower permeability and greater separation between the shallow aquifer and the principal and deep aquifers (Herndon & Bonsangue, 2006).

Development on unstable geologic units or soils could result in impacts related to landslide, lateral spreading, subsidence, liquefaction and collapse. In addition to seismically induced landslides, other factors contribute to landslides, including slope undercutting by stream, erosion, and cyclical wetting and drying. Within the County there are areas with unstable, low-density soil characteristics that are
subject to landslide, liquefaction, lateral spreading and collapse. Additionally, areas within the County may also be subject to subsidence. Areas with unstable geologic units or soils can be considered unsuitable to support the installation of OWTS.

2.3 Soils Relating to OWTS Siting

Soil is complex and variable, and its effectiveness at attenuating contaminants from OWTS effluent is determined by many factors, including soil type, soil structure and depth, soil chemistry, moisture, depth to groundwater, and activity in the aerobic vegetative root zone where chemical and organic substances are taken up or broken down. Specific soil conditions, such as oxygen content, pH, salinity, temperature, and moisture affect the community of soil microorganisms that are essential for breaking down and decomposing OWTS effluent (State Water Resources Control Board, 2012).

The management considerations (limitations) for septic tank absorption fields are as follows and must be considered to limit the possibility of OWTS system failure:

- Depth to bedrock: Depth to bedrock affects the construction, installation, and functioning of septic tank absorption fields and affects other site applications. Shallow soils have a limited absorption capacity and have biologically active zones through which waste materials can percolate. If these soils are used as filter fields, environmental and health risks should be considered.
- Depth to pan: Depth to a cemented pan affects the construction, installation, and functioning of septic tanks absorption fields and other site applications. Shallow soils have a limited absorption capacity and have biologically active zones through which waste materials can percolate. If these soils are used as filter fields, environmental and health risks should be considered.
- Flooding, rare flooding, or very rare flooding: Flooding can transport waste offsite and pollute surface waters. Flooding limits the use and management of the soil for sanitary facilities.
- Fragments (greater than 3”): Rock fragments larger than 3 inches in diameter impede the workability of the soil and restrict the use of heavy machinery during construction of absorption fields.
- The saturated hydraulic conductivity of the soil medium (K_{sat}) greater than 6”/hr: The soil horizon with the maximum K_{sat} governs the leaching and seepage potential of the soil. If this rate is high, the transmission of fluids through the soil is unimpeded and leaching and seepage may have environmental, health, and performance implications.
- Saturated hydraulic conductivity less than 0.6”/hr; from 0.6 to 2”/hr: The soil horizon with the minimum K_{sat} governs the rate of water movement through the whole soil. If this rate is low, the transmission of fluids into and through the soil is impeded and runoff, infiltration, and percolation of pollutants may have environmental, health, and performance implications.
- Ponding: Ponding is the condition where standing water is on the soil surface for any period of time. Ponding limits the installation and functioning of most land use applications.
- Saturation: Soils that have a water table at a shallow depth may become waterlogged during periods of heavy precipitation and are slow to drain. The contamination of groundwater is a concern in areas with these soils.
- Seepage in bottom layer: The K_{sat} in the bottom layer of the soil governs the leaching and seepage potential of the soil. If this rate is high, the transmission of fluids through the soil and underlying materials is unimpeded. As a result, leaching and seepage may have environmental, health, and performance implications.

- Slope: Steep slopes affect the transmission of fluids through the soil. As a result, piping or seepage may have environmental, health, and performance implications.

Hydrologic soils are classified by the National Resource Conservation Service (NRCS) as Group A, B, C, or D (NRCS 2007). These classifications are based primarily on the runoff potential of the soil type. Group A soils have low runoff potential when thoroughly wet and water is transmitted freely through the soil. Group B soils have moderately low runoff potential and water transmission through the soil is unimpeded. Group C soils have moderately high runoff potential and water transmission through the soil is somewhat restrictive. Group D soils have high runoff potential and water transmission through the soil is restricted or very restricted. These soils are primarily clays with high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, or soils that are shallow over nearly impervious material. Because of the very slow water transmission rate of Group D soils, they are particularly problematic for proper performance of an OWTS. This is because an important component of OWTS performance is a soil absorption field, and soil absorption is limited in Group D soils. Figure 4 shows the soils of the County based on the hydrologic soil group.

Areas with existing OWTS in areas with soils classified as Group D include San Juan Capistrano, Rancho Santa Margarita and Huntington Beach in the southeastern portion of the County, and La Habra, Brea, Fullerton, Yorba Linda, and Tustin in the northwestern portion. Special considerations are necessary when installing or repairing OWTS in areas with Group D soils, and these special considerations are incorporated into this LAMP.
Figure 4. Hydrologic Soil Groups throughout Orange County, California
2.4 Population

Based on the 2010 census, there are approximately 3.0 million people living in the County, making it the third most populous county in California. From 2010 to 2016, the population of the County grew at a rate of 5.4 percent. This is below the California state average population growth rate of 6.1 percent. In 1999, the annual growth rate in new OWTS installations was approximately 1 percent (California Wastewater Training and Research Center, 2003). Figure 5 shows the most recent trends in population growth for the County since 2010. Continued population growth throughout the County has resulted in an increasing demand on public sewer systems as more areas within the County become incorporated.

![Population Growth by Year - County of Orange, CA](image)

Figure 5. Population Growth by Year in Orange County, California from 2010-2016 (State of California, 2017).

The Southern California Association of Governments (SCAG) report on unincorporated regions of the County provided current information and data for planning and outreach efforts (SCAG 2015). Information on population, housing, transportation, employment, retail sales, and education can be utilized by stakeholders to make informed planning decisions regarding the management of existing systems and OWTS permits for the future. The draft report provides a portrait of the unincorporated area and its changes since 2000, using average figures for the County as a comparative baseline. This draft report demonstrates the current trends occurring for the County (see Appendix III for full report).

In summary, the draft report reveals that between 2000 and 2014, the total population of unincorporated regions of the County decreased by 38,818 to 129,314 in 2014. During this 14-year period, the unincorporated area’s population growth rate of -23.1 percent was lower than the County rate of 10.3 percent, and that for the entire County only 4.1 percent of the total population resides in unincorporated areas (SCAG 2015).

Overall, the general trend for population within unincorporated regions of the County is decreasing, suggesting that the maintenance of existing OWTS should be a primary focus of this LAMP, followed by
the proper permitting and installation for any future systems that might be requested, where sanitary sewer is still unavailable.
Figure 6. 2010 Census Population Data for Orange County, California
3. **Existing Septic System Survey and Evaluation**

During 2002-2003 RBF Consulting performed a baseline inventory of existing septic systems throughout Orange County (Appendix IV), although it is important to note that the study was driven by municipal separate storm sewer system (MS4) permit requirements, and therefore focused on areas of the County where MS4s were established. The study helped to develop a baseline inventory for the septic systems within the County and to estimate the potential impact of septic systems on the quality of selected receiving waters. Areas within the County targeted for this study were based on the perceived pathogen loading. Septic systems throughout the County were inventoried, and placed in a GIS layer for ease of viewing and inventory maintenance. The results of that final inventory are depicted in Figure 7.

The final inventory/database compilation resulted in a list of over 2,776 active OWTS. The OWTS are widely dispersed throughout the County but are found in the highest concentrations in the Santa Ana River watershed. The City of Yorba Linda recorded the highest number of systems with over 26 percent of the total, followed by the unincorporated County area with 23 percent of the total.
Figure 7. Septic Tank Inventory of Orange County, California (RBF Consulting, 2003)
3.1 2003 Septic System Performance Evaluation

A random field survey of OWTS owners within four selected major areas of the County was undertaken during December of 2002 to evaluate existing system performance. The areas covered under this survey encompassed the cities of Anaheim, Orange, Tustin, and Yorba Linda as well as adjacent unincorporated areas.

The study areas were selected based on the estimated number of systems present, the occurrence of low permeability soils, and proximity to sensitive receiving waters. For the four areas as aggregate, the overall failure rate was determined by the survey of the homeowners and visual inspection of the OWTS, if possible (RBF 2003). The failure rate determined through the field survey was then verified by findings from similar surveys reported in the literature (RBF 2003).

RBF staff contacted eighty system owners over a period of approximately three weeks from December 23, 2002, to January 10, 2003 during the field survey. Failure of an OWTS was defined by RBF as the observance of surface seepage or flow during the inspection. Other information was also gathered from the homeowner during the field survey, and an educational pamphlet regarding operation and maintenance of septic systems was left with each homeowner who was contacted (RBF 2003).

Of the eighty field surveys that were conducted, one failed system was noted by RBF, representing a failure rate of 1.25 percent. This finding was validated by a literature review conducted by RBF, which revealed that a similar study in Oregon recorded a failure rate of 1.3 percent of the 389 systems studied—identical to that of the survey results found in Orange County during 2002-2003. The literature review also indicated that most failures were primarily due to poor operation and maintenance. Excessive water use or insufficient system capacity were also contributors, but the primary failure mechanism was lack of, or deferred maintenance.

RBF also performed an analysis on the extent OWTS may impact water quality in Orange County based on the results from the field survey findings. A spreadsheet model was developed to estimate the loading of pathogen indicators and total Kjeldahl nitrogen (TKN) from the failed systems. A simple mass based loading model was also used to calculate total ambient constituent/indicator load for each study watershed at the points of interest, as a comparison to the estimated load from the failed systems. This comparison was for the purpose of determining if best management practices are required to mitigate discharges from the failed OWTS.

The ambient indicator load model was compiled by RBF for the two selected watersheds to estimate the relative contribution (load) of pathogen indicators in the receiving waters from the failed OWTS. Two cases were evaluated in each watershed: dry and wet weather. Selection of two study cases allowed for varying assumptions as to the indicator load estimated to arrive at the receiving water based on expected physical site conditions such as the presence of saturated soils. The system failure rate was assumed to be 2 percent (the average of the computed confidence interval for system failures determined in the survey portion of this study).

Study results showed that the load from the failed OWTS was a very marginal contributor to pathogen indicators in the receiving waters and was an insignificant contributor for TKN. The loadings of pathogen
indicators and TKN from failed septic systems at the mouth of the Santa Ana River and San Diego Creek at Upper Newport Bay were estimated to be less than a fraction of one percent of total contributory loading under both dry and wet weather conditions. Upper Newport Bay is listed as impaired for pathogens and is currently under a TMDL.

Based on the analysis of these two study areas, RBF concluded that OWTS do not represent a significant source of constituents of concern for the County’s receiving waters. In general, RBF found that failure rates were relatively low; for 79 of 80 systems surveyed there were no observed or reported incidences of surface seepage or flow failures. Furthermore, the flow path of septic tank effluent to the receiving water, in most cases, provides for significant storage and infiltration, as well as degradation and natural attenuation, prior to the possibility of conveyance and discharge to receiving waters. RBF concluded from the 2003 study that there would be a steady conversion of OWTS to sewer service as service becomes available in rural areas, and as existing homes are sold and connections are made to available service by the new owner.

Using the map created by RBF Consultants (Figure 7) and comparing the 2003 OWTS locations to known sewer mains in the northwestern half of the County (Figure 8), an estimate of approximately 925 of the total number of OWTS are now located near existing sewer infrastructure. Knowing this information is one criterion that can be utilized in the process of prioritizing OWTS for potential phase out.

Following completion of the 2003 study RBF recommended that periodic homeowner education be conducted via reminder notices to service OWTS, and that homeowners with OWTS be notified when sewer system service becomes available in their area. Regulation of the construction of new OWTS and regular maintenance of existing OWTS is imperative to preventing adverse impacts on receiving waters.

RBF produced a database, containing the identified OWTS by legal parcel in Orange County; a GIS layer, linked to the database with each system was geo-coded and plotted; a load model comparing the estimated loading of selected constituents and indicators from failed systems in any given year to the total estimated loading of constituents and bacteria indicators in the receiving waters was included. The summary report is attached as Appendix IV.
Figure 8. Private Water and Sanitation Districts with Highlighted Sewer Mains in Orange County, California
3.2 Survey and Evaluation Update: Gaps and Future Needs

While the RBF study from 2003 does show the known OWTS locations, these data are more than a decade old and need to be updated into an electronic format for unincorporated areas with a particular focus on rural canyon areas. To aid in future management of OWTS in unincorporated areas, information relating to the unique characteristics identified for each parcel and the minimum setback requirements for OWTS placement need to be investigated. A unique MSLink identifier is used for each parcel number, and this will help to identify parcels and minimum horizontal setback from surface and impaired waterbodies (Figure 9). Once a comprehensive database is created it should be readily searchable, including georeferenced data points so that it could be easily transformed into a GIS map layer for use in analysis.

A set of maps for all of Silverado Creek is included in Appendix V. An updated, interactive, GIS-based tool such as this can be used during the OWTS permitting process to aid the County in determining allowable areas for development, to search and track OWTS permit status, as well as efficiently identify OWTS requiring corrective action in accordance with Tier 4, and phase out systems that are no longer in use. This tracking would also allow for greater collaboration with sanitation districts during the permitting stage and more effectively allow for the County to isolate those properties capable of accessing sanitary sewer, eliminating the need for installation of new OWTS.

The County intends to initiate electronic tracking of new or replacement OWTS upon adoption of this LAMP guidance. While the County holds all records of OWTS that have been installed previous to LAMP adoption, the process to migrate those files to an electronic format will require more time and be completed as practical. As this information is updated, it will be completed in a manner that allows the County to search and use these data to track monitoring status, OWTS requiring corrective action in accordance with Tier 4, and phase out systems that are no longer in use.
Figure 9. Silverado Creek with Minimum Setbacks and Parcel Relation using MSLink
4. **Minimum OWTS Standards**

Existing OWTS that are properly functioning that do not require corrective action are currently managed under Tier 0 of the OWTS Policy in Appendix I. These systems will remain under Tier 0 until there is a need for expansion or the system experiences a failure. The Santa Ana Regional Board can deny coverage to any OWTS that are unable to protect the water quality of the state or systems that are currently under waste discharge requirements or individual waiver.

Given the unique and diverse geology, soils, population distribution, and water quality needs of Orange County, it is imperative to manage OWTS to a specific set of requirements that directly addresses the need to protect local water quality and public health. Figures 10 through 13 show typical OWTS with leach lines and seepage pit designs. Note that seepage pits will only be allowed where siting limitations require a variance and in conjunction with supplemental treatment to reduce the risk of groundwater contamination resulting from placement of untreated septic effluent in deep geologic strata.
Figure 10. Typical Septic Tank Systems with Conventional Leach Line Dispersal Field (Ventura County Environmental Health Division, 2012)
Figure 11. Cross-section of a Septic System with a Rock-filled Leach Line (Ventura County Environmental Health Division, 2012)
Figure 12. Typical Seepage Pit Layout (Ventura County Environmental Health Division, 2012)
Figure 13. Typical Cross-section of Seepage Pit Construction (Ventura County Environmental Health Division, 2012)
4.1 **Considerations for LAMPs**

To ensure proper function and performance, the siting, design and construction of OWTS is critical and therefore, can only be completed by a Qualified Professional. According to the State Board, a Qualified Professional is an individual licensed or certified by a State of California agency to design OWTS and practice as professionals for other associated reports, as allowed under their license or registration. Depending on the work to be performed and various licensing and registration requirements, this may include an individual who possesses a registered environmental health specialist certificate or is currently licensed as a professional engineer or professional geologist. For the purposes of performing site evaluations, Soil Scientists certified by the Soil Science Society of America are considered Qualified Professionals. A local agency may modify this definition as part of its LAMP.

Minimum OWTS standards are described in the following sections and meet or exceed those standards provided by Tier 1 in the OWTS Policy (State Water Resources Control Board, 2012). These standards relate to site evaluation, sizing, design, construction, and maintenance of OWTS. These standards apply to new or replacement OWTS within the County in order to protect water quality and public health. Each OWTS owner should strive to meet these requirements to the greatest extent possible. In the instance that these standards cannot be met, the County has the ability to issue a variance excepting the OWTS owner from meeting the minimum requirements. Should the system be located adjacent to a 303(d) listed waterway and no TMDL Implementation Plan has been adopted, the additional measures detailed as part of the APMP in Section 4.6 would also apply.

4.1.1 **Design and Planning**

New or replacement OWTS shall not be allowed where public sewer is available. The public sewer may be considered as not available when such public sewer or any building or exterior drainage facility connected thereto is located more than 200 feet from any proposed building or exterior drainage facility on any lot or premises that abuts and is served by such public sewer. This provision does not apply to replacement OWTS where the connection fees and construction costs are greater than twice the total cost of the replacement OWTS and the Building Official (or designee) determines that the discharge from the OWTS will not affect groundwater or surface water to a degree that makes it unfit for drinking water supply or other uses.

Aspects to consider during OWTS siting, design, and construction include evaluating the compaction and permeability of soils onsite. These inspections must be performed by a Qualified Professional with an appropriate background in geotechnical principles. Soil evaluations will aid in determining where new OWTS or expansion of existing OWTS can occur within the property parcel. If the Qualified Professional with appropriate registration determines that the soil conditions at a site do not warrant the use of an OWTS, this should be documented and sent to Orange County Public Works (OCPW), Development Services for documentation within the OWTS database.

A general site evaluation is to be completed that includes a geologic report describing the soil conditions, depth to groundwater or bedrock. A slope stability study is required by a Qualified Professional with appropriate registration if the project proposes to place the dispersal field on a slope greater than 30 percent. A soil evaluation is required in both the area designated as the primary
dispersal area and the expansion area. Testing shall include one deep boring and three percolation tests within the proposed dispersal area. Results from the soil evaluation are used to determine the appropriate application rate and the subsequent size of the dispersal field. Where leaching chambers are used, the maximum allowable decreased leaching area for International Association of Plumbing and Mechanical Officials (IAPMO) certified dispersal systems shall be computed by using a multiplier of 0.70. This should be taken into account early on in the planning process.

If it is determined that soil conditions are conducive to OWTS construction, a professional engineer, geologist, or registered environmental health specialist is required to design an appropriate type and size of system that will effectively treat all wastewater. Design considerations include evaluating site conditions, calculating daily wastewater volume and distance from all required setbacks. The system shall be located and designed in a manner to ensure that effluent does not reach the surface at any time and that percolation of effluent will not adversely affect the beneficial uses of waters of the state.

A contractor with a valid Engineering (A), Plumbing (C-36), or Sanitation Systems (C-42) license from the state of California is allowed to install an OWTS. These licensed contractors must have the capability to implement all project stages including construction, modification, repairs to systems requiring corrective action (Tier 4) and abandonment of systems that are no longer in use. The County of Orange Development Services will provide a list of licensed contractors to the parcel owner upon OWTS permit approval.

Once construction of the new OWTS is complete, a Qualified Professional must inspect the system and confirm that it was constructed in accordance with the approved and permitted plans submitted to the County of Orange Development Services. A written notification must be submitted by the Qualified Professional to the County of Orange Development Services within 30 days of construction completion, noting that the OWTS was constructed to specifications, or noting any discrepancies and the corresponding corrective actions that will be taken to bring the OWTS into compliance.

Regardless of system type or design, long-term maintenance and care is a necessity for all OWTS. Once placed into operation, regular inspections and maintenance are necessary to keep the system functioning as designed and to prolong its useful life. Inspections, maintenance, and servicing must be performed by a Qualified Professional or licensed contractor. Inspections should include:

- An interview with the parcel owner or primary user of the system and the noting of any leaching or excessive accumulation of water on the ground near the system from the time of construction or last inspection.
- Inspection of the OWTS viewing port for clarity and noting of the condition of the OWTS interior.
- Collection of water samples from the nearest waterbody downslope from the system on three separate occasions over first year of OWTS operation. These samples should be analyzed for pathogen and nitrogen concentrations should be compared to known concentrations in the waterbody if appropriate, or referenced to the relevant TMDL where applicable.
- Sampling will be completed by the County (or designee).
4.1.1.1 Consideration for the Salt and Nutrient Management Plan (SNMP)

The Policy recognizes the potential for increased salt and nutrient loading to groundwater basins as a result of increased recycled water use, and therefore, requires the development of regional or sub-regional salt and nutrient management plans. While the unincorporated regions of the County where OWTSs currently exist should not be in conflict with any of the groundwater basins designated as priority basins by the State Water Board’s Groundwater Ambient Monitoring and Assessment (GAMA) program, a SNMP is required as a part of the State Board’s Recycled Water Policy (State Water Resources Control Board, 2013), last amended in 2013 and currently under review for additional amendments by the Science Advisory Panel.

The SNMP was originally developed to:

- Ensure the region’s long-term water quality is understood,
- Streamline the permitting process for various water quality related projects, and
- Ensure compliance with water quality objectives.

The County will work to support implementation of the SNMPs through the collection of additional information during the permit process for new or replacement OWTS. Of particular concern is the use of self-generating water softeners that use rock salt or potassium chloride pellets to treat hard water. These types of water softeners discharge a brine consisting of concentrated chloride levels. Supplemental information will be collected as to whether the OWTS permit applicant utilizes such methods to treat drinking water. This information may then be used by the Regional Boards when developing and revising SNMPs.

The County will utilize the SNMPs from the Regional Boards as a tool to:

- Assess whether OWTS within the unincorporated areas are contributing to nitrate loading, and
- Address any necessary changes during the LAMP evaluation, which is every five years.

4.1.2 Primary Treatment and Effluent Dispersal

Because the OWTS effluent is discharged at a shallow soil depth, the use of leach lines is the preferred method of dispersal using not more than four square feet of infiltrative area per linear foot of trench as the infiltrative surface, and with trench width no wider than three feet. Seepage pits may only be used where siting limitations require a variance and in conjunction with supplemental treatment to reduce the risk of groundwater contamination resulting from placement of untreated septic effluent in deep geologic strata.

In no instance shall percolation tests be conducted in a graded “fill area”. In the case of either a trench leach field or seepage pit, at least one exploratory boring is required per system in order to determine depth to groundwater and any impervious layer. The boring must extend at least five feet below the proposed trench bottom and ten feet below the pit bottom. Further, the soil profiles in each of the exploratory borings are to be recorded. Alternative treatment should be investigated if site conditions indicate shallow groundwater to dispersal system elevation. Zones of seasonal or periodic soil saturation shall be estimated at the highest level of redoximorphic features, such as soil mottles or low-chroma
colors (except soils with rapid permeability). Test holes and exploratory borings shall be back-filled and properly compacted after tests are done.

Unless otherwise waived by the County’s Building Official (or designee), both trench leach fields and seepage pit effective sidewall shall be increased by an amount equal to 100 percent of the original design capacity. This is to assure a “backup” system is available at the time of initial construction. The back-up system and primary system are to be separated by a diverter valve.

When seepage pits are used, the percolation rate of each pit must be determined through a percolation test. Absorptive capacities ranging between 1,000 – 8,000 gpd are acceptable. When using seepage pits with this absorptive capacity, the Qualified Professional designing the system shall use an effluent application rate of 0.8 gallons per square foot per day (gal/sf/day) to calculate the number of seepage pits necessary to serve the proposed structure. Seepage pits found to have absorption capacities of 500 – 1,000 gpd or greater than 8,000 gpd may be used but supplemental treatment must be utilized. Dual dispersal fields interconnected by a diverter valve for new OWTS serving commercial buildings are required for supplemental treatment. In addition, a 100 percent expansion area must be designated for future use. There are several benefits to requiring the installation of dual fields:

- If dual fields are constructed this ensures suitable dispersal area is not lost to future development of the property.
- Should one field fail, the second field is readily available.
- There would be little or no public exposure to sewage and no downtime for the commercial operation.
- Switching from one dispersal field to the other on a regular basis prolongs the useful life of both fields.

When using seepage pits with these capacities, the system designer shall use effluent application rates of 0.4 gallons per square feet per day (gal/sf/day) and 1.2 gal/sf/day, respectively. When available information indicates that changes in the levels of groundwater may result in an inadequate separation between the bottom of the dispersal field and groundwater, the County’s Building Official (or designee) may require wet weather soil borings in addition to the soil borings and percolation tests previously described. To be reasonably sure that these borings will measure “worst case” conditions, they must generally be completed during the wet season from October through April.

The capacity of a septic tank shall be per the International Association of Plumbing and Mechanical Officials, California Plumbing Code, currently adopted edition (IAMPO 2010). Residential septic tank size is based on the number of bedrooms served (Table 1). For design purposes, a bedroom is defined as any space in a conditioned (heated) area of a dwelling unit which is ≥70 square feet in size and which is an exterior room, unless it is one of the following:

- Hall;
- Bathroom;
- Kitchen;
• Living Room (maximum of one per dwelling unit);
• Dining Room (opening off of the kitchen or living room, maximum of one per dwelling unit);
• Family Room (opening off of the kitchen or living room, maximum of one per dwelling unit);
• Breakfast Nook (opening off of the kitchen, maximum of one per dwelling unit);
• Pantry (maximum of one per dwelling unit);
• Laundry Room;
• Closet/Dressing Room opening off of the bedroom

Sewing rooms, dens, offices, studios, lofts, game rooms, and any other exterior room ≥ 70 square feet shall be counted as bedrooms regardless of whether they are entered through a door, unless the room is otherwise exempted. The County’s Building Official (or designee) may grant exceptions, if, in his/her discretion, a room cannot, by its design, function as a bedroom.

When the quantity of sewage exceeds the amount that can be disposed in 500 linear feet of leach line, a dosing tank shall be used. Dosing tanks shall be equipped with an automatic siphon or pump which discharges that tank once every three or four hours. The tank shall have a capacity equal to 60 to 75 percent of the interior capacity of the pipe to be dosed at one time. Where the total length of pipe exceeds 1000 linear feet (304.8 meters), the dosing tank shall be provided with two siphons or pumps dosing alternately and each serving one-half of the leach field.

Water softener, iron filter discharge, or swimming pool and spa filter backwash to an OWTS is prohibited. Provide effluent filter and water tight risers to grade, for filter maintenance.

Table 1. California Plumbing Code Septic Tank Capacity (Appendix II) (County of Orange Planning Department)

<table>
<thead>
<tr>
<th>Single Family Dwellings¹</th>
<th>Multiple Dwelling Units or Apartments²</th>
<th>Minimum Septic Tank Capacity in gallons (liters)³</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 to 2 bedrooms</td>
<td>-</td>
<td>750 (2839)</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>1000 (3785)</td>
</tr>
<tr>
<td>4</td>
<td>2 units</td>
<td>1200 (4542)</td>
</tr>
<tr>
<td>5 to 6</td>
<td>3</td>
<td>1500 (5678)</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>2000 (7571)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>2250 (8518)</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>2500 (9464)</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>2750 (10410)</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>3000 (11356)</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>3250 (12303)</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>3500 (13249)</td>
</tr>
</tbody>
</table>

¹Extra bedroom: 150 gallons (567.8 liters) each
²Extra dwelling units over 100: 25 gallons (96.4 liters) each
³Septic tank sizes include sludge storage capacity and the connection disposal of domestic food waste units without further volume increase.

If the OWTS design calls for placing a tank beneath areas subject to vehicular traffic such as a driveway, the tank must be rated to withstand such conditions or the installation is to be engineered to support the additional weight. The tank lids and risers used in such installations must be traffic rated as well.
The OWTS must have a minimum of two compartments and a minimum capacity of three times the peak daily flow. Each compartment shall be accessible through a manway or port that is a minimum 20 inches in diameter.

The OWTS should be designed only for current or project wastewater flows within a building. To ensure systems are appropriately sized to support the existing structure and no additional capacity is built in, OWTS will not be permitted to include capacity for significant wastes from RV holding tanks or other off-site holding areas.

In general, all tanks should be buried as shallow as practicable. Septic tanks should be installed no deeper than 24 inches below finish grade. If it is demonstrated that a septic tank must be placed deeper than 24 inches below finish grade, than each compartment is to be fitted with watertight risers that extend to within 24 inches of finish grade. When it is necessary to extend septic tank risers to finish grade, corrosion resistant fasteners that require the use of tools to remove shall be used to secure the lid to the riser.

Trench leach fields are typically the most economical and practical design for wastewater treatment given an appropriately-sized lot and ideal soil conditions. Perforated pipe is installed to distribute the wastewater into the surrounding soil environment. Drain rock is placed around the piping to filter and store the wastewater as it percolates into the soil. Leach lines are typically long and narrow. Leach lines distribute the septic tank effluent into the surrounding trench at a depth generally not more than six feet. This shallow dispersal system provides effluent disposal under aerobic conditions at a maximum distance from underlying bedrock or groundwater. Trench leach fields should be designed according to Section VII of the County of Orange Planning Department’s On-site Sewage Absorption System Guidelines (Appendix II).

To facilitate future inspections of the dispersal field, inspection ports are to be installed at each end of each trench (upgradient and downgradient). Depending on the circumstances, the County retains the authority to require the installation of additional inspection ports at different locations of the dispersal field.

Trench leach fields are the preferred method for water dispersal from OWTS. The use of seepage pits, as a dispersal field, will only be allowed in instances where siting limitations require a variance and in conjunction with supplemental treatment to reduce the risk of groundwater contamination resulting from placement of untreated septic effluent in deep geologic strata.

Table 2. Percolation Rate and Absorption Area Requirements for Trench Leach Fields (County of Orange Planning Department)

<table>
<thead>
<tr>
<th>Percolation rate (time required for water to fall one inch)</th>
<th>Required absorption area, in square feet, per bedroom based on a standard trench1,2</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 minutes/inch</td>
<td>115 square feet</td>
</tr>
<tr>
<td>5 minutes/inch</td>
<td>125 square feet</td>
</tr>
<tr>
<td>10 minutes/inch</td>
<td>165 square feet</td>
</tr>
<tr>
<td>15 minutes/inch</td>
<td>190 square feet</td>
</tr>
<tr>
<td>30 minutes/inch</td>
<td>250 square feet</td>
</tr>
<tr>
<td>Percolation rate (time required for water to fall one inch)</td>
<td>Required absorption area, in square feet, per bedroom based on a standard trench</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>45 minutes/inch</td>
<td>300 square feet</td>
</tr>
<tr>
<td>60 minutes/inch</td>
<td>330 square feet</td>
</tr>
</tbody>
</table>

1 A standard trench is one in which the filter material extends 2 inches above and 12 inches below a 4-inch perforated drain line.
2 In cases where the depth of filter material below the drain line exceeds the standard 12 inches of depth, credit may be given for the added absorption area provided in deeper trenches with a resultant decrease in length of trench. See Appendix II for credit amount.

Should siting limitations dictate that a seepage pit is the only option for treatment, a variance in conjunction with supplemental treatment will be required. If permitted, the seepage pit should be constructed as follows:

- Each seepage pit shall be circular in shape and shall have an excavated, diameter of not less than five feet. Each such pit shall be lined with whole, new, hard-burned clay brick, concrete brick, concrete circular type cesspool blocks or other materials approved by the County. Approval shall be obtained prior to construction for any pit having an excavated diameter greater than six feet.
- Each seepage pit shall have a minimum sidewall (not including the arch) of ten feet below the inlet with a maximum total depth of 40 feet unless approved by the County’s Building Official (or designee).
- The top of the arch or cover must be at least 18 inches but no more than four feet below the surface of the ground.
- The horizontal distance from a seepage pit to the top of a cut bank shall be equal to five times the vertical height of the bank or 25 feet, whichever is less.
- Maintain a ten-foot separation between bottom of the pit and seasonally high groundwater.
- Ten feet of separation is required between the pit bottom and an impervious layer (e.g., bedrock or any layer where the percolation rate is greater than 20 min/in). In those cases where use of leach lines is not feasible the County may allow the use of seepage pits with supplemental treatment.

Each seepage pit is typically gravel filled and has a centrally located, perforated four inch diameter pipe that extends from the inlet to the bottom of the pit. The use of “hollow” seepage pits, or those without gravel or soil fill is prohibited under current code and will continue to be prohibited.

When soil testing indicates that multiple seepage pits are necessary in order to provide adequate dispersal capacity, it is important that the wastewater flow to each pit be as equal as possible. Consequently, an approved distribution method must be provided when multiple seepage pits are used.

Use of seepage pits will only be allowed where siting limitations require a variance and in conjunction with supplemental treatment to reduce the risk of groundwater contamination resulting from placement of untreated septic effluent in deep geologic strata. Alternative Wastewater Treatment Systems (Section 4.1.4) are OWTS utilizing a dispersal field consisting of components other than a conventional or supplemental treatment system such as “mound” or “subsurface sand filtration” systems.
4.1.3 Secondary and Advanced Treatment Processes

If effluent cannot be treated to the necessary quality through trench leach fields or seepage pits, additional treatment is necessary. Any treatment that provides additional reduction of biological oxygen demand (BOD) and total suspended solids (TSS) parameters is considered secondary treatment. Even in instances where water quality can be met through primary treatment and dispersal with seepage pits and leach fields, implementing secondary treatment can further reduce BOD and TSS, extend the treatment life of the OWTS and reduce maintenance expenses. Advanced treatment reduces BOD and TSS, but also reduces nitrogen and pathogen levels.

The following table outlines secondary and advanced treatment systems that could be used within an OWTS, along with the advantages and limitations of each system.

<table>
<thead>
<tr>
<th>System Type and Description</th>
<th>System Advantages</th>
<th>System Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-Pass Biofiltration:</td>
<td>• Reduce nitrogen levels by 20-30%</td>
<td>• Greater space requirements (footprint) than other treatment options.</td>
</tr>
<tr>
<td>Intermittent Sand Filters</td>
<td>• Provides significant pathogen reduction (average</td>
<td>• More costly to service or restore if media becomes clogged.</td>
</tr>
<tr>
<td>and Peat Filters:</td>
<td>fecal coliform levels of 200 col/100 mL or less)</td>
<td>• In peat biofilters, life of peat typically ranges from 4-12 years</td>
</tr>
<tr>
<td></td>
<td>• Typically only requires routine annual maintenance</td>
<td></td>
</tr>
<tr>
<td>Recirculating Biofiltration:</td>
<td>• Can provide 50-60% total nitrogen removal</td>
<td>• Greater space requirements (footprint) than other treatment options.</td>
</tr>
<tr>
<td>Similar to a single-pass</td>
<td>• Provides significant pathogen reduction (2-3 log</td>
<td>• Cannot use area over filter for residential activities or foot traffic</td>
</tr>
<tr>
<td>biofiltration system,</td>
<td>reduction for fecal coliform)</td>
<td>• Require control panels with timer capabilities to best control recirculation</td>
</tr>
<tr>
<td>except the waste stream</td>
<td>• Typically only requires routine maintenance once or</td>
<td>rates</td>
</tr>
<tr>
<td>passes through the biofiltration system at a</td>
<td>twice a year.</td>
<td></td>
</tr>
<tr>
<td>recirculation rate specified</td>
<td></td>
<td></td>
</tr>
<tr>
<td>by the designer. Recirculation rate depends upon</td>
<td></td>
<td></td>
</tr>
<tr>
<td>filter media, waste strength,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>and treatment needs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Submerged or Saturated</td>
<td>• Capable of producing low levels of BOD and TSS</td>
<td>• Nitrification is typically limited unless size of system is greatly increased</td>
</tr>
<tr>
<td>Biofiltration: Biofilter</td>
<td>• Typically only requires routine maintenance annually</td>
<td>to permit greater oxygen transfer</td>
</tr>
<tr>
<td>performing under the</td>
<td>or seasonally to remove excess vegetation</td>
<td>• Must be maintained to remove invasive and woody vegetation</td>
</tr>
<tr>
<td>absence of free oxygen,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>while oxygen is available</td>
<td></td>
<td></td>
</tr>
<tr>
<td>within nitrate and nitrite.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Two examples of biofilters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>include subsurface flow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>wetlands and trickling filter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>treatment systems.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suspended growth with</td>
<td>• Capable of producing low levels of BOD and TSS</td>
<td>• Requires inspection/maintenance more frequently than other treatment options.</td>
</tr>
<tr>
<td>continuous flow: Also known</td>
<td>• Provides 30-50% total nitrogen removal</td>
<td>• Cost can be higher than other treatment options.</td>
</tr>
<tr>
<td>as aerated tanks, mixing of</td>
<td>• Very low space requirement</td>
<td>• Higher energy usage than attached growth systems.</td>
</tr>
<tr>
<td>treatment flow and bacteria</td>
<td>• Less susceptible to reduced performance during</td>
<td></td>
</tr>
<tr>
<td>occur in suspension with</td>
<td>periods of sporadic use</td>
<td></td>
</tr>
<tr>
<td>constant mixing. If the</td>
<td></td>
<td></td>
</tr>
<tr>
<td>system is allowed to go</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dormant, it may take several</td>
<td></td>
<td></td>
</tr>
<tr>
<td>weeks to become operational.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3. Secondary and Advanced Treatment Technologies (Parten, 2010)
<table>
<thead>
<tr>
<th>System Type and Description</th>
<th>System Advantages</th>
<th>System Limitations</th>
</tr>
</thead>
</table>
| Suspended growth with batch flow: Mixing of treatment flow and bacteria in distinct steps or batches. Treatment typically occurs within different tanks so as to produce an uninterrupted treatment process. | • Provides 40-70% total nitrogen removal
• Very low space requirements
• Timing of each step can be adjusted to enhance treatment | • Sporadic periods of use and nonuse adversely affect system performance
• Requires maintenance and inspection more frequently |

These systems must be designed by a Qualified Professional in conformance with the OWTS Policy. However, the County may adopt local design standards after consultation with the Regional Board. Prior to final approval, the property owner shall be required to record a notice stating that an alternative system has been installed on the property. This “Notice to Property Owner” shall be inherent with the land and will act as construction notice to any future property owner that the property is served by an alternative wastewater treatment system and is therefore, subject to an operating permit with regular maintenance, monitoring, and reporting requirements. A copy of the recorded document shall be provided to the County before final system approval.

4.1.4 Alternate Treatment Systems

The County shall determine if the use of conventional OWTS will be potentially hazardous to public health due to the presence of shallow groundwater, rock, or adverse soil, geologic, or hydrologic conditions. In these instances, an alternative treatment system is necessary. Alternative treatment systems can include secondary or advanced treatment technologies, with the most common being “mound” or “subsurface sand filtration” systems.

Designs for alternate treatment systems must be completed by a Qualified Professional, who shall submit written verification upon completion of the system that the installation is in conformance with the approved design. Properties that use these alternate treatment systems shall be maintained and repaired in accordance with the approved maintenance plan submitted by the Qualified Professional.

Mound systems use pumping to deliver effluent from a septic tank into an above-ground distribution bed and then percolates through mounded sand fill into natural soil. Typical system components include a septic tank, lift pump and wet well, pressurized effluent piping, sand fill mound, distribution bed, top soil and surrounding graded slopes. The lift pump and wet well shall be designed to handle peak flow from the septic tank and never have a pumping capacity less than 20 gallons/minute or have a pump motor rated at less than one-half horsepower.

Mounds cannot be installed on a slope greater than 12 percent. The base of the mound shall be located at least two feet above the highest known seasonal groundwater elevation at the site and two feet above fractured bedrock. The mound may not be steeper than 3 horizontal to 1 vertical. Distribution beds shall be level and located a minimum of five feet above the highest known seasonal groundwater elevation at the site. No part of the system shall be allowed within a 100-year flood plain unless the base of the system is 12 inches above the base flood elevation (BFE defined by the FEMA).
Filtration bed material shall be clean gravel between 0.75-2.5 inches. The bed thickness should include twelve inches of filter material below distribution piping, and two inches of sand above distribution piping. Distribution piping shall distribute effluent uniformly over the entire bed at a rate of not more than 1.5 gallons/square foot/day. Topsoil shall be placed over bed to a depth of twelve inches and placed on the mound sloping sides to a thickness of at least six inches.

Sand filtration systems utilize gravity to deliver effluent from a septic tank to a subsurface gravel distribution bed, and then into a bed of sand to reduce organic matter and pathogenic organisms. This treated stream then percolates into native soil. Typical system components include a septic tank, effluent piping, subsurface distribution bed, sand filtration bed, leaching bed, leach lines, and seepage pits.

Distribution beds shall be designed and constructed in a manner similar to that for mound systems, with the exception of gravity-flow piping instead of pressurized piping. Sand filtration beds shall be at least five feet vertically below and five feet horizontally from the edges of any distribution bed (Ventura County Environmental Health Division, 2012).

4.1.5 Degree of Vulnerability due to Local Hydrogeology
Particularly in the northwestern half of the County, there are key areas with shallow groundwater (i.e., depths of five feet or less) that could pose a threat if contaminated from failing systems. In areas where OWTS could be placed or where OWTS currently exist, these systems should be monitored to ensure that water in these shallow groundwater areas does not become contaminated through future septic failure. Currently, OWTS that are located within a shallow groundwater contour are primarily west of the Santa Ana River within the incorporated areas of Garden Grove, Huntington Beach, Santa Ana, and Westminster. Additionally, while the groundwater contour elevation for the southeastern half of Orange County is not currently mapped, there are known septic systems near the confluence of San Juan and Trabuco Creeks primarily located within the incorporated area of San Juan Capistrano.

For proposed new systems in areas of the County with known shallow groundwater, leach lines and disposal fields shall be constructed to have a minimum five feet separation from the highest known seasonal or permanent groundwater level, and seepage pits shall be installed to have a minimum ten feet separation from the highest known seasonal or permanent groundwater level.

4.1.6 Vulnerable Surface Water
Surface water that serves as a high quality ecological area or downstream receiver of impaired waters due to pathogens or nitrogen should be considered vulnerable, and OWTS installation in these areas poses a greater potential for quality reduction (Figure 14). Such waters include:

- Santiago Reservoir (Irvine Lake), which receives water from approximately two-thirds of the Santiago Creek watershed. Santiago Creek is the primary contributing waterbody along with Limestone Wash, Silverado and Modjeska creeks. Silverado Creek is included as an impaired waterbody due to pathogen accumulation. From its headwaters, 3.45 miles of Silverado Creek is designated as impaired before it enters Santiago Creek. Santiago Creek flows 1.5-2 miles from the confluence with Silverado Creek before it enters Irvine Lake.
• The Santa Ana River from the community of Garden Grove to its tidal prism. The upper portion of the Santa Ana River through its entire course in Orange County to the City of Garden Grove is currently listed as an impaired waterbody for pathogens.

• Serrano Creek is listed on the 303(d) impaired waterbodies list for both pathogens and nitrogen, and it is a tributary to San Diego Creek. After their confluence, San Diego Creek flows into the ecological reserve located in the Upper Newport Bay Ecological Reserve. Peters Canyon Channel enters San Diego Creek 2.5 miles upstream of Newport Bay and is also impaired for pathogens. The occurrence of OWTS in or near these two impaired waterbodies is minimal, according to the 2003 Survey (RBF, 2003).

• Both San Gabriel and Coyote Creeks flow toward the Pacific Ocean on the border between the counties of Orange and Los Angeles. Both of these waterbodies are impaired for pathogens. The lower portions of Morning Canyon and Los Trancos creeks are impaired for pathogens and outlet directly into the ocean. The East Garden Grove Wintersburg Channel drains into Huntington Harbour, both of which are also listed as impaired for pathogens. These waterbodies are bordered by unincorporated areas with known OWTS (RBF, 2003). Seal Beach, adjacent to Huntington Harbour, and is also listed as a 303(d) impaired waterbody for pathogens.
Figure 14. Map Highlighting Ecological Reserves and Impaired Waterbodies for Nitrogen and Pathogens
4.1.7 High Density Areas for OWTS
Based upon the 2003 Septic System Inventory and Assessment (Appendix IV), there are four areas within the unincorporated County that have a high density (17 or more systems per square mile). These four areas are: San Juan Capistrano along San Juan and Trabuco Creeks, unincorporated areas along Upper Arroyo Trabuco Creek surrounding Rancho Santa Margarita, the western third of Yorba Linda, and the unincorporated area immediately north of Tustin. The high density area within Yorba Linda has the greatest system density at 56 OWTS per square mile. Water quality monitoring of surface and ground sources should be included as part of the design criteria for future OWTS to be permitted within these four concentrated areas. Also, OWTS inspections will be completed every five years within these areas to ensure that all functioning systems remain in working order and do not meet the guidelines of a system requiring corrective action under Tier 4.

Californians use about 15 billion gallons of groundwater on a daily basis and over 16 million Californians get at least part of their drinking water from groundwater, from both public supplies and private domestic wells. As of the year 2000, the County was responsible for 6 percent of the domestic well withdrawals in the state at 15.71 million gal/day (California State Water Resources Control Board, April 2011). Given the large use of groundwater for drinking, it is important to take this into consideration when designing OWTS near areas with high domestic well usage. During the building permit application process, the parcel owner should note whether services are provided through a public supply or if they are using a private domestic well. Both water supply lines as well as domestic wells shall be protected by a minimum setback requirement of 150 feet to ensure that drinking water sources are not contaminated with nitrogen or pathogens if an OWTS failure occurs.

4.1.8 Limits to Parcel Size
Currently, regional regulations require that the lot size is a minimum of one-half acre for the installation of a new OWTS (State Water Resources Control Board, 1989). This requirement only applies for new systems or systems that are expanded in the future and therefore, have to apply for a new building permit. In the reassessment of OWTS regulation and associated water quality impacts incurred from areas that have a concentration of these small parcels, a minimum parcel size of one acre will apply to new or expanded systems. All systems that were constructed prior to enforcement of this LAMP will be allowed to continue to operate unless expansion or corrective action is necessary. This increase in minimum lot size will decrease system density in critical areas and lead to a reduction in nitrogen and pathogen loading to County waterbodies if system failure does occur. The average density for any subdivision of property shall not exceed one single-family dwelling unit, or its equivalent, per acre for those units that rely on an OWTS.

For OWTS within the County that pre-date the adopted standards outlined in this document, the County will appropriately document these areas in a comprehensive database and provide education and outreach materials to the property owners of these parcels in order to explain why improving their systems will benefit local water quality and public health. The County will also provide these property owners with a succinct guide that includes new requirements and the effective path to permitting and installing an updated OWTS.
4.1.9 **Areas with OWTS that Predate Adopted Standards**

There are a number of OWTS in use in Orange County that pre-date current standards or in some cases, any standards. These systems are generally located on severely constrained parcels in rural canyon areas. These constraints include one or more of the following conditions:

1. Inadequate area available for the dispersal field,
2. Inadequate setback from drainages or watercourses,
3. Inadequate vertical separation from groundwater or impervious surfaces, and/or
4. Inadequate setback from steep slopes.

When the existing OWTS on these lots fail, it is often not possible to make repairs that meet all current standards. It has been and will remain the policy of the County to be flexible when dealing with systems on lots of record. Accordingly, the repairs are to be made in a manner so that the applicable standards are met to the maximum extent feasible. This approach results in the installation of an OWTS that is often better than the original, keeps the wastewater below the ground surface and protects water quality and public health.

There may be instances when a parcel has no viable area in which to install a competent standard dispersal field. With advances in OWTS technology, depending on the type of site constraint, there may be multiple alternative solutions available. For example, if it were not possible to provide adequate vertical separation between the bottom of the dispersal field and groundwater, the use of supplemental treatment with a shallow drip dispersal field or an advanced wastewater treatment system could be considered.

In almost all situations, it is possible to design an OWTS that will adequately serve the structure and be protective of the environment and public health. However, it is possible that there will be a site that is constrained to the point that no adequate OWTS can be located and installed. In such cases, when all options for subsurface dispersal are exhausted, then a haul away service may be utilized with concurrence of the County’s Building Official (or designee).

In addition to repairs on lots with severe constraints there are other circumstances or conditions that would require the use of supplemental treatment as a mitigation factor in order to perform to a standard equivalent to or better than Tier 1. It also includes any areas identified by the Santa Ana Regional Board or the San Diego Regional Board as having groundwater basins with significant degradation as a result of the use of OWTS. Supplemental treatment shall be required for all new and replacement systems in areas with these designations.

Existing systems that are located within required setback areas will be responsible for working with the County in order to collect water quality data and perform biannual system inspections. Also, if the system owner observes a failure and corrective action is necessary, they are required to notify the County immediately and coordinate corrective action measures in accordance with Tier 4 of the OWTS Policy.
4.2 **Scope of Coverage**
This document serves as a comprehensive program for septic systems in unincorporated Orange County with projected flows never greater than 10,000 gpd. Any systems with projected flows surpassing 10,000 gpd are required to obtain waste discharge requirements from the Santa Ana Regional or the San Diego Regional Board. Traditional OWTS should be used and alternative treatment systems can be employed through a variance process when site conditions are not conducive to traditional approaches. Cesspool storage is not included within these guidelines and will not be permitted within the County. When County staff discover a cesspool in use, the County will contact the property owner and require that the cesspool be replaced with an OWTS which meets current standards. System dispersal should remain underground in order to achieve the greatest breakdown efficiency through soil microorganisms.

4.2.1 **Installation and Inspection Permits**
All OWTS are regulated through Development Services. Development Services is responsible for the documenting, review, and approval of all building permits and systems that are installed throughout the unincorporated County. Additionally, Development Services reviews and approves proposed monitoring programs and annual OWTS inspections.

To ensure that each septic system continues to function properly, it should be inspected at least annually by a Qualified Professional. Inspection reports shall be submitted to Development Services detailing the findings of the inspection within 30 days of its completion, so that routine inspections are tracked and required maintenance can be assured. If upon inspection, corrective action is necessary, these systems will be managed under Tier 4 until corrective actions are complete. After this time, these systems will be reinstated under Tier 2. Any system that uses supplemental treatment must undergo annual monitoring and inspection. Systems with supplemental treatment that do not abide by this active inspection requirement will continue to be managed as a treatment system under Tier 4.

4.2.2 **LAMP Variance Procedures**
All minimum standards and requirements shall be incorporated into the siting, design, and monitoring of new OWTS. However, there may be instances in which a variance can be issued upon review of the site and building permit application such as unique geological, soil type, and unstable landmass conditions as well as unique circumstances on parcels adjacent to impaired waterbodies. A variance from the stated guidelines and requirements shall be minimized to the extent possible and documented through the permit process in the following manner:

1. Provide a statement of hardship that creates the necessity for the variance;
2. Identify the specific criteria from which the variance is being requested, and
3. Include technical justifications by a Qualified Professional which indicates the specific conditions which may exist and/or measures that will be taken that support a finding that the variance will result in no greater risk than associated with compliance with the requirements.

Examples of conditions which exist, or measures which might be taken, include but are not limited to the following:

- Majority (50% by area) of property enclosed within the required minimum setback
• Unstable landmasses within parcel typically in rural canyon areas
• Class D soils throughout entire property
• Evidence of a natural or manmade physical barrier to the movement of OWTS effluent to or toward waterways or groundwater aquifer the feature from which the variance is requested;
• Placement of a manmade physical barrier to the movement of OWTS effluent to or toward the feature from which the variance is requested; and
• Soil replacement with sand filter media to reduce the infiltration rate of the OWTS effluent such that the travel time of the effluent from the absorption field to the physical feature is no less than the travel time through the native soils at the prescribed setback.

The Regional Board has the authority to impose site-specific requirements and conditions on any variance granted. The following conditions are justification for rejecting a variance request:

• No variance shall be issued where the property can accommodate a conforming OWTS.
• No variance shall be issued to mitigate an error in construction involving any element of property improvements.
• No variance shall be allowed solely for economic gain.
• No variance shall be issued if it will result in a setback reduction to an offsite physical feature that does not conform to the minimum setback requirements of this regulation without the written consent of the owner of property containing said feature. Property lines are considered offsite features.
• No variance shall be issued if it reduces the separation to groundwater or bedrock based on the level of treatment in Table 4.
• No variance from the horizontal setback from a well shall be issued unless it also meets the variance requirements of the Board of Examiners of Water Well Construction and Pump Installation Contractors.
• No variance will be issued when a proposed variance for a system repair or upgrade would result in encroachment on minimum distances to physical features on neighboring properties.

Table 4. Minimum Depths to Groundwater and Soil Depth from the Bottom of the Dispersal System (State Water Resources Control Board, 2012)

<table>
<thead>
<tr>
<th>Percolation Rate</th>
<th>Minimum Depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than or equal to 1 minute per inch</td>
<td>Only as authorized in a Tier 2 Local Agency Management Program</td>
</tr>
<tr>
<td>1 to 5 minutes per inch</td>
<td>20 feet</td>
</tr>
<tr>
<td>5 to 30 minutes per inch</td>
<td>8 feet</td>
</tr>
<tr>
<td>30 to 120 minutes per inch</td>
<td>5 feet</td>
</tr>
<tr>
<td>Greater than 120 minutes per inch</td>
<td>Only as authorized in a Tier 2 Local Agency Management Program</td>
</tr>
</tbody>
</table>

If a variance is requested for a system requiring corrective action, the repairs or upgrade shall be no closer to features requiring setbacks than the existing facilities. Variances requesting setbacks no closer than existing setbacks do not have to provide technical justification from a professional engineer or geologist.
4.2.3 **Education and Outreach for OWTS Owners**

An OWTS is a significant investment for property owners and can potentially impact the public when systems fail due to poor or inadequate design, installation, or maintenance. This is especially true for systems that depend on supplemental treatment to achieve treatment goals. Yet, there is a lot of myth and misinformation about how to maintain onsite systems. Education and outreach is vital to supporting an informed public who is better able to assure proper maintenance that reduces the chance of failure.

The first step within this process will be to inform property owners that currently have an OWTS on their property that regulations have changed and could impact future construction should they choose to build a new system or expand upon an existing one. Using the database list of addresses compiled from the 2003 Septic System Inventory and Survey, the County will send a notification letter to each address informing them of the changes and new regulations as a result of LAMP implementation. This letter will indicate that an electronic copy of the LAMP document will be available for review on the County’s webpage along with other helpful information relating to OWTS.

The County will also inform all qualified contractors and maintenance companies of the updated regulations relating to OWTS and provide similar information so that they are notified of these changes. Providing thorough guidance to these companies will allow for homeowners to access information concerning the regulatory changes through multiple sources.

After this notification, the primary method of education and outreach will be a result of direct interaction between County of Orange staff and the public. The County routinely receives and responds to phone calls and office visits by private property owners, consultants, and contractors with questions about the regulations and/or the permit process. As part of the County’s role in the planning process, the intention is to continue to answer questions and provide information to consultants, staff from other departments or agencies, and occasionally directly to decision makers, such as members of the Planning Commission and the Board of Supervisors.

All OWTS permit application forms and instructions will be made available via the Orange County Public Works website. In addition to the forms, the County will post or provide links to the various regulations, such as the applicable sections of the Santa Ana Regional Board’s Basin Plan and the County of Orange OWTS ordinance. Additionally, there is general information on the website about proper OWTS maintenance. The pages will list any current prohibitions that could impact OWTS siting and design, as well as other activities that are restricted due to their potential negative impact on water quality. This webpage will also show a clear and definitive path for new individuals that would like to have an OWTS installed on their property, but are unfamiliar with the local codes and regulations. This webpage will include an easy to follow flow chart showing all of the steps necessary throughout all phases of evaluation, siting, design, permitting, construction, inspection, monitoring, and maintenance.

Stakeholder or community meetings are generally conducted as outreach efforts for significant or important projects such as the writing/implementation of new regulations or for projects such as this LAMP. The number of meetings will vary depending on the nature of the project that is being discussed; however, a general protocol is usually followed.
Anticipated meetings will address project goals and objectives, answer questions and to gather comments and concerns from the attendees. For this project, multiple meetings are likely to be held at various locations around the County. In lieu of a meeting, progress or status reports may be distributed electronically.

If for any reason extensive modifications of the draft LAMP document are necessary due to volume and/or nature of the comments received, another round of meetings will be convened following issuance of a revised draft. The County will look for opportunities to collaborate with other interest groups such as the California Onsite Wastewater Association (COWA), home owners’ organizations, real estate groups and the building industry to provide reliable and accurate information about OWTS functioning and proper maintenance.

As part of the update of the OWTS requirements within its jurisdiction, the County will also ensure that a relevant and practical approach is taken in releasing this information to those that are involved in siting, designing, inspecting, and maintaining OWTS.

4.2.4 Septage Disposal
Domestic septage is the material removed from the primary treatment component or septic tank in an OWTS. This primary treatment component provides detention time for the raw sewage allowing for: 1) separation of solids from liquid, allowing solids to settle into a sludge layer with the tank providing a place for sludge storage, 2) formation and retention of a floating scum layer consisting of oil, grease, fats and other light materials, 3) additional anaerobic digestion of settled solids, and 4) production of a reasonably clarified effluent that leaves the tank for additional treatment by the next treatment component. Domestic septage contains many different substances depending on the type of waste being treated in the OWTS. It contains mostly water, sewage, inorganic materials like grit, and organic fecal matter. Small quantities of polluting substances that are normal to household activity can also be present. Laboratory analysis of domestic septage typically shows low levels of heavy metals and other pollutants (California Wastewater Training and Research Center, 2002).

Several factors can affect the characteristics of domestic septage such as septic tank size, the time interval between pumping (the tank pump out frequency), and the characteristics of the wastewater being treated. The typical chemical and physical characteristics of septage are listed in Table 5.
Table 5. Chemical and Physical Characteristics of Domestic Septage (California Wastewater Training and Research Center, 2002)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Concentration mg/kg dw (dry weight)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsenic</td>
<td>4</td>
</tr>
<tr>
<td>Cadmium</td>
<td>3</td>
</tr>
<tr>
<td>Chromium</td>
<td>14</td>
</tr>
<tr>
<td>Copper</td>
<td>140</td>
</tr>
<tr>
<td>Lead</td>
<td>35</td>
</tr>
<tr>
<td>Mercury</td>
<td>0.15</td>
</tr>
<tr>
<td>Nickel</td>
<td>15</td>
</tr>
<tr>
<td>Selenium</td>
<td>2</td>
</tr>
<tr>
<td>Zinc</td>
<td>290</td>
</tr>
<tr>
<td>Nitrogen as N</td>
<td>2 percent</td>
</tr>
<tr>
<td>Phosphorous as P</td>
<td>Less than 1 percent</td>
</tr>
<tr>
<td>pH</td>
<td>6-7</td>
</tr>
<tr>
<td>Grease</td>
<td>6-12 percent</td>
</tr>
<tr>
<td>Biochemical Oxygen Demand (BOD)</td>
<td>6,480 mg/L</td>
</tr>
<tr>
<td>Total solids</td>
<td>3.4%</td>
</tr>
</tbody>
</table>

The State Water Resources Control Board defines septage for purposes of land application as: waste material removed from a septic tank, cesspool, portable toilet, Type III marine sanitation device, or similar wastewater handling device that has not passed through a municipal wastewater treatment facility (California Wastewater Training and Research Center, 2002 and SWRCB General Order Water Quality Order No.2004-0012-DWQ). This definition is consistent with the federal definition under 40 CFR Part 503 and the Orange County Sanitation’s (OCSD) Wastewater Discharge Ordinance No. OCSD-48 for domestic septage.

The Orange County Sanitation District (OCSD) is the only septage treatment facility reported in the “Survey of Septage Treatment, Handling and Disposal Practices in California” by the California Wastewater Training and Research Center (2002). As of 2017, there were 41 certified septage haulers operating within the County with the ability to use 121 vehicles for hauling. Based on information supplied by the OCSD, these wastehaulers delivered 8,465 loads totaling 18.1 million gallons per year.

4.2.5 Watershed Management Groups

To protect water resources, point and nonpoint source discharges, ground and surface water interactions, and water quality / water quantity relationships must be considered within a watershed context. These complex relationships present considerable challenges to water resource protection programs. The Santa Ana and San Diego Regional Boards, the other RWQCBs, and the SWRCB are responding to these challenges with the Watershed Management Initiative (WMI). The WMI is designed to integrate various surface and groundwater regulatory programs while promoting cooperative, collaborative efforts within a watershed. It is also designed to focus limited resources on key issues.

As is the case in many landscapes, there are differences between watershed and political boundaries in Orange County. Because of these differences, the County and other jurisdictional agencies are increasingly analyzing pollutant concentrations and loadings on a watershed scale in order to protect public health and water quality. Many of these efforts in both the Santa Ana and San Diego Regional Board areas contribute meaningful monitoring data that can be used to track the progress of pollutant
load reduction, or identify areas with continued degradation. The Orange County watersheds program (OC Watersheds), like Development Services, is continuing to develop management strategies on a regional level that strategically preserve, protect, and enhance both the contributing surface waters and receiving coastal areas throughout the County. Increasingly, human markers are being used to track sources such as failing septic systems and leaking sanitary sewers.

As monitoring data are collected and OWTS replacement or new construction applications are received, Development Services will work with OC Watersheds to ensure that monitoring data are made available to all the relevant parties, and that the result of approving the OWTS application will not adversely impact water quality or human health. Working with local environmental health and watershed groups allows for the implementation of local knowledge and expertise throughout Orange County and LAMP documentation, education, and monitoring plans will be shared with these groups. To coincide with the five-year reporting schedule to the Regional Board, information will be provided to each of the watershed groups and environmental health officials on program status, monitoring data, revisions to current plans, and goals and a vision for the future of the program.

4.2.6 Proximity of Collection Systems to New or Replacement OWTS
As noted above in Section 4.1.1, new or replacement OWTS shall not be allowed where public sewer is available. Development Services will maintain contact with all of the public sanitation districts and sewer providers within its jurisdiction regarding the current sewer main layout and the potential to take OWTS out of operation when sewer connections are readily available.

4.2.7 Public Water System Notification Prior to Permitting OWTS Installation or Repairs
Prior to issuing a permit to install an OWTS Development Services shall determine if the system is within 1,200 feet of an intake point for a surface water treatment plant for drinking water, is in the drainage catchment in which the intake point is located, or is located such that it may impact water quality at the intake point such as being upstream of the intake point for a flowing waterbody. Development Services shall provide a copy of the permit application to the owner of the water system of their proposal to install an OWTS within 1,200 feet of an intake point for a surface water treatment. If the owner of the water system cannot be identified, then Development Services will notify the State Board Drinking Water Program.

The OWTS permit application shall include:

- a topographical plot plan for the parcel showing the OWTS components,
- the property boundaries,
- proposed structures,
- physical address and name of property owner,
- estimated wastewater flows,
- intended use of proposed structure generating the wastewater,
- soil data, and
- estimated depth to seasonally saturated soils.
The public water system owner shall have 15 days from receipt of the permit application to provide recommendations and comments to Development Services.

4.2.8 Policies for Dispersal Areas within Setbacks of Public Wells and Surface Water Intakes

The setback for an OWTS is a minimum of 150 feet down-gradient from a public water well where the depth of the effluent dispersal system does not exceed ten feet. Where the effluent dispersal system is within 1,200 feet from a public water systems’ surface water intake point, within the catchment of the drainage, and located such that it may impact water quality at the intake point such as upstream of the intake point for flowing waterbodies, the dispersal system shall be no less than 400 feet from the high water mark of the reservoir, lake or flowing waterbody.

Where the effluent dispersal system is located more than 1,200 feet but less than 2,500 feet from a public water systems’ surface water intake point, within the catchment of the drainage, and located such that it may impact water quality at the intake point such as upstream of the intake point for flowing waterbodies, the dispersal system shall be no less than 200 feet from the high water mark of the reservoir, lake or flowing waterbody.

4.3 Minimum Local Agency Management Responsibilities

Development Services will be overseeing, administering, and compiling data regarding new, replacement or abandoned OWTS (Table 6). It is responsible for notifying all current OWTS users of the new regulations upon approval of this LAMP, and assisting applicants for new systems through the OWTS permitting process. Once all information is received for permit review, Development Services can approve the permit or discuss the need for a variance to the permit, if appropriate. Upon permit approval, Development Services will send the approved building permit to the applicant along with an updated list of licensed contractors operating within the County.

Once the new OWTS is installed, Development Services is responsible for ensuring that monitoring data are collected at selected OWTS and communicating with landowners that are collecting their own water quality samples. The monitoring protocol and results will be kept within the OWTS database and used to generate annual reports to the Santa Ana and San Diego Regional Boards. The County will serve as the unifying body that houses all data as it pertains to water quality and OWTS discharge.

In the event that a complaint is received for an OWTS or there is a system in need of correction, Development Services will document this occurrence and investigate the complaint. All systems that are in need of correction are outside the scope of this LAMP and shall follow the Tier 4 Guidelines of the OWTS Policy (Appendix I).

<table>
<thead>
<tr>
<th>Department</th>
<th>Role(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OCPW/Development Services/Permitting</td>
<td>- Intake permit application</td>
</tr>
<tr>
<td></td>
<td>- Permit issuance</td>
</tr>
<tr>
<td>OCPW/Development Services/Building & Safety</td>
<td>- Review and approve the design documentation</td>
</tr>
<tr>
<td>Department</td>
<td>Role(s)</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>OCPW/Development Services/Planning</td>
<td>Review and approve zoning code compliance</td>
</tr>
<tr>
<td>OCPW/Development Services/Inspection</td>
<td>Conduct field inspections</td>
</tr>
<tr>
<td>OCPW/Environmental Resources/OC Watersheds</td>
<td>Monitoring, outreach, coordination, reporting</td>
</tr>
<tr>
<td>OCPW/Development Services/Code Enforcement</td>
<td>Ensure code compliance</td>
</tr>
</tbody>
</table>

4.3.1 **Permit Records**
The OWTS permit records will be held by Development Services in the newly created database. The historic building permit and known OWTS information will be incorporated into this database by 2023. Newly proposed, replacement, or failed systems will be entered into the database as they are received. Within this database, detailed information and justification will be recorded if there is a variance from the OWTS guidelines. Permit records will be held in an electronic format for as long as possible in order to track long-term maintenance and performance of each system. Once a system is no longer in use, it will be phased out of use and filled in onsite. This action will be recorded in the database and held indefinitely in the event that a property transfers ownership, or a complaint is registered near the abandoned system.

The purpose of a transfer of title inspection is to verify the adequacy of the existing OWTS at the time of property transfer (i.e., sale of property), if it was previously approved and permitted, or to assure that an unapproved OWTS will be permitted and approved within one year of the property transfer. At the time of property transfer, properties with an approved OWTS will need to pass another inspection to ensure that the OWTS continues to operate properly. If the OWTS does not pass this inspection, the property owner will be required to obtain a repair permit to correct deficiencies or obtain an agreement signed by the new owners acknowledging they have accepted responsibility for repairing the identified system.

4.3.2 **Water Quality Assessment Program**
Throughout the Santa Ana Regional Board’s jurisdiction, active water quality monitoring and assessment data are collected in order to ensure water quality and public health. This dataset allows the County of Orange in assisting organizations to pinpoint areas where pollutant loading is a concern and move toward finding the sources.

The purpose of this LAMP is to provide the standards and policies for the installation, operation, maintenance, and removal of OWTS within the County. The standards and policies will help maintain water quality within the surface waters, groundwater, and along the coastal waters of Orange County while providing protection of public health. The water quality monitoring program will provide a tool to track impacts from OWTS effluent and the effectiveness of the policies included in this LAMP.
Based upon the OWTS inventory completed by RBF Consultants, the following streams and lakes flow below or through high density OWTS areas (see also Section 2.1):

- Silverado Creek
- Irvine Lake
- Aliso Creek
- Arroyo Trabuco
- Serrano Creek

Many of these waterbodies flow out of unincorporated areas and into areas that have functioning sewer systems. While the number of OWTS are relatively low in the unincorporated County areas and the percentage believed to be failing is likely extremely small, attention will be paid to nitrogen and pathogen indicator loading in these areas coupled with the use of human markers, where appropriate.

4.3.2.1 Domestic Well Sampling and New Well Development

The State of California does not regulate water quality in private domestic wells, but sampling of private wells is imperative to identify elevated nitrate and pathogen levels that could be caused by OWTS requiring corrective action. Domestic wells should be sampled on an annual basis for a minimum of coliform bacteria and nitrate. These samples must be analyzed by an accredited laboratory in order to ensure quality control of the testing results. A list of accredited laboratories is held by the SWRCB with specific references for each county (California State Water Resources Control Board, April 2011). Annual sampling of wells will become part of the OWTS permit requirements in cases where a well is on the same property as an OWTS. In this instance, the results of the annual testing will be required to be sent to Development Services within 90 days of receiving the test results for entry into the OWTS database. If nitrate and pathogen indicator concentrations are present at elevated levels, further action will be required to investigate the source and, in turn, may cause the OWTS identified to be regulated under Tier 4 and require corrective action.

The Orange County Well Ordinance requires that a permit be obtained prior to the construction or destruction of any well, including monitoring wells. In unincorporated Orange County areas and in twenty-nine of thirty-four cities, the Orange County Health Officer is responsible for enforcement of the Well Ordinance (Orange County Environmental Health, 2015). Once a permit is received for installation of a domestic or monitoring well, the Environmental Health Division will notify Development Services of the permit application. Development Services will share the information it has on OWTS placement and any known OWTS failures within the last ten years with the Environmental Health Department so that they can use this information during the permit application review process.

4.3.2.2 Water Quality of Public Water Systems

For unincorporated areas within Orange County, public water is provided and treated by a range of cities, publicly-held special water districts, and private purveyors. A significant portion of this retail water comes from groundwater managed by OCWD and the balance from imported water. The OCWD services the Santa Ana River Basin, which aligns approximately with the northwestern half of the County and the Santa Ana Regional Board’s jurisdiction. Within OCWD’s jurisdiction, water quality samples are
collected from approximately 1,500 locations, taking more than 20,000 samples and conducting 400,000 analyses on an annual basis. These samples undergo testing for nearly 500 chemicals, which far exceeds the state minimum requirement of 103 (Orange County Water District, 2013). This proactive approach allows for the OCWD to identify constituents above and beyond the state’s requirements to aid in future planning and management of this public resource.

The central portion of the County is serviced by the Irvine Ranch Water District (IRWD) which provides drinking water, wastewater collection, and urban runoff treatment. Water quality staff with the IRWD collects samples from nearly 100 sites on an annual basis and conduct over a quarter of a million laboratory tests every year. The results of these tests are compiled into an annual water quality report that is available on the IRWD website (Irvine Ranch Water District, 2015).

The remaining water districts in the southern portion of the County rely principally on imported water, although some groundwater development and stormwater harvesting is underway in the San Juan Basin.

Development Services will review water quality reports of public waters and discern any relevant relationships between a change in public water quality and potential impacts from OWTS within the County. While unlikely, if there is a noticeable correlation between water quality and OWTS development, the County will contact the appropriate water district to further investigate the issue until more data can be collected and the issue resolved.

4.3.2.3 Beach Water Quality Sampling

Beaches within Orange County and along the southern California coast attract local populations and visitors from outside the region to enjoy the many recreational opportunities they provide. Given the increase in urbanization near these beach areas and proximity of multiple discharge points from several contributing waterbodies upstream, there are relevant concerns about contamination and its effect on public health. These issues gained larger appreciation and awareness in 1999 after several repeated closures of Huntington Beach due to elevated fecal indicator bacteria. While monitoring had been performed for several decades, this issue, as well as State Law AB411, provided a focus for monitoring beach water quality in order to protect public health.

A coordinated beach monitoring program conducted by the Orange County Health Care Agency, Orange County Stormwater Program, and Orange County Sanitation District regularly monitors a large number of beach areas. Heal the Bay converts weekly beach monitoring data into a letter report card in which grades are assigned accordingly to water quality measurements, these grades are made available on their website (Figure 15 and Figure 16). This information can be used by beachgoers to quickly and easily assess potential health risk. Most beaches in the northwestern half of Orange County consistently have an “A” grade during dry weather conditions (inset map in Figure 15 and 16) and the proportion of assessments resulting in an “A” grade reached 90 percent in 2005 and has remained at that level since then (Orange County Stormwater Program, 2014).

In contrast to the progress achieved in maintaining clean beaches during dry weather conditions, significant challenges remain during wet weather. Channel flows during and immediately after wet
weather storms are substantially higher and beaches are constantly inundated with loading from bacteria and other pollutants. As a result of these characteristics of wet weather flow, the Orange County Health Care Agency issues routine health advisories recommending that the public stay out of the ocean during and for 72 hours after storms in order to avoid contact with potentially contaminated discharge (County of Orange Health Care Agency, n.d.).

In managing of the OWTS program, the County will communicate openly with all agencies that are collecting and analyzing water quality data as it pertains to nitrogen and pathogen content. If a reported OWTS failure occurs near a beach sampling site, the County will report this information to the pertinent agency so it can be documented along with other monitoring data. Particular focus will be given to sampling areas that are along the coastline in impaired waterbodies and impaired areas that are immediately upstream of coastal receiving waters.
Figure 15. Map of Northwestern Coast of Orange County and Beach Sampling Locations (Report of Waste Discharge, October 2013)
Figure 16. Map of Southwestern Coast of Orange County and Beach Sampling Locations (Orange County Stormwater Program, 2014)
4.3.2.4 Receiving Water Sampling Related to NPDES Permits
There are separate National Pollutant Discharge Elimination System (NPDES) Permits administered by the Santa Ana and San Diego Regional Boards within Orange County. The Orange County Stormwater Program is a cooperative regulatory partnership between the County of Orange, the cities within Orange County, and the Orange County Flood Control District, which operate an interconnected municipal storm drain system which discharges stormwater and urban runoff pursuant to a NPDES Municipal Stormwater Permit. The permit requires the permittees to effectively prohibit non-stormwater discharges to the storm drain system, and implement controls to reduce the discharge of pollutants in stormwater to the maximum extent practicable (Orange County Public Works; Orange County Watersheds, 2013).

4.3.2.5 Data Contained in California Water Quality Assessment Database
The California Water Quality Assessment Database (CalWQA) is an online database that enables the state of California to accurately report and interpret water quality conditions and provide a clear picture of existing water quality in the state (California Water Quality Assessment Database, 2012). This database hosts a vast array of water quality data for the entire state and can be used by Development Services in their assessment of OWTS and potential water quality impacts. As new building or public well permit applications are sent to the County, these sites will be uploaded into CalWQA once the permits are approved and water quality data are submitted. This statewide tool will help to assist the County in tracking water quality data for each OWTS and also broaden the utility of this water quality data to other members of CalWQA.

4.3.2.6 Groundwater Sampling Related to GAMA Program
The Groundwater Ambient Monitoring and Assessment (GAMA) Program is California’s comprehensive groundwater quality monitoring program. The GAMA Program collects data by comprehensively testing groundwater sources for naturally occurring and man-made chemicals. The GAMA Program compiles these test results with existing groundwater quality data from several agencies into a publicly accessible information system. There are active monitoring sites within Orange County and a map of these locations can be found using the GAMA GeoTracker tool available on the State Board Website: http://www.waterboards.ca.gov/gama/geotracker_gama.shtml.

When data are collected near OWTS for water quality sampling, the County will provide this information to the Santa Ana and San Diego Regional Boards in the annual report.

4.4 Minimum Setbacks
Minimum horizontal setbacks are necessary to reduce water quality impairment risks and potential negative public health impacts. These minimum setbacks should be met to the greatest extent practicable when replacing or building a new OWTS. In the event that these requirements cannot be met, a variance must be approved by the County of Orange and Regional Board before construction occurs. Minimum horizontal setbacks from any OWTS treatment components and associated dispersal systems are listed in Table 7.
Table 7. Minimum Setback Requirements for OWTS Treatment Components and Associated Dispersal Systems (State Water Resources Control Board, 2012)

<table>
<thead>
<tr>
<th>Setback Component</th>
<th>Minimum Distance</th>
<th>Minimum Distance Detail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Property Lines and Structures</td>
<td>5 feet</td>
<td>Structures include any building permanently affixed to ground or building foundation.</td>
</tr>
<tr>
<td>Water Wells and Monitoring Wells</td>
<td>100 feet</td>
<td>May be less if regulatory or legitimate data requirements necessitate monitoring wells within 100 feet.</td>
</tr>
<tr>
<td>Unstable Land Mass (subject to earth slides)</td>
<td>100 feet</td>
<td>Earth slide potential should be identified by a registered engineer or geologist. Setback may be within 100 feet if recommended in a geotechnical report prepared by a Qualified Professional.</td>
</tr>
<tr>
<td>Flowing Surface Water and Springs</td>
<td>100 feet</td>
<td>Edge of water is the high water mark for lakes and reservoirs. In tidally influenced waterbodies, the high water mark is the mean high tide line. Setback may be within 100 feet if recommended in a hydrogeological report prepared by a Qualified Professional.</td>
</tr>
<tr>
<td>Vernal Pools, Wetlands, Lakes, Ponds, or Other Surface Water</td>
<td>200 feet</td>
<td>Edge of water is the high water mark for lakes and reservoirs. In tidally influenced waterbodies, the high water mark is the mean high tide line. Setback may be within 100 feet if recommended in a hydrogeological report prepared by a Qualified Professional.</td>
</tr>
<tr>
<td>Private Domestic Water Lines & Wells (new or existing)</td>
<td>150 feet</td>
<td>Effluent dispersal system depth equals 10 feet or less.</td>
</tr>
<tr>
<td></td>
<td>200 feet</td>
<td>Effluent dispersal system depth equals more than 10 feet.</td>
</tr>
<tr>
<td></td>
<td>2-year travel time for microbiological contaminants</td>
<td>Effluent dispersal system depth exceeds 20 feet and is within 600 feet of a public water well. A Qualified Professional shall conduct this evaluation. Setback may never be less than 200 feet.</td>
</tr>
<tr>
<td>Public Domestic Water Lines</td>
<td>25 feet</td>
<td>Setback distance of 25 feet is minimum required for siting of tank, disposal field, and seepage pit (should one be required).</td>
</tr>
<tr>
<td>Public Water System Intake</td>
<td>400 feet</td>
<td>Measured from the high water mark of the reservoir, lake or flowing waterbody. The effluent dispersal system is within 1,200 feet of the public water system intake point, within the catchment of the drainage, and located in an area where it may impact water quality.</td>
</tr>
<tr>
<td></td>
<td>200 feet</td>
<td>Measured from the high water mark of the reservoir, lake or flowing waterbody. The effluent dispersal system is more than 1,200 feet but less than 2,500 feet from the public water system intake point, within the catchment of the drainage, and located in an area where it may impact water quality.</td>
</tr>
</tbody>
</table>

4.4.1 Special Provisions Regarding Minimum Setback Requirements
Within Orange County, there are many unincorporated areas where existing OWTS are located within the minimum setback requirements, including the Silverado Canyon area. For those systems that are located within the minimum setback requirements, the owner may apply for a variance in order to expand on an existing system or build a new OWTS.
For replacement OWTS that do not meet the horizontal separation requirements in Table 7, the replacement OWTS shall meet the horizontal separation to the greatest extent practicable. In such case, the replacement OWTS shall utilize supplemental treatment and other mitigation measures, unless the permitting authority finds that there is no indication that the previous system is adversely affecting the public water source, and there is limited potential that the replacement system could impact the water source based on topography, soil depth, soil texture, and groundwater separation. A description of the minimum setbacks proposed shall be included in the OWTS permit application.

For new OWTS installed on parcels of record existing before May 13, 2013 which is the effective date of the OWTS Policy, that cannot meet the horizontal separation requirements, the OWTS shall meet the horizontal separation to the greatest extent practicable and shall utilize supplemental treatment for pathogens as specified in Section 10.8 of the OWTS Policy (Appendix I) and any other mitigation measures required by the County of Orange or the Regional Board.

If a variance is not granted, the user can propose alternate treatment, siting, or changes in operational criteria for the proposed OWTS along with proposed minimum setback distances. The plans and designs for alternative treatment systems must be completed by a Qualified Professional in conformance with the OWTS Policy. These proposed alterations will be reviewed by the County of Orange and the Regional Board before approval to proceed with OWTS installation.

4.4.2 Notification to Additional Parties

Once a permit is received for a proposed OWTS, the County will send notification to the Division of Drinking Water (DDW) when applicable, and to any water system owners within the minimum horizontal setbacks. The notification shall contain the following items:

- Estimated wastewater flows
- Intended use of the proposed structure generating the wastewater
- Soil data
- Estimated depth to seasonally saturated soils
- Topographical plot plan for the parcel showing the OWTS layout, property boundaries, proposed structures, physical address, and the name of the property owner

4.5 Basin Plans

Waterbodies within Orange County are regulated through both the San Diego and Santa Ana Basin Plans. These Basin Plans identify ground and surface waters and establish, for each, its respective beneficial uses and water quality objectives. The following draft water quality objectives are currently being finalized by the SWRCB, once adopted will be integrated to both the San Diego and Santa Ana Basin Plans, as appropriate.

- **Groundwater:** Total coliform numbers shall not exceed 2.2 organism/100 mL median over any seven-day period in sources designated municipal as a result of controllable water quality factors.
- **Bays and Estuaries**: A six-week rolling geometric mean of enterococci not to exceed 30 colony forming units (cfu) per 100 milliliters (cfu/100 mL), calculated weekly, and a statistical threshold value of 110 cfu/100 mL not to be exceeded more than 10 percent of the time, calculated monthly. U.S. EPA recommends using U.S. EPA Method 1600 (U.S. EPA, 2006) or other equivalent method to measure culturable enterococci.

- **Lakes and Streams**: For *E. coli* the bacteria water quality objective for all waters, except Lake Tahoe, where the salinity is less than 10 parts per thousand (ppth) 95 percent or more of the time during the calendar year is: a six-week rolling geometric mean of *Escherichia coli* (*E. coli*) not to exceed 100 colony forming units per 100 milliliters (cfu/100 mL), calculated weekly, and a statistical threshold value of 320 cfu/100 mL not to be exceeded more than 10 percent of the time, calculated monthly. For enterococci the bacteria water quality objective for all waters where the salinity is equal to or greater than 10 ppth 95 percent or more of the time during the calendar year is: a six-week rolling geometric of enterococci not to exceed 30 cfu/100 mL, calculated weekly, with a statistical threshold value of 110 cfu/100 mL not to be exceeded more than 10 percent of the time, calculated monthly.

- Nitrate-nitrogen concentrations shall not exceed 45 mg/L (as NO$_3$) or 10 mg/L (as N) in inland surface waters designated as Municipal and Domestic Supply (MUN) as a result of controllable water quality factors.

Table 8 represents all 303(d) impaired waterbodies that are affected by pathogen indicators or nitrogen contamination within the County. These impaired waterbodies are also mapped in Figure 17 below. Specific setback requirements for OWTS include 600 feet on either side of the waterbody to prevent further impairment to these sites through system failure. These areas of impairment and details on setback requirements are discussed above in Section 4.4. There are no OWTS Discharge Prohibition Areas currently listed for the County in the OWTS Policy (State Water Resources Control Board, 2012).

Table 8. List of 303(d) Impaired Waterbodies in Orange County, California

<table>
<thead>
<tr>
<th>Region Number and Name</th>
<th>Waterbody</th>
<th>Impairment</th>
<th>TMDL Completion Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>8, Santa Ana</td>
<td>Los Trancos Creek (Crystal Cove Creek)</td>
<td>Pathogens</td>
<td>2017</td>
</tr>
<tr>
<td>8, Santa Ana</td>
<td>Morning Canyon Creek</td>
<td>Pathogens</td>
<td>2015</td>
</tr>
<tr>
<td>8, Santa Ana</td>
<td>Silverado Creek1</td>
<td>Pathogens</td>
<td>2017</td>
</tr>
<tr>
<td>8, Santa Ana</td>
<td>Peters Canyon Channel</td>
<td>Pathogens</td>
<td>2017</td>
</tr>
<tr>
<td>8, Santa Ana</td>
<td>Santa Ana River, Reach 21</td>
<td>Pathogens</td>
<td>2019</td>
</tr>
<tr>
<td>8, Santa Ana</td>
<td>Seal Beach</td>
<td>Pathogens</td>
<td>2017</td>
</tr>
<tr>
<td>8, Santa Ana</td>
<td>Serrano Creek</td>
<td>Pathogens, Nitrogen</td>
<td>2017</td>
</tr>
<tr>
<td>8, Santa Ana</td>
<td>Huntington Harbour</td>
<td>Pathogens</td>
<td>2017</td>
</tr>
<tr>
<td>8, Santa Ana</td>
<td>East Garden Grove Wintersburg Channel</td>
<td>Nitrogen</td>
<td>2017</td>
</tr>
</tbody>
</table>

Figure 17. Map of 303(d) Listed Impaired Waterbodies in Orange County, California for Nitrogen and Pathogens
4.5.1 TMDLs for Impaired Waterbodies
A TMDL sets a limit for the total amount of a particular pollutant that can be discharged to a waterbody. This limit ensures that pollutant loads from all sources will not impair the designated beneficial uses of the waterbody. The timeframe for compliance with TMDL targets varies, but may take many years. A TMDL will often include a compliance schedule, identifying interim and final targets.

Section 303(d) of the CWA requires states to establish a listing of all impaired waterbodies and to rank those waterbodies according to priority for TMDL development. This list, called the 303(d) List, is supposed to be updated every two years (although currently behind schedule) and is developed by the Regional and State boards, and then approved by the USEPA. Currently, there are no TMDLs for the impaired waterbodies listed on the 303(d) list included in Table 8. Once a TMDL is adopted, the TMDL implementation plan will supersede the requirements of the APMP detailed in Section 4.6. Unless a TMDL is modified to include actions for OWTS, the OWTS located near an impaired waterbody are not required to take any further actions when there is an approved TMDL addressing the impairment and no load allocation is assigned to the OWTS.

The Regional Board must adopt TMDLs for pathogens for the waterbodies identified on the 303(d) list by the completion dates specified in Table 8. If a TMDL is not adopted by the Regional Board within two years of its specified completion date, the OWTS Policy coverage expires and the Regional Board will be responsible for corrective action and issuing site-specific waste discharge requirements, non-site-specific general waste discharge requirements, and waivers of waste discharge requirements.

For all new or replacement OWTS permitted following the initial listing of impaired waters in Table 8, but not yet included under an adopted TMDL implementation plan, must utilize supplemental treatment, meet performance requirements for nitrogen and pathogen indicator impairments, and comply with applicable requirements outlined in the LAMP APMP (Section 4.6), including setback requirements.

4.5.1.1 Local TMDLs for Orange County
The following TMDLs have been established or are being developed for Orange County waterbodies.

South County Coastal Areas: The Beaches and Creeks TMDLs define the allowable indicator bacteria loads from the storm drain system that will still allow attainment of water quality standards (Figure 18). The modeled reductions required to meet these loads in south Orange County range from 73-99 percent during dry weather to 91-100 percent during wet weather, depending on the location and indicator bacteria species. A 22 percent wet weather allowable exceedance frequency of a TMDL number target is also included in the TMDLs to account for natural sources of bacteria. Compliance with the TMDLs must occur by April 4, 2021 with a possible extension to April 4, 2031 for wet weather load reductions (Orange County Public Works, n.d.).

Dana Point Harbor (Baby Beach): In June 2008, the San Diego Regional Board adopted indicator bacteria TMDLs for Baby Beach in Dana Point Harbor. The TMDLs require 82.7-96.2 percent (dependent upon specific indicator bacteria) wasteload reductions from the storm drain system. Dry weather reductions
must occur by September 2014 and wet weather reductions must occur by September 2019 (Orange County Public Works, n.d.).

Newport Bay/San Diego Creek: Excess nutrients flowing into Newport Bay, primarily from San Diego Creek, have resulted in seasonal algae blooms that have impaired the Bay’s environment. In 1998, the Santa Ana Regional Board adopted a TMDL for nutrients in the Newport Bay watershed to decrease the mass of nutrients flowing into the Bay, thus restoring and protecting its beneficial uses. The TMDL establishes maximum nutrient loads (targets) at levels similar to those observed in the 1970s, prior to observations of eutrophic conditions (Table 9). Thus, if these targets are met, signs of eutrophication in the Bay should diminish (Orange County Public Works, n.d.).

Table 9. Nutrient-Related Number Water Quality Objectives for San Diego Creek and Newport Bay (Orange County Public Works, n.d.)

<table>
<thead>
<tr>
<th>Waterbody</th>
<th>Parameter</th>
<th>Water Quality Objective</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Inland Surface Waters</td>
<td>Dissolved Oxygen</td>
<td>5 mg/L</td>
<td>Basin Plan 1995</td>
</tr>
<tr>
<td></td>
<td>Ammonia</td>
<td>Variable</td>
<td>U.S. EPA 1999</td>
</tr>
<tr>
<td></td>
<td>pH</td>
<td>6.5-8.5</td>
<td>U.S. EPA 1999</td>
</tr>
<tr>
<td>San Diego Creek Reach 1</td>
<td>Total Inorganic Nitrogen</td>
<td>13 mg/L</td>
<td>Basin Plan 1995</td>
</tr>
<tr>
<td>San Diego Creek Reach 2</td>
<td>Total Inorganic Nitrogen</td>
<td>5 mg/L</td>
<td>Basin Plan 1995</td>
</tr>
<tr>
<td>Upper Newport Bay</td>
<td>Ammonia</td>
<td>Variable</td>
<td>U.S. EPA 1989</td>
</tr>
<tr>
<td></td>
<td>pH</td>
<td>7-8.6</td>
<td>Basin Plan 1995</td>
</tr>
</tbody>
</table>

In 1999 the Santa Ana Regional Board adopted a TMDL for fecal coliform in Newport Bay. Given the complexity of the problem, the paucity of relevant data on bacteria sources and fate, the expected difficulties in identifying and implementing appropriate control measures and uncertainty regarding the nature and attainability of the shellfishing beneficial use in the Bay, a prioritized, phased approach to the control of bacterial quality was developed (Table 10). The TMDL is concentration based, and requires attainment of water contact recreation standards no later than December 30, 2014 and with shellfish standards no later than December 30, 2019 (Orange County Public Works, n.d.).
Table 10. Total Maximum Daily Load (TMDL), Waste Load, Allocations, and Load Allocations for Fecal Coliform in Newport Bay (State Water Resources Control Board, 1989)

<table>
<thead>
<tr>
<th>TMDL for Fecal Coliform in Newport Bay</th>
<th>Waste Load Allocations for Fecal Coliform in Urban Runoff, including stormwater, Discharges to Newport Bay</th>
<th>Load Allocations for Fecal Coliform in Agricultural Runoff, including Stormwater, Discharges to Newport Bay</th>
<th>Load Allocations for Fecal Coliform from Natural Sources in all Discharges to Newport Bay</th>
<th>Waste Load Allocations for Vessel Waste</th>
</tr>
</thead>
<tbody>
<tr>
<td>As soon as possible but no later than December 30, 2014</td>
<td>In Effect</td>
<td>In Effect</td>
<td>0 MPN/100 mL No discharge.</td>
<td></td>
</tr>
<tr>
<td>5 Sample/30-day geometric mean less than 200 organisms/100mL, and not more than 10% of the samples exceed 400 organisms/100mL for any 30-day period.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>As soon as possible but no later than December 31, 2022</td>
<td>In Effect</td>
<td></td>
<td>0 MPN/100 mL No discharge.</td>
<td></td>
</tr>
<tr>
<td>Monthly Median less than 14 MPN/100mL, and not more than 10% of the samples exceed 43 MPN/100mL for those waters that support shellfish harvesting (SHEL beneficial use)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 18. South Orange County Indicator Bacteria Impaired Beaches and Creeks (Orange County Public Works, n.d.)
4.6 **Advanced Protection Management Program for Impaired Areas**

The APMP is the minimum required management program for all OWTS located near a waterbody that is listed as impaired due to nitrogen or pathogen indicators pursuant to Section 303(d) of the CWA. Local agencies are authorized to implement APMPs in conjunction with an approved LAMP or, if there is no approved LAMP, Tier 1 of the OWTS Policy (Appendix I). Per the State Board’s OWTS Policy, OWTS which are located near impaired waterbodies may be addressed by a TMDL and its associated implementation program, or special provisions contained in a LAMP. The County of Orange has chosen to include an APMP which has similar requirements to Tier 3 of the OWTS Policy.

The geographic area for each waterbody’s APMP is defined by the applicable TMDL, if one has been approved. When there is not an approved TMDL which defines the geographic area, it will be 600 linear feet (in the horizontal map direction) from a waterbody listed on the 303(d) list (Table 8), where the edge of the waterbody is the:

- Natural or levied band for creeks and rivers.
- High water mark for lakes and reservoirs.
- High tide line for tidally influenced water bodies, as appropriate.

For impaired waterbodies that do not have an approved TMDL, the APMP will provide guidance in conjunction with the approved LAMP. Due to the existence of impaired waters within the County without an approved TMDL, this APMP has been developed and implemented in accordance with Section 10.0 of the OWTS Policy (2012). Should the OWTS be located on an impaired waterbody that meets the minimum criteria for delisting and, in turn, be removed from the 303(d) list, new or replacement systems shall meet the minimum LAMP requirements to the greatest extent practical.

The Regional Board must adopt TMDLs for the impaired waterbodies identified on the 303(d) list in accordance with the dates specified in Table 8. Should the Regional Board not adopt a TMDL within two years of the specified date, coverage provided by the OWTS Policy’s waiver of waste discharge requirements will expire. This applies to any OWTS which has any part of its dispersal system discharging within the geographic area of an APMP. The Regional Board will then be responsible for the following, with regard to these OWTS:

- Corrective action, and
- Issuing:
 - Waste discharge requirements (site specific),
 - General waste discharge requirements (non-site specific), and
 - Waivers of waste discharge requirements.

The County intends to collaborate with the Regional Boards by sharing any information pertaining to the impairment, providing advice on potential remedies, and regulating OWTS to the extent that its authority allows for the improvement of the impairment.
4.6.1 OWTS installed within an APMP

All new or replacement OWTS permitted after the date that the waterbody is initially listed in Attachment 2 of the OWTS Policy (2012 or as subsequently revised) that have any discharge within the geographic area of an APMP shall meet the following requirements:

- Supplemental treatment requirements when treating nitrogen and pathogens (State Water Resources Control Board, 2012):
 - Effluent from supplemental treatment components designed to reduce nitrogen shall be certified by the National Sanitation Foundation (NSF), or other approved third-party tester to meet a 50 percent reduction in total nitrogen when comparing the 30-day average influent to the 30-day average effluent.
 - Where a drip-line dispersal system is used to enhance vegetative nitrogen uptake, the dispersal system shall have at least six inches of soil cover.
 - Supplemental treatment components designed for pathogen reduction shall provide sufficient pretreatment of the wastewater so that effluent from the supplement treatment components does not exceed a 30-day average TSS of 30 mg/L, and shall further achieve an effluent fecal coliform bacteria concentration less than or equal to 200 MPN per 100 ml.
 - The minimum soil depth to the anticipated high level of groundwater below the bottom of the dispersal systems shall not be less than three feet. All dispersal systems shall have at least twelve inches of soil cover.

- Every effort must be made to comply with the setback requirements as stipulated within this LAMP, and
- Ensure compliance with any applicable LAMP requirements to the greatest extent practical.

All OWTS installed within an APMP require an annual permit, monitoring, and maintenance. The owner of the OWTS shall also connect to a municipal sewer system as soon as it becomes available and follow the appropriate abandonment procedures for the OWTS. Furthermore, the owner or operator should monitor the OWTS in accordance with the operation and maintenance manual for the OWTS and in accordance with the County of Orange and the Regional Board requirements. An OWTS installed within an APMP must be equipped with a visual or audible alarm, as well as a telemetric alarm, which alerts the owner and the person operating, monitoring, and maintaining the OWTS (service provider) in the event of system malfunction. If the installation of a telemetric alarm is not possible, the owner will inspect the system at least monthly while the system is in use.

An OWTS installed near waterbodies impaired for pathogens will be inspected quarterly by a service provider for proper operation, unless a telemetric monitor system is capable of continuously assessing the operation of the disinfection system. Testing of the wastewater flowing from the supplemental treatment components that perform disinfection will be sampled after the treatment components and before the dispersal system. Testing will be conducted quarterly based on analysis of pathogen indicator bacteria (e.g., *E. coli*), using the minimum detection limit established for the method.

All effluent samples must include the geographic coordinates and be analyzed by a SWRCB certified laboratory.
5. Annual Reporting
The County of Orange will compile the following data on an annual basis and submit to the Regional Board:

1. Complaints regarding OWTS and a follow-up report corresponding to the County of Orange response to this complaint and resolution, if applicable.
2. The quantity of new permits issued for OWTS, variances from LAMP guidelines, inspections of existing OWTS, and known failed OWTS.
3. Information will be collected during the permit process as to whether applicant for new or replacement OWTS is supplied by public water supply or domestic well, this information will be included in the annual report.
4. Any updates to the listing of certified contractors for OWTS installation, monitoring, and maintenance.
5. Status report on updates to OWTS inventory database.
6. Status report on database of OWTS that pre-date the adopted standards outlined in this document, and summary of outreach activities to the property owners of those parcels.
7. Status report on outreach to inform all OWTS property owners, and qualified contractors and maintenance companies involved in siting, designing, inspecting, and maintaining OWTS, of the LAMP requirements.
8. Water quality monitoring summaries, as described below in Section 5.1.
9. Status report on cesspool phase out. Cesspools will be phased out as new applications are received for OWTS or if found to be failing through monitoring and/or routine inspections.

The unincorporated County has a relatively small inventory of OWTS that are widely dispersed across the entire geographic area of the County. Reporting will therefore be commensurate with the level of OWTS activity and be focused on areas of greatest OWTS concentration as discussed earlier in this LAMP.

5.1 Water Quality Monitoring Program
The County will maintain a record of existing water quality and conduct assessment on the impact from OWTS on receiving waterways. The assessment program will include monitoring and analysis of water quality data, review of complaints, failures, and OWTS inspections.

Surface water quality monitoring will consist of biannual sampling at locations identified in Figure 19 and be analyzed for the following suite of parameters: temperature, dissolved oxygen, specific conductivity, turbidity, fecal indicator bacteria (FIBs), nutrients, and total dissolved solids. Groundwater sampling will be conducted annually at those locations identified in Figure 19.
The water quality data can be obtained from public well samples, routine water samples from community water systems, potable water wells, coastal and beach water quality sampling, additional relevant sources such as surface or groundwater supplies. A summary of these data shall be submitted to the Regional Board on an annual basis on or before February 1 as a part of the annual reporting detailed in Section 5.0 above. An evaluation of the monitoring program and an assessment of whether water quality is being impacted by OWTS shall be submitted every five years. County permits are one of the main sources of information for OWTS. Permit files will continue to be monitored and maintained by Development Services. Older OWTS may not be included in the files because of incomplete records or permits not being obtained for the systems.

5.2 Property Sales
For properties that are sold or transferred within the unincorporated portions of the County, documentation will be provided that proves that the property is connected to a sewer system or has a permitted OWTS. If the property does not have the documentation that proves either of these, a permit for an OWTS will be required prior to the transfer of ownership of the property. This may require the proper repair or the installation of a fully functional OWTS on the property. Once an OWTS is established at this location, or the OWTS is no longer used and the property is connected to the sewer system, this action will be documented in the County’s database and included in the annual report to the Regional Board.
6. Definitions and Acronyms

“303(d)” refers to Section 303(d) of the 1972 Federal Water Pollution Control Act (Clean Water Act) requiring states to identify waterbodies that do not meet water quality objectives and are not supporting their beneficial uses. Each state must submit an updated list, called the 303(d) List of Impaired Waters, to the U.S. EPA every two years. In addition to identifying the waterbodies that are not supporting beneficial uses, the List also identifies the pollutant or stressor causing impairment, and establishes a priority for developing a control plan to address the impairment. The List also identifies waterbodies where 1) a TMDL has been approved by U.S. EPA and an implementation is available, but water quality standards are not yet met, and 2) waterbodies where the water quality problem is being addressed by an action other than a TMDL and water quality standards are not yet met.

“Alternative Private Sewage Disposal Systems” means a system that is specially-designed, engineered, and approved for use in localities where the Building Official (or designee) has determined that the presence of shallow groundwater, rock, or adverse soil, geologic, or hydrologic conditions makes the use of a conventional OWTS potentially hazardous to public health. Alternative private sewage disposal systems shall be limited to "mound" systems and "subsurface sand filtration" systems.

“Basin Plan” means the same as “water quality control plan” as defined in Division 7 (commencing with Section 13000) of the California Water Code. Basin Plans are adopted by each Regional Board, approved by the State Water Board and the Office of Administrative Law and USEPA, and identify ground and surface waters within each Region’s boundaries and establish, for each, its respective beneficial uses and water quality objectives. Copies are available from the Regional Board, electronically at each Regional Boards website, or at the State Water Resource Control Board’s Plans and Policies web page: http://www.waterboards.ca.gov/plans_policies/.

“Bedrock” means the rock, usually solid, that underlies soil or other unconsolidated, surficial material.

“Building Official” means a person trained and/or certified through the International Association of Plumbing and Mechanical Officials.

“CalWQA” is an online database that enables the state of California to accurately report and interpret water quality conditions and provide a clear picture of existing water quality throughout the state.

“CWA” is the acronym used for the Clean Water Act. The Federal Water Pollution Control Act of 1948 was the first major U.S. law to address water pollution. Growing public awareness and concern for controlling water pollution led to sweeping amendments in 1972. As amended in 1972, the law became commonly known as the Clean Water Act.

“Cesspool” means an excavation in the ground receiving domestic wastewater, designed to retain the organic matter and solids, while allowing the liquids to seep into the soil. Cesspools differ from seepage pits because cesspool systems do not have septic tanks and are not authorized under this Policy. The term cesspool does not include pit-privies and out-houses which are not regulated under this Policy.
“Clay” means a soil particle; the term also refers to a type of soil texture. As a soil particle, clay consists of individual rock or mineral particles in soils having diameters <0.002 mm. As a soil texture, clay is the soil material that is comprised of 40 percent or more clay particles, not more than 45 percent sand and not more than 40 percent silt particles using the U.S. Department of Agriculture (USDA) soil classification system.

“Development Services” is a division within Orange County Public Works responsible for the issuance of building and grading permits including permits for OWTS.

“Dispersal system” means a leachfield, seepage pit, mound, at-grade, subsurface drip field, evapotranspiration and infiltration bed, or other type of system for final wastewater treatment and subsurface discharge.

“Domestic wastewater” means wastewater with a measured strength less than high-strength wastewater and is the type of wastewater normally discharged from, or similar to, that discharged from plumbing fixtures, appliances and other household devices including, but not limited to toilets, bathtubs, showers, laundry facilities, dishwashing facilities, and garbage disposals. Domestic wastewater may include wastewater from commercial buildings such as office buildings, retail stores, and some restaurants, or from industrial facilities where the domestic wastewater is segregated from the industrial wastewater. Domestic wastewater may include incidental RV holding tank dumping but does not include wastewater consisting of a significant portion of RV holding tank wastewater such as at RV dump stations. Domestic wastewater does not include wastewater from industrial processes.

“Domestic well” means a groundwater well that provides water for human consumption and is not regulated by the California Department of Public Health.

“Dosing tank” is located after the septic tank or other sewage tank and before the lateral system for effluent distribution. If there is an on-demand system the pump is turned on when enough effluent collects in the tank and shut off after the dose is delivered.

“Effluent” means sewage, water, or other liquid, partially or completely treated or in its natural state, flowing out of a septic tank, aerobic treatment unit, dispersal system, or other OWTS component.

“Escherichia coli (E. coli)” means a group of bacteria predominantly inhabiting the intestines of humans or other warm-blooded animals, but also occasionally found elsewhere. Used as an indicator of human fecal contamination.

“Existing OWTS” means an onsite wastewater treatment system that was constructed and operating prior to the effective date of this Policy, and OWTS for which a construction permit has been issued prior to the effective date of this Policy.

“Flowing waterbody” means a body of running water flowing over the earth in a natural water course, where the movement of the water is readily discernible or if water is not present, it is apparent from review of the geology that when present it does flow, such as in an ephemeral drainage, creek, stream, or river.
“GAMA” is the acronym used for the Groundwater Ambient Monitoring and Assessment Program in California. The GAMA Program is California's comprehensive groundwater quality monitoring program that was created by the State Water Resources Control Board (State Water Board) in 2000.

“Geotracker” is the State Board’s internet-accessible database system used by the State and Regional Boards, and local agencies to track and archive compliance data from authorized or unauthorized discharges of waste to land, or unauthorized releases of hazardous substances from underground storage tanks.

“gpd” is the acronym used for gallons per day. This is a flow rate used to describe a quantity of fluid volume moving over a duration of time.

“Groundwater” means water below the land surface that is at or above atmospheric pressure.

“High-strength wastewater” means wastewater having a 30-day average concentration of biochemical oxygen demand (BOD) greater than 300 milligrams-per-liter (mg/L) or of total suspended solids (TSS) greater than 330 mg/L of a fat, oil, and grease (FOG) concentration greater than 100 mg/L prior to the septic tank or other OWTS treatment component.

“Hydrologic Region” The Department of Water Resources subdivides the state of California into specific geographical study areas for planning purposes. The largest study areas are the ten hydrologic regions, corresponding to the State's major drainage basins.

“Impaired Waterbodies” means those surface waters or segments thereof that are identified on a list approved first by the State Water Board and then approved by U.S. EPA pursuant to Section 303(d) of the federal Clean Water Act.

“IRWD” is the abbreviation for the Irvine Ranch Water District. The IRWD is an independent special district serving Central Orange County, California. IRWD provides high-quality drinking water, reliable wastewater collection and treatment, ground-breaking recycled water programs, and environmentally sound urban runoff treatment to more than 340,000 residents.

“Ksat” is used to denote a soil’s saturated hydraulic conductivity in inches per hour. Hydraulic conductivity is a soil property that describes the ease with which the soil pores permit water movement. Values of hydraulic conductivity can vary depending on the type of soil, porosity, and the configuration of the soil pores. In saturated soils, the hydraulic conductivity is represented as Ksat.

“Local agency” means any subdivision of state government that has responsibility for permitting the installation of and regulating OWTS within its jurisdictional boundaries; typically a county, city, or special district.

“Major repair” means either: (1) for a dispersal system, repairs required for an OWTS dispersal system due to surfacing wastewater effluent from the dispersal field and/or wastewater backed up into plumbing fixtures because the dispersal system is not able to percolate the design flow of wastewater associated with the structure served, or (2) for a septic tank, repairs required to the tank for a
compartment baffle failure or tank structural integrity failure such that either wastewater is exfiltrating or groundwater is infiltrating.

“Mound system” means an above-ground dispersal system (covered sand bed with effluent leachfield elevated above original ground surface inside) used to enhance soil treatment, dispersal, and absorption of effluent discharged from an OWTS treatment unit such as a septic tank. Mound systems have a subsurface discharge.

“MPN” is the acronym for most probable number. This sampling method is used to estimate the concentration of viable microorganisms in a sample through dilution. The MPN method includes diluting the sample to such a degree that inoculum in the sample tubes will sometimes (but not always) contain viable organisms. From this testing, a fairly accurate estimate of the most probable number of cells in a sample can be determined.

“New OWTS” means an OWTS permitted after the effective date of this Policy.

“NPDES” is the acronym for the national pollutant discharge elimination system. The NPDES Permit Program controls water pollution by regulating point sources that discharge pollutants into waters of the United States.

“Onsite wastewater treatment system(s)” (OWTS) means individual disposal systems, community collection and disposal systems, and alternative collection and disposal systems that use subsurface disposal. The short form of the term may be singular or plural. OWTS do not include “graywater” systems pursuant to Health and Safety Code Section 17922.12.

“OCSD” is the abbreviation for Orange County Sanitation District. The OCSD is responsible for safely collecting, treating and disposing the wastewater generated by 2.5 million people living in a 479-square-mile area of central and northwest Orange County.

“OCWD” is the abbreviation for Orange County Water District. The OCWD manages, replenishes and protects the Orange County Groundwater Basin—Orange County’s largest source of drinking water. The 270-square-mile basin provides approximately 70 percent of the water supply to 2.4 million residents in north and central Orange County.

“Percolation test” means a method of testing water absorption of the soil. The test is conducted with clean water and test results can be used to establish the dispersal system design. Percolation rates must be calculated on the basis of the test data obtained after the soil has had the opportunity to be saturated with clear water. After the test hole has been bored it must be kept filled for at least four hours, and preferably overnight. Tests are to be conducted the following day to allow the soil to swell for at least 24 hours, thereby approaching the conditions during the wettest season of the year.

“OWTS Permit” means a document issued by a local agency that allows the installation and use of an OWTS, or waste discharge requirements or a waiver of waste discharge requirements that authorizes discharges from an OWTS.
“Person” means any individual, firm, association, organization, partnership, business trust, corporation, company, state agency or department, or unit of local government who is, or that is, subject to this Policy.

“Policy” means this Policy for Siting, Design, Operation and Management of OWTS.

“Pollutant” means any substance that alters water quality of the waters of the state to a degree that it may potentially affect the beneficial uses of water, as listed in a Basin Plan.

“Projected flows” means wastewater flows into the OWTS determined in accordance with any of the applicable methods for determining average daily flow in the USEPA Onsite Wastewater Treatment System Manual, 2002, or for Tier 2 in accordance with an approved Local Agency Management Program.

“Public Water System” is a water system regulated by the California Department of Public Health or a Local Primacy Agency pursuant to Chapter 12, Part 4, California Safe Drinking Water Act, Section 116275 (h) of the California Health and Safety Code.

“Public Water Well” is a groundwater well serving a public water system. A spring which is not subject to the California Surface Water Treatment Rule (SWTR), CCR, Title 22, sections 64650 through 64666 is a public well.

“Qualified Professional” means an individual licensed or certified by a state of California agency to design OWTS and practice as professionals for other associated reports, as allowed under their license or registration. Depending on the work to be performed and various licensing and registration requirements, this may include an individual who possesses a registered environmental health specialist certificate or is currently licensed as a professional engineer or professional geologist. For the purposes of performing site evaluations, Soil Scientists certified by the Soil Science Society of America are considered Qualified Professionals. A local agency may modify this definition as part of its Local Agency Management Program.

“Regional Water Quality Control Board (Regional Board)” is any of the Regional Water Quality Control Boards designated by Water Code Section 13200. Any reference to an action of the Regional Board in this Policy also refers to an action of its Executive Officer, including the conducting of public hearings, pursuant to any general or specific delegation under Water Code Section 13223.

“Replacement OWTS” is an OWTS that has its treatment capacity expanded, or its dispersal system replaced or added onto, after the effective date of this Policy.

“Sand” means a soil particle; this term also refers to a type of soil texture. As a soil particle, sand consists of individual rock or mineral particles in soils having diameters ranging from 0.05 to 2.0 millimeters. As a soil texture, sand is soil that is comprised of 85 percent or more sand particles, with the percentage of silt plus 1.5 times the percentage of clay particles comprising less than 15 percent.

“SCAG” is the acronym for the Southern California Association of Governments. This is a municipal planning group for six counties in southern California.
“Seepage pit” means a drilled or dug excavation, three to six feet in diameter, either lined or gravel filled, that receives the effluent discharge from a septic tank or other OWTS treatment unit for dispersal.

“Septic tank” means a watertight, covered receptacle designed for primary treatment of wastewater and constructed to: receive wastewater discharged from a building, separate settleable and floating solids from the liquid, digest organic matter by anaerobic bacterial action, store digested solids, and clarify wastewater for further treatment with final subsurface discharge.

“Service provider” means a person capable of operating, monitoring, and maintaining an OWTS in accordance to this Policy.

“Silt” means a soil particle; this term also refers to a type of soil texture. As a soil particle, silt consists of individual rock or mineral particles in soils having diameters ranging from between 0.05 and 0.002 mm. As a soil texture, silt is soil that is comprised as approximately 80 percent or more silt particles and not more than 12 percent clay particles using the USDA soil classification system.

“Single-family dwelling unit” means a structure that is usually occupied by just one household or family and for the purposes of this Policy is expected to generate an average of 250 gallons per day of wastewater.

“Site Evaluation” means an assessment of the characteristics of the site sufficient to determine its suitability for an OWTS to meet the requirements of this Policy.

“Soil” means the naturally occurring body of porous mineral and organic materials on the land surface, which is composed of unconsolidated materials, including sand-sized, silt-sized, and clay-sized particles mixed with varying amounts of larger fragments and organic material. The various combinations of particles differentiate specific soil textures identified in the soil textural triangle developed by the USDA and as found in the Soil Survey Manual, Handbook 18, U.S. Government Printing Office, Washington, DC, 1993, p. 138. For the purposes of this Policy, soil shall contain earthen material of particles smaller than 0.08 inches (2 mm) in size.

“Soil Structure” means the arrangement of primary soil particles into compound particles, peds, or clusters that are separated by natural planes of weakness from adjoining aggregates.

“Soil Texture” means the soil class that describes the relative amount of sand, clay, silt and combinations thereof as defined by the classes of the soil textural triangle developed by the USDA (referenced above).

“State Water Board (State Board)” is the State Water Resources Control Board that governs all policies pertaining to water quality and quantity within the state of California.

“Supplemental treatment” means any OWTS or component of an OWTS, except a septic tank or dosing tank, that performs additional wastewater treatment so that the effluent meets a predetermined performance requirement prior to discharge of effluent into the dispersal field.
“Telemetric” indicates the ability to automatically measure and transmit OWTS data by wire, radio, or other means.

“TKN” is the abbreviation for total Kjehldahl nitrogen. This is the combination of organically bound nitrogen and ammonia in wastewater (NO₂, NO₃, NH₃).

“TMDL” is the abbreviation for total maximum daily load. Section 303(d) (1) of the Clean Water Act requires each state to establish a TMDL for each impaired waterbody to address the pollutant(s) causing the impairment. In California, TMDLs are usually adopted as Basin Plan amendments and contain implementation plans detailing how water quality standards will be attained.

“Total coliform” means a group of bacteria consisting of several genera belonging to the family Enterobacteriaceae, which includes Escherichia coli bacteria.

“Trench Leach Fields” Generally, the wastewater disposal system of choice where site conditions meet approved standards. Leach lines distribute the septic tank effluent into the surrounding soil at a depth typically not more than six feet. This shallow dispersal system provides effluent disposal under aerobic conditions at a maximum distance from underlying bedrock or groundwater.

“United States Environmental Protection Agency (USEPA)” is a nationwide agency governing environmental protection standards that relate to air and water quality and public health.

“Waste discharge requirement” or “WDR” means an operation and discharge permit issued for the discharge of waste pursuant to Section 13260 of the California Water Code.
7. References

California Wastewater Training and Research Center. (2003). *On-site Wastewater Treatment Technology and the Preservation of Agricultural Land in California’s Central Valley*. Chico: California State University.

Orange County Public Works; Orange County Watersheds. (2013, October 3). *State Water Quality Control Board*. Retrieved February 12, 2015, from Santa Ana: Water Issues: Programs:
Stormwater:
http://www.swrcb.ca.gov/santaana/water_issues/programs/stormwater/docs/ocpermit/Orange_County_ROWD_10-3-13_COMPLETE.pdf

APPENDIX I: OWTS Policy State Water Resources Control Board

APPENDIX II: On-Site Sewage Guidelines County of Orange Development Services

APPENDIX III: Profile of the Unincorporated Area of Orange County Southern California Association of Governments

APPENDIX IV: Septic System Inventory and Assessment RBF Consultants

APPENDIX V: Silverado Creek Aerial Map with Property Identification
APPENDIX I: OWTS Policy State Water Resources Control Board
OWTS POLICY

Water Quality Control Policy for Siting, Design, Operation, and Maintenance of Onsite Wastewater Treatment Systems

June 19, 2012
State of California
 Edmund G. Brown Jr., Governor

California Environmental Protection Agency
 Matthew Rodriguez, Secretary

State Water Resources Control Board
 http://www.waterboards.ca.gov
 Charles R. Hoppin, Chair
 Frances Spivy-Weber, Vice Chair
 Tam M. Doduc, Member
 Steven Moore, Member
 Thomas Howard, Executive Director
 Jonathan Bishop, Chief Deputy Director
 Caren Trgovcich, Chief Deputy Director

Adopted by the State Water Resources Control Board on June 19, 2012
Approved by the Office of Administrative Law on November 13, 2012
Effective Date of the Policy: May 13, 2013
Preamble

Onsite wastewater treatment systems (OWTS) are useful and necessary structures that allow habitation at locations that are removed from centralized wastewater treatment systems. When properly sited, designed, operated, and maintained, OWTS treat domestic wastewater to reduce its polluting impact on the environment and most importantly protect public health. Estimates for the number of installations of OWTS in California at the time of this Policy are that more than 1.2 million systems are installed and operating. The vast majority of these are functioning in a satisfactory manner and meeting their intended purpose.

However there have been occasions in California where OWTS for a varied list of reasons have not satisfactorily protected either water quality or public health. Some instances of these failures are related to the OWTS not being able to adequately treat and dispose of waste as a result of poor design or improper site conditions. Others have occurred where the systems are operating as designed but their densities are such that the combined effluent resulting from multiple systems is more than can be assimilated into the environment. From these failures we must learn how to improve our usage of OWTS and prevent such failures from happening again.

As California’s population continues to grow, and we see both increased rural housing densities and the building of residences and other structures in more varied terrain than we ever have before, we increase the risks of causing environmental damage and creating public health risks from the use of OWTS. What may have been effective in the past may not continue to be as conditions and circumstances surrounding particular locations change. So necessarily more scrutiny of our installation of OWTS is demanded of all those involved, while maintaining an appropriate balance of only the necessary requirements so that the use of OWTS remains viable.

Purpose and Scope of the Policy

The purpose of this Policy is to allow the continued use of OWTS, while protecting water quality and public health. This Policy recognizes that responsible local agencies can provide the most effective means to manage OWTS on a routine basis. Therefore as an important element, it is the intent of this policy to efficiently utilize and improve upon where necessary existing local programs through coordination between the State and local agencies. To accomplish this purpose, this Policy establishes a statewide, risk-based, tiered approach for the regulation and management of OWTS installations and replacements and sets the level of performance and protection expected from OWTS. In particular, the Policy requires actions for water bodies specifically identified as part this Policy where OWTS contribute to water quality degradation that adversely affect beneficial uses.

This Policy only authorizes subsurface disposal of domestic strength, and in limited instances high strength, wastewater and establishes minimum requirements for the permitting, monitoring, and operation of OWTS for protecting beneficial uses of waters.
of the State and preventing or correcting conditions of pollution and nuisance. And finally, this Policy also conditionally waives the requirement for owners of OWTS to apply for and receive Waste Discharge Requirements in order to operate their systems when they meet the conditions set forth in the Policy. Nothing in this Policy supersedes or requires modification of Total Maximum Daily Loads or Basin Plan prohibitions of discharges from OWTS.

This Policy also applies to OWTS on federal, state, and Tribal lands to the extent authorized by law or agreement.

Structure of the Policy

This Policy is structured into ten major parts:

Definitions
Definitions for all the major terms used in this Policy are provided within this part and wherever used in the Policy the definition given here overrides any other possible definition. [Section 1]

Responsibilities and Duties
Implementation of this Policy involves individual OWTS owners; local agencies, be they counties, cities, or any other subdivision of state government with permitting powers over OWTS; Regional Water Quality Control Boards; and the State Water Resources Control Board. [Sections 2, 3, 4, and 5]

Tier 0 – Existing OWTS
Existing OWTS that are properly functioning, and do not meet the conditions of failing systems or otherwise require corrective action (for example, to prevent groundwater impairment) as specifically described in Tier 4, and are not determined to be contributing to an impairment of surface water as specifically described in Tier 3, are automatically included in Tier 0. [Section 6]

Tier 1 – Low-Risk New or Replacement OWTS
New or replacement OWTS that meet low risk siting and design requirements as specified in Tier 1, where there is not an approved Local Agency Management Program per Tier 2. [Sections 7 and 8]

Tier 2 – Local Agency Management Program for New or Replacement OWTS
California is well known for its extreme range of geological and climatic conditions. As such, the establishment of a single set of criteria for OWTS would either be too restrictive so as to protect for the most sensitive case, or would have broad allowances that would not be protective enough under some circumstances. To accommodate this
Preamble – Purpose and Scope – Structure of the Policy

extreme variance, local agencies may submit management programs (“Local Agency Management Programs”) for approval, and upon approval then manage the installation of new and replacement OWTS under that program.

Local Agency Management Programs approved under Tier 2 provide an alternate method from Tier 1 programs to achieve the same policy purpose, which is to protect water quality and public health. In order to address local conditions, Local Agency Management Programs may include standards that differ from the Tier 1 requirements for new and replacement OWTS contained in Sections 7 and 8. As examples, a Local Agency Management Program may authorize different soil characteristics, usage of seepage pits, and different densities for new developments. Once the Local Agency Management Program is approved, new and replacement OWTS that are included within the Local Agency Management Program may be approved by the Local Agency. A Local Agency, at its discretion, may include Tier 1 standards within its Tier 2 Local Agency Management Program for some or all of its jurisdiction. However, once a Local Agency Management Program is approved, it shall supersede Tier 1 and all future OWTS decisions will be governed by the Tier 2 Local Agency Management Program until it is modified, withdrawn, or revoked.

[Section 9]

Tier 3 – Impaired Areas
Existing, new, and replacement OWTS that are near impaired water bodies may be addressed by a TMDL and its implementation program, or special provisions contained in a Local Agency Management Program. If there is no TMDL or special provisions, new or replacement OWTS within 600 feet of impaired water bodies listed in Attachment 2 must meet the specific requirements of Tier 3.

[Section 10]

Tier 4 – OWTS Requiring Corrective Action
OWTS that require corrective action or are either presently failing or fail at any time while this Policy is in effect are automatically included in Tier 4 and must follow the requirements as specified.

[Section 11]

Conditional Waiver of Waste Discharge Requirements
The requirement to submit a report of waste discharge for discharges from OWTS that are in conformance with this policy is waived.

[Section 12]

Effective Date
When this Policy becomes effective.

[Section 13]

Financial Assistance
Procedures for local agencies to apply for funds to establish low interest loan programs for the assistance of OWTS owners in meeting the requirements of this Policy.

[Section 14]
Preamble – Purpose and Scope – Structure of the Policy

Attachment 1
AB 885 Regulatory Program Timelines.

Attachment 2
Tables 4 and 5 specifically identify those impaired water bodies that have Tier 3 requirements and must have a completed TMDL by the date specified.

Attachment 3
Table 6 shows where one Regional Water Board has been designated to review and, if appropriate, approve new Local Agency Management Plans for a local agency that is within multiple Regional Water Boards’ jurisdiction.

What Tier Applies to my OWTS?

Existing OWTS that conform to the requirements for Tier 0 will remain in Tier 0 as long as they continue to meet those requirements. An existing OWTS will temporarily move from Tier 0 to Tier 4 if it is determined that corrective action is needed. The existing OWTS will return to Tier 0 once the corrective action is completed if the repair does not qualify as major repair under Tier 4. Any major repairs conducted as corrective action must comply with Tier 1 requirements or Tier 2 requirements, whichever are in effect for that local area. An existing OWTS will move from Tier 0 to Tier 3 if it is adjacent to an impaired water body listed on Attachment 2, or is covered by a TMDL implementation plan.

In areas with no approved Local Agency Management Plan, new and replacement OWTS that conform to the requirements of Tier 1 will remain in Tier 1 as long as they continue to meet those requirements. A new or replacement OWTS will temporarily move from Tier 1 to Tier 4 if it is determined that corrective action is needed. The new or replacement OWTS will return to Tier 1 once the corrective action is completed. A new or replacement OWTS will move from Tier 1 to Tier 3 if it is adjacent to an impaired water body, or is covered by a TMDL implementation plan.

In areas with an approved Local Agency Management Plan, new and replacement OWTS that conform to the requirements of the Tier 2 Local Agency Management Plan will remain in Tier 2 as long as they continue to meet those requirements. A new or replacement OWTS will temporarily move from Tier 2 to Tier 4 if it is determined that corrective action is needed. The new or replacement OWTS will return to Tier 2 once the corrective action is completed. A new or replacement OWTS will move from Tier 2 to Tier 3 if it is adjacent to an impaired water body, or is covered by a TMDL implementation plan, or is covered by special provisions for impaired water bodies contained in a Local Agency Management Program.
Preamble – Purpose and Scope – Structure of the Policy

Existing, new, and replacement OWTS in specified areas adjacent to water bodies that are identified by the State Water Board as impaired for pathogens or nitrogen and listed in Attachment 2 are in Tier 3. Existing, new, and replacement OWTS covered by a TMDL implementation plan, or covered by special provisions for impaired water bodies contained in a Local Agency Management Program are also in Tier 3. These OWTS will temporarily move from Tier 3 to Tier 4 if it is determined that corrective action is needed. The new or replacement OWTS will return to Tier 3 once the corrective action is completed.

Existing, new, and replacement OWTS that do not conform with the requirements to receive coverage under any of the Tiers (e.g., existing OWTS with a projected flow of more than 10,000 gpd) do not qualify for this Policy’s conditional waiver of waste discharge requirements, and will be regulated separately by the applicable Regional Water Board.
Definitions

1.0 Definitions. The following definitions apply to this Policy:

“303 (d) list” means the same as "Impaired Water Bodies."

“At-grade system” means an OWTS dispersal system with a discharge point located at the preconstruction grade (ground surface elevation). The discharge from an at-grade system is always subsurface.

“Average annual rainfall” means the average of the annual amount of precipitation for a location over a year as measured by the nearest National Weather Service station for the preceding three decades. For example the data set used to make a determination in 2012 would be the data from 1981 to 2010.

“Basin Plan” means the same as "water quality control plan" as defined in Division 7 (commencing with Section 13000) of the Water Code. Basin Plans are adopted by each Regional Water Board, approved by the State Water Board and the Office of Administrative Law, and identify surface water and groundwater bodies within each Region’s boundaries and establish, for each, its respective beneficial uses and water quality objectives. Copies are available from the Regional Water Boards, electronically at each Regional Water Boards website, or at the State Water Board’s Plans and Policies web page (http://www.waterboards.ca.gov/plans_policies/).

“Bedrock” means the rock, usually solid, that underlies soil or other unconsolidated, surficial material.

“CEDEN” means California Environmental Data Exchange Network and information about it is available at the State Water Boards website or http://www.ceden.org/index.shtml.

“Cesspool” means an excavation in the ground receiving domestic wastewater, designed to retain the organic matter and solids, while allowing the liquids to seep into the soil. Cesspools differ from seepage pits because cesspool systems do not have septic tanks and are not authorized under this Policy. The term cesspool does not include pit-privies and out-houses which are not regulated under this Policy.

“Clay” means a soil particle; the term also refers to a type of soil texture. As a soil particle, clay consists of individual rock or mineral particles in soils having diameters <0.002 mm. As a soil texture, clay is the soil material that is comprised of 40 percent or more clay particles, not more than 45 percent sand and not more than 40 percent silt particles using the USDA soil classification system.

“Cobble” means rock fragments 76 mm or larger using the USDA soil classification systems.

“Dispersal system” means a leachfield, seepage pit, mound, at-grade, subsurface dripfield, evapotranspiration and infiltration bed, or other type of system for final wastewater treatment and subsurface discharge.
Definitions

“Domestic wastewater” means wastewater with a measured strength less than high-strength wastewater and is the type of wastewater normally discharged from, or similar to, that discharged from plumbing fixtures, appliances and other household devices including, but not limited to toilets, bathtubs, showers, laundry facilities, dishwashing facilities, and garbage disposals. Domestic wastewater may include wastewater from commercial buildings such as office buildings, retail stores, and some restaurants, or from industrial facilities where the domestic wastewater is segregated from the industrial wastewater. Domestic wastewater may include incidental RV holding tank dumping but does not include wastewater consisting of a significant portion of RV holding tank wastewater such as at RV dump stations. Domestic wastewater does not include wastewater from industrial processes.

“Dump Station” means a facility intended to receive the discharge of wastewater from a holding tank installed on a recreational vehicle. A dump station does not include a full hook-up sewer connection similar to those used at a recreational vehicle park.

“Domestic well” means a groundwater well that provides water for human consumption and is not regulated by the California Department of Public Health.

“Earthen material” means a substance composed of the earth’s crust (i.e. soil and rock).

“EDF” see “electronic deliverable format.”

“Effluent” means sewage, water, or other liquid, partially or completely treated or in its natural state, flowing out of a septic tank, aerobic treatment unit, dispersal system, or other OWTS component.

“Electronic deliverable format” or “EDF” means the data standard adopted by the State Water Board for submittal of groundwater quality monitoring data to the State Water Board’s internet-accessible database system Geotracker (http://geotracker.waterboards.ca.gov/).

“Escherichia coli” means a group of bacteria predominantly inhabiting the intestines of humans or other warm-blooded animals, but also occasionally found elsewhere. Used as an indicator of human fecal contamination.

“Existing OWTS” means an OWTS that was constructed and operating prior to the effective date of this Policy, and OWTS for which a construction permit has been issued prior to the effective date of the Policy.

“Flowing water body” means a body of running water flowing over the earth in a natural water course, where the movement of the water is readily discernible or if water is not present it is apparent from review of the geology that when present it does flow, such as in an ephemeral drainage, creek, stream, or river.

“Groundwater” means water below the land surface that is at or above atmospheric pressure.
Definitions

“High-strength wastewater” means wastewater having a 30-day average concentration of biochemical oxygen demand (BOD) greater than 300 milligrams-per-liter (mg/L) or of total suspended solids (TSS) greater than 330 mg/L or a fats, oil, and grease (FOG) concentration greater than 100 mg/L prior to the septic tank or other OWTS treatment component.

“IAPMO” means the International Association of Plumbing and Mechanical Officials.

“Impaired Water Bodies” means those surface water bodies or segments thereof that are identified on a list approved first by the State Water Board and then approved by US EPA pursuant to Section 303(d) of the federal Clean Water Act.

“Local agency” means any subdivision of state government that has responsibility for permitting the installation of and regulating OWTS within its jurisdictional boundaries; typically a county, city, or special district.

“Major repair” means either: (1) for a dispersal system, repairs required for an OWTS dispersal system due to surfacing wastewater effluent from the dispersal field and/or wastewater backed up into plumbing fixtures because the dispersal system is not able to percolate the design flow of wastewater associated with the structure served, or (2) for a septic tank, repairs required to the tank for a compartment baffle failure or tank structural integrity failure such that either wastewater is exfiltrating or groundwater is infiltrating.

“Mottling” means a soil condition that results from oxidizing or reducing minerals due to soil moisture changes from saturated to unsaturated over time. Mottling is characterized by spots or blotches of different colors or shades of color (grays and reds) interspersed within the dominant color as described by the USDA soil classification system. This soil condition can be indicative of historic seasonal high groundwater level, but the lack of this condition may not demonstrate the absence of groundwater.

“Mound system” means an aboveground dispersal system (covered sand bed with effluent leachfield elevated above original ground surface inside) used to enhance soil treatment, dispersal, and absorption of effluent discharged from an OWTS treatment unit such as a septic tank. Mound systems have a subsurface discharge.

“New OWTS” means an OWTS permitted after the effective date of this Policy.

“NSF” means NSF International (a.k.a. National Sanitation Foundation), a not for profit, non-governmental organization that develops health and safety standards and performs product certification.

“Oil/grease interceptor” means a passive interceptor that has a rate of flow exceeding 50 gallons-per-minute and that is located outside a building. Oil/grease interceptors are used for separating and collecting oil and grease from wastewater.
Definitions

“Onsite wastewater treatment system(s)” (OWTS) means individual disposal systems, community collection and disposal systems, and alternative collection and disposal systems that use subsurface disposal. The short form of the term may be singular or plural. OWTS do not include “graywater” systems pursuant to Health and Safety Code Section 17922.12.

“Percolation test” means a method of testing water absorption of the soil. The test is conducted with clean water and test results can be used to establish the dispersal system design.

“Permit” means a document issued by a local agency that allows the installation and use of an OWTS, or waste discharge requirements or a waiver of waste discharge requirements that authorizes discharges from an OWTS.

“Person” means any individual, firm, association, organization, partnership, business trust, corporation, company, State agency or department, or unit of local government who is, or that is, subject to this Policy.

“Pit-privy” (a.k.a. outhouse, pit-toilet) means self-contained waterless toilet used for disposal of non-water carried human waste; consists of a shelter built above a pit in the ground into which human waste falls.

“Policy” means this Policy for Siting, Design, Operation and Management of OWTS.

“Pollutant” means any substance that alters water quality of the waters of the State to a degree that it may potentially affect the beneficial uses of water, as listed in a Basin Plan.

“Projected flows” means wastewater flows into the OWTS determined in accordance with any of the applicable methods for determining average daily flow in the USEPA Onsite Wastewater Treatment System Manual, 2002, or for Tier 2 in accordance with an approved Local Agency Management Program.

“Public Water System” is a water system regulated by the California Department of Public Health or a Local Primacy Agency pursuant to Chapter 12, Part 4, California Safe Drinking Water Act, Section 116275 (h) of the California Health and Safety Code.

“Public Water Well” is a ground water well serving a public water system. A spring which is not subject to the California Surface Water Treatment Rule (SWTR), CCR, Title 22, sections 64650 through 64666 is a public well.

“Qualified professional” means an individual licensed or certified by a State of California agency to design OWTS and practice as professionals for other associated reports, as allowed under their license or registration. Depending on the work to be performed and various licensing and registration requirements, this may include an individual who possesses a registered environmental health specialist certificate or is currently licensed as a professional engineer or professional geologist. For the purposes of performing site evaluations, Soil Scientists certified by the Soil Science Society of America are considered qualified professionals. A local agency may modify this definition as part of its Local Agency Management Program.
Definitions

“Regional Water Board” is any of the Regional Water Quality Control Boards designated by Water Code Section 13200. Any reference to an action of the Regional Water Board in this Policy also refers to an action of its Executive Officer, including the conducting of public hearings, pursuant to any general or specific delegation under Water Code Section 13223.

“Replacement OWTS” means an OWTS that has its treatment capacity expanded, or its dispersal system replaced or added onto, after the effective date of this Policy.

“Sand” means a soil particle; this term also refers to a type of soil texture. As a soil particle, sand consists of individual rock or mineral particles in soils having diameters ranging from 0.05 to 2.0 millimeters. As a soil texture, sand is soil that is comprised of 85 percent or more sand particles, with the percentage of silt plus 1.5 times the percentage of clay particles comprising less than 15 percent.

“Seepage pit” means a drilled or dug excavation, three to six feet in diameter, either lined or gravel filled, that receives the effluent discharge from a septic tank or other OWTS treatment unit for dispersal.

“Septic tank” means a watertight, covered receptacle designed for primary treatment of wastewater and constructed to:
1. Receive wastewater discharged from a building;
2. Separate settleable and floating solids from the liquid;
3. Digest organic matter by anaerobic bacterial action;
4. Store digested solids; and
5. Clarify wastewater for further treatment with final subsurface discharge.

“Service provider” means a person capable of operating, monitoring, and maintaining an OWTS in accordance to this Policy.

“Silt” means a soil particle; this term also refers to a type of soil texture. As a soil particle, silt consists of individual rock or mineral particles in soils having diameters ranging from 0.05 and 0.002 mm. As a soil texture, silt is soil that is comprised as approximately 80 percent or more silt particles and not more than 12 percent clay particles using the USDA soil classification system.

“Single-family dwelling unit” means a structure that is usually occupied by just one household or family and for the purposes of this Policy is expected to generate an average of 250 gallons per day of wastewater.

“Site” means the location of the OWTS and, where applicable, a reserve dispersal area capable of disposing 100 percent of the design flow from all sources the OWTS is intended to serve.

“Site Evaluation” means an assessment of the characteristics of the site sufficient to determine its suitability for an OWTS to meet the requirements of this Policy.
“Soil” means the naturally occurring body of porous mineral and organic materials on the land surface, which is composed of unconsolidated materials, including sand-sized, silt-sized, and clay-sized particles mixed with varying amounts of larger fragments and organic material. The various combinations of particles differentiate specific soil textures identified in the soil textural triangle developed by the United States Department of Agriculture (USDA) as found in Soil Survey Staff, USDA; Soil Survey Manual, Handbook 18, U.S. Government Printing Office, Washington, DC, 1993, p. 138. For the purposes of this Policy, soil shall contain earthen material of particles smaller than 0.08 inches (2 mm) in size.

“Soil Structure” means the arrangement of primary soil particles into compound particles, peds, or clusters that are separated by natural planes of weakness from adjoining aggregates.

“Soil texture” means the soil class that describes the relative amount of sand, clay, silt and combinations thereof as defined by the classes of the soil textural triangle developed by the USDA (referenced above).

“State Water Board” is the State Water Resources Control Board.

“Supplemental treatment” means any OWTS or component of an OWTS, except a septic tank or dosing tank, that performs additional wastewater treatment so that the effluent meets a predetermined performance requirement prior to discharge of effluent into the dispersal field.

“SWAMP” means Surface Water Ambient Monitoring Program and more information is available at: http://www.waterboards.ca.gov/water_issues/programs/swamp/

“Telemetric” means the ability to automatically measure and transmit OWTS data by wire, radio, or other means.

“TMDL” is the acronym for "total maximum daily load.” Section 303(d)(1) of the Clean Water Act requires each State to establish a TMDL for each impaired water body to address the pollutant(s) causing the impairment. In California, TMDLs are usually adopted as Basin Plan amendments and contain implementation plans detailing how water quality standards will be attained.

“Total coliform” means a group of bacteria consisting of several genera belonging to the family Enterobacteriaceae, which includes Escherichia coli bacteria.

“USDA” means the U.S. Department of Agriculture.

“Waste discharge requirement” or “WDR” means an operation and discharge permit issued for the discharge of waste pursuant to Section 13260 of the California Water Code.
Responsibilities and Duties

2.0 OWTS Owners Responsibilities and Duties

2.1 All new, replacement, or existing OWTS within an area that is subject to a Basin Plan prohibition of discharges from OWTS, must comply with the prohibition. If the prohibition authorizes discharges under specified conditions, the discharge must comply with those conditions and the applicable provisions of this Policy.

2.2 Owners of OWTS shall adhere to the requirements prescribed in local codes and ordinances. Owners of new and replacement OWTS covered by this Policy shall also meet the minimum standards contained in Tier 1, or an alternate standard provided by a Local Agency Management Program per Tier 2, or shall comply with the requirements of Tier 3 if near an impaired water body and subject to Tier 3, or shall provide corrective action for their OWTS if their system meets conditions that place it in Tier 4.

2.3 Owners of OWTS shall comply with any and all permitting conditions imposed by a local agency that do not directly conflict with this Policy, including any conditions that are more stringent than required by this Policy.

2.4 To receive coverage under this Policy and the included waiver of waste discharges, OWTS shall only accept and treat flows of domestic wastewater. In addition, OWTS that accept high-strength wastewater from commercial food service buildings are covered under this Policy and the waiver of waste discharge requirements if the wastewater does not exceed 900 mg/L BOD and there is a properly sized and functioning oil/grease interceptor (a.k.a grease trap).

2.5 Owners of OWTS shall maintain their OWTS in good working condition including inspections and pumping of solids as necessary, or as required by local ordinances, to maintain proper function and assure adequate treatment.

2.6 The following owners of OWTS shall notify the Regional Water Board by submitting a Report of Waste Discharge for the following:

2.6.1 a new or replacement OWTS that does not meet the conditions and requirements set forth in either a Local Agency Management Program if one is approved, an existing local program if it is less than 60 months from the effective date of the Policy and a Local Agency Management Program is not yet approved, or Tier 1 if no Local Agency Management Program has been approved and it is more than 60 months after the effective date of this Policy;

2.6.2 any OWTS, not under individual waste discharge requirements or a waiver of individual waste discharge requirements issued by a Regional Water Board, with the projected flow of over 10,000 gallons-per-day;
Responsibilities and Duties

2.6.3 any OWTS that receives high-strength wastewater, unless the waste stream is from a commercial food service building;

2.6.4 any OWTS that receives high-strength wastewater from a commercial food service building: (1) with a BOD higher than 900 mg/L, or (2) that does not have a properly sized and functioning oil/grease interceptor.

2.7 All Reports of Waste Discharge shall be accompanied by the required application fee pursuant to California Code of Regulations, title 23, section 2200.

3.0 Local Agency Requirements and Responsibilities

3.1 Local agencies, in addition to implementing their own local codes and ordinances, shall determine whether the requirements within their local jurisdiction will be limited to the water quality protection afforded by the statewide minimum standards in Tier 0, Tier 1, Tier 3, and Tier 4, or whether the local agency will implement a Local Agency Management Program in accordance with Tier 2. Except for Tier 3, local agencies may continue to implement their existing OWTS permitting programs in compliance with the Baseline Plan in place at the effective date of the Policy until 60 months after the effective date of this Policy, or approval of a Local Agency Management Program, whichever comes first, and may make minor adjustments as necessary that are in compliance with the applicable Basin Plan and this Policy. Tier 3 requirements take effect on the effective date of this Policy. In the absence of a Tier 2 Local Agency Management Program, to the extent that there is a direct conflict between the applicable minimum standards and the local codes or ordinances (such that it is impossible to comply with both the applicable minimum standards and the local ordinances or codes), the more restrictive standards shall govern.

3.2 If preferred, the local agency may at any time provide the State Water Board and all affected Regional Water Board(s) written notice of its intent to regulate OWTS using a Local Agency Management Program with alternative standards as authorized in Tier 2 of this Policy. A proposed Local Agency Management Program that conforms to the requirements of that Section shall be included with the notice. A local agency shall not implement a program different than the minimum standards contained in Tier 1 and 3 of this Policy after 60 months from the effective date of this Policy until approval of the proposed Local Agency Management Program is granted by either the Regional Water Board or State Water Board. All initial program submittals desiring approval prior to the 60 month limit shall be received no later than 36 months from the effective date of this Policy. Once approved, the local agency shall adhere to the Local Agency Management Program, including all requirements, monitoring, and reporting. If at any time a local agency wishes to modify its Local Agency Management Program, it shall provide the State Water Board and all affected Regional Water Board(s) written notice of its intended modifications and will continue to implement its existing Local Agency Management Program until the modifications are approved.
Responsibilities and Duties

3.3 All local agencies permitting OWTS shall report annually to the Regional Water Board(s). If a local agency’s jurisdictional area is within the boundary of multiple Regional Water Boards, the local agency shall send a copy of the annual report to each Regional Water Board. The annual report shall include the following information (organized in a tabular spreadsheet format) and summarize whether any further actions are warranted to protect water quality or public health:

3.3.1 number and location of complaints pertaining to OWTS operation and maintenance, and identification of those which were investigated and how they were resolved;

3.3.2 shall provide the applications and registrations issued as part of the local septic tank cleaning registration program pursuant to Section 117400 et seq. of the California Health and Safety Code;

3.3.3 number, location, and description of permits issued for new and replacement OWTS and which Tier the permit is issued.

3.4 All local agencies permitting OWTS shall retain permanent records of their permitting actions and will make those records available within 10 working days upon written request for review by a Regional Water Board. The records for each permit shall reference the Tier under which the permit was issued.

3.5 A local agency shall notify the owner of a public well or water intake and the California Department of Public Health as soon as practicable, but not later than 72 hours, upon its discovery of a failing OWTS as described in sections 11.1 and 11.2 within the setbacks described in sections 7.5.6 through 7.5.10.

3.6 A local agency may implement this Policy, or a portion thereof, using its local authority to enforce the policy, as authorized by an approval from the State Water Board or by the appropriate Regional Water Board.

3.7 Nothing in the Policy shall preclude a local agency from adopting or retaining standards for OWTS in an approved Local Agency Management Program that are more protective of the public health or the environment than are contained in this Policy.

3.8 If at any time a local agency wishes to withdraw its previously submitted and approved Tier 2 Local Agency Management Program, it may do so upon 60 days written notice. The notice of withdrawal shall specify the reason for withdrawing its Tier 2 program, the effective date for cessation of the program and resumption of permitting of OWTS only under Tiers 1, 3, and 4.

4.0 Regional Water Board Functions and Duties

4.1 The Regional Water Boards have the principal responsibility for overseeing the implementation of this Policy.

4.2 Regional Water Boards shall incorporate the requirements established in this Policy by amending their Basin Plans within 12 months of the effective date of this Policy, pursuant to Water Code Section 13291(e). The Regional Water
Responsibilities and Duties

Boards may also consider whether it is necessary and appropriate to retain or adopt any more protective standards. To the extent that a Regional Water Board determines that it is necessary and appropriate to retain or adopt any more protective standards, it shall reconcile those region-specific standards with this Policy to the extent feasible, and shall provide a detailed basis for its determination that each of the more protective standards is necessary and appropriate.

4.2.1 Notwithstanding 4.2 above, the North Coast Regional Water Board will continue to implement its existing Basin Plan requirements pertaining to OWTS within the Russian River watershed until it adopts the Russian River TMDL, at which time it will comply with section 4.2 for the Russian River watershed.

4.3 The Regional Water Board designated in Attachment 3 shall review, and if appropriate, approve a Local Agency Management Program submitted by the local agency pursuant to Tier 2 in this Policy. Upon receipt of a proposed Local Agency Management Program, the Regional Water Board designated in Attachment 3 shall have 90 days to notify the local agency whether the submittal contains all the elements of a Tier 2 program, but may request additional information based on review of the proposed program. Approval must follow a noticed hearing with opportunity for public comment. If a Local Agency Management Program is disapproved, the Regional Water Board designated in Attachment 3 shall provide a written explanation of the reasons for the disapproval. A Regional Water Board may approve a Local Agency Management Program while disapproving any proposed special provisions for impaired water bodies contained in the Local Agency Management Program. If no action is taken by the respective Regional Water Board within 12 months of the submission date of a complete Local Agency Management Program, the program shall be forwarded to the State Water Board for review and approval pursuant to Section 5 of this Policy.

4.3.1 Where the local agency’s jurisdiction lies within more than one Regional Water Board, staff from the affected Regional Water Boards shall work cooperatively to assure that water quality protection in each region is adequately protected. If the Regional Water Board designated in Attachment 3 approves the Local Agency Management Program over the written objection of an affected Regional Water Board, that Regional Water Board may submit the dispute to the State Water Board under Section 5.3.

4.3.2 Within 30 days of receipt of a proposed Local Agency Management Program, a Regional Water Board will forward a copy to and solicit comments from the California Department of Public Health regarding a Local Agency Management Program’s proposed policies and procedures, including notification to local water purveyors prior to OWTS permitting.

4.4 Once a Local Agency Management Program has been approved, any affected Regional Water Board may require modifications or revoke authorization of a local agency to implement a Tier 2 program, in accordance with the following:
Responsibilities and Duties

4.4.1 The Regional Water Board shall consult with any other Regional Water Board(s) having jurisdiction over the local agency before providing the notice described in section 4.4.2.

4.4.2 Written notice shall be provided to the local agency detailing the Regional Water Board’s action, the cause for such action, remedies to prevent the action from continuing to completion, and appeal process and rights. The local agency shall have 90 days from the date of the written notice to respond with a corrective action plan to address the areas of non-compliance, or to request the Regional Water Board to reconsider its findings.

4.4.3 The Regional Water Board shall approve, approve conditionally, or deny a corrective action plan within 90 days of receipt. The local agency will have 90 days to begin implementation of a corrective action plan from the date of approval or 60 days to request reconsideration from the date of denial. If the local agency fails to submit an acceptable corrective action plan, fails to implement an approved corrective action plan, or request reconsideration, the Regional Water Board may require modifications to the Local Agency Management Program, or may revoke the local agency’s authorization to implement a Tier 2 program.

4.4.4 Requests for reconsideration by the local agency shall be decided by the Regional Water Board within 90 days and the previously approved Local Agency Management Program shall remain in effect while the reconsideration is pending.

4.4.5 If the request for reconsideration is denied, the local agency may appeal to the State Water Board and the previously approved Local Agency Management Program shall remain in effect while the appeal is under consideration. The State Water Board shall decide the appeal within 90 days. All decisions of the State Water Board are final.

4.5 The appropriate Regional Water Board shall accept and consider any requests for modification or revocation of a Local Agency Management Program submitted by any person. The Regional Water Board will notify the person making the request and the local agency implementing the Local Agency Management Program at issue by letter within 90 days whether it intends to proceed with the modification or revocation process per Section 4.4 above, or is dismissing the request. The Regional Water Board will post the request and its response letter on its website.

4.6 A Regional Water Board may issue or deny waste discharge requirements or waivers of waste discharge requirements for any new or replacement OWTS within a jurisdiction of a local agency without an approved Local Agency Management Program if that OWTS does not meet the minimum standards contained in Tier 1.

4.7 The Regional Water Boards will implement any notifications and enforcement requirements for OWTS determined to be in Tier 3 of this Policy.
Responsibilities and Duties

4.8 Regional Water Boards may adopt waste discharge requirements, or conditional waivers of waste discharge requirements, that exempt individual OWTS from requirements contained in this Policy.

5.0 State Water Board Functions and Duties

5.1 As the state agency charged with the development and adoption of this Policy, the State Water Board shall periodically review, amend and/or update this Policy as required.

5.2 The State Water Board may take any action assigned to the Regional Water Boards in this Policy.

5.3 The State Water Board shall resolve disputes between Regional Water Boards and local agencies as needed within 12 months of receiving such a request by a Regional Water Board or local agency, and may take action on its own motion in furtherance of this Policy. As part of this function, the State Water Board shall review and, if appropriate, approve Local Agency Management Programs in cases where the respective Regional Water Board has failed to consider for approval a Local Agency Management Program. The State Water Board shall approve Local Agency Management Programs at a regularly noticed board hearing and shall provide for public participation, including notice and opportunity for public comment. Once taken up by the State Water Board, Local Agency Management Programs shall be approved or denied within 180 days.

5.4 A member of the public may request the State Water Board to resolve any dispute regarding the Regional Water Board’s approval of a Local Agency Management Program if the member of the public timely raised the disputed issue before the Regional Water Board. Such requests shall be submitted within 30 days after the Regional Water Board’s approval of the Local Agency Management Program. The State Water Board shall notify the member of the public, the local agency, and the Regional Water Board within 90 days whether it intends to proceed with dispute resolution.

5.5 The State Water Board shall accept and consider any requests for modification or revocation of a Local Agency Management Program submitted by any person, where that person has previously submitted said request to the Regional Water Board and has received notice from the Regional Water Board of its dismissal of the request. The State Water Board will notify the person making the request and the local agency implementing the Local Agency Management Program at issue by letter within 90 days whether it intends to proceed with the modification or revocation process per Section 4.4 above, or is dismissing the request. The State Water Board will post the request and its response letter on its website.

5.6 The State Water Board or its Executive Director, after approving any Impaired Water Bodies [303 (d)] List, and for the purpose of implementing Tier 3 of this Policy, shall update Attachment 2 to identify those water bodies where: (1) it is likely that operating OWTS will subsequently be determined to be a contributing
Responsibilities and Duties

source of pathogens or nitrogen and therefore it is anticipated that OWTS would receive a loading reduction, and (2) it is likely that new OWTS installations discharging within 600 feet of the water body would contribute to the impairment. This identification shall be based on information available at the time of 303 (d) listing and may be further updated based on new information. Updates to Attachment 2 will be processed as amendments to this Policy.

5.7 The State Water Board will make available to local agencies funds from its Clean Water State Revolving Fund loan program for mini-loan programs to be operated by the local agencies for the making of low interest loans to assist private property owners with complying with this Policy.
Tier 0 – Existing OWTS

Existing OWTS that are properly functioning and do not meet the conditions of failing systems or otherwise require corrective action (for example, to prevent groundwater impairment) as specifically described in Tier 4, and are not determined to be contributing to an impairment of surface water as specifically described in Tier 3, are automatically included in Tier 0.

6.0 Coverage for Properly Operating Existing OWTS

6.1 Existing OWTS are automatically covered by Tier 0 and the herein included waiver of waste discharge requirements if they meet the following requirements:

6.1.1 have a projected flow of 10,000 gallons-per-day or less;

6.1.2 receive only domestic wastewater from residential or commercial buildings, or high-strength wastewater from commercial food service buildings that does not exceed 900 mg/L BOD and has a properly sized and functioning oil/grease interceptor (a.k.a. grease trap);

6.1.3 continue to comply with any previously imposed permitting conditions;

6.1.4 do not require supplemental treatment under Tier 3;

6.1.5 do not require corrective action under Tier 4; and

6.1.6 do not consist of a cesspool as a means of wastewater disposal.

6.2 A Regional Water Board or local agency may deny coverage under this Policy to any OWTS that is:

6.2.1 Not in compliance with Section 6.1;

6.2.2 Not able to adequately protect the water quality of the waters of the State, as determined by the Regional Water Board after considering any input from the local agency. A Regional Water Board may require the submission of a report of waste discharge to receive Region specific waste discharge requirements or waiver of waste discharge requirements so as to be protective.

6.3 Existing OWTS currently under waste discharge requirements or individual waiver of waste discharge requirements will remain under those orders until notified in writing by the appropriate Regional Water Board that they are covered under this Policy.
Tier 1 – Low Risk New or Replacement OWTS

New or replacement OWTS meet low risk siting and design requirements as specified in Tier 1, where there is not an approved Local Agency Management Program per Tier 2.

7.0 Minimum Site Evaluation and Siting Standards

7.1 A qualified professional shall perform all necessary soil and site evaluations for all new OWTS and for existing OWTS where the treatment or dispersal system will be replaced or expanded.

7.2 A site evaluation shall determine that adequate soil depth is present in the dispersal area. Soil depth is measured vertically to the point where bedrock, hardpan, impermeable soils, or saturated soils are encountered or an adequate depth has been determined. Soil depth shall be determined through the use of soil profile(s) in the dispersal area and the designated dispersal system replacement area, as viewed in excavations exposing the soil profiles in representative areas, unless the local agency has determined through historical or regional information that a specific site soil profile evaluation is unwarranted.

7.3 A site evaluation shall determine whether the anticipated highest level of groundwater within the dispersal field and its required minimum dispersal zone is not less than prescribed in Table 2 by estimation using one or a combination of the following methods:

7.3.1 Direct observation of the highest extent of soil mottling observed in the examination of soil profiles, recognizing that soil mottling is not always an indicator of the uppermost extent of high groundwater; or

7.3.2 Direct observation of groundwater levels during the anticipated period of high groundwater. Methods for groundwater monitoring and determinations shall be decided by the local agency; or

7.3.3 Other methods, such as historical records, acceptable to the local agency.

7.3.4 Where a conflict in the above methods of examination exists, the direct observation method indicating the highest level shall govern.

7.4 Percolation test results in the effluent disposal area shall not be faster than one minute per inch (1 MPI) or slower than one hundred twenty minutes per inch (120 MPI). All percolation test rates shall be performed by presoaking of percolation test holes and continuing the test until a stabilized rate is achieved.

7.5 Minimum horizontal setbacks from any OWTS treatment component and dispersal systems shall be as follows:

7.5.1 5 feet from parcel property lines and structures;

7.5.2 100 feet from water wells and monitoring wells, unless regulatory or legitimate data requirements necessitate that monitoring wells be located closer;
Tier 1 – Low Risk New or Replacement OWTS

7.5.3 100 feet from any unstable land mass or any areas subject to earth slides identified by a registered engineer or registered geologist; other setback distance are allowed, if recommended by a geotechnical report prepared by a qualified professional.

7.5.4 100 feet from springs and flowing surface water bodies where the edge of that water body is the natural or levied bank for creeks and rivers, or may be less where site conditions prevent migration of wastewater to the water body;

7.5.5 200 feet from vernal pools, wetlands, lakes, ponds, or other surface water bodies where the edge of that water body is the high water mark for lakes and reservoirs, and the mean high tide line for tidally influenced water bodies;

7.5.6 150 feet from a public water well where the depth of the effluent dispersal system does not exceed 10 feet;

7.5.7 Where the effluent dispersal system is within 1,200 feet from a public water systems’ surface water intake point, within the catchment of the drainage, and located such that it may impact water quality at the intake point such as upstream of the intake point for flowing water bodies, the dispersal system shall be no less than 400 feet from the high water mark of the reservoir, lake or flowing water body.

7.5.8 Where the effluent dispersal system is located more than 1,200 feet but less than 2,500 feet from a public water systems’ surface water intake point, within the catchment of the drainage, and located such that it may impact water quality at the intake point such as upstream of the intake point for flowing water bodies, the dispersal system shall be no less than 200 feet from the high water mark of the reservoir, lake or flowing water body.

7.6 Prior to issuing a permit to install an OWTS the permitting agency shall determine if the OWTS is within 1,200 feet of an intake point for a surface water treatment plant for drinking water, is in the drainage catchment in which the intake point is located, and located such that it may impact water quality at the intake point such as being upstream of the intake point for a flowing water body. If the OWTS is within 1,200 feet of an intake point for a surface water treatment plant for drinking water, is in the drainage catchment in which the intake point is located, and is located such that it may impact water quality at the intake point:

7.6.1 The permitting agency shall provide a copy of the permit application to the owner of the water system of their proposal to install an OWTS within 1,200 feet of an intake point for a surface water treatment. If the owner of the water system cannot be identified, then the permitting agency will notify California Department of Public Health Drinking Water Program.

7.6.2 The permit application shall include a topographical plot plan for the parcel showing the OWTS components, the property boundaries, proposed structures, physical address, and name of property owner.
Tier 1 – Low Risk New or Replacement OWTS

7.6.3 The permit application shall provide the estimated wastewater flows, intended use of proposed structure generating the wastewater, soil data, and estimated depth to seasonally saturated soils.

7.6.4 The public water system owner shall have 15 days from receipt of the permit application to provide recommendations and comments to the permitting agency.

7.7 Natural ground slope in all areas used for effluent disposal shall not be greater than 25 percent.

7.8 The average density for any subdivision of property made by Tentative Approval pursuant to the Subdivision Map Act occurring after the effective date of this Policy and implemented under Tier 1 shall not exceed the allowable density values in Table 1 for a single-family dwelling unit, or its equivalent, for those units that rely on OWTS.

<table>
<thead>
<tr>
<th>Average Annual Rainfall (in/yr)</th>
<th>Allowable Density (acres/single family dwelling unit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 15</td>
<td>2.5</td>
</tr>
<tr>
<td>>15 - 20</td>
<td>2</td>
</tr>
<tr>
<td>>20 - 25</td>
<td>1.5</td>
</tr>
<tr>
<td>>25 - 35</td>
<td>1</td>
</tr>
<tr>
<td>>35 - 40</td>
<td>0.75</td>
</tr>
<tr>
<td>>40</td>
<td>0.5</td>
</tr>
</tbody>
</table>

8.0 Minimum OWTS Design and Construction Standards

8.1 OWTS Design Requirements

8.1.1 A qualified professional shall design all new OWTS and modifications to existing OWTS where the treatment or dispersal system will be replaced or expanded. A qualified professional employed by a local agency, while acting in that capacity, may design, review, and approve a design for a proposed OWTS, if authorized by the local agency.

8.1.2 OWTS shall be located, designed, and constructed in a manner to ensure that effluent does not surface at any time, and that percolation of effluent will not adversely affect beneficial uses of waters of the State.

8.1.3 The design of new and replacement OWTS shall be based on the expected influent wastewater quality with a projected flow not to exceed 3,500 gallons per day, the peak wastewater flow rates for purposes of sizing hydraulic components, the projected average daily flow for purposes of sizing the dispersal system, the characteristics of the site, and the required level of treatment for protection of water quality and public health.
Tier 1 – Low Risk New or Replacement OWTS

8.1.4 All dispersal systems shall have at least twelve (12) inches of soil cover, except for pressure distribution systems, which must have at least six (6) inches of soil cover.

8.1.5 The minimum depth to the anticipated highest level of groundwater below the bottom of the leaching trench, and the native soil depth immediately below the leaching trench, shall not be less than prescribed in Table 2.

<table>
<thead>
<tr>
<th>Percolation Rate</th>
<th>Minimum Depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percolation Rate ≤ 1 MPI</td>
<td>Only as authorized in a Tier 2 Local Agency Management Program</td>
</tr>
<tr>
<td>1 MPI < Percolation Rate ≤ 5 MPI</td>
<td>Twenty (20) feet</td>
</tr>
<tr>
<td>5 MPI < Percolation Rate ≤ 30 MPI</td>
<td>Eight (8) feet</td>
</tr>
<tr>
<td>30 MPI < Percolation Rate ≤ 120 MPI</td>
<td>Five (5) feet</td>
</tr>
<tr>
<td>Percolation Rate > 120 MPI</td>
<td>Only as authorized in a Tier 2 Local Agency Management Program</td>
</tr>
</tbody>
</table>

8.1.6 Dispersal systems shall be a leachfield, designed using not more than 4 square-feet of infiltrative area per linear foot of trench as the infiltrative surface, and with trench width no wider than 3 feet. Seepage pits and other dispersal systems may only be authorized for repairs where siting limitations require a variance. Maximum application rates shall be determined from stabilized percolation rate as provided in Table 3, or from soil texture and structure determination as provided in Table 4.

8.1.7 Dispersal systems shall not exceed a maximum depth of 10 feet as measured from the ground surface to the bottom of the trench.
Table 3: Application Rates as Determined from Stabilized Percolation Rate

<table>
<thead>
<tr>
<th>Percolation Rate (minutes per Inch)</th>
<th>Application Rate (gallons per day per square foot)</th>
<th>Percolation Rate (minutes per Inch)</th>
<th>Application Rate (gallons per day per square foot)</th>
<th>Percolation Rate (minutes per Inch)</th>
<th>Application Rate (gallons per day per square foot)</th>
</tr>
</thead>
<tbody>
<tr>
<td><1</td>
<td>Requires Local Management Program</td>
<td>31</td>
<td>0.522</td>
<td>61</td>
<td>0.197</td>
</tr>
<tr>
<td>1</td>
<td>1.2</td>
<td>32</td>
<td>0.511</td>
<td>62</td>
<td>0.194</td>
</tr>
<tr>
<td>2</td>
<td>1.2</td>
<td>33</td>
<td>0.5</td>
<td>63</td>
<td>0.19</td>
</tr>
<tr>
<td>3</td>
<td>1.2</td>
<td>34</td>
<td>0.489</td>
<td>64</td>
<td>0.187</td>
</tr>
<tr>
<td>4</td>
<td>1.2</td>
<td>35</td>
<td>0.478</td>
<td>65</td>
<td>0.184</td>
</tr>
<tr>
<td>5</td>
<td>1.2</td>
<td>36</td>
<td>0.467</td>
<td>66</td>
<td>0.18</td>
</tr>
<tr>
<td>6</td>
<td>0.8</td>
<td>37</td>
<td>0.456</td>
<td>67</td>
<td>0.177</td>
</tr>
<tr>
<td>7</td>
<td>0.8</td>
<td>38</td>
<td>0.445</td>
<td>68</td>
<td>0.174</td>
</tr>
<tr>
<td>8</td>
<td>0.8</td>
<td>39</td>
<td>0.434</td>
<td>69</td>
<td>0.17</td>
</tr>
<tr>
<td>9</td>
<td>0.8</td>
<td>40</td>
<td>0.422</td>
<td>70</td>
<td>0.167</td>
</tr>
<tr>
<td>10</td>
<td>0.8</td>
<td>41</td>
<td>0.411</td>
<td>71</td>
<td>0.164</td>
</tr>
<tr>
<td>11</td>
<td>0.786</td>
<td>42</td>
<td>0.4</td>
<td>72</td>
<td>0.16</td>
</tr>
<tr>
<td>12</td>
<td>0.771</td>
<td>43</td>
<td>0.389</td>
<td>73</td>
<td>0.157</td>
</tr>
<tr>
<td>13</td>
<td>0.757</td>
<td>44</td>
<td>0.378</td>
<td>74</td>
<td>0.154</td>
</tr>
<tr>
<td>14</td>
<td>0.743</td>
<td>45</td>
<td>0.367</td>
<td>75</td>
<td>0.15</td>
</tr>
<tr>
<td>15</td>
<td>0.729</td>
<td>46</td>
<td>0.356</td>
<td>76</td>
<td>0.147</td>
</tr>
<tr>
<td>16</td>
<td>0.714</td>
<td>47</td>
<td>0.345</td>
<td>77</td>
<td>0.144</td>
</tr>
<tr>
<td>17</td>
<td>0.7</td>
<td>48</td>
<td>0.334</td>
<td>78</td>
<td>0.14</td>
</tr>
<tr>
<td>18</td>
<td>0.686</td>
<td>49</td>
<td>0.323</td>
<td>79</td>
<td>0.137</td>
</tr>
<tr>
<td>19</td>
<td>0.671</td>
<td>50</td>
<td>0.311</td>
<td>80</td>
<td>0.133</td>
</tr>
<tr>
<td>20</td>
<td>0.657</td>
<td>51</td>
<td>0.3</td>
<td>81</td>
<td>0.13</td>
</tr>
<tr>
<td>21</td>
<td>0.643</td>
<td>52</td>
<td>0.289</td>
<td>82</td>
<td>0.127</td>
</tr>
<tr>
<td>22</td>
<td>0.629</td>
<td>53</td>
<td>0.278</td>
<td>83</td>
<td>0.123</td>
</tr>
<tr>
<td>23</td>
<td>0.614</td>
<td>54</td>
<td>0.267</td>
<td>84</td>
<td>0.12</td>
</tr>
<tr>
<td>24</td>
<td>0.6</td>
<td>55</td>
<td>0.256</td>
<td>85</td>
<td>0.117</td>
</tr>
<tr>
<td>25</td>
<td>0.589</td>
<td>56</td>
<td>0.245</td>
<td>86</td>
<td>0.113</td>
</tr>
<tr>
<td>26</td>
<td>0.578</td>
<td>57</td>
<td>0.234</td>
<td>87</td>
<td>0.11</td>
</tr>
<tr>
<td>27</td>
<td>0.567</td>
<td>58</td>
<td>0.223</td>
<td>88</td>
<td>0.107</td>
</tr>
<tr>
<td>28</td>
<td>0.556</td>
<td>59</td>
<td>0.212</td>
<td>89</td>
<td>0.103</td>
</tr>
<tr>
<td>29</td>
<td>0.545</td>
<td>60</td>
<td>0.2</td>
<td>90</td>
<td>0.1</td>
</tr>
<tr>
<td>30</td>
<td>0.533</td>
<td>>90 - 120</td>
<td>0.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 4: Design Soil Application Rates
(Source: USEPA Onsite Wastewater Treatment Systems Manual, February 2002)

<table>
<thead>
<tr>
<th>Soil Texture (per the USDA soil classification system)</th>
<th>Soil Structure Shape</th>
<th>Grade</th>
<th>Maximum Soil Application Rate (gallons per day per square foot)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coarse Sand, Sand, Loamy Coarse Sand, Loamy Sand</td>
<td>Single grain</td>
<td>Structureless</td>
<td>0.8</td>
</tr>
<tr>
<td>Fine Sand, Very Fine Sand, Loamy Fine Sand, Loamy Very Fine Sand</td>
<td>Single grain</td>
<td>Structureless</td>
<td>0.4</td>
</tr>
<tr>
<td>Coarse Sandy Loam, Sandy Loam</td>
<td>Massive</td>
<td>Structureless</td>
<td>0.2</td>
</tr>
<tr>
<td>Platy</td>
<td>Weak</td>
<td>Moderate, Strong</td>
<td>Prohibited</td>
</tr>
<tr>
<td>Prismatic, Blocky, Granular</td>
<td>Weak</td>
<td>Moderate, Strong</td>
<td>0.4</td>
</tr>
<tr>
<td>Fine Sandy Loam, very fine Sandy Loam</td>
<td>Massive</td>
<td>Structureless</td>
<td>0.2</td>
</tr>
<tr>
<td>Platy</td>
<td>Weak, Moderate, Strong</td>
<td>Prohibited</td>
<td></td>
</tr>
<tr>
<td>Prismatic, Blocky, Granular</td>
<td>Weak</td>
<td>Moderate, Strong</td>
<td>0.4</td>
</tr>
<tr>
<td>Loam</td>
<td>Massive</td>
<td>Structureless</td>
<td>0.2</td>
</tr>
<tr>
<td>Platy</td>
<td>Weak, Moderate, Strong</td>
<td>Prohibited</td>
<td></td>
</tr>
<tr>
<td>Prismatic, Blocky, Granular</td>
<td>Weak</td>
<td>Moderate, Strong</td>
<td>0.4</td>
</tr>
<tr>
<td>Silt Loam</td>
<td>Massive</td>
<td>Structureless</td>
<td>Prohibited</td>
</tr>
<tr>
<td>Platy</td>
<td>Weak, Moderate, Strong</td>
<td>Prohibited</td>
<td></td>
</tr>
<tr>
<td>Prismatic, Blocky, Granular</td>
<td>Weak</td>
<td>Moderate, Strong</td>
<td>0.4</td>
</tr>
<tr>
<td>Sandy Clay Loam, Clay Loam, Silty Clay Loam</td>
<td>Massive</td>
<td>Structureless</td>
<td>Prohibited</td>
</tr>
<tr>
<td>Platy</td>
<td>Weak, Moderate, Strong</td>
<td>Prohibited</td>
<td></td>
</tr>
<tr>
<td>Prismatic, Blocky, Granular</td>
<td>Weak</td>
<td>Moderate, Strong</td>
<td>0.2</td>
</tr>
<tr>
<td>Sandy Clay, Clay, or Silty Clay</td>
<td>Massive</td>
<td>Structureless</td>
<td>Prohibited</td>
</tr>
<tr>
<td>Platy</td>
<td>Weak, Moderate, Strong</td>
<td>Prohibited</td>
<td></td>
</tr>
<tr>
<td>Prismatic, Blocky, Granular</td>
<td>Weak</td>
<td>Prohibited</td>
<td></td>
</tr>
</tbody>
</table>

1 Soils listed as prohibited may be allowed under the authority of the Regional Water Board, or as allowed under an approved Local Agency Management Program per Tier 2.
Tier 1 – Low Risk New or Replacement OWTS

8.1.8 All new dispersal systems shall have 100 percent replacement area that is equivalent and separate, and available for future use.

8.1.9 No dispersal systems or replacement areas shall be covered by an impermeable surface, such as paving, building foundation slabs, plastic sheeting, or any other material that prevents oxygen transfer to the soil.

8.1.10 Rock fragment content of native soil surrounding the dispersal system shall not exceed 50 percent by volume for rock fragments sized as cobbles or larger and shall be estimated using either the point-count or line-intercept methods.

8.1.11 Increased allowance for IAPMO certified dispersal systems is not allowed under Tier 1.

8.2 OWTS Construction and Installation

8.2.1 All new or replacement septic tanks and new or replacement oil/grease interceptor tanks shall comply with the standards contained in Sections K5(b), K5(c), K5(d), K5(e), K5(k), K5(m)(1), and K5(m)(3)(ii) of Appendix K, of Part 5, Title 24 of the 2007 California Code of Regulations.

8.2.2 All new septic tanks shall comply with the following requirements:

8.2.2.1 Access openings shall have watertight risers, the tops of which shall be set at most 6 inches below finished grade; and

8.2.2.2 Access openings at grade or above shall be locked or secured to prevent unauthorized access.

8.2.3 New and replacement OWTS septic tanks shall be limited to those approved by the International Association of Plumbing and Mechanical Officials (IAPMO) or stamped and certified by a California registered civil engineer as meeting the industry standards, and their installation shall be according to the manufacturer’s instructions.

8.2.4 New and replacement OWTS septic tanks shall be designed to prevent solids in excess of three-sixteenths (3/16) of an inch in diameter from passing to the dispersal system. Septic tanks that use a National Sanitation Foundation/American National Standard Institute (NSF/ANSI) Standard 46 certified septic tank filter at the final point of effluent discharge from the OWTS and prior to the dispersal system shall be deemed in compliance with this requirement.
Tier 1 – Low Risk New or Replacement OWTS

8.2.5 A Licensed General Engineering Contractor (Class A), General Building Contractor (Class B), Sanitation System Contractor (Specialty Class C-42), or Plumbing Contractor (Specialty Class C-36) shall install all new OWTS and replacement OWTS in accordance with California Business and Professions Code Sections 7056, 7057, and 7058 and Article 3, Division 8, Title 16 of the California Code of Regulations. A property owner may also install his/her own OWTS if the as-built diagram and the installation are inspected and approved by the Regional Water Board or local agency at a time when the OWTS is in an open condition (not covered by soil and exposed for inspection).
Tier 2 – Local Agency OWTS Management Program

Local agencies may submit management programs for approval, and upon approval then manage the installation of new and replacement OWTS under that program. Local Agency Management Programs approved under Tier 2 provide an alternate method from Tier 1 programs to achieve the same policy purpose, which is to protect water quality and public health. In order to address local conditions, Local Agency Management Programs may include standards that differ from the Tier 1 requirements for new and replacement OWTS contained in Sections 7 and 8. As examples, a Local Agency Management Program may authorize different soil characteristics, usage of seepage pits, and different densities for new developments. Once the Local Agency Management Program is approved, new and replacement OWTS that are included within the Local Agency Management Program may be approved by the Local Agency. A Local Agency, at its discretion, may include Tier 1 standards within its Tier 2 Local Agency Management Program for some or all of its jurisdiction. However, once a Local Agency Management Program is approved, it shall supersede Tier 1 and all future OWTS decisions will be governed by the Tier 2 Local Agency Management Program until it is modified, withdrawn, or revoked.

9.0 Local Agency Management Program for Minimum OWTS Standards

The Local Agency Management Program for minimum OWTS Standards is a management program where local agencies can establish minimum standards that are differing requirements from those specified in Tier 1 (Section 7 and Section 8), including the areas that do not meet those minimum standards and still achieve this Policy’s purpose. Local Agency Management Programs may include any one or combination of the following to achieve this purpose:

- Differing system design requirements;
- Differing siting controls such as system density and setback requirements;
- Requirements for owners to enter monitoring and maintenance agreements; and/or
- Creation of an onsite management district or zone.

9.1 Where different and/or additional requirements are needed to protect water quality the local agency shall consider the following, as well as any other conditions deemed appropriate, when developing Local Agency Management Program requirements:

9.1.1 Degree of vulnerability to pollution from OWTS due to hydrogeological conditions.

9.1.2 High Quality waters or other environmental conditions requiring enhanced protection from the effects of OWTS.

9.1.3 Shallow soils requiring a dispersal system installation that is closer to ground surface than is standard.

9.1.4 OWTS is located in area with high domestic well usage.
Tier 2 – Local Agency OWTS Management Program

9.1.5 Dispersal system is located in an area with fractured bedrock.
9.1.6 Dispersal system is located in an area with poorly drained soils.
9.1.7 Surface water is vulnerable to pollution from OWTS.
9.1.8 Surface water within the watershed is listed as impaired for nitrogen or pathogens.
9.1.9 OWTS is located within an area of high OWTS density.
9.1.10 A parcel’s size and its susceptibility to hydraulic mounding, organic or nitrogen loading, and whether there is sufficient area for OWTS expansion in case of failure.
9.1.11 Geographic areas that are known to have multiple, existing OWTS predating any adopted standards of design and construction including cesspools.
9.1.12 Geographic areas that are known to have multiple, existing OWTS located within either the pertinent setbacks listed in Section 7.5 of this Policy, or a setback that the local agencies finds is appropriate for that area.

9.2 The Local Agency Management Program shall detail the scope of its coverage, such as the maximum authorized projected flows for OWTS, as well as a clear delineation of those types of OWTS included within and to be permitted by the program, and provide the local site evaluation, siting, design, and construction requirements, and in addition each of the following:

9.2.1 Any local agency requirements for onsite wastewater system inspection, monitoring, maintenance, and repairs, including procedures to ensure that replacements or repairs to failing systems are done under permit from the local governing jurisdiction.

9.2.2 Any special provisions applicable to OWTS within specified geographic areas near specific impaired water bodies listed for pathogens or nitrogen. The special provisions may be substantive and/or procedural, and may include, as examples: consultation with the Regional Water Board prior to issuing permits, supplemental treatment, development of a management district or zone, special siting requirements, additional inspection and monitoring.

9.2.3 Local Agency Management Program variances, for new installations and repairs in substantial conformance, to the greatest extent practicable. Variances are not allowed for the requirements stated in sections 9.4.1 through 9.4.9.

9.2.4 Any educational, training, certification, and/or licensing requirements that will be required of OWTS service providers, site evaluators, designers, installers, pumpers, maintenance contractors, and any other person relating to OWTS activities.

9.2.5 Education and/or outreach program including informational materials to inform OWTS owners about how to locate, operate, and maintain their
OWTS as well as any Water Board order (e.g., Basin Plan prohibitions) regarding OWTS restrictions within its jurisdiction. The education and/or outreach program shall also include procedures to ensure that alternative onsite system owners are provided an informational maintenance or replacement document by the system designer or installer. This document shall cite homeowner procedures to ensure maintenance, repair, or replacement of critical items within 48 hours following failure. If volunteer well monitoring programs are available within the local agency’s jurisdiction, the outreach program shall include information on how well owners may participate.

9.2.6 An assessment of existing and proposed disposal locations for septage, the volume of septage anticipated, and whether adequate capacity is available.

9.2.7 Any consideration given to onsite maintenance districts or zones.

9.2.8 Any consideration given to the development and implementation of, or coordination with, Regional Salt and Nutrient Management Plans.

9.2.9 Any consideration given to coordination with watershed management groups.

9.2.10 Procedures for evaluating the proximity of sewer systems to new or replacement OWTS installations.

9.2.11 Procedures for notifying the owner of a public water system prior to issuing an installation or repair permit for an OWTS, if the OWTS is within 1,200 feet of an intake point for a surface water treatment plant for drinking water, is in the drainage area catchment in which the intake point is located, and is located such that it may impact water quality at the intake point such as upstream of the intake point for a flowing water body, or if the OWTS is within a horizontal sanitary setback from a public well.

9.2.12 Policies and procedures that will be followed when a proposed OWTS dispersal area is within the horizontal sanitary setback of a public well or a surface water intake point. These policies and procedures shall either indicate that supplemental treatment as specified in 10.9 and 10.10 of this policy are required for OWTS that are within a horizontal sanitary setback of a public well or surface water intake point, or will establish alternate siting and operational criteria for the proposed OWTS that would similarly mitigate the potential adverse impact to the public water source.

9.2.13 Any plans for the phase-out or discontinuance of cesspool usage.

9.3 The minimum responsibilities of the local agency for management of the Local Agency Management Program include:

9.3.1 Maintain records of the number, location, and description of permits issued for OWTS where a variance is granted.
9.3.2 Maintain a water quality assessment program to determine the general operation status of OWTS and to evaluate the impact of OWTS discharges, and assess the extent to which groundwater and local surface water quality may be adversely impacted. The focus of the assessment should be areas with characteristics listed under section 9.1. The assessment program will include monitoring and analysis of water quality data, review of complaints, variances, failures, and any information resulting from inspections. The assessment may use existing water quality data from other monitoring programs and/or establish the terms, conditions, and timing for monitoring done by the local agency. At a minimum this assessment will include monitoring data for nitrates and pathogens, and may include data for other constituents which are needed to adequately characterize the impacts of OWTS on water quality. Other monitoring programs for which data may be used include but are not limited to any of the following:

9.3.2.1. Random well samples from a domestic well sampling program.
9.3.2.2. Routine real estate transfer samples if those are performed and reported.
9.3.2.3. Review of public system sampling reports done by the local agency or another municipality responsible for the public system.
9.3.2.4. Water quality testing reports done at the time of new well development if those are reported.
9.3.2.5. Beach water quality testing data performed as part of Health and Safety Code Section 115885.
9.3.2.6. Receiving water sampling performed as a part of a NPDES permit.
9.3.2.7. Data contained in the California Water Quality Assessment Database.
9.3.2.8. Groundwater sampling performed as part of Waste Discharge Requirements.
9.3.2.9. Groundwater data collected as part of the Groundwater Ambient Monitoring and Assessment Program and available in the Geotracker Database.

9.3.3 Submit an annual report by February 1 to the applicable Regional Water Board summarizing the status of items 9.3.1 through 9.3.2 above. Every fifth year, submit an evaluation of the monitoring program and an assessment of whether water quality is being impacted by OWTS, identifying any changes in the Local Agency Management Program that will be undertaken to address impacts from OWTS. The first report will commence one year after approval of the local agency’s Local Agency Management Program. In addition to summarizing monitoring data collected per 9.3.2 above, all groundwater monitoring data generated by the local agency shall be submitted in EDF format for inclusion into
Tier 2 – Local Agency OWTS Management Program

Geotracker, and surface water monitoring shall be submitted to CEDEN in a SWAMP comparable format.

9.4 The following are not allowed to be authorized in a Local Agency Management Program:

9.4.1 Cesspools of any kind or size.

9.4.2 OWTS receiving a projected flow over 10,000 gallons per day.

9.4.3 OWTS that utilize any form of effluent disposal that discharges on or above the post installation ground surface such as sprinklers, exposed drip lines, free-surface wetlands, or a pond.

9.4.4 Slopes greater than 30 percent without a slope stability report approved by a registered professional.

9.4.5 Decreased leaching area for IAPMO certified dispersal systems using a multiplier less than 0.70.

9.4.6 OWTS utilizing supplemental treatment without requirements for periodic monitoring or inspections.

9.4.7 OWTS dedicated to receiving significant amounts of wastes dumped from RV holding tanks.

9.4.8 Separation of the bottom of dispersal system to groundwater less than two (2) feet, except for seepage pits, which shall not be less than 10 feet.

9.4.9 Installation of new or replacement OWTS where public sewer is available. The public sewer may be considered as not available when such public sewer or any building or exterior drainage facility connected thereto is located more than 200 feet from any proposed building or exterior drainage facility on any lot or premises that abuts and is served by such public sewer. This provision does not apply to replacement OWTS where the connection fees and construction cost are greater than twice the total cost of the replacement OWTS and the local agency determines that the discharge from the OWTS will not affect groundwater or surface water to a degree that makes it unfit for drinking or other uses.

9.4.10 Except as provided for in sections 9.4.11 and 9.4.12, new or replacement OWTS with minimum horizontal setbacks less than any of the following:

9.4.10.1 150 feet from a public water well where the depth of the effluent dispersal system does not exceed 10 feet in depth.

9.4.10.2 200 feet from a public water well where the depth of the effluent dispersal system exceeds 10 feet in depth.

9.4.10.3 Where the effluent dispersal system is within 600 feet of a public water well and exceeds 20 feet in depth the horizontal setback required to achieve a two-year travel time for microbiological contaminants shall be evaluated. A qualified professional shall conduct this evaluation. However in no case shall the setback be less than 200 feet.
Tier 2 – Local Agency OWTS Management Program

9.4.10.4 Where the effluent dispersal system is within 1,200 feet from a public water systems' surface water intake point, within the catchment of the drainage, and located such that it may impact water quality at the intake point such as upstream of the intake point for flowing water bodies, the dispersal system shall be no less than 400 feet from the high water mark of the reservoir, lake or flowing water body.

9.4.10.5 Where the effluent dispersal system is located more than 1,200 feet but less than 2,500 feet from a public water systems' surface water intake point, within the catchment area of the drainage, and located such that it may impact water quality at the intake point such as upstream of the intake point for flowing water bodies, the dispersal system shall be no less than 200 feet from the high water mark of the reservoir, lake or flowing water body.

9.4.11 For replacement OWTS that do not meet the above horizontal separation requirements, the replacement OWTS shall meet the horizontal separation to the greatest extent practicable. In such case, the replacement OWTS shall utilize supplemental treatment and other mitigation measures, unless the permitting authority finds that there is no indication that the previous system is adversely affecting the public water source, and there is limited potential that the replacement system could impact the water source based on topography, soil depth, soil texture, and groundwater separation.

9.4.12 For new OWTS, installed on parcels of record existing at the time of the effective date of this Policy, that cannot meet the above horizontal separation requirements, the OWTS shall meet the horizontal separation to the greatest extent practicable and shall utilize supplemental treatment for pathogens as specified in section 10.8 and any other mitigation measures prescribed by the permitting authority.

9.5 A Local Agency Management Program for OWTS must include adequate detail, including technical information to support how all the criteria in their program work together to protect water quality and public health.

9.6 A Regional Water Board reviewing a Local Agency Management Program shall consider, among other things, the past performance of the local program to adequately protect water quality, and where this has been achieved with criteria differing from Tier 1, shall not unnecessarily require modifications to the program for purposes of uniformity, as long as the Local Agency Management Program meets the requirements of Tier 2.
Tier 3 – Impaired Areas

Tier 3 – Advanced Protection Management Programs for Impaired Areas

Existing, new, and replacement OWTS that are near impaired water bodies may be addressed by a TMDL and its implementation program, or special provisions contained in a Local Agency Management Program. If there is no TMDL or special provisions, new or replacement OWTS within 600 feet of impaired water bodies listed in Attachment 2 must meet the applicable specific requirements of Tier 3.

10.0 Advanced Protection Management Program

An Advanced Protection Management Program is the minimum required management program for all OWTS located near a water body that has been listed as impaired due to nitrogen or pathogen indicators pursuant to Section 303(d) of the Clean Water Act. Local agencies are authorized to implement Advanced Protection Management Programs in conjunction with an approved Local Agency Management Program or, if there is no approved Local Agency Management Program, Tier 1. Local agencies are encouraged to collaborate with the Regional Water Boards by sharing any information pertaining to the impairment, provide advice on potential remedies, and regulate OWTS to the extent that their authority allows for the improvement of the impairment.

10.1 The geographic area for each water body’s Advanced Protection Management Program is defined by the applicable TMDL, if one has been approved. If there is not an approved TMDL, it is defined by an approved Local Agency Management Program, if it contains special provisions for that water body. If it is not defined in an approved TMDL or Local Agency Management Program, it shall be 600 linear feet [in the horizontal (map) direction] of a water body listed in Attachment 2 where the edge of that water body is the natural or levied bank for creeks and rivers, the high water mark for lakes and reservoirs, and the mean high tide line for tidally influenced water bodies, as appropriate. OWTS near impaired water bodies that are not listed on Attachment 2, and do not have a TMDL and are not covered by a Local Agency Management Program with special provisions, are not addressed by Tier 3.

10.2 The requirements of an Advanced Protection Management Program will be in accordance with a TMDL implementation plan, if one has been adopted to address the impairment. An adopted TMDL implementation plan supersedes all other requirements in Tier 3. All TMDL implementation plans adopted after the effective date of this Policy that contain load allocations for OWTS shall include a schedule that requires compliance with the load allocations as soon as practicable, given the watershed-specific circumstances. The schedule shall require that OWTS implementation actions for OWTS installed prior to the TMDL implementation plan’s effective date shall commence within 3 years after the TMDL implementation plan’s effective date, and that OWTS implementation actions for OWTS installed after the TMDL implementation plan’s effective date shall commence immediately. The TMDL implementation plan may use some or all of the Tier 3 requirements and shall establish the applicable area of
implementation for OWTS requirements within the watershed. For those impaired water bodies that do have an adopted TMDL addressing the impairment, but the TMDL does not assign a load allocation to OWTS, no further action is required unless the TMDL is modified at some point in the future to include actions for OWTS. Existing, new, and replacement OWTS that are near impaired water bodies and are covered by a Basin Plan prohibition must also comply with the terms of the prohibition, as provided in Section 2.1.

10.3 In the absence of an adopted TMDL implementation plan, the requirements of an Advanced Protection Management Program will consist of any special provisions for the water body if any such provisions have been approved as part of a Local Agency Management Program.

10.4 The Regional Water Boards shall adopt TMDLs for impaired water bodies identified in Attachment 2, in accordance with the specified dates.

10.4.1 If a Regional Water Board does not complete a TMDL within two years of the time period specified in Attachment 2, coverage under this Policy’s waiver of waste discharge requirements shall expire for any OWTS that has any part of its dispersal system discharging within the geographic area of an Advanced Protection Management Program. The Regional Water Board shall issue waste discharge requirements, general waste discharge requirements, waivers of waste discharge requirements, or require corrective action for such OWTS. The Regional Water Board will consider the following when establishing the waste discharge requirements, general waste discharge requirements, waivers of waste discharge requirements, or requirement for corrective action:

10.4.1.1 Whether supplemental treatment should be required.
10.4.1.2 Whether routine inspection of the OWTS should be required.
10.4.1.3 Whether monitoring of surface and groundwater should be performed.
10.4.1.4 The collection of a fee for those OWTS covered by the order.
10.4.1.5 Whether owners of previously-constructed OWTS should file a report by a qualified professional in accordance with section 10.5.
10.4.1.6 Whether owners of new or replacement OWTS should file a report of waste discharge with additional supporting technical information as required by the Regional Water Board.

10.5 If the Regional Water Board requires owners of OWTS to submit a qualified professional’s report pursuant to Section 10.4.1.5, the report shall include a determination of whether the OWTS is functioning properly and as designed or requires corrective actions per Tier 4, and regardless of its state of function, whether it is contributing to impairment of the water body.

10.5.1 The qualified professional’s report may also include, but is not limited to:
Tier 3 – Impaired Areas

10.5.1.1 A general description of system components, their physical layout, and horizontal setback distances from property lines, buildings, wells, and surface waters.

10.5.1.2 A description of the type of wastewater discharged to the OWTS such as domestic, commercial, or industrial and classification of it as domestic wastewater or high-strength waste.

10.5.1.3 A determination of the systems design flow and the volume of wastewater discharged daily derived from water use, either estimated or actual if metered.

10.5.1.4 A description of the septic tank, including age, size, material of construction, internal and external condition, water level, scum layer thickness, depth of solids, and the results of a one-hour hydrostatic test.

10.5.1.5 A description of the distribution box, dosing siphon, or distribution pump, and if flow is being equally distributed throughout the dispersal system, as well as any evidence of solids carryover, clear water infiltration, or evidence of system backup.

10.5.1.6 A description of the dispersal system including signs of hydraulic failure, condition of surface vegetation over the dispersal system, level of ponding above the infiltrative surface within the dispersal system, other possible sources of hydraulic loading to the dispersal area, and depth of the seasonally high groundwater level.

10.5.1.7 A determination of whether the OWTS is discharging to the ground’s surface.

10.5.1.8 For a water body listed as an impaired water body for pathogens, a determination of the OWTS dispersal system’s separation from its deepest most infiltrative surface to the highest seasonal groundwater level or fractured bedrock.

10.5.1.9 For a water body listed as an impaired water body for nitrogen, a determination of whether the groundwater under the dispersal field is reaching the water body, and a description of the method used to make the determination.

10.6 For new, replacement, and existing OWTS in an Advanced Protection Management Program, the following are not covered by this Policy’s waiver but may be authorized by a separate Regional Water Board order:

10.6.1 Cesspools of any kind or size.

10.6.2 OWTS receiving a projected flow over 10,000 gallons per day.

10.6.3 OWTS that utilize any form of effluent disposal on or above the ground surface.

10.6.4 Slopes greater than 30 percent without a slope stability report approved by a registered professional.
10.6.5 Decreased leaching area for IAPMO certified dispersal systems using a multiplier less than 0.70.

10.6.6 OWTS utilizing supplemental treatment without requirements for periodic monitoring or inspections.

10.6.7 OWTS dedicated to receiving significant amounts of wastes dumped from RV holding tanks.

10.6.8 Separation of the bottom of dispersal system to groundwater less than two (2) feet, except for seepage pits, which shall not be less than 10 feet.

10.6.9 Minimum horizontal setbacks less than any of the following:

10.6.9.1 150 feet from a public water well where the depth of the effluent dispersal system does not exceed 10 feet in depth;

10.6.9.2 200 feet from a public water well where the depth of the effluent dispersal system exceeds 10 feet in depth:

10.6.9.3 Where the effluent dispersal system is within 600 feet of a public water well and exceeds 20 feet in depth the horizontal setback required to achieve a two-year travel time for microbiological contaminants shall be evaluated. A qualified professional shall conduct this evaluation. However in no case shall the setback be less than 200 feet.

10.6.9.4 Where the effluent dispersal system is within 1,200 feet from a public water systems’ surface water intake point, within the catchment of the drainage, and located such that it may impact water quality at the intake point such as upstream of the intake point for flowing water bodies, the dispersal system shall be no less than 400 feet from the high water mark of the reservoir, lake or flowing water body.

10.6.9.5 Where the effluent dispersal system is located more than 1,200 feet but less than 2,500 feet from a public water systems’ surface water intake point, within the catchment of the drainage, and located such that it may impact water quality at the intake point such as upstream of the intake point for flowing water bodies, the dispersal system shall be no less than 200 feet from the high water mark of the reservoir, lake or flowing water body.

10.6.9.6 For replacement OWTS that do not meet the above horizontal separation requirements, the replacement OWTS shall meet the horizontal separation to the greatest extent practicable. In such case, the replacement OWTS shall utilize supplemental treatment and other mitigation measures.

10.6.9.7 For new OWTS, installed on parcels of record existing at the time of the effective date of this Policy, that cannot meet the above horizontal separation requirements, the OWTS shall meet the horizontal separation to the greatest extent practicable and shall
Tier 3 – Impaired Areas

utilize supplemental treatment for pathogens as specified in section 10.10 and any other mitigation measures as prescribed by the permitting authority.

10.7 The requirements contained in Section 10 shall not apply to owners of OWTS that are constructed and operating, or permitted, on or prior to the date that the nearby water body is added to Attachment 2 who commit by way of a legally binding document to connect to a centralized wastewater collection and treatment system regulated through WDRs as specified within the following timeframes:

10.7.1 The owner must sign the document within forty-eight months of the date that the nearby water body is initially listed on Attachment 2.

10.7.2 The specified date for the connection to the centralized community wastewater collection and treatment system shall not extend beyond nine years following the date that the nearby water body is added to Attachment 2.

10.8 In the absence of an adopted TMDL implementation plan or Local Agency Management Program containing special provisions for the water body, all new or replacement OWTS permitted after the date that the water body is initially listed in Attachment 2 that have any discharge within the geographic area of an Advanced Protection Management Program shall meet the following requirements:

10.8.1 Utilize supplemental treatment and meet performance requirements if impaired for nitrogen and 10.10 if impaired for pathogens,

10.8.2 Comply with the setback requirements of Section 7.5.1 to 7.5.5, and

10.8.3 Comply with any applicable Local Agency Management Program requirements.

10.9 Supplemental treatment requirements for nitrogen

10.9.1 Effluent from the supplemental treatment components designed to reduce nitrogen shall be certified by NSF, or other approved third party tester, to meet a 50 percent reduction in total nitrogen when comparing the 30-day average influent to the 30-day average effluent.

10.9.2 Where a drip-line dispersal system is used to enhance vegetative nitrogen uptake, the dispersal system shall have at least six (6) inches of soil cover.
10.10 Supplemental treatment requirements for pathogens

10.10.1 Supplemental treatment components designed to perform disinfection shall provide sufficient pretreatment of the wastewater so that effluent from the supplemental treatment components does not exceed a 30-day average TSS of 30 mg/L and shall further achieve an effluent fecal coliform bacteria concentration less than or equal to 200 Most Probable Number (MPN) per 100 milliliters.

10.10.2 The minimum soil depth and the minimum depth to the anticipated highest level of groundwater below the bottom of the dispersal system shall not be less than three (3) feet. All dispersal systems shall have at least twelve (12) inches of soil cover.

10.11 OWTS in an Advanced Protection Management Program with supplemental treatment shall be designed to meet the applicable performance requirements above and shall be stamped or approved by a Qualified Professional.

10.12 Prior to the installation of any proprietary treatment OWTS in an Advanced Protection Management Program, all such treatment components shall be tested by an independent third party testing laboratory.

10.13 The ongoing monitoring of OWTS in an Advanced Protection Management Program with supplemental treatment components designed to meet the performance requirements in Sections 10.9 and 10.10 shall be monitored in accordance with the operation and maintenance manual for the OWTS or more frequently as required by the local agency or Regional Water Board.

10.14 OWTS in an Advanced Protection Management Program with supplemental treatment components shall be equipped with a visual or audible alarm as well as a telemetric alarm that alerts the owner and service provider in the event of system malfunction. Where telemetry is not possible, the owner or owner’s agent shall inspect the system at least monthly while the system is in use as directed and instructed by a service provider and notify the service provider not less than quarterly of the observed operating parameters of the OWTS.

10.15 OWTS in an Advanced Protection Management Program designed to meet the disinfection requirements in Section 10.10 shall be inspected for proper operation quarterly while the system is in use by a service provider unless a telemetric monitoring system is capable of continuously assessing the operation of the disinfection system. Testing of the wastewater flowing from supplemental treatment components that perform disinfection shall be sampled at a point in the system after the treatment components and prior to the dispersal system and shall be conducted quarterly based on analysis of total coliform with a minimum detection limit of 2.2 MPN. All effluent samples must include the geographic coordinates of the sample’s location. Effluent samples shall be taken by a service provider and analyzed by a California Department of Public Health certified laboratory.
Tier 3 – Impaired Areas

10.16 The minimum responsibilities of a local agency administering an Advanced Protection Management Program include those prescribed for the Local Agency Management Programs in Section 9.3 of this policy, as well as monitoring owner compliance with Sections 10.13, 10.14, and 10.15.
Tier 4 – OWTS Requiring Corrective Action

Tier 4 – OWTS Requiring Corrective Action

OWTS that require corrective action or are either presently failing or fail at any time while this Policy is in effect are automatically included in Tier 4 and must follow the requirements as specified. OWTS included in Tier 4 must continue to meet applicable requirements of Tier 0, 1, 2 or 3 pending completion of corrective action.

11.0 Corrective Action for OWTS

11.1 Any OWTS that has pooling effluent, discharges wastewater to the surface, or has wastewater backed up into plumbing fixtures, because its dispersal system is no longer adequately percolating the wastewater is deemed to be failing, no longer meeting its primary purpose to protect public health, and requires major repair, and as such the dispersal system must be replaced, repaired, or modified so as to return to proper function and comply with Tier 1, 2, or 3 as appropriate.

11.2 Any OWTS septic tank failure, such as a baffle failure or tank structural integrity failure such that either wastewater is exfiltrating or groundwater is infiltrating is deemed to be failing, no longer meeting its primary purpose to protect public health, and requires major repair, and as such shall require the septic tank to be brought into compliance with the requirements of Section 8 in Tier 1 or a Local Agency Management Program per Tier 2.

11.3 Any OWTS that has a failure of one of its components other than those covered by 11.1 and 11.2 above, such as a distribution box or broken piping connection, shall have that component repaired so as to return the OWTS to a proper functioning condition and return to Tier 0, 1, 2, or 3.

11.4 Any OWTS that has affected, or will affect, groundwater or surface water to a degree that makes it unfit for drinking or other uses, or is causing a human health or other public nuisance condition shall be modified or upgraded so as to abate its impact.

11.5 If the owner of the OWTS is not able to comply with corrective action requirements of this section, the Regional Water Board may authorize repairs that are in substantial conformance, to the greatest extent practicable, with Tiers 1 or 3, or may require the owner of the OWTS to submit a report of waste discharge for evaluation on a case-by-case basis. Regional Water Board response to such reports of waste discharge may include, but is not limited to, enrollment in general waste discharge requirements, issuance of individual waste discharge requirements, or issuance of waiver of waste discharge requirements. A local agency may authorize repairs that are in substantial conformance, to the greatest extent practicable, with Tier 2 in accordance with section 9.2.3 if there is an approved Local Agency Management Program, or with an existing program if a Local Agency Management Program has not been approved and it is less than 5 years from the effective date of the Policy.
Tier 4 – OWTS Requiring Corrective Action

11.6 Owners of OWTS will address any corrective action requirement of Tier 4 as soon as is reasonably possible, and must comply with the time schedule of any corrective action notice received from a local agency or Regional Water Board, to retain coverage under this Policy.

11.7 Failure to meet the requirements of Tier 4 constitute a failure to meet the conditions of the waiver of waste discharge requirements contained in this Policy, and is subject to further enforcement action.
Conditional Waiver of Waste Discharge Requirements

12.0 In accordance with Water Code section 13269, the State Water Board hereby waives the requirements to submit a report of waste discharge, obtain waste discharge requirements, and pay fees for discharges from OWTS covered by this Policy. Owners of OWTS covered by this Policy shall comply with the following conditions:

12.0.1 The OWTS shall function as designed with no surfacing effluent.
12.0.2 The OWTS shall not utilize a dispersal system that is in soil saturated with groundwater.
12.0.3 The OWTS shall not be operated while inundated by a storm or flood event.
12.0.4 The OWTS shall not cause or contribute to a condition of nuisance or pollution.
12.0.5 The OWTS shall comply with all applicable local agency codes, ordinances, and requirements.
12.0.6 The OWTS shall comply with and meet any applicable TMDL implementation requirements, special provisions for impaired water bodies, or supplemental treatment requirements imposed by Tier 3.
12.0.7 The OWTS shall comply with any corrective action requirements of Tier 4.

12.1 This waiver may be revoked by the State Water Board or the applicable Regional Water Board for any discharge from an OWTS, or from a category of OWTS.

Effective Date

13.0 This Policy becomes effective six months after its approval by the Office of Administrative Law, and all deadlines and compliance dates stated herein start at such time.
Financial Assistance

14.0 Local Agencies may apply to the State Water Board for funds from the Clean Water State Revolving Fund for use in mini-loan programs that provide low interest loan assistance to private property owners with costs associated with complying with this Policy.

14.1 Loan interest rates for loans to local agencies will be set by the State Water Board using its policies, procedures, and strategies for implementing the Clean Water State Revolving Fund program, but will typically be one-half of the State’s most recent General Obligation bond sale. Historically interest rates have ranged between 2.0 and 3.0 percent.

14.2 Local agencies may add additional interest points to their loans made to private entities to cover their costs of administering the mini-loan program.

14.3 Local agencies may submit their suggested loan eligibility criteria for the mini-loan program they wish to establish to the State Water Board for approval, but should consider the legislative intent stated in Water Code Section 13291.5 is that assistance is encouraged for private property owners whose cost of complying with the requirements of this policy exceeds one-half of one percent of the current assessed value of the property on which the OWTS is located.
Attachment 1

OWTS Policy Time Lines

- Initial Waiver
 - 2 yrs
 - Local Authorities Develop and submit Program
 - RB review and approval

- 2nd Waiver
 - 1 yr
 - Local Authority adjustment period
 - SB Dispute Resolution
 - SB renews Waiver

- 3rd Waiver
 - 1 yr
 - SB renews Waiver
 - End of initial period for OWTS owners to complete sewer connection

- Effective Date
 - RBs align Basin Plans

- Local Agency Annual Reports
 - First report starts on 4th year
 - Assessment report of OWTS impacts every 5th year

- V7 6/4/2012

SB – State Water Board
RB – Regional Water Board
Attachment 2

The tables below specifically identify those impaired water bodies where: (1) it is likely that operating OWTS will subsequently be determined to be a contributing source of pathogens or nitrogen and therefore it is anticipated that OWTS would receive a loading reduction, and (2) it is likely that new OWTS installations discharging within 600 feet of the water body would contribute to the impairment. Per this Policy (Tier 3, Section 10) the Regional Water Boards must adopt a TMDL by the date specified in the table. The State Water Board, at the time of approving future 303 (d) Lists, will specifically identify those impaired water bodies that are to be added or removed from the tables below.

Table 5. Water Bodies impaired for pathogens that are subject to Tier 3 as of 2012.

<table>
<thead>
<tr>
<th>REGION NO.</th>
<th>REGION NAME</th>
<th>WATERBODY NAME</th>
<th>COUNTIES</th>
<th>TMDL Completion Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>North Coast</td>
<td>Clam Beach</td>
<td>Humboldt</td>
<td>2020</td>
</tr>
<tr>
<td>1</td>
<td>North Coast</td>
<td>Luffenholtz Beach</td>
<td>Humboldt</td>
<td>2020</td>
</tr>
<tr>
<td>1</td>
<td>North Coast</td>
<td>Moonstone County Park</td>
<td>Humboldt</td>
<td>2020</td>
</tr>
<tr>
<td>1</td>
<td>North Coast</td>
<td>Russian River HU, Lower Russian River HA, Guerneville HSA, mainstem Russian River from Fife Creek to Dutch Bill Creek</td>
<td>Sonoma</td>
<td>2016</td>
</tr>
<tr>
<td>1</td>
<td>North Coast</td>
<td>Russian River HU, Lower Russian River HA, Guerneville HSA, Green Valley Creek watershed</td>
<td>Sonoma</td>
<td>2016</td>
</tr>
<tr>
<td>1</td>
<td>North Coast</td>
<td>Russian River HU, Middle Russian River HA, Geyserville HSA, mainstem Russian River at Healdsburg Memorial Beach and unnamed tributary at Fitch Mountain</td>
<td>Sonoma</td>
<td>2016</td>
</tr>
<tr>
<td>1</td>
<td>North Coast</td>
<td>Russian River HU, Middle Russian River HA, mainstem Laguna de Santa Rosa</td>
<td>Sonoma</td>
<td>2016</td>
</tr>
<tr>
<td>1</td>
<td>North Coast</td>
<td>Russian River HU, Middle Russian River HA, mainstem Santa Rosa Creek</td>
<td>Sonoma</td>
<td>2016</td>
</tr>
<tr>
<td>1</td>
<td>North Coast</td>
<td>Trinidad State Beach</td>
<td>Humboldt</td>
<td>2020</td>
</tr>
<tr>
<td>2</td>
<td>San Francisco Bay</td>
<td>China Camp Beach</td>
<td>Marin</td>
<td>2014</td>
</tr>
<tr>
<td>2</td>
<td>San Francisco Bay</td>
<td>Lawsons Landing</td>
<td>Marin</td>
<td>2015</td>
</tr>
<tr>
<td>2</td>
<td>San Francisco Bay</td>
<td>Pacific Ocean at Bolinas Beach</td>
<td>Marin</td>
<td>2014</td>
</tr>
<tr>
<td>REGION NO.</td>
<td>REGION NAME</td>
<td>WATERBODY NAME</td>
<td>COUNTIES</td>
<td>TMDL Completion Date</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>----------------</td>
<td>---------------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>2</td>
<td>San Francisco Bay</td>
<td>Pacific Ocean at Fitzgerald Marine Reserve</td>
<td>San Mateo</td>
<td>2016</td>
</tr>
<tr>
<td>2</td>
<td>San Francisco Bay</td>
<td>Pacific Ocean at Muir Beach</td>
<td>Marin</td>
<td>2015</td>
</tr>
<tr>
<td>2</td>
<td>San Francisco Bay</td>
<td>Pacific Ocean at Pillar Point Beach</td>
<td>San Mateo</td>
<td>2016</td>
</tr>
<tr>
<td>2</td>
<td>San Francisco Bay</td>
<td>Petaluma River</td>
<td>Marin, Sonoma</td>
<td>2017</td>
</tr>
<tr>
<td>2</td>
<td>San Francisco Bay</td>
<td>Petaluma River (tidal portion)</td>
<td>Marin, Sonoma</td>
<td>2017</td>
</tr>
<tr>
<td>2</td>
<td>San Francisco Bay</td>
<td>San Gregorio Creek</td>
<td>San Mateo</td>
<td>2019</td>
</tr>
<tr>
<td>3</td>
<td>Central Coast</td>
<td>Pacific Ocean at Point Rincon (mouth of Rincon Cr, Santa Barbara County)</td>
<td>Santa Barbara</td>
<td>2015</td>
</tr>
<tr>
<td>3</td>
<td>Central Coast</td>
<td>Rincon Creek</td>
<td>Santa Barbara, Ventura</td>
<td>2015</td>
</tr>
<tr>
<td>4</td>
<td>Los Angeles</td>
<td>Canada Larga (Ventura River Watershed)</td>
<td>Ventura</td>
<td>2017</td>
</tr>
<tr>
<td>4</td>
<td>Los Angeles</td>
<td>Coyote Creek</td>
<td>Los Angeles, Orange</td>
<td>2015</td>
</tr>
<tr>
<td>4</td>
<td>Los Angeles</td>
<td>Rincon Beach</td>
<td>Ventura</td>
<td>2017</td>
</tr>
<tr>
<td>4</td>
<td>Los Angeles</td>
<td>San Antonio Creek (Tributary to Ventura River Reach 4)</td>
<td>Ventura</td>
<td>2017</td>
</tr>
<tr>
<td>4</td>
<td>Los Angeles</td>
<td>San Gabriel River Reach 1 (Estuary to Firestone)</td>
<td>Los Angeles</td>
<td>2015</td>
</tr>
<tr>
<td>4</td>
<td>Los Angeles</td>
<td>San Gabriel River Reach 2 (Firestone to Whittier Narrows Dam)</td>
<td>Los Angeles</td>
<td>2015</td>
</tr>
<tr>
<td>4</td>
<td>Los Angeles</td>
<td>San Gabriel River Reach 3 (Whittier Narrows to Ramona)</td>
<td>Los Angeles</td>
<td>2015</td>
</tr>
<tr>
<td>4</td>
<td>Los Angeles</td>
<td>San Jose Creek Reach 1 (SG Confluence to Temple St.)</td>
<td>Los Angeles</td>
<td>2015</td>
</tr>
<tr>
<td>4</td>
<td>Los Angeles</td>
<td>San Jose Creek Reach 2 (Temple to I-10 at White Ave.)</td>
<td>Los Angeles</td>
<td>2015</td>
</tr>
<tr>
<td>4</td>
<td>Los Angeles</td>
<td>Sawpit Creek</td>
<td>Los Angeles</td>
<td>2015</td>
</tr>
<tr>
<td>4</td>
<td>Los Angeles</td>
<td>Ventura River Reach 3 (Weldon Canyon to Confl. w/ Coyote Cr)</td>
<td>Ventura</td>
<td>2017</td>
</tr>
<tr>
<td>4</td>
<td>Los Angeles</td>
<td>Walnut Creek Wash (Drains from Puddingstone Res)</td>
<td>Los Angeles</td>
<td>2015</td>
</tr>
<tr>
<td>5</td>
<td>Central Valley</td>
<td>Wolf Creek (Nevada County)</td>
<td>Nevada, Placer</td>
<td>2020</td>
</tr>
<tr>
<td>5</td>
<td>Central Valley</td>
<td>Woods Creek (Tuolumne County)</td>
<td>Tuolumne</td>
<td>2020</td>
</tr>
<tr>
<td>7</td>
<td>Colorado River</td>
<td>Alamo River</td>
<td>Imperial</td>
<td>2017</td>
</tr>
<tr>
<td>REGION NO.</td>
<td>REGION NAME</td>
<td>WATERBODY NAME</td>
<td>COUNTIES</td>
<td>TMDL Completion Date</td>
</tr>
<tr>
<td>------------</td>
<td>-------------------</td>
<td>--</td>
<td>----------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>7</td>
<td>Colorado River</td>
<td>Palo Verde Outfall Drain and Lagoon</td>
<td>Imperial, Riverside</td>
<td>2017</td>
</tr>
<tr>
<td>8</td>
<td>Santa Ana</td>
<td>Canyon Lake (Railroad Canyon Reservoir)</td>
<td>Riverside</td>
<td>2019</td>
</tr>
<tr>
<td>8</td>
<td>Santa Ana</td>
<td>Fulmor, Lake</td>
<td>Riverside</td>
<td>2019</td>
</tr>
<tr>
<td>8</td>
<td>Santa Ana</td>
<td>Goldenstar Creek</td>
<td>Riverside</td>
<td>2019</td>
</tr>
<tr>
<td>8</td>
<td>Santa Ana</td>
<td>Los Trancos Creek (Crystal Cove Creek)</td>
<td>Orange</td>
<td>2017</td>
</tr>
<tr>
<td>8</td>
<td>Santa Ana</td>
<td>Lytle Creek</td>
<td>San Bernardino</td>
<td>2019</td>
</tr>
<tr>
<td>8</td>
<td>Santa Ana</td>
<td>Mill Creek Reach 1</td>
<td>San Bernardino</td>
<td>2015</td>
</tr>
<tr>
<td>8</td>
<td>Santa Ana</td>
<td>Mill Creek Reach 2</td>
<td>San Bernardino</td>
<td>2015</td>
</tr>
<tr>
<td>8</td>
<td>Santa Ana</td>
<td>Morning Canyon Creek</td>
<td>Orange</td>
<td>2017</td>
</tr>
<tr>
<td>8</td>
<td>Santa Ana</td>
<td>Mountain Home Creek</td>
<td>San Bernardino</td>
<td>2019</td>
</tr>
<tr>
<td>8</td>
<td>Santa Ana</td>
<td>Mountain Home Creek, East Fork</td>
<td>San Bernardino</td>
<td>2019</td>
</tr>
<tr>
<td>8</td>
<td>Santa Ana</td>
<td>Silverado Creek</td>
<td>Orange</td>
<td>2017</td>
</tr>
<tr>
<td>8</td>
<td>Santa Ana</td>
<td>Peters Canyon Channel</td>
<td>Orange</td>
<td>2017</td>
</tr>
<tr>
<td>8</td>
<td>Santa Ana</td>
<td>Santa Ana River, Reach 2</td>
<td>Orange, Riverside</td>
<td>2019</td>
</tr>
<tr>
<td>8</td>
<td>Santa Ana</td>
<td>Temescal Creek, Reach 6 (Elsinore Groundwater sub basin boundary to Lake Elsinore Outlet)</td>
<td>Riverside</td>
<td>2019</td>
</tr>
<tr>
<td>8</td>
<td>Santa Ana</td>
<td>Seal Beach</td>
<td>Orange</td>
<td>2017</td>
</tr>
<tr>
<td>8</td>
<td>Santa Ana</td>
<td>Serrano Creek</td>
<td>Orange</td>
<td>2017</td>
</tr>
<tr>
<td>8</td>
<td>Santa Ana</td>
<td>Huntington Harbour</td>
<td>Orange</td>
<td>2017</td>
</tr>
</tbody>
</table>
Table 6. Water Bodies impaired for nitrogen that are subject to Tier 3.

<table>
<thead>
<tr>
<th>REGION NO.</th>
<th>REGION NAME</th>
<th>WATERBODY NAME</th>
<th>COUNTIES</th>
<th>TMDL Completion Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>North Coast</td>
<td>Russian River HU, Middle Russian River HA, mainstem Laguna de Santa Rosa</td>
<td>Sonoma</td>
<td>2015</td>
</tr>
<tr>
<td>2</td>
<td>San Francisco Bay</td>
<td>Lagunitas Creek</td>
<td>Marin</td>
<td>2016</td>
</tr>
<tr>
<td>2</td>
<td>San Francisco Bay</td>
<td>Napa River</td>
<td>Napa, Solano</td>
<td>2014</td>
</tr>
<tr>
<td>2</td>
<td>San Francisco Bay</td>
<td>Petaluma River</td>
<td>Marin, Sonoma</td>
<td>2017</td>
</tr>
<tr>
<td>2</td>
<td>San Francisco Bay</td>
<td>Petaluma River (tidal portion)</td>
<td>Marin, Sonoma</td>
<td>2017</td>
</tr>
<tr>
<td>2</td>
<td>San Francisco Bay</td>
<td>Sonoma Creek</td>
<td>Sonoma</td>
<td>2014</td>
</tr>
<tr>
<td>2</td>
<td>San Francisco Bay</td>
<td>Tomales Bay</td>
<td>Marin</td>
<td>2019</td>
</tr>
<tr>
<td>2</td>
<td>San Francisco Bay</td>
<td>Walker Creek</td>
<td>Marin</td>
<td>2016</td>
</tr>
<tr>
<td>4</td>
<td>Los Angeles</td>
<td>Malibu Creek (Tributary to Ventura River Reach 4)</td>
<td>Los Angeles</td>
<td>2016</td>
</tr>
<tr>
<td>4</td>
<td>Los Angeles</td>
<td>San Antonio Creek</td>
<td>Ventura</td>
<td>2013</td>
</tr>
<tr>
<td>8</td>
<td>Santa Ana</td>
<td>East Garden Grove Wintersburg Channel</td>
<td>Orange</td>
<td>2017</td>
</tr>
<tr>
<td>8</td>
<td>Santa Ana</td>
<td>Grout Creek</td>
<td>San Bernardino</td>
<td>2015</td>
</tr>
<tr>
<td>8</td>
<td>Santa Ana</td>
<td>Rathbone (Rathbun) Creek</td>
<td>San Bernardino</td>
<td>2015</td>
</tr>
<tr>
<td>8</td>
<td>Santa Ana</td>
<td>Summit Creek</td>
<td>San Bernardino</td>
<td>2015</td>
</tr>
<tr>
<td>8</td>
<td>Santa Ana</td>
<td>Serrano Creek</td>
<td>Orange</td>
<td>2017</td>
</tr>
</tbody>
</table>
Regional Water Boards, upon mutual agreement, may designate one Regional Water Board to regulate a person or entity that is under the jurisdiction of both (Water Code Section 13228). The following table identifies the designated Regional Water Board for all counties within the State for purposes of reviewing and, if appropriate, approving new Local Agency Management Plans.

Table 7. Regional Water Board designations by County.

<table>
<thead>
<tr>
<th>County</th>
<th>Regions with Jurisdiction</th>
<th>Designated Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alameda</td>
<td>2,5</td>
<td>2</td>
</tr>
<tr>
<td>Alpine</td>
<td>5,6</td>
<td>6</td>
</tr>
<tr>
<td>Amador</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Butte</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Calaveras</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Colusa</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Contra Costa</td>
<td>2,5</td>
<td>2</td>
</tr>
<tr>
<td>Del Norte</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>El Dorado</td>
<td>5,6</td>
<td>5</td>
</tr>
<tr>
<td>Fresno</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Glenn</td>
<td>5,1</td>
<td>5</td>
</tr>
<tr>
<td>Humboldt</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Imperial</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Inyo</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Kern</td>
<td>3,4,5,6</td>
<td>5</td>
</tr>
<tr>
<td>Kings</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Lake</td>
<td>5,1</td>
<td>5</td>
</tr>
<tr>
<td>Lassen</td>
<td>5,6</td>
<td>6</td>
</tr>
<tr>
<td>Los Angeles</td>
<td>4,6</td>
<td>4</td>
</tr>
<tr>
<td>Madera</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Marin</td>
<td>2,1</td>
<td>2</td>
</tr>
<tr>
<td>Mariposa</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Mendocino</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Merced</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Modoc</td>
<td>1,5,6</td>
<td>5</td>
</tr>
<tr>
<td>Mono</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Monterey</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Napa</td>
<td>2,5</td>
<td>2</td>
</tr>
<tr>
<td>Nevada</td>
<td>5,6</td>
<td>5</td>
</tr>
<tr>
<td>Orange</td>
<td>8,9</td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>County</th>
<th>Regions with Jurisdiction</th>
<th>Designated Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placer</td>
<td>5,6</td>
<td>5</td>
</tr>
<tr>
<td>Plumas</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Riverside</td>
<td>7,8,9</td>
<td>7</td>
</tr>
<tr>
<td>Sacramento</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>San Benito</td>
<td>3,5</td>
<td>3</td>
</tr>
<tr>
<td>San Bernardino</td>
<td>6,7,8</td>
<td>6</td>
</tr>
<tr>
<td>San Diego</td>
<td>9,7</td>
<td>9</td>
</tr>
<tr>
<td>San Francisco</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>San Joaquin</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>San Luis Obispo</td>
<td>3,5</td>
<td>3</td>
</tr>
<tr>
<td>San Mateo</td>
<td>2,3</td>
<td>2</td>
</tr>
<tr>
<td>Santa Barbara</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Santa Clara</td>
<td>2,3</td>
<td>2</td>
</tr>
<tr>
<td>Santa Cruz</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Shasta</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Sierra</td>
<td>5,6</td>
<td>5</td>
</tr>
<tr>
<td>Siskiyou</td>
<td>1,5</td>
<td>1</td>
</tr>
<tr>
<td>Solano</td>
<td>2,5</td>
<td>5</td>
</tr>
<tr>
<td>Sonoma</td>
<td>1,2</td>
<td>1</td>
</tr>
<tr>
<td>Stanislaus</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Sutter</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Tehama</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Trinity</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Tulare</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Tuolumne</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Ventura</td>
<td>4,3</td>
<td>4</td>
</tr>
<tr>
<td>Yolo</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Yuba</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>
ON-SITE SEWAGE ABSORPTION SYSTEM GUIDELINES

The purpose of these guidelines is to provide a uniform approach to the percolation testing requirements and design criteria of an on-site sewage absorption system so as to reasonably expect the system to function in a safe and sanitary manner. An on-site sewage absorption system consists of either a trench leach field or a seepage pit. The use of these systems is considered temporary until such time as a public sanitary sewer becomes available.

The Orange County Public Works Department (OCPW) is responsible for the review and approval of all percolation tests for on-site sewage systems, as well as plans for their design. OC Public Works’ approval of proposed on-site sewage systems may be either a requirement for recordation of a parcel/tract map or a requirement before building/structural permits are issued. For approval of an on-site sewage system, not only must the percolation tests be performed in accordance with the procedures but the system must be designed as provided herein.

I. Building/Structural Permit

Percolation tests and plans illustrating the designed on-site sewage may be necessary in order to obtain a building and/or plumbing permit for an existing legal building site, remodeling a home, or renovating a failed system. The intent is to assure that the system is designed and can be constructed in accordance with County requirements.

II. Recordation of a Tract or Parcel Map

Percolation tests and plans illustrating the designed on-site sewage system may also be a recordation requirement of a tentative map. In this instance, it is not normally necessary to site a dwelling on each lot; but rather demonstrate that there is sufficient area with suitable percolation, physiographic and geologic characteristics to be able to construct an absorption system to serve a three to four bedroom house. Consideration should be given to conditions expected after grading. At least three to four passing tests are required in an area where a trench leach field system can be designed and/or one passing test for seepage pits.

III. Preparation of the Report/Plan

All percolation tests, reports and plans shall be under the supervision of a Registered Environmental Health Specialist (Sanitarian), Registered Civil Engineer, Registered Geologists, or Engineering Geologist. Orange County Public Works’ offices are located at 300 North Flower, Santa Ana, CA 92702. Public hours are 7:30 a.m. to 5:00 p.m., Monday through Friday, except holidays.
IV. **Submittal of Reports and Plans**

Four (4) copies of the engineer’s soil percolation reports are to be submitted to the Plumbing Plan Check section, OC Public Works. All reports must include a log of all soil borings and percolation tests as well as plans showing a designated system.

Reports and plans submitted to obtain Building Permits must include:

- Depth to groundwater
- Depth to any impervious layers
- Acceptable result of six percolation tests distributed throughout an area set aside for trench leach fields and/or at least one passing percolation for seepage pits for the proposed dwelling
- Distance between trenches or seepage pits
- Location of property lines
- Drainage courses
- Soils characteristics
- Trench width or pit diameter
- Pit depth or depth of gravel below pipe
- Topographic lines, if steep slopes exist
- Footprint of house
- Outline of septic tank and distribution box
- The plan must reflect all conditions after precise grading, including items listed in Table 4, page 10.

Reports and plans submitted for recordation of a map must include:

- Acceptable results of three to four percolation tests for a trench leach field and one passing test for a seepage pit
- Soils characteristics
- Size of proposed lots
- Slopes, topographical lines
- Drainage courses
- Depth of groundwater
- Depth of impervious layer
- Required set backs
- Any pertinent constraints

V. **Percolation Tests for Trench Leach Fields and Seepage Pits**

Percolation rates must be figured on the basis of the test data obtained after the soil has had the opportunity to be saturated with clear water. After the test hole has been bored it must be kept filled for at least four hours and preferably overnight. Tests are to be conducted the following day to allow the soil to swell for at least 24 hours, thereby approaching the conditions during the wettest season of the year.
In no instance shall percolation tests be conducted in a graded “fill area”.

In the case of either a trench leach field or seepage pit, at least one exploratory boring is required per system in order to determine depth to groundwater and any impervious layer. The boring must extend at least five feet below the proposed trench bottom and ten feet below the pit bottom. Further, the soil profiles in each of the exploratory borings are to be recorded. Groundwater is defined as zones of saturation, which include perched water tables, shallow regional groundwater tables or aquifers, or zones that are seasonally, periodically, or permanently saturated. Zones of seasonal or periodic soil saturation shall be estimated at the highest level of redoximorphic features, such as soil mottles or low-chroma colors (except soils with rapid permeability). Test holes and exploratory borings shall be back-filled and properly compacted after tests are done.

Unless otherwise waived by the Building Official, both trench leach fields and seepage pit effective sidewall shall be increased by an amount equal to 100% of the original design capacity. This is to assure a “backup” system is available at the time of initial construction. Separate the backup system from the primary system with a diverter valve, (see pages 12 & 13).

VI. Trench Leach Field Test Procedures

A. Tests shall be made in separate test holes spaced uniformly over the proposed absorption field site.

B. Holes are to be dug or bored with a diameter of 8-12 inches. The bottom of the test hole shall be located at the same depth as the bottom of the proposed leaching field.

C. The bottom and sides of the hole are to be roughened or scored with a knife blade or putty knife in order to remove any smeared soil surfaces and to provide a natural soil interface into which water may percolate. All loose material is to be removed from the hole. Two inches of coarse sand and fine gravel are to be added to protect the bottom from scouring.

D. Each test hole is to be presaturated with clear water as noted above.

E. After the 24 hour presaturated period each hole is to be carefully filled with clear water to a level approximately six inches over the gravel.

F. From a fixed reference point, the drop in water level is to be measured at approximately 30 minute intervals for six hours, refilling to six inches over the gravel as necessary. The slowest drop of all tests that occurs during the final 30 minute period is used to calculate the percolation rate. The drops during prior periods provide information for possible modification of the procedure to suit local circumstances.

G. In sandy soils in which two consecutive measurements show that six inches of water seeps away in less than 25 minutes, the test may be run for an hour with measurements taken every ten minutes. The drop that occurs during the final ten minutes should be used to calculate the percolation rate. Field data must show the two-25 minute readings, along with the six-10 minute readings.

H. The minimum acceptable percolation rate for a trench leach field is 60 min./in. The maximum rate shall not exceed 4 min./in.
VII. Trench Leach Field Design Standards

Disposal Field shall be constructed as follows:

1. Minimum Number of Drain Lines Per Field | 1
2. Maximum Length of Each Line | 100 ft.
3. Minimum Bottom Width of Trench | 18 in.
4. Maximum Bottom Width of Trench | 36 in.
5. Minimum Spacing of 18" Width Lines Center to Center | 6 ft.
6. Minimum Spacing of 36" Width Lines Center to Center | 8 ft.
7. Minimum Depth of Cover of Lines | 12 in.
8. Preferred Depth of Cover of Lines | 18 in.
10. Minimum Separation Between Bottom of Leach Line and Seasonally High Groundwater | 5 ft.
11. Leach Lines are not to be Installed Under Driveways, Paved or Unpaved, or in Horse Corrals
12. Perforated Pipe Shall be Laid Level and with the End of the Line Capped.
13. Any portion of the disposal field located to the top of a cut or on sloping ground shall maintain a 15 foot horizontal distance from day light to any portion of the leach line or leach bed. Table 1 gives the minimum cover allowed versus the percent of slope in the area of the disposal field to meet the 15 foot requirement. This table also gives a factor by which to increase the square foot of bottom area due to the loss in evapotranspiration caused by the added cover required.

<table>
<thead>
<tr>
<th>Slope of natural ground in area of disposed system</th>
<th>Minimum cover over filter material (ft.)</th>
<th>Minimum Depth of Test Req. * (ft.)</th>
<th>Overburden factor **</th>
</tr>
</thead>
<tbody>
<tr>
<td>5%</td>
<td>1.0'</td>
<td>3.0'</td>
<td>1.0</td>
</tr>
<tr>
<td>10%</td>
<td>1.5'</td>
<td>3.5'</td>
<td>1.0</td>
</tr>
<tr>
<td>15%</td>
<td>2.25'</td>
<td>4.25'</td>
<td>1.0</td>
</tr>
<tr>
<td>20%</td>
<td>3.0'</td>
<td>5.0'</td>
<td>1.0</td>
</tr>
<tr>
<td>25%</td>
<td>3.75'</td>
<td>5.75'</td>
<td>1.1</td>
</tr>
<tr>
<td>30%</td>
<td>4.5'</td>
<td>6.5'</td>
<td>1.2</td>
</tr>
<tr>
<td>35%</td>
<td>5.25'</td>
<td>7.25'</td>
<td>1.3</td>
</tr>
<tr>
<td>40%</td>
<td>6.0'</td>
<td>8.0'</td>
<td>1.4</td>
</tr>
<tr>
<td>45%***</td>
<td>7.0'</td>
<td>9.0'</td>
<td>1.5</td>
</tr>
</tbody>
</table>

* Assuming standard trench (see Table 2). To be adjusted for greater than 12” gravel below pipe.
** Overburden factor for leaching line where overburden is not removed to allow for minimum cover.
*** No system shall be installed with a slope greater than 45 % (equivalent to 2:1 slope where 100% is equivalent to 1:1 slope)
Tables 2 and 3 below are used to calculate the linear feet required for a trench leach line. Table 2 lists the required linear feet of standard trench for a given percolation rate.

TABLE 2

(Provides for garbage disposal and automatic clothes washing machines)

<table>
<thead>
<tr>
<th>Percolation rate (time required for water to fall one inch, in minutes)</th>
<th>Required absorption area, in sq. ft. per bedroom based on a standard trench*</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 min./in.</td>
<td>115 sq. ft.</td>
</tr>
<tr>
<td>5 min./in.</td>
<td>125 sq. ft.</td>
</tr>
<tr>
<td>10 min./in.</td>
<td>165 sq. ft.</td>
</tr>
<tr>
<td>15 min./in.</td>
<td>190 sq. ft.</td>
</tr>
<tr>
<td>30 min./in.</td>
<td>250 sq. ft.</td>
</tr>
<tr>
<td>45 min./in.</td>
<td>300 sq. ft.</td>
</tr>
<tr>
<td>60 min./in.</td>
<td>330 sq. ft.</td>
</tr>
</tbody>
</table>

* A standard trench is one in which the filter material extends 2 inches above and 12 inches below a 4 inch perforated drain line.

In cases where the depth of filter material below the drain line exceeds the standard 12 inch depth, credit may be given for the added absorption area provided in deeper trenches with a resultant decrease in length of trench. Such credit shall be given in accordance with Table 3 which gives the percentage of length of standard absorption trench (as computed from Table 2), based on six inch increments of increase in depth of filter material.

TABLE 3

<table>
<thead>
<tr>
<th>Depth of Gravel below Pipe in inches</th>
<th>Trench width 12"</th>
<th>Trench width 18"</th>
<th>Trench width 24"</th>
<th>Trench width 36"</th>
</tr>
</thead>
<tbody>
<tr>
<td>12"</td>
<td>75%</td>
<td>78%</td>
<td>80%</td>
<td>83%</td>
</tr>
<tr>
<td>18"</td>
<td>60%</td>
<td>64%</td>
<td>66%</td>
<td>71%</td>
</tr>
<tr>
<td>24"</td>
<td>50%</td>
<td>54%</td>
<td>57%</td>
<td>62%</td>
</tr>
<tr>
<td>30"</td>
<td>43%</td>
<td>47%</td>
<td>50%</td>
<td>55%</td>
</tr>
<tr>
<td>36"</td>
<td>37%</td>
<td>41%</td>
<td>44%</td>
<td>50%</td>
</tr>
</tbody>
</table>

The following formula is used to determine the length of the line required.

\[
\frac{(AxB)}{W} \times C \times D = \text{length of line (then multiply by 2 to equal 100% of the original design capacity)}
\]
Where:
A = absorption area (from Table 2)
B = the number of bedrooms
W = the proposed width of the trench in feet
C = percentage of standard trench (from Table 3)
D = overburden factor (from Table 1)

Note: It must be stressed that the proposed maximum depth of the trench disposal system must not exceed the depth of the percolation test. For example, tests must be performed at 54 inches to utilize 36 inches of filter material below the pipe.

VIII. Seepage Pits Percolation Test Procedures

A. Six to eight inch diameter holes only are accepted for percolation testing.

B. The holes are to be drilled and tested to the depth of the proposed pit, prepared and presaturated as noted in Section V above. Minimum of 12 foot separation is required between percolation test hole and ground water test boring.

C. The percolation rate measurement shall be made on the day following the presoak.

D. The water depth is to be adjusted to the proposed seepage pit inlet depth; usually four feet below the natural grade.

E. From a fixed reference point, the drop in water level is to be measure over a 30 minute period for at least five hours; refilling after every reading.

F. The last or the sixth hour, the hole should not be refilled; but the drop in the water level is to be read every ½ hour. The drop that occurs during the final 30 minute period is used to calculate the percolation rate.
G. The total depth of the hole must also be taken at every reading to determine if caving has occurred.

H. In sandy soils where the water on two consecutive readings seeps away faster than half the wetted depth in 25 minutes or less, after a two hour presoak the test may then be taken at ten minute intervals and run for one hour. The last ten minute reading shall be the design rate.

I. Seepage pit percolation rates shall be calculated by the equation.

\[Q = \frac{F}{T \times D \times 9} \]

\[L_{AVG.} \]

where:

\[Q = \text{rate in gallon/sq. ft. of side wall per day} \]
\[F = \text{drop during time interval (ft)} \]
\[D = \text{boring diameter (ft)} \]
\[T = \text{time interval (hr)} \]
\[L = \text{average wetted depth (ft)} \]

J. The minimum acceptable percolation rate for seepage pits is a \(Q \) equal to 1.1 the maximum rate shall not exceed 3.0 gal/sq.ft./day.

K. The amount of effective side wall below pit inlet is as follows:

a. For a five foot diameter pit

\[\text{Depth of seepage} = \frac{\text{Septic Tank Capacity} \times 2^*}{\text{pit below inlet}} \times Q \times 15.7 \]

b. For a six foot diameter pit

\[\text{Depth of seepage} = \frac{\text{Septic Tank Capacity} \times 2^*}{\text{pit below inlet}} \times Q \times 18.8 \]

\[Q = \text{percolation rate in gal./sq.ft./day} \]

*100% of the original design capacity
IX. **Seepage Pit Design**

A. Seepage pit should be constructed as follows:

a. Each seepage pit shall be circular in shape and shall have an excavated, diameter of not less then five feet. Each such pit shall be lined with whole new hard burned clay brick, concrete brick, concrete circular type cesspool blocks or other materials approved by OC Public Works. Approval from OC Public Works shall be obtained prior to construction for any pit having an excavated diameter greater than six (6) feet.

 b. Each seepage pit shall have a minimum sidewall (not including the arch) of (10) feet below the inlet with a maximum total depth of 40 feet unless approved by the Building Official.

 c. The top of the arch, or cover, must be at least eighteen (18) inches but no more than four (4) feet below the surface of the ground.

 d. The horizontal distance from a seepage pit to the top of a cut bank shall be equal to five times the vertical height of the bank or 25 feet, which ever is less.

 e. Maintain a ten-foot separation between bottom of the pit and seasonally high groundwater.

 f. A 10-foot separation is required between the pit bottom and an impervious layer (e.g., bedrock or any layer where the percolation rate is greater than 20 min./in.).

X. **Septic Tank Design**

A. Capacity of septic tank shall be per California Plumbing Code, currently adopted edition (see page 9).

 Residential septic tank size is based on the number of bedrooms served. For design purposes, a bedroom is defined as any space in a conditioned (heated) area of a dwelling unit which is 70 square feet and greater in size and which is an exterior room, unless it is one of the following:

 - Hall;
 - Bathroom;
 - Kitchen;
 - Living Room (maximum of one per dwelling unit);
 - Dining Room (opening off of the kitchen or living room, maximum of one per dwelling unit);
 - Family Room (opening off of the kitchen or living room, maximum of one per dwelling unit);
 - Breakfast Nook (opening off of the kitchen, maximum of one per dwelling unit);
 - Pantry (maximum of one per dwelling unit);
 - Laundry Room;
 - Closet/Dressing Room opening off of the bedroom

Sewing rooms, dens, offices, studios, lofts, game rooms, and any other exterior room 70 square feet and greater in size shall be counted as bedrooms regardless of whether they are entered through a door, unless the room is otherwise exempted.
The Building Official may grant exceptions, if, in his/her discretion, a room cannot, by its design, function as a bedroom.

B. Provide effluent filter and water tight risers to grade, for filter maintenance.

C. When the quantity of sewage exceeds the amount that can be disposed in five hundred (500) Linear feet (152.4 m) of leach line, a dosing tank shall be used. Dosing tanks shall be equipped with an automatic siphon or pump which discharges that tank once every three (3) or four (4) hours. The tank shall have a capacity equal to sixty (60) to seventy-five (75) percent of the interior capacity of the pipe to be dosed at one time. Where the total length of pipe exceeds one thousand (1000) linear feet (304.8 m), the dosing tank shall be provided with two (2) siphons or pumps dosing alternately and each serving one-half (1/2) of the leach field.

D. Water softener, iron filter discharge, or swimming pool and spa filter backwash to a sewage disposal system is prohibited.

CALIFORNIA PLUMBING CODE

Capacity of Septic Tanks*

<table>
<thead>
<tr>
<th>Single family dwellings - number of bedrooms</th>
<th>Multiple dwelling units or apartments - one bedroom each</th>
<th>Other Uses: Maximum Fixture Units Served Per Table 4-1</th>
<th>Minimum septic tank capacity in gallons (liters)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 or 2</td>
<td>15</td>
<td></td>
<td>750 (2839)</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td></td>
<td>1000 (3785)</td>
</tr>
<tr>
<td>4</td>
<td>25</td>
<td></td>
<td>1200 (4542)</td>
</tr>
<tr>
<td>4, 2 units</td>
<td>25</td>
<td></td>
<td>1500 (5678)</td>
</tr>
<tr>
<td>5 or 6</td>
<td>33</td>
<td></td>
<td>2000 (7571)</td>
</tr>
<tr>
<td>5</td>
<td>45</td>
<td></td>
<td>2250 (8518)</td>
</tr>
<tr>
<td>6</td>
<td>60</td>
<td></td>
<td>2500 (9464)</td>
</tr>
<tr>
<td>7</td>
<td>70</td>
<td></td>
<td>2750 (10410)</td>
</tr>
<tr>
<td>8</td>
<td>80</td>
<td></td>
<td>3000 (11356)</td>
</tr>
<tr>
<td>9</td>
<td>90</td>
<td></td>
<td>3250 (12303)</td>
</tr>
<tr>
<td>10</td>
<td>100</td>
<td></td>
<td>3500 (13249)</td>
</tr>
</tbody>
</table>

Extra bedroom, 150 gallons (567.8 liters) each.
Extra dwelling units over 10; 250 gallons (946.3 liters) each.
Extra fixture units over 100; 25 gallons (94.6 liters) per fixture units.

NOTE: Septic tank sizes in this table include sludge storage capacity and the connection disposal of domestic food waste units without further volume increase.
XI. Sewage Disposal Setback Requirements

Minimum horizontal separations for subsurface sewage disposal are as follows:

<table>
<thead>
<tr>
<th>From:</th>
<th>Minimum Horizontal Distance Required</th>
<th>Septic Tank</th>
<th>Disposal Field</th>
<th>Seepage Pit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building of structures<sup>1</sup></td>
<td>5 ft.</td>
<td>8 ft.</td>
<td>8 ft.</td>
<td></td>
</tr>
<tr>
<td>Swimming pools/spas</td>
<td>8 ft.</td>
<td>15 ft.</td>
<td>15 ft.</td>
<td></td>
</tr>
<tr>
<td>Property line adjoining private property<sup>2</sup></td>
<td>5 ft.</td>
<td>5 ft.</td>
<td>8 ft.</td>
<td></td>
</tr>
<tr>
<td>Water supply wells</td>
<td>50 ft.</td>
<td>100 ft.</td>
<td>150 ft.</td>
<td></td>
</tr>
<tr>
<td>Streams (Ephemeral/Perennial)</td>
<td>50 ft.</td>
<td>50 ft.</td>
<td>100 ft.</td>
<td></td>
</tr>
<tr>
<td>Trees</td>
<td>10 ft.</td>
<td>10 ft.</td>
<td>10 ft.</td>
<td></td>
</tr>
<tr>
<td>Seepage pits or cesspools</td>
<td>5 ft.</td>
<td>5 ft.</td>
<td>12 ft.</td>
<td></td>
</tr>
<tr>
<td>Disposal field</td>
<td>5 ft.</td>
<td>8 ft.<sup>3</sup></td>
<td>5 ft.</td>
<td></td>
</tr>
<tr>
<td>On-site domestic water service line</td>
<td>5 ft.</td>
<td>5 ft.</td>
<td>5 ft.</td>
<td></td>
</tr>
<tr>
<td>Distribution box</td>
<td>------</td>
<td>5 ft.</td>
<td>5 ft.</td>
<td></td>
</tr>
<tr>
<td>Pressure public water main</td>
<td>10 ft.<sup>4</sup></td>
<td>10 ft.<sup>4</sup></td>
<td>10 ft.<sup>4</sup></td>
<td></td>
</tr>
<tr>
<td>Flood plain/flooding</td>
<td>5 ft.</td>
<td>15 ft.<sup>5</sup></td>
<td>15 ft.<sup>5</sup></td>
<td></td>
</tr>
</tbody>
</table>

¹ Including porches and steps, whether covered or uncovered, breezeways, roofed porte-cochères, roofed patios, carports, covered walks, covered driveways and similar structures or appurtenances.

² System may go up to edge of property line adjoining public property if no public water mains are within or anticipated within 25 feet of the property line. A statement from the Water District is required.

³ For a 36 inch wide trench, 8 feet is required center to center. See Section VII, Trench Leach Field Design Standards.

⁴ Preferably 25 feet.

⁵ No part of the absorption system shall be allowed within a 100-Year Flood Plain unless the finished grade in the absorption system is 12 inches above the limit of the Flood Plain and there is a 15-foot setback from said plain to the sidewall limits of the absorption system. The flood plain is defined by the Flood Insurance Rate Map description (Firm Mapping) developed by the U.S. Dept. of Housing and Urban Development, Federal Insurance Administration.
XII. **Abandoned Sewage Disposal Facilities**

A. Every abandoned building (house) sewer, or part thereof, shall be plugged or capped in an approved manner within five (5) feet (1524 mm) of the property line.

B. Every cesspool, septic tank, and seepage pit which has been abandoned or has been discontinued otherwise from further use or to which no waste or soil pipe from a plumbing fixture is connected, shall have the sewage removed there from and be completely filled with the earth, sand, gravel, concrete, or other approved material.

C. Break out two minimum 12” diameter or equivalent holes at the bottom for drainage.

D. The top or arch over the cesspool, septic tank, or seepage pit shall be removed before filling and the filling shall not extend above the top of the vertical portions of the sidewalls or above the level of any outlet pipe until inspection has been called and the cesspool, septic tank, or seepage pit has been inspected. After such inspection, the cesspool, septic tank, or seepage pit shall be filled to the level of the top of the ground.

E. Fill material may be sand, pea gravel or slurry.

F. Site plan shall indicate the location of this abandoned sewage disposal facility as “No build area” unless the tank is completely removed.
DIVERTER VALVE

INSTALLATION INSTRUCTIONS

INSTALLING THE VALVE
The valve must be installed with the septic tank effluent line connected to port marked “IN”. The ports marked “OUT” are to be connected to lines supplying each septic field.

The Riser Tube can be cut to any suitable length from 4” PVC or ABS pipe. The Riser should be cut and installed so the water-tight access cap is flush with the finished backfilled grade. Pipe inserts over the top of the valve body. Use PVC or multipurpose adhesive to form a water-tight joint.

OPERATING THE VALVE
The Direction Control Handle should be rotated periodically to direct effluent to one or the other of two septic fields. After removing the screw cap at the top of Riser Tube, the valve handle can be turned with the Valve Key furnished.
PLACEMENT OF LABEL

This label is designed to be placed in a service area, such as a laundry room or a basement area, possibly near a fuse box or circuit breakers. The label should be placed in a work area, not in an area that may become a recreation area where the homeowner may tend to remove it or cover it with some decorative wall covering. It should serve as a helpful reminder to turn the valve, thus prolonging the life of the septic system.

FILLING THE BLANKS

The label should be filled in by the installer or by the person certifying the system, so the consumer has a ready reference for turning the valve on schedule. It also provides a place for naming an agency to call for answers to any questions that may arise during the use of the system.

The label to the right is an example of the proper way to fill in the label. This way it should be the most help to the consumer.

YOUR SEWAGE DISPOSAL SYSTEM IS EQUIPPED WITH A DIVERTER VALVE.

THE VALVE SHOULD BE TURNED (Frequency) __YEARLY____
ON/AROUND (Date) ____________
TO ADD YEARS OF LIFE TO YOUR DISPOSAL SYSTEM.

For Questions Please 300 North Flower
Contact Orange County Santa Ana, CA. ___________
Public Works Department __________
Telephone Number 714-667-8888 __________
Installing Contractor __________________
Date of Installation __________________

Operating the Valve

Use the handle provided by installer to turn valve. By providing long periods of rest for your drainage field. Its life will be greatly increased. Your septic tank should be serviced by a reputable contractor periodically.
APPENDIX III: Profile of the Unincorporated Area of Orange County
Southern California Association of Governments
Profile of the unincorporated area of Orange County

Southern California Association of Governments’ (SCAG) Regional Council includes 67 districts which represent 191 cities in the SCAG region.

This profile report was prepared by the Southern California Association of Governments and shared with the unincorporated area of Orange County. SCAG provides local governments with services including planning data and information, technical and planning assistance (i.e. GIS training and growth visioning), and analyzing the impacts of infill development.
Table of Contents

I. INTRODUCTION .. 1

II. POPULATION ... 4

III. HOUSEHOLDS ... 9

IV. HOUSING .. 12

V. TRANSPORTATION ... 18

VI. EMPLOYMENT ... 19

VII. RETAIL SALES .. 27

VIII. EDUCATION .. 28

IX. SCAG REGIONAL HIGHLIGHTS .. 31

X. DATA SOURCES ... 32

XI. METHODOLOGY ... 33

XII. ACKNOWLEDGMENTS .. 37
I. Introduction

The purpose of this report is to provide current information and data for the unincorporated area of Orange County for planning and outreach efforts. Information on population, housing, transportation, employment, retail sales, and education can be utilized by the city to make informed planning decisions. The profile provides a portrait of the unincorporated area and its changes since 2000, using average figures for Orange County as a comparative baseline. In addition, the most current data available for the region is also included in the Statistical Summary (page 3). This profile demonstrates the current trends occurring in the unincorporated area of Orange County.

The Southern California Association of Governments (SCAG) is the largest Metropolitan Planning Organization (MPO) in the nation. The SCAG region includes six counties (Imperial, Los Angeles, Orange, Riverside, San Bernardino and Ventura) and 191 cities. As the designated MPO, SCAG is mandated by federal and state law to research and develop a Regional Transportation Plan (RTP), which incorporates a Sustainable Communities Strategy (SCS). SCAG is currently undertaking a variety of planning and policy initiatives to foster a more sustainable Southern California.

In 2008, SCAG initiated the Local Profiles Project as a part of a larger initiative to provide a variety of services to its member cities and counties. Through extensive input from member jurisdictions, the inaugural Local Profiles Reports were released at the General Assembly in May 2009. The Profiles were last updated in 2011 to incorporate the 2010 Census information.

Local Profiles provide basic information about each member jurisdiction including, but not limited to, the following:

- How much growth in population has taken place since 2000?
- Has the local jurisdiction been growing faster or slower than the county or regional average?
- Have there been more or fewer school-age children?
- Have homeownership rates been increasing or decreasing?
- How and where do residents travel to work?
- How has the local economy been changing in terms of employment share by sectors?
- Have the local retail sales revenue recovered to pre-recession levels?

Answers to questions such as these provide a snapshot of the dynamic changes affecting each local jurisdiction.

New Features of the 2013 Report

Building on the foundation of the 2009 and 2011 Reports, the 2013 Local Profiles provide additional information related to income, housing, employment, and education. The expanded reports now also include the following: median household income, single-family and multi-family permits, types and age of the housing stock, foreclosures, major work destinations for residents, and educational attainment for residents. This additional information helps to provide a more complete profile of local jurisdictions.
Factors Affecting Local Changes Reflected in the 2013 Report

Overall, member jurisdictions since 2000 were impacted by a variety of factors at the national, regional and local levels. For example, the vast majority of member jurisdictions included in the 2013 Local Profiles reflect the national demographic trends toward an older and a more diverse population. Evidence of the slow process towards economic recovery is also apparent through gradual increases in employment, retail sales, building permits and home prices. Work destinations and commute times correlate with regional development patterns and the geographical location of the local jurisdictions, particularly in relation to the regional transportation system.

Uses of the Local Profiles

Following release at the SCAG General Assembly, the Local Profiles were posted on the SCAG website and used by interested parties for a variety of purposes including, but not limited to the following:

- Data and communication resources for elected officials, businesses and residents
- Community planning and outreach
- Economic development
- Visioning initiatives
- Grant application support

The primary user groups of the Profiles include member jurisdictions and state and federal legislative delegates of Southern California. This profile report is a SCAG member benefit and the use of the data within this report is voluntary.

Report Organization

This profile report has three sections. The first section presents a Statistical Summary for the unincorporated area of Orange County. The second section provides detailed information organized by subject areas and includes brief highlights on the impacts of the recent recession and recovery at the regional level. The third section, Methodology describes technical considerations related to data definitions, measurement, and data sources.
2012 Statistical Summary

<table>
<thead>
<tr>
<th>Category</th>
<th>Unincorporated Area</th>
<th>Orange County</th>
<th>Unincorporated Area relative to Orange County*</th>
<th>SCAG Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012 Population</td>
<td>119,698</td>
<td>3,055,792</td>
<td>[3.9%]</td>
<td>18,242,331</td>
</tr>
<tr>
<td>2012 Median Age (Years)</td>
<td>n/a</td>
<td>36.7</td>
<td>n/a</td>
<td>35.2</td>
</tr>
<tr>
<td>2012 Hispanic</td>
<td>20.9%</td>
<td>34.3%</td>
<td>-13.4%</td>
<td>46.4%</td>
</tr>
<tr>
<td>2012 Non-Hispanic White</td>
<td>60.2%</td>
<td>42.5%</td>
<td>17.7%</td>
<td>32.1%</td>
</tr>
<tr>
<td>2012 Non-Hispanic Asian</td>
<td>14.3%</td>
<td>18.7%</td>
<td>-4.4%</td>
<td>12.4%</td>
</tr>
<tr>
<td>2012 Non-Hispanic Black</td>
<td>1.0%</td>
<td>1.4%</td>
<td>-4.4%</td>
<td>6.3%</td>
</tr>
<tr>
<td>2012 Non-Hispanic American Indian</td>
<td>.2%</td>
<td>.2%</td>
<td>.0%</td>
<td>.2%</td>
</tr>
<tr>
<td>2012 Non-Hispanic All Other</td>
<td>3.4%</td>
<td>2.9%</td>
<td>.5%</td>
<td>2.5%</td>
</tr>
<tr>
<td>2012 Number of Households</td>
<td>37,809</td>
<td>995,933</td>
<td>[3.8%]</td>
<td>5,870,003</td>
</tr>
<tr>
<td>2012 Average Household Size</td>
<td>3.1</td>
<td>3.0</td>
<td>0.1</td>
<td>3.1</td>
</tr>
<tr>
<td>2012 Median Household Income ($)</td>
<td>n/a</td>
<td>71,193</td>
<td>n/a</td>
<td>57,465</td>
</tr>
<tr>
<td>2012 Number of Housing Units</td>
<td>39,319</td>
<td>1,052,361</td>
<td>[3.7%]</td>
<td>6,356,479</td>
</tr>
<tr>
<td>2012 Homeownership Rate</td>
<td>76.9%</td>
<td>54.3%</td>
<td>22.6%</td>
<td>54.3%</td>
</tr>
<tr>
<td>2012 Median Existing Home Sales Price ($)</td>
<td>519,300</td>
<td>422,000</td>
<td>97,300</td>
<td>323,000</td>
</tr>
<tr>
<td>2011 - 2012 Median Home Sales Price Change</td>
<td>2.3%</td>
<td>-3.9%</td>
<td>6.2%</td>
<td>6.4%</td>
</tr>
<tr>
<td>2012 Drove Alone to Work</td>
<td>87.5%</td>
<td>81.6%</td>
<td>5.9%</td>
<td>77.8%</td>
</tr>
<tr>
<td>2012 Mean Travel Time to Work (minutes)</td>
<td>n/a</td>
<td>29</td>
<td>n/a</td>
<td>31.4</td>
</tr>
<tr>
<td>2012 Number of Jobs</td>
<td>22,373</td>
<td>1,523,697</td>
<td>[1.5%]</td>
<td>7,462,957</td>
</tr>
<tr>
<td>2011 - 2012 Total Jobs Change</td>
<td>332</td>
<td>26,990</td>
<td>[1.2%]</td>
<td>109,491</td>
</tr>
<tr>
<td>2011 Average Salary per Job ($)</td>
<td>55,545</td>
<td>53,307</td>
<td>2,238</td>
<td>49,468</td>
</tr>
<tr>
<td>2012 K-12 Public School Student Enrollment</td>
<td>20,049</td>
<td>503,736</td>
<td>4%</td>
<td>3,096,034</td>
</tr>
</tbody>
</table>

Sources: U.S. Census Bureau; Nielsen Co.; California Department of Finance; MDA Data Quick; and SCAG

* Numbers with [] represent Unincorporated Area’s share of Orange County. The other numbers represent the difference between Unincorporated Area and Orange County.

Mapped jurisdictional boundaries are as of July 1, 2012 and are for visual purposes only. Report data, however, are updated according to their respective sources.
II. Population (the unincorporated area of Orange County)*

* The following charts in this report contain data for the unincorporated area of Orange County unless noted otherwise.

Population Growth

- Between 2000 and 2012, the total population of the unincorporated area of Orange County decreased by 48,434 to 119,698 in 2012.

- During this 12-year period, the unincorporated area’s population growth rate of -28.8 percent was lower than the Orange County rate of 7.4 percent.

- In Orange County 3.9% of the total population is in the unincorporated area of Orange County.
Between 2000 and 2012, the age group 5-20 is projected to experience the largest increase in share, growing from 20.4 to 23.6 percent.

The age group expected to experience the greatest decline, by share, is projected to be age group 21-34, decreasing from 17.1 to 13.7 percent.

The age group 35-54 is expected to add the most population, with an increase of 26,684 people between 2000 and 2012.
Population by Race/Ethnicity

- Between 2000 and 2012, the share of Hispanic population in the unincorporated area increased from 6.0 percent to 20.9 percent.

- Between 2000 and 2012, the share of Non-Hispanic White population in the unincorporated area decreased from 86.5 percent to 60.2 percent.

- Between 2000 and 2012, the share of Non-Hispanic Asian population in the unincorporated area increased from 4.9 percent to 14.3 percent.

Sources: 2000 and 2010 U.S. Decennial Census; Nielsen Co., 2012

- Between 2000 and 2012, the share of Non-Hispanic Black population in the unincorporated area increased from 0.5 percent to 1.0 percent.

Sources: 2000 and 2010 U.S. Decennial Census; Nielsen Co., 2012

• Between 2000 and 2012, the share of Non-Hispanic American Indian population in the unincorporated area decreased from 0.3 percent to 0.2 percent.

Sources: 2000 and 2010 U.S. Decennial Census; Nielsen Co., 2012

All Other Non-Hispanic: 2000, 2010, and 2012

• Between 2000 and 2010, the share of Non-Hispanic All Other population group in the unincorporated area increased from 1.8 percent to 3.4 percent

• Please refer to the Methodology section for definitions of the racial/ethnic categories.

Sources: 2000 and 2010 U.S. Decennial Census; Nielsen Co., 2012
III. Households

Number of Households (Occupied Housing Units)

Number of Households: 2000 - 2012

- Between 2000 and 2012, the total number of households in the unincorporated area of Orange County decreased by 20,536 units, or -35.2 percent.
- During this 12-year period, the unincorporated area’s household growth rate of -35.2 percent was lower than the county growth rate of 6.5 percent.
- 3.8 percent of Orange County’s total number of households is in the unincorporated area of Orange County.
- In 2012, the unincorporated area’s average household size was 3.1, higher than the county average of 3.0.

Sources: 2000 and 2010 U.S. Decennial Census; California Department of Finance, E-5, 2012

Average Household Size: 2000 - 2012

Source: California Department of Finance, E-5, 2012
Households by Size

Percent of Households by Household Size: 2012

- In 2012, 62 percent of all unincorporated area households had 3 people or fewer.
- About 15 percent of the households were single-person households.
- Approximately 17 percent of all households in the unincorporated area had 5 people or more.

Source: Nielsen Co., 2012

Households by Income

Percent of Households by Household Income: 2012

- In 2012, 24 percent of households earned less than $50,000 annually.
- Approximately 26 percent of the households earned between $50,000 and $99,999.

Source: Nielsen Co., 2012
Renters and Homeowners

Between 2000 and 2012, homeownership rates increased and the share of renters decreased.

Sources: 2000 and 2010 U.S. Decennial Census; Nielsen Co., 2012
IV. Housing

Total Housing Production
Total Permits Issued for all Residential Units: 2000 - 2012

- Between 2000 and 2012, permits were issued for 13,919 new residential units.

Permits Issued per 1,000 Residents for the unincorporated area of Orange County: 2000 - 2012

- In 2000, the unincorporated area of Orange County had 19.6 permits per 1,000 residents compared to the overall county figure of 4.5 permits per 1,000 residents.

- For the unincorporated area in 2012, the number of permits per 1,000 residents decreased to 3.4 permits. For the county overall, it decreased to 3.3 permits per 1,000 residents.
Between 2000 and 2012, permits were issued for 8,868 new single family homes.

About 6.9 percent of these were issued in the last 3 years.

In 2000, the unincorporated area of Orange County issued 12.6 permits per 1,000 residents compared to the overall county figure of 2.4 permits per 1,000 residents.

For the unincorporated area in 2012, the number of permits issued per 1,000 residents decreased to 2.9 permits. For the county overall, it decreased to 1.3 permits per 1,000 residents.
Multi-Family Housing Production

Multi-Family Permits Issued: 2000 - 2012

- Between 2000 and 2012, permits were issued for 5,051 new residential units.
- About 4.2 percent of these were issued in the last 3 years.

Multi-Family Permits Issued per 1,000 Residents: 2000 - 2012

- In 2000, the unincorporated area of Orange County issued 6.9 permits per 1,000 residents compared to the overall county figure of 2 permits per 1,000 residents.
- For the unincorporated area in 2012, the number of permits per 1,000 residents decreased to 0.5 permits. For the county overall, it increased to 2.1 permits per 1,000 residents.

Sources: Construction Industry Research Board, 2000-2012
Home Sales Prices

Median Home Sales Price for Existing Homes: 2000 - 2012
(in $ thousands)

- Between 2000 and 2012, the median home sales price decreased 0.038 percent from $519,500 to $519,300.

- Median home sales price decreased by 8 percent between 2010 and 2012.

- In 2012, the median home sales price in the unincorporated area was $519,300, $97,300 higher than that in the county overall.

- Note: Median home sales price reflects resales of existing homes and simply provides guidance on the market values of homes sold in the unincorporated area.

- Between 2000 and 2012, annual home sales price change ranged between -34.4 and 33.8 percent.

- Between 2010 and 2012, the change in annual home sales prices was between -10.1 and -9.1 percent.

Source: MDA Data Quick, 2012

Annual Median Home Sales Price Change for Existing Homes: 2000 - 2012

Source: MDA Data Quick, 2012
Housing Units by Housing Type: 2012

<table>
<thead>
<tr>
<th>Housing Type</th>
<th>Number of Units</th>
<th>Percent of Total Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single Family Detached</td>
<td>30,465</td>
<td>77.5%</td>
</tr>
<tr>
<td>Single Family Attached</td>
<td>3,800</td>
<td>9.7%</td>
</tr>
<tr>
<td>Multi-family 2 to 4 units</td>
<td>872</td>
<td>2.2%</td>
</tr>
<tr>
<td>Multi-family 5 units plus</td>
<td>3,551</td>
<td>9%</td>
</tr>
<tr>
<td>Mobile Home</td>
<td>631</td>
<td>1.6%</td>
</tr>
<tr>
<td>Total</td>
<td>39,319</td>
<td>100%</td>
</tr>
</tbody>
</table>

Source: California Department of Finance, E-5, 2012

- The most common housing type is Single Family Detached.
- Approximately 87.1 percent were single family homes and 11.2 percent were multi-family homes.

Age of Housing Stock

- 35 percent of the housing stock was built before 1970.
- 64 percent of the housing stock was built between 1970 to 2012.
- The age of housing stock data partly reflects the local development history.

Source: Neilsen, Co., 2012
Foreclosures

- There were a total of 219 foreclosures in 2012.
- Between 2007 and 2012, there were a total of 1,918 foreclosures.

Source: MDA Data Quick, 2012
• Between 2000 and 2012, the greatest change occurred in the percentage of individuals who traveled to work by carpool; this share decreased by 5.9 percentage points.
VI. Employment

Top 10 Places Where Residents Commute to Work: 2010

<table>
<thead>
<tr>
<th>Local Jurisdiction</th>
<th>Number of Commuters</th>
<th>Percent of Total Commuters</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Orange County</td>
<td>28,955</td>
<td>65.66 %</td>
</tr>
<tr>
<td>2. Los Angeles County</td>
<td>9,400</td>
<td>21.31 %</td>
</tr>
<tr>
<td>3. San Diego County</td>
<td>1,381</td>
<td>3.13 %</td>
</tr>
<tr>
<td>4. Riverside County</td>
<td>1,233</td>
<td>2.80 %</td>
</tr>
<tr>
<td>5. San Bernardino County</td>
<td>1,153</td>
<td>2.61 %</td>
</tr>
<tr>
<td>6. Ventura County</td>
<td>269</td>
<td>.61 %</td>
</tr>
<tr>
<td>7. Santa Clara County</td>
<td>252</td>
<td>.57 %</td>
</tr>
<tr>
<td>8. San Francisco County</td>
<td>184</td>
<td>.42 %</td>
</tr>
<tr>
<td>9. Alameda County</td>
<td>145</td>
<td>.33 %</td>
</tr>
<tr>
<td>10. Kern County</td>
<td>104</td>
<td>.24 %</td>
</tr>
<tr>
<td>Other Destinations</td>
<td>1,025</td>
<td>2.32 %</td>
</tr>
</tbody>
</table>

Source: U.S. Census Bureau, 2012; LODES Data; Longitudinal-Employer Household Dynamics Program

- This table identifies the top 10 locations where residents from the unincorporated area of Orange County commute to work.
Total Jobs: 2007 - 2012

Total jobs include wage and salary jobs and jobs held by business owners and self-employed persons. The total job count does not include unpaid volunteers or family workers, and private household workers.

In 2012, total jobs in the unincorporated area of Orange County numbered 22,373, a decrease of 7.1 percent from 2007.

Jobs in Manufacturing: 2007 - 2012

Manufacturing jobs include those employed in various sectors including food, apparel, metal, petroleum and coal, machinery, computer and electronic product, and transportation equipment.

Between 2007 and 2012, the number of manufacturing jobs in the unincorporated area decreased by 14.2 percent.
Construction jobs include those engaged in both residential and non-residential construction.

Between 2007 and 2012, construction jobs in the unincorporated area decreased by 35.1 percent.

Retail Trade jobs include those at various retailers including motor vehicle and parts dealers, furniture, electronics and appliance, building material, food and beverage, clothing, sporting goods, books, and office supplies.

Between 2007 and 2012, the number of retail trade jobs in the unincorporated area decreased by 8.7 percent.
Jobs in the professional and management sector include those employed in professional and technical services, management of companies, and administration and support.

Between 2007 and 2012, the number of professional and management jobs in the unincorporated area decreased by 6.3 percent.
Between 2007 and 2012, there were changes in the share of jobs by sector in the unincorporated area of Orange County. From 2007 to 2012, the share of Education jobs increased from 22.7 percent to 25.5 percent while the share of Construction jobs declined from 6.1 percent to 4.2 percent.

In 2012, the Education sector was the largest job sector, accounting for 25.5 percent of total jobs in the unincorporated area.

Other large sectors included Leisure (15.8 percent), Professional (11.9 percent), and Manufacturing (8.5 percent).

See Methodology Section for industry sector definitions.
Average Salaries

Average Annual Salary Per Job: 2009 and 2011

Average salaries for jobs located in the unincorporated area increased from $53,845 in 2009 to $55,545 in 2011, a 3.2 percent change.

In 2011, the sector providing the highest salary per job in the unincorporated area was Information ($85,242).

The Leisure-Hospitality sector provided the lowest annual salary per job ($20,954).

VII. Retail Sales

Real Retail Sales: 2000 - 2010 (in 2010 $ millions)

Source: California Board of Equalization, 2000-2010

- Real retail sales (inflation adjusted) in the unincorporated area of Orange County increased by 9.8 percent between 2000 and 2005.

- Real retail sales decreased by 25.1 percent between 2005 and 2010.

Real Retail Sales per Person: 2000 - 2010 (in 2010 $ thousands)

Source: California Board of Equalization, 2000-2010

- Between 2000 and 2010, real retail sales per person for the unincorporated area increased from $8,500 to $9,700.
VIII. Education
K-12 Public School Student Enrollment: 2000 - 2012

- Between 2000 and 2012, total K-12 public school enrollment for schools within the unincorporated area of Orange County increased by 13,380 students, or about 200.6 percent.

K-6 Public School Student Enrollment: 2000 - 2012

- Between 2000 and 2012, total public elementary school enrollment increased by 7,017 students or 121.8 percent.
• Between 2000 and 2012, total public school enrollment for grades 7-9 increased by 2,646 students or 291.1 percent.

• Between 2000 and 2012, total public school enrollment for grades 10-12 increased by 3,717 students, about 0 percent.
In 2012, 89.6 percent of the population 25 years and over completed high school or higher, which is higher than 2000 level.

In 2012, 47.8 percent of the population 25 years and over completed a Bachelor’s degree or higher, which is higher than 2000.
IX. SCAG Regional Highlights

- After reaching its peak in 2007, the median sales price for existing homes in the SCAG region dropped by almost half in 2011 from its 2007 level and rebounded slightly in 2012.
- Median home sales price was calculated based on total existing home sales in the SCAG region.

SCAG Regional Real Retail Sales: 2000 - 2010 (in 2010 $ millions)

- Retail sales tend to follow closely with trends in personal income, employment rates, and consumer confidence.
- Between 2000 and 2005, real retail sales increased steadily by 19 percent but then dropped between 2005 and 2009 by $52 billion, or 25 percent.
- In 2010, total real retail sales were nine percent lower than the 2000 level.
X. Data Sources
California Department of Finance, Demographic Research Unit
California Employment Development Department, Labor Market Information Division
California State Board of Equalization
Construction Industry Research Board
InfoGroup
MDA Data Quick
National Center for Education Statistics
Nielsen Company
U.S. Census Bureau
XI. Methodology

SCAG’s Local Profiles utilizes the most up-to-date information from a number of publically available sources, including the Census Bureau, California Department of Finance, and the National Center for Educational Statistics. In the event that public information is not available or is not the most recent, SCAG contracts with a number of private entities to obtain regional data. The following sections describe how each data source was compiled to produce the information displayed in the preceding report.

Statistical Summary Table

In the Statistical Summary Table (page 3), the values in field “Jurisdiction Relative to County/Region” are the differences between the jurisdiction’s value and the county/region value, except for the following categories which represent the jurisdiction’s value as a share of the county (or in the case of an entire county as a share of the region): Population, Number of Households, Number of Housing Units, Number of Jobs, Total Jobs Change, and K-12 Student Enrollment.

Median Age, Homeownership Rate, and Median Household Income are based on Nielsen Company data. Number of Housing Units is based on the 2010 Census and estimates from the California Department of Finance. Data for all other categories are referenced throughout the report.

Population Section

Where referenced, data from 2000 to 2012 was taken from the California Department of Finance’s (DOF) E-5 estimates, were published in May 2012. This dataset was benchmarked to population figures from the 2000 and 2010 U.S. Decennial Censuses. Data relating to population by age group and by race/ethnicity was derived from the 2000 and 2010 U.S. Decennial Censuses, and Nielsen Co. The 2000 figure was based on U.S. Decennial Census figures for April 1, 2000 and the 2010 figure was based on U.S. Decennial Census figures for April 1, 2010.

Below are definitions for race and ethnicity, which are taken from the U.S. Census Bureau. The Hispanic or Latino origin category is:

• A person of Cuban, Mexican, Puerto Rican, South or Central American, or other Spanish culture or origin, regardless of race.

The race categories are:

• American Indian or Alaska Native – A person having origins in any of the original peoples of North and South America (including Central America), and who maintains tribal affiliation or community attachment.

• Asian – A person having origins in any of the original peoples of the Far East, Southeast Asia, or the Indian subcontinent including, for example, Cambodia, China, India, Japan, Korea, Malaysia, Pakistan, the Philippine Islands, Thailand, and Vietnam.

• Black or African American – A person having origins in any of the black racial groups of Africa, including those who consider themselves to be "Haitian."

• White – A person having origins in any of the original peoples of Europe, North Africa, or the Middle East.
• Some other race – This category includes Native Hawaiian or Other Pacific Islander (a person having origins in any of the original peoples of Hawaii, Guam, Samoa, or other Pacific Islands) and all other responses not included in the "American Indian or Alaska Native," "Asian," "Black or African American," and "White" race categories described above.

Households Section

The 2000 figure was based on U.S. Decennial Census figures for April 1, 2000 and the 2010 figure was based on U.S. Decennial Census figures for April 1, 2010. Information for 2012 was supplied by the Nielsen Company. Average household size was developed using information from the California Department of Finance (DOF). Households by size was calculated based upon Nielsen Company Data.

Housing Section

Housing units are the total number of both vacant and occupied units. Housing units by housing type information was developed using data from California Department of Finance (DOF). Age of housing stock information is from the Nielsen Company.

The number of residential units with permits issued was obtained using Construction Industry Research Board data, which are collected by counties from self-reporting by individual jurisdictions. It represents both single family and multifamily housing units that were permitted to be built, along with building permits that were issued for improvements to existing residential structures (e.g., reroofs, remodels, etc.). Please note that SCAG opted to report the annual number of permits issued by each jurisdiction which may be different than the number of housing units completed or constructed annually. This was done using a single data source which provides consistent data for all jurisdictions.

The median home sales price, compiled from MDA Data Quick, was calculated based on total resales of existing homes in the jurisdiction, including single family units and condominiums. The median price does not reflect the entire universe of housing in the jurisdictions, only those that were sold within the calendar year.

Transportation Section

The journey to work data for the year 2000 was obtained by using the 2000 U.S. Decennial Census Summary File 3. Data from 2010 is based on the 2010 U.S. Decennial Census. Information for 2012 was provided by the Neilsen Company.

Employment Section

Data sources for estimating jurisdiction employment and wage information include the 2010 U.S. Decennial Census – Local Employment Dynamics Survey, and information from the California Employment Development Department, InfoGroup, and SCAG for years 2007-2012. In many instances, employment totals from individual businesses were geocoded and aggregated to the jurisdictional level.
Employment information provided by industry type is defined by the North American Industry Classification System (NAICS). Although the NAICS provides a great level of detail on industry definitions for all types of businesses in North America, for the purposes of this report, this list of industries has been summarized into the following major areas: agriculture, construction, manufacturing, wholesale, retail, information, finance/insurance/real estate, professional/management, education/health, leisure/hospitality, public administration, other services, and non-classified industries. A brief description of each major industry area is provided below:

- **Agriculture** – This industry includes crop production, animal production and aquaculture, forestry and logging, fishing hunting and trapping, and support activities for agriculture and forestry.
- **Construction** – Industries under this umbrella involve the construction of buildings, heavy and civil engineering construction, and specialty trade contractors.
- **Manufacturing** – This group includes the processing of raw material into products for trade, such as food manufacturing, apparel manufacturing, wood product manufacturing, petroleum and coal products manufacturing, chemical manufacturing, plastics and rubber products manufacturing, nonmetallic mineral product manufacturing, primary metal manufacturing, etc.
- **Wholesale** – Wholesale industries do business in the trade of raw materials and durable goods.
- **Retail** – Retail industries engage in the sale of durable goods directly to consumers.
- **Information** – Businesses in this industry specialize in the distribution of content through a means of sources, including newspaper, periodicals, books, software, motion pictures, sound recording, radio and television broadcasting, cable or subscription programming, telecommunications, data processing/hosting, and other information mediums.
- **Finance/Insurance/Real Estate** – This sector includes businesses associated with banking, consumer lending, credit intermediation, securities brokerage, commodities exchanges, health/life/medical/title/property/casualty insurance agencies and brokerages, and real estate rental/leasing/sales.
- **Professional Management** – This industry involves businesses that specialize in professional/scientific/technical services, management of companies and enterprises, and administrative and support services. Types of establishments that would fall under this category range from law offices, accounting services, architectural/engineering firms, specialized design services, computer systems design and related services, management consulting firms, scientific research and development services, advertising firms, office administrative services, facilities support services, amongst many others.
- **Education/Health** – Organizations that fall into this family include elementary and secondary schools, junior colleges, universities, professional schools, technical and trade schools, medical offices, dental offices, outpatient care centers, medical and diagnostic laboratories, hospitals, nursing and residential care facilities, social assistance services, emergency relief services, vocational rehabilitation services, and child day care services.
- **Leisure/Hospitality** – This family of industries includes organizations in the performing arts, spectator sports, museums, amusement/recreation industries, traveler accommodations, and food services and drinking places.
- **Public Administration** – This classification includes public sector organizations, including legislative bodies, public finance institutions, executive and legislative offices, courts, police protection, parole offices, fire protection, correctional
institutions, administration of governmental programs, space research and technology, and national security.

- Other Services – Groups in this group include, for example, automotive repair and maintenance, personal and household goods repair and maintenance, personal laundry services, dry-cleaning and laundry services, religious services, social advocacy organizations, professional organizations, and private households
- Non-Classified – Non-classified organizations involve work that is not included in the North American Industry Classification System.

Retail Sales Section

Retail sales data is obtained from the California Board of Equalization, which does not publish individual point-of-sale data. All data is adjusted for inflation.

Education Section

Student enrollment data is based on public school campuses that are located within each jurisdiction’s respective boundary. Enrollment numbers by grade within a given jurisdiction are tabulated based upon data obtained from the National Center for Education Statistics.

Regional Highlights

Information for this section was developed through data from MDA Data Quick and the California Board of Equalization.

Data Sources Section

In choosing the data sources used for this report, the following factors were considered:

- Availability for all jurisdictions in the SCAG region,
- The most recognized source on the subject,
- Data sources within the public domain, and
- Data available on an annual basis.

The same data sources are used for all Local Profiles (except where noted) to maintain overall reporting consistency. The jurisdictions are not constrained from using other data sources for their planning activities.

The preparation of this report has been financed in part through grants from the Federal Highway Administration and Federal Transit Administration, U.S. Department of Transportation, under the Metropolitan Planning Program, Section 104(f) of Title 23, U.S. Code. The contents of this report do not necessarily reflect the official views or policy of the U.S. Department of Transportation. Additional assistance was provided by the California Department of Transportation.
XII. Acknowledgments

SCAG Management
Hasan Ikhrata, Executive Director
Sharon Neely, Chief Deputy Executive Director
Debbie Dillon, Deputy Executive Director, Administration
Joann Africa, Chief Counsel
Huasha Liu, Director, Land Use & Environmental Planning
Rich Macias, Director, Transportation Planning
Catherine Chavez, Chief Information Officer
Darin Chidsey, Acting Director, Strategy, Policy & Public Affairs
Basil Panas, Chief Financial Officer

Project Manager
Ping Chang, Program Manager, Land Use & Environmental Planning

Project Core Team
Javier Minjares, Regional Planner Specialist
Jonathan Raymond, Senior Programmer Architect
Jung Seo, Senior Regional Planner
Leah Murphy, UCLA Fellow
Ma’Ayn Johnson, Senior Regional Planner
Kimberly Clark, Senior Regional Planner
Gurpreet Kaur, Senior Software Quality Assurance Engineer
Dan Nguyen, Senior Programmer Analyst

Reproduction
Pat Camacho, Office Services Specialist
Catherine Rachal, Office Services Specialist

Assistance from the following SCAG staff members is also recognized:
Ludlow Brown, Web/Graphics Designer
Joongkoo Cho, Associate Regional Planner
Christine Fernandez, Senior Regional Planner
Carolyn Hart, Lead Graphics Designer
Hsi-Hwa Hu, Transportation Modeler IV
Cheol-Ho Lee, Senior Regional Planner
Pamela Lee, Associate Regional Planner
Jonathan Nadler, Manager, Compliance & Performance Monitoring
Angela Rushen, Manager, Media and Public Affairs
Frank Wen, Manager, Research & Analysis
Alex Yu, Acting Manager Application Development
Ying Zhou, Regional Planner Specialist
Marisol Maciel-Cervantes, SCAG Intern
Lu Lu, SCAG Intern
Regional Council Roster

May 2013

Members

<table>
<thead>
<tr>
<th>President</th>
<th>Hon. Glen Becerra</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Vice-President</td>
<td>Hon. Greg Pettis</td>
</tr>
<tr>
<td>2nd Vice-President</td>
<td>Hon. Carl Morehouse</td>
</tr>
<tr>
<td>Imm. Past President</td>
<td>Hon. Pam O’Connor</td>
</tr>
</tbody>
</table>

Representing

<table>
<thead>
<tr>
<th>Simi Valley</th>
<th>District 46</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cathedral City</td>
<td>District 2</td>
</tr>
<tr>
<td>San Buenaventura</td>
<td>District 47</td>
</tr>
<tr>
<td>Santa Monica</td>
<td>District 41</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Members</th>
<th>Representing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hon. Jack Terrazas</td>
<td>Imperial County</td>
</tr>
<tr>
<td>Hon. Michael Antonovich</td>
<td>Los Angeles County</td>
</tr>
<tr>
<td>Hon. Mark Ridley-Thomas</td>
<td>Los Angeles County</td>
</tr>
<tr>
<td>Hon. Shawn Nelson</td>
<td>Orange County</td>
</tr>
<tr>
<td>Hon. Gary Ovitt</td>
<td>San Bernardino County</td>
</tr>
<tr>
<td>Hon. Jeff Stone</td>
<td>Riverside County</td>
</tr>
<tr>
<td>Hon. Linda Parks</td>
<td>Ventura County</td>
</tr>
<tr>
<td>VACANT</td>
<td>OCTA</td>
</tr>
<tr>
<td>Hon. Robert “Bob” Botts</td>
<td>RCTC</td>
</tr>
<tr>
<td>Hon. Alan Wapner</td>
<td>SANBAG</td>
</tr>
<tr>
<td>Hon. Keith Millhouse</td>
<td>VCTC</td>
</tr>
<tr>
<td>VACANT</td>
<td>ICTC</td>
</tr>
<tr>
<td>Hon. Cheryl Viegas-Walker</td>
<td>El Centro</td>
</tr>
<tr>
<td>Hon. Jim Hyatt</td>
<td>Calimesa</td>
</tr>
<tr>
<td>Hon. Jeff DeGrandpre</td>
<td>Eastvale</td>
</tr>
<tr>
<td>Hon. Ronald Roberts</td>
<td>Temecula</td>
</tr>
<tr>
<td>Hon. Jon Harrison</td>
<td>Redlands</td>
</tr>
<tr>
<td>Hon. Larry McCallon</td>
<td>Highland</td>
</tr>
<tr>
<td>Hon. Deborah Robertson</td>
<td>Rialto</td>
</tr>
<tr>
<td>Hon. Paul Eaton</td>
<td>Montclair</td>
</tr>
<tr>
<td>Hon. Ed Graham</td>
<td>Chino Hills</td>
</tr>
<tr>
<td>Hon. Bill Jahn</td>
<td>Big Bear Lake</td>
</tr>
<tr>
<td>Hon. Mike Munzing</td>
<td>Aliso Viejo</td>
</tr>
<tr>
<td>Hon. Kathryn McCullough</td>
<td>Lake Forest</td>
</tr>
<tr>
<td>Hon. Steven Choi</td>
<td>Irvine</td>
</tr>
<tr>
<td>Hon. Leslie Daigle</td>
<td>Newport Beach</td>
</tr>
<tr>
<td>Hon. Michele Martinez</td>
<td>Santa Ana</td>
</tr>
<tr>
<td>Hon. John Nielsen</td>
<td>Tustin</td>
</tr>
<tr>
<td>Hon. Leroy Mills</td>
<td>Cypress</td>
</tr>
<tr>
<td>Hon. Kris Murray</td>
<td>Anaheim</td>
</tr>
<tr>
<td>VACANT</td>
<td>District 20</td>
</tr>
<tr>
<td>Hon. Art Brown</td>
<td>Buena Park</td>
</tr>
<tr>
<td>Hon. Brett Murdock</td>
<td>Brea</td>
</tr>
<tr>
<td>Hon. Bruce Barrows</td>
<td>Cerritos</td>
</tr>
<tr>
<td>Hon. Gene Daniels</td>
<td>Paramount</td>
</tr>
<tr>
<td>Hon. Mario Guerra</td>
<td>Downey</td>
</tr>
</tbody>
</table>

Local Profiles Report 2013 –the unincorporated area of Orange County
<table>
<thead>
<tr>
<th>Members</th>
<th>Representing</th>
<th>District</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hon. Jim Morton</td>
<td>Lynwood</td>
<td>District 26</td>
</tr>
<tr>
<td>Hon. Frank Gurulé</td>
<td>Cudahy</td>
<td>District 27</td>
</tr>
<tr>
<td>Hon. Dan Medina</td>
<td>Gardena</td>
<td>District 28</td>
</tr>
<tr>
<td>Hon. Steven Neal</td>
<td>Long Beach</td>
<td>District 29</td>
</tr>
<tr>
<td>Hon. James Johnson</td>
<td>Long Beach</td>
<td>District 30</td>
</tr>
<tr>
<td>Hon. Roy Francis</td>
<td>La Habra Heights</td>
<td>District 31</td>
</tr>
<tr>
<td>Hon. Margaret Clark</td>
<td>Rosemead</td>
<td>District 32</td>
</tr>
<tr>
<td>Hon. Gene Murabito</td>
<td>Glendora</td>
<td>District 33</td>
</tr>
<tr>
<td>Hon. Barbara Messina</td>
<td>Alhambra</td>
<td>District 34</td>
</tr>
<tr>
<td>Hon. Margaret E. Finlay</td>
<td>Duarte</td>
<td>District 35</td>
</tr>
<tr>
<td>Hon. Donald Voss</td>
<td>La Cañada/Flintridge</td>
<td>District 36</td>
</tr>
<tr>
<td>Hon. Carol Herrera</td>
<td>Diamond Bar</td>
<td>District 37</td>
</tr>
<tr>
<td>Hon. Paula Lantz</td>
<td>Pomona</td>
<td>District 38</td>
</tr>
<tr>
<td>Hon. James Gazeley</td>
<td>Lomita</td>
<td>District 39</td>
</tr>
<tr>
<td>Hon. Judy Mitchell</td>
<td>Rolling Hills Estates</td>
<td>District 40</td>
</tr>
<tr>
<td>VACANT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hon. Steven Hofbauer</td>
<td>Palmdale</td>
<td>District 43</td>
</tr>
<tr>
<td>Hon. Mark Rutherford</td>
<td>Westlake Village</td>
<td>District 44</td>
</tr>
<tr>
<td>Hon. Carmen Ramirez</td>
<td>Oxnard</td>
<td>District 45</td>
</tr>
<tr>
<td>Hon. Ed P. Reyes</td>
<td>Los Angeles</td>
<td>District 48</td>
</tr>
<tr>
<td>Hon. Paul Krekorian</td>
<td>Los Angeles</td>
<td>District 49</td>
</tr>
<tr>
<td>Hon. Dennis Zine</td>
<td>Los Angeles</td>
<td>District 50</td>
</tr>
<tr>
<td>Hon. Tom LaBonge</td>
<td>Los Angeles</td>
<td>District 51</td>
</tr>
<tr>
<td>Hon. Paul Koretz</td>
<td>Los Angeles</td>
<td>District 52</td>
</tr>
<tr>
<td>VACANT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hon. Richard Alarcón</td>
<td>Los Angeles</td>
<td>District 53</td>
</tr>
<tr>
<td>Hon. Bernard C. Parks</td>
<td>Los Angeles</td>
<td>District 54</td>
</tr>
<tr>
<td>Hon. Jan Perry</td>
<td>Los Angeles</td>
<td>District 55</td>
</tr>
<tr>
<td>Hon. Herb Wesson, Jr.</td>
<td>Los Angeles</td>
<td>District 56</td>
</tr>
<tr>
<td>Hon. Bill Rosendahl</td>
<td>Los Angeles</td>
<td>District 57</td>
</tr>
<tr>
<td>Hon. Mitchell Englander</td>
<td>Los Angeles</td>
<td>District 58</td>
</tr>
<tr>
<td>Hon. Eric Garcetti</td>
<td>Los Angeles</td>
<td>District 59</td>
</tr>
<tr>
<td>Hon. José Huizar</td>
<td>Los Angeles</td>
<td>District 60</td>
</tr>
<tr>
<td>Hon. Joe Buscaino</td>
<td>Los Angeles</td>
<td>District 61</td>
</tr>
<tr>
<td>Hon. Karen Spiegel</td>
<td>Corona</td>
<td>District 62</td>
</tr>
<tr>
<td>Hon. Matthew Harper</td>
<td>Huntington Beach</td>
<td>District 63</td>
</tr>
<tr>
<td>Hon. Ryan McEachron</td>
<td>Victorville</td>
<td>District 64</td>
</tr>
<tr>
<td>Hon. Lupe Ramos Watson</td>
<td>Indio</td>
<td>District 65</td>
</tr>
<tr>
<td>Hon. Marsha McLean</td>
<td>Santa Clarita</td>
<td>District 66</td>
</tr>
<tr>
<td>VACANT</td>
<td></td>
<td>District 67</td>
</tr>
<tr>
<td></td>
<td>Tribal Government</td>
<td></td>
</tr>
<tr>
<td>Members</td>
<td>Representing</td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>-------------------------------</td>
<td></td>
</tr>
<tr>
<td>Hon. Lisa Bartlett</td>
<td>Dana Point</td>
<td></td>
</tr>
<tr>
<td>Mr. Randall Lewis</td>
<td>Lewis Group of Companies</td>
<td></td>
</tr>
<tr>
<td>Hon. Antonio Villaraigosa</td>
<td>Los Angeles</td>
<td></td>
</tr>
</tbody>
</table>

Representative
TCA
(Ex-Officio)
(At-Large)
Figure 1-2. Septic System Survey Areas
- Septic Tank Locations
- Stream Gage Locations
- Water Quality Sampling Locations

Watershed Boundary
- Highways/State Routes
- Channels/Water Bodies

Hydrologic Soil Group (min. infiltration rate)
- A (0.30-0.45 in/hr)
- B (0.15-0.30 in/hr)
- C (0.05-0.15 in/hr)
- D (0.00-0.05 in/hr)

Watershed Name
- A Coyote Creek
- B Carbon Canyon
- C Westminster
- D Talbert
- E Santa Ana River
- F San Diego Creek
- G Newport Bay
- H Los Trancos/Muddy Creek
- I Laguna Canyon
- J Aliso Creek
- K Salt Creek
- L San Juan Creek
- M Prima Deshecha/Segunda Deshecha
EXECUTIVE SUMMARY

Septic systems have proven to be a relatively inexpensive and effective method of wastewater treatment in low-density areas if they are correctly designed and responsibly maintained. However, if systems do fail, poorly treated effluent may surface and drain to nearby storm drain systems and receiving waters.

The objectives of this study were to develop an inventory/database of the septic systems in Orange County and to estimate the potential impact of septic systems on the quality of selected receiving waters. Septic systems throughout the County were inventoried, and placed in a GIS layer for ease of viewing and inventory maintenance.

Septic System Inventory

The final inventory/database compilation resulted in a list of over 2776 active septic systems. Septic systems are widely dispersed throughout the County but are found in the highest concentrations in the Santa Ana River watershed. The City of Yorba Linda recorded the highest number of systems with over 26% of the total, followed by the unincorporated County area with 23% of the total.

Septic System Performance Evaluation

A random field survey of septic system owners within four selected major areas of the County was undertaken to evaluate existing system performance:

- The City of Yorba Linda
- The City of Tustin and adjacent unincorporated areas
- The City of Anaheim
- The City of Orange

The study areas were selected based on the estimated number of systems present, the occurrence of low permeability soils, and proximity to sensitive receiving waters. For the four areas as aggregate, the overall failure rate was determined by the survey of the homeowners and visual inspection of the septic system if possible. The failure rate determined through the field survey was then verified by findings from similar surveys reported in the literature.

Eighty septic system owners were contacted over a period of about 3 weeks from December 23, 2002, to January 10, 2003 during the field survey. Failure of a septic system was defined as the observance of surface seepage or flow during the inspection. Other information was also gathered from the homeowner during the field survey, and an educational pamphlet regarding operation and maintenance of septic systems was left with each homeowner who was contacted.

Of the eighty field surveys that were conducted, one failed system was noted, representing a failure rate of 1.25%. This finding was validated by a literature review, which revealed that a similar study in Oregon recorded a failure rate of 1.3 percent of
the 389 systems studied—identical to that of the Orange County survey. The literature review indicated that most septic system failures were primarily due to poor operation and maintenance (O&M). Excessive water use or insufficient system capacity were contributors, but the primary failure mechanism was lack of, or deferred maintenance.

Impact Estimation of Pollutant Loading from Septic Systems

An analysis was performed on the extent septic systems may impact water quality in Orange County based on the results from the field survey findings. A spreadsheet model was developed to estimate the loading of pathogen indicators and total Kjeldahl nitrogen (TKN) from the failed systems. A simple mass based loading model was also used to calculate total ambient constituent/indicator load for each study watershed at the points of interest as a comparison to the estimated load from the failed septic systems. This comparison was for the purpose of determining if BMPs are required to mitigate discharges from the failed septic systems.

The potential impact of failing septic systems was assessed at: 1) the ocean outfall of the Santa Ana River, where impacts to REC-1 beneficial use are of particular practical significance near swimming beaches and 2) in Upper Newport Bay, where the receiving water is impaired for sanitary quality and is currently under a fecal coliform TMDL.

The ambient indicator load model was compiled for the two selected watersheds to estimate the relative contribution (load) of pathogen indicators in the receiving waters from the failed systems. Two cases were evaluated in each watershed: dry and wet weather. Selection of two study cases allowed for varying assumptions as to the indicator load estimated to arrive at the receiving water based on expected physical site conditions such as the presence of saturated soils. The septic system failure rate was assumed to be 2% (the average of the computed confidence interval for system failures determined in the survey portion of this study).

Study results show that the load from the failed septic systems is a very marginal contributor to pathogen indicators in the receiving waters and is an insignificant contributor for TKN. The loadings of pathogen indicators and TKN from failed septic systems at the mouth of the Santa Ana River and San Diego Creek at Upper Newport Bay are estimated to be less than a fraction of one percent of total contributory loading under both dry and wet weather conditions.

Based on the analysis of these two study areas, it is reasonable to conclude that septic systems do no represent a significant source of constituents of concern for Orange County receiving waters. In general, failure rates are relatively low; for 79 of 80 systems surveyed there was no observed or reported incidence of surface seepage or flow failures. Furthermore, the flow path of septic tank effluent to the receiving water in most cases provides for significant storage and infiltration, as well as discovery and site-specific system correction, prior to the possibility of conveyance and discharge to receiving waters. Finally, there is a steady conversion of septic systems to sewer service as service becomes available in rural areas, and as existing homes are sold and connections are made to available service by the new owner.
It is recommended that periodic homeowner education be conducted via reminder notices to service septic systems, and that Permitees notify homeowners with septic systems when sewer system service becomes available in their area. Regulation of the construction of new systems, and regular maintenance of existing systems will remain the foundation of the program to ensure that septic systems do not adversely impact receiving waters.

STUDY PRODUCTS

The results of this study are presented by means of (1) a database, containing the identified septic systems by legal parcel in Orange County; (2) a GIS layer, linked to the database with each septic system geo-coded and plotted; (3) a load model comparing the estimated loading of selected constituents and indicators from failed septic tanks in any given year to the total estimated loading of constituents and bacteria indicators in the receiving water; and (4) this summary report.
Table of Contents

1. Executive Summary .. i

2. Introduction ... 1

2. Septic Systems Inventory .. 7
 2.1 Information Sources ... 7
 2.2 Description of Database ... 7
 2.3 Potential Data Gaps ... 7
 2.4 Inventory Findings ... 8

3. Assessment of Septic System Performance ... 9
 3.1 Septic System Operation and Maintenance ... 9
 3.2 Selection of Survey Areas for Field Assessment ... 9
 3.3 Failure Assessment Approach/ Survey Findings ... 10
 3.3.1 City of Yorba Linda ... 13
 3.3.2 City of Tustin and the Adjacent Unincorporated Area ... 14
 3.3.3 City of Anaheim ... 14
 3.3.4 City of Orange and the Adjacent Unincorporated Area 15
 3.4 Failure Rate Analysis .. 15
 3.4.1 Age .. 16
 3.4.2 Soil Type ... 16
 3.5 Loading Model Approach .. 16

4. Septic System Pollutant Loadings ... 18
 4.1 Background and Loading Estimation .. 18
 4.1.1 Analysis of Septic System Constituent Loading .. 18
 4.2 Failed Septic System Loading Rates .. 20

5. Watershed Impact Assessment ... 21
 5.1 Watershed Constituent Contribution .. 21
 5.1.1 Watershed Load ... 21
 5.2 Septic System Loading Analysis .. 22

6. Conclusions ... 23

7. References ... 25

Glossary .. 27

APPENDICES

 Appendix A – Survey Forms
 Appendix B – Public Education Material
 Appendix C – Survey Results
 Appendix D – Septic System Inventory/ Database
 Appendix E – Referenced Data
List of Figures

1-1 Septic System Locations..3
1-2 Septic System Survey Areas..5
3-1 The Survey Area within the City of Yorba Linda ..11
3-2 The Survey Area by the City of Tustin and Nearby Unincorporated Areas...............11
3-3 The Survey Area Nearby the City of Anaheim..12
3-4 The Survey Area by the City of Orange and Nearby Unincorporated Areas............12

List of Tables

2-1 County-Wide Distribution of Septic Systems...8
3-1 Results of Field Survey of Septic Systems in Orange County.................................13
4-1 Estimated Number of Failed Septic Systems..18
4-2 Estimate Daily Wastewater Flows for Single-Family Dwelling..............................18
4-3 Mean Pollutant Concentration Utilized in Load Calculation.................................19
4-4 Monthly Constituent load for Wet and Dry Seasons..20
5-1 Mean Monthly Monitoring Data...21
5-2 Watershed Load for Selected Constituents...21
5-3 Estimated Failed Septic System Loads as a Percentage of Total Watershed Load for Selected Constituents...22
List of Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CWA</td>
<td>Clean Water Act</td>
</tr>
<tr>
<td>EPA</td>
<td>Environmental Protection Agency</td>
</tr>
<tr>
<td>FC</td>
<td>Total Fecal Coliform</td>
</tr>
<tr>
<td>GIS</td>
<td>Geographic Information System</td>
</tr>
<tr>
<td>NPDES</td>
<td>National Pollutant Discharge Elimination System</td>
</tr>
<tr>
<td>OC</td>
<td>County of Orange</td>
</tr>
<tr>
<td>OCSD</td>
<td>Orange County Sanitation District</td>
</tr>
<tr>
<td>O&M</td>
<td>Operation and maintenance</td>
</tr>
<tr>
<td>REC</td>
<td>Recreational use</td>
</tr>
<tr>
<td>SAR</td>
<td>Santa Ana River</td>
</tr>
<tr>
<td>SCAG</td>
<td>Southern California Association of Governments</td>
</tr>
<tr>
<td>SDC</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>SWRCB</td>
<td>State Water Resources Control Board</td>
</tr>
<tr>
<td>TC</td>
<td>Total coliform</td>
</tr>
<tr>
<td>TKN</td>
<td>Total Kjeldahl Nitrogen</td>
</tr>
<tr>
<td>TMDL</td>
<td>Total Maximum Daily Load</td>
</tr>
</tbody>
</table>
1 INTRODUCTION

The purpose of this study was to develop an inventory/database of septic systems in The County of Orange and to assess the potential impact of failing septic systems on the quality of receiving water. The study was conducted in response to Section XI.1 of the Orange County NPDES municipal stormwater permit issued by the Santa Ana Regional Water Quality Control Board (Permit No. R8-2002-0010).

The first subtask, which was conducted countywide, was to identify the location of existing systems based on permittee records and information from the sanitation districts. This task involved the following primary elements:

- Augmenting the initial septic system database compiled by the County of Orange with information from the permittees and the local sanitation districts, and compiling it into a central database and a geographic information system (GIS) layer (see Figure 1-1).

Using the augmented central database and the GIS layer, the following assessments were then conducted:

- An estimate of the number of systems which were failing – A random survey was conducted of septic system owners within four selected major areas (see Figure 1-2). The four areas were selected based on hydrologic soil type (A, B, C, or D with a minimum infiltration rate of 0.30-0.45, 0.15-0.30, 0.05-0.15, and 0-0.05 in/hr, respectively and C or D soils receiving preference), proximity to receiving water, and septic system relative density. For the four areas as aggregate, the overall failure rate was determined by the survey of the homeowners. The failure rate determined through the survey was similar to the failure rate obtained from a literature review.

- An estimate of the potential pathogen and other pollutant loadings – A spreadsheet model was developed to estimate the loading into the watershed of pathogens and total Kjeldahl nitrogen (TKN) as compared to the total loading in the watershed. This comparison was done to assess the relative magnitude of the contribution of pathogen loads of the failing septic systems and to determine if control measures are required to mitigate discharges from the systems.

The results of this study are presented as a package including: the database, containing the identified septic systems by legal parcel in Orange County; a GIS layer that is linked to the database with each septic system geo-coded and plotted; a load model comparing the estimated loading of selected constituents and indicators from failed septic tanks in any given year to the total loading of constituents and bacteria indicators in the receiving water; and this summary report. Discussion is provided as to whether additional controls are required on septic systems to mitigate the impact of failed systems on receiving waters.
Intentionally blank so foldout will be on right-hand page.
Figure 1-1. Septic System Locations
Figure 1-2. Septic System Locations with Soil Type
2 SEPTIC SYSTEMS INVENTORY

2.1 Information Sources

The County’s initial septic system database was provided in a spreadsheet format with local jurisdictions such as Orange County Sanitation District (OCSD) serving as the main data source. The initial septic system database compiled by the County was subsequently updated countywide based on the following sources of information:

- Data from co-permittees on known septic systems
- Data from local sewer agencies for connected units vs. legal parcels
- A review of sewer systems service areas as compared to urbanized areas

The data was compiled into a MS Access® database linked to ArcView® allowing the locations of the septic systems to be shown on a watershed overlay for Orange County (see Appendix F).

2.1.1 Septic System Identification Approach

The identification process attempted to locate most septic systems in Orange County through available records search, discussion with City personnel, and limited field review. In some locations, conversion to sewer service is occurring gradually as homes are sold and the new owner connects to the existing available sewer. In other areas, sewer service remains unavailable, and system conversion is not possible. Information obtained from the co-permittees and the sewer agencies was spot-checked in the field for accuracy by manually verifying the presence of an active septic system. The initial County and co-permittee databases were refined using this approach, as some areas that had recently received sewer service could be eliminated from the database.

2.2 Description of Database

The information collected in the septic system inventory was compiled into a master database in MS Access format, which contains over 2776 septic systems (records) located within Orange County, including incorporated areas. A mapped GIS layer with the identified septic systems was compiled in ArcView GIS (Version 3.2a) with the assistance of the County’s Geomatics Division for geocoding of the APN information. Where address matches were not found electronically, the Geomatics division determined an address manually. An ArcView GIS data dictionary is included as Appendix F along with a plot (map) of the database entries.

2.3 Potential Data Gaps

There may be gaps in the septic system database for several reasons. Orange County Sanitation District (OCSD) was the main source of PFRD’s initial septic system information. The OCSD assesses an annual service fee for every Assessors Parcel
Number (APN) in their service area unless the resident notifies the District’s customer service department that the property does not receive sewer service. Therefore, it is probable that some residents who maintain a septic system but have not contacted their local sewer agency for a fee exemption are not included in the database. For example, 13 unregistered septic system owners within the four survey study areas were added to the database during the door-to-door field survey. In general, the integrity of the database is considered good, and it is estimated to be representative within about 10 to 15% of the actual number of active systems.

2.4 Inventory Findings

A total of 2,775 septic systems were recorded and compiled into a GIS layer. Of the septic systems inventoried countywide, the two highest areas of concentration were found in the City of Yorba Linda and the unincorporated area of Orange County, with 26.6% and 23.3% of all known systems, respectively. The City of Orange (13.3%), San Juan Capistrano (12.4%), and Rancho Santa Margarita (9.8%) contained the next highest concentrations relative to the countywide system inventory. Twenty-one other co-permitees accounted for the remaining 14.6% of septic systems inventoried. The distribution of septic systems by total number and by percent for each jurisdiction is shown in Table 2.1.

Table 2.1 County-Wide Distribution Of Septic Systems

<table>
<thead>
<tr>
<th>Jurisdiction</th>
<th>No. of Septic Systems Inventoried</th>
<th>Percent Represented</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anaheim</td>
<td>79</td>
<td>2.8</td>
</tr>
<tr>
<td>Brea</td>
<td>21</td>
<td>0.8</td>
</tr>
<tr>
<td>Buena Park</td>
<td>2</td>
<td>0.1</td>
</tr>
<tr>
<td>Costa Mesa</td>
<td>4</td>
<td>0.1</td>
</tr>
<tr>
<td>Dana Point</td>
<td>7</td>
<td>0.3</td>
</tr>
<tr>
<td>Fountain Valley</td>
<td>1</td>
<td><0.1</td>
</tr>
<tr>
<td>Fullerton</td>
<td>20</td>
<td>0.7</td>
</tr>
<tr>
<td>Garden Grove</td>
<td>46</td>
<td>1.7</td>
</tr>
<tr>
<td>Huntington Beach</td>
<td>14</td>
<td>0.5</td>
</tr>
<tr>
<td>La Habra</td>
<td>28</td>
<td>1.0</td>
</tr>
<tr>
<td>Laguna Beach</td>
<td>20</td>
<td>0.7</td>
</tr>
<tr>
<td>Laguna Hills</td>
<td>1</td>
<td><0.1</td>
</tr>
<tr>
<td>Lake Forest</td>
<td>1</td>
<td><0.1</td>
</tr>
<tr>
<td>Mission Viejo</td>
<td>1</td>
<td><0.1</td>
</tr>
<tr>
<td>Newport Beach</td>
<td>5</td>
<td>0.2</td>
</tr>
<tr>
<td>Orange, City of</td>
<td>368</td>
<td>13.3</td>
</tr>
<tr>
<td>Orange County (unincorporated areas)</td>
<td>646</td>
<td>23.3</td>
</tr>
<tr>
<td>Placentia</td>
<td>40</td>
<td>1.4</td>
</tr>
<tr>
<td>Rancho Santa Margarita</td>
<td>271</td>
<td>9.8</td>
</tr>
<tr>
<td>San Juan Capistrano</td>
<td>345</td>
<td>12.4</td>
</tr>
<tr>
<td>Santa Ana</td>
<td>25</td>
<td>0.9</td>
</tr>
<tr>
<td>Stanton</td>
<td>7</td>
<td>0.3</td>
</tr>
<tr>
<td>Tustin</td>
<td>24</td>
<td>0.9</td>
</tr>
<tr>
<td>Villa Park</td>
<td>56</td>
<td>2.0</td>
</tr>
<tr>
<td>Westminster</td>
<td>4</td>
<td>0.1</td>
</tr>
<tr>
<td>Yorba Linda</td>
<td>739</td>
<td>26.6</td>
</tr>
<tr>
<td>Total</td>
<td>2776</td>
<td>100</td>
</tr>
</tbody>
</table>
3 ASSESSMENT OF SEPTIC SYSTEM PERFORMANCE

3.1 Septic System Operation and Maintenance

A typical septic system includes inlet piping, a septic tank that traps solids and provides storage for peak inflows, and a drain field or leach field that purifies and disperses liquid effluent at a rate governed by the permeability of the surrounding soils. Septic systems have proven to be a reliable, inexpensive, long-term method of wastewater treatment and disposal as long as they are properly designed and homeowners properly to maintain them. Some possible reasons for septic system failure include:

- **Inadequate design** - Systems must be sized appropriately (storage), and constructed in soils with adequate permeability to leach the effluent. Systems may become overburdened if additional square footage is added to the residence without expansion of the septic system.

- **Inadequate maintenance** - Systems must be periodically maintained by pumping the tank to remove accumulated solids, and keeping the inlet, tank, and effluent field clear of roots.

Failing to maintain the systems may result in reduced treatment performance and ultimately in septic system failure (See Appendix D for additional information). The buildup of aquatic weeds or algae in lakes or ponds adjacent to a system could potentially indicate the presence of microbial pathogens in surface drainage, thus impacting receiving water quality. Some septic system failure symptoms are as follows:

- Sewage backup in the drains or toilets or sluggish flow
- Surface ponding and seepage of effluent
- Unpleasant odors

3.2 Selection of Survey Areas for Field Assessment

The purpose of the field assessment was to develop a representative estimate of County-wide system performance and verify the accuracy of the existing County database. Four target areas were chosen for field assessment of the septic systems, including (Ref. Figure 1-2):

- The City of Yorba Linda (Area No.1)
- The City of Tustin and adjacent unincorporated areas (Area No. 2)
- The City of Orange (Area No. 3)
- The City of Anaheim (Area No. 4)

The goal of the field assessment was to use the inventory database as a guide to contact 20 homeowners in each of the four target areas (see Figure 1-2). A “contact” was defined as speaking with a homeowner about his/ her septic system. The homeowner was
encouraged to answer the questions as shown on the Septic System Survey (see Appendix C). An informational flyer on septic system maintenance and operation was also distributed to each homeowner contacted (Appendix D). Field survey contact records are included as Appendix E. Areas 1, 3, and 4 are located in the Santa Ana River watershed. Area 2 (Tustin and adjacent area) is located in the San Diego Creek watershed. The target areas were selected based upon a determination of which areas may have the greatest impact on receiving water quality. Selection criteria were as follows:

- Marginal to poor soil conditions (hydrologic soil type areas C and D targeted)
- Proximity to receiving water (locations closer to major receiving waters with contact recreation targeted)
- Septic system relative density (locations with higher density targeted)

Systems in soil types C and D have more fine clay and less sand fractions, and likely have greater potential for reduced infiltrative capacity than systems sited in more permeable soil types A and B. Similarly, closer proximity to receiving waters and denser concentrations of systems tend to bias towards a more conservative assessment of septic system impacts on receiving water beneficial uses.

3.3 Failure Assessment Approach/Survey Findings

Field visits were conducted in each of the four target areas to determine a septic system failure rate. A failure of a septic system was defined as observed surface flow at the time of the survey. Information regarding historical operation and past failures of the systems was also obtained from the homeowner if possible.

The four selected survey areas are shown individually on Figures 3-1 through 3-4.
Figure 3-1. The Survey Area within the City of Yorba Linda.

Figure 3-2. The survey area by the City of Tustin and nearby unincorporated area.
Figure 3-3. The survey area nearby the City of Anaheim.

Figure 3-4. The survey area by the City of Orange and nearby unincorporated area.
Table 3-1 provides selected data from the field survey for the four target areas. The information was compiled from the survey results for those respondents that provided information.

Table 3-1 Results of Field Survey of Septic Systems in Orange County – Various Parameters

<table>
<thead>
<tr>
<th>Survey Area</th>
<th>Year Built</th>
<th>No. Failures</th>
<th>Toilet Backup</th>
<th>Service Frequency (yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Median</td>
<td>Avg</td>
<td>Range</td>
<td>Median</td>
</tr>
<tr>
<td>Yorba Linda</td>
<td>1961</td>
<td>1963.2</td>
<td>1956-1976</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tustin & UA</td>
<td>1957</td>
<td>1957.5</td>
<td>1953-1963</td>
<td>1*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anaheim</td>
<td>1976</td>
<td>1971.3</td>
<td>1952-1990</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orange & UA</td>
<td>1958</td>
<td>1957.1</td>
<td>1949-1963</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*A failure (surface flow/discharge) event that occurred in the past.

Survey respondents were generally interested in the process by which they could connect to the sewer system and the fees required as a part of that connection. Some respondents felt that the connection fees were a significant barrier to a decision to switch to sewer system service if it was available in their area. Some respondents felt that maintenance of the septic system was, in the long run, more economical than sewer service.

The respondents were cooperative and appreciative of receiving information to assist them in the operation and maintenance of their systems. Most respondents serviced their systems in response to problems (i.e., slow flushing toilets, plumbing backups), and about 50% practiced some type of proactive service program.

3.3.1 City of Yorba Linda

Of the 20 contacts made in the city of Yorba Linda, 12 fully responded to the questionnaire, seven homeowners only acknowledged owning a septic system, and one homeowner had switched to sewer system service. Generally, respondents who had recently purchased the residence (within the last 5 years) had little or no knowledge about the system. The median age of the surveyed systems in Yorba Linda was 41 years. Eleven of the 12 participants were not original owners, and three of those 11 did not know the age of their septic system. Three of the 12 survey participants had experienced sewage backup (without surface flow); those who experienced a backup had a septic tank service frequency of about once every 1 to 8 years.

One of the other participants had experienced problems whenever a large storm event occurred; the problems had been resolved by increasing the frequency of septic tank service. Only one participant had had a new septic system installed because the old one was “dogged.” The 12 participants had their septic tanks serviced on an average of once every 5 years, and all participants knew where their septic system was located (9 in the front yard and 3 in the backyard). No failure (surface runoff/discharge) was mentioned by the owners or observed by the investigator in this target area.
3.3.2 City of Tustin and the Adjacent Unincorporated Area

Of the 23 surveys conducted in the city of Tustin and the adjacent unincorporated area, 14 homeowners answered all of the questions in the survey, five homeowners only acknowledged owning a septic system, and five homeowners had switched to sewer system service. Three more surveys than the necessary amount were conducted because of the unusually high number of residents in the database who had switched to sewer system service. The median age of the 14 homes for which all questions in the survey were completed was 45 years. Twelve of the 14 participants were not original owners, and four of those twelve did not know the age of their septic system. Three of the 14 full survey participants had experienced sewage backup, and those three had a septic tank service frequency of about once every 10 months. Two of the 14 participants had collapsed “pits,” and one of the two owners mentioned that he plans to switch service to the sewer system. The 14 respondents had their septic tanks serviced on an average of once every 5 years, and all participants knew where their septic systems were located (13 in the front yard; 1 in the backyard). One homeowner reported a previous failure (with surface runoff/discharge) that resulted from a broken pipe.

Seven of the 14 participants have never had their septic tank serviced, and median and average septic tank service frequency for the remaining participants was once every 2.5 years and 3.5 years, respectively. Three of the seven who never had their septic serviced had just moved to the residences within the last three years, but the remaining four participants had resided at their current locations for the last 26 to 46 years. One of these four participants had not had any problems, while the other three had experienced some problems that may or may not be related to lack of septic tank maintenance. No system failures were noted by the investigator in this target area.

3.3.3 City of Anaheim

Of the 20 surveys conducted in the city of Anaheim, 10 homeowners fully answered the survey questions, eight only acknowledged owning a septic system, and two homeowners had switched to sewer service. The median age of the 10 homes that responded to the questions in the survey was 27 years. Eight of the 10 participants were not original owners, and six of those eight participants did not know the age of their septic systems. Two of the 10 survey participants had experienced sewage backup (both due to a plugged drainfield), and each of them had a septic tank service about once every 2 years. A failure of one septic system was noted during this survey; the owner indicated that a new drainfield was required, and surface flow was noted at the time of the survey; however, the surface flow was infiltrated on the property prior to the effluent reaching a conveyance system. The median and average septic tank service frequencies for the participants were once every 2.8 years and 4.6 years, respectively. All but one of the 10 respondents knew where their septic systems were located (5 in the front yard; 4 in the backyard).

1 One homeowner had switched to sewer services, but participated in the survey based on previous ownership.
3.3.4 City of Orange and the Adjacent Unincorporated Area

Of the 20 surveys conducted in the city of Orange and the adjacent unincorporated area, 16 homeowners answered the survey questions completely, three acknowledged owning a septic system, and one homeowner had switched to the sewer service. The median age of the 16 homes was 45 years old. Eleven of the 16 participants were not original owners, and seven of those 11 participants did not know the age of their septic system. Five of the 16 survey participants had experienced sewage backup, and those five participants had a septic tank service frequency ranging from about once every 2 months to 3 years. Four participants had never serviced their septic tanks, but none had reported any problems. The four participants who had not had their septic systems serviced had lived in their homes from less than 1 year to more than 40 years. The median and average septic tank service frequency for the remaining 12 participants was once every 3 years. All but one participant knew where their septic systems were located (15 in the front yard; none in the backyard). No system failures were noted by the investigator in this target area.

3.4 Failure Rate Analysis

The failure rate for septic systems in Orange County was estimated from the data obtained in the field investigation. Eighty septic system owners were contacted via field inspection over a period of about 3 weeks from December 23rd to January 10th. During the survey, one system failure was noted out of the 80 contacts made. This represents a failure rate of about 1.25%. Using \(N = 80 \) and \(F = 1.25\% \) in the equation shown below (representing one case of active failure during the inspection), the 95% confidence interval for failure is computed to be 2.5%. The confidence range then for failure based on the survey is from 0 to about 4%. Using a midrange value, this means that at any given time, about 2% of the systems are failing via surface discharge.

A 2% failure rate is consistent with the findings of King et al. (2002) who reported a 1.3% failure rate in a more extensive analysis in Oregon where 389 systems were surveyed (failure in the study by King et al. was defined as the observance of surface flow, consistent with the definition in this study). The investigators indicate the calculated failure rate was modest, but consistent with the results of a previous study (Lindbo, et al., 1998) where failure rates were documented at \(\leq 5\% \).

The 95% confidence interval for the failure rate of the septic systems determined by the field survey may be estimated as:

\[
CI_{0.95} = \frac{\%F(\%S)}{N} \quad (2)
\]
Where:

\[CI_{95} = 95\% \text{ confidence interval} \]
\[F = \text{Percent failing} \]
\[S = \text{Percent successful} \]
\[N = \text{Total number of samples} \]

3.4.1 Age

Due to design and construction improvements over the last few decades, septic systems installed before the 1970s “... may be inadequately designed by today’s standards.” (Mancl et al., n.d.). There was no correlation between age and failure of the systems in this survey; however, the number of surveys completed relative to the total number of systems was small (80 of about 2,775 total systems). The Anaheim target area reported the fewest surveyed toilet backups despite a reportedly modest septic tank service frequency.

3.4.2 Soil Type

Some septic system failures can be avoided if the soil depth and permeability is evaluated prior to installation. King et al. (2002) reached a conclusion that highly accurate soil assessments during septic system permitting was one of the important factors that contributed to the low failure rates. The survey in this study focused on soil types C and D because of their low permeability. This focus would tend to conservatively bias the results; however, much of the area where septic systems are concentrated is within Group C and D soil categories (see Figure 1-2).

3.5 Loading Model Approach

A loading analysis was conducted to estimate the contribution of constituents of concern of failed septic systems to the total load in the watershed. Using the results of this analysis, it can be determined whether or not additional measures are needed to control the effects of failed septic systems on receiving water quality. The analysis compares the constituent loads from the failed septic systems (that are conveyed to the receiving water) to that of the receiving water load at locations where the beneficial use is of special concern. Historic monitoring data from the County of Orange stormwater program was used to calculate ambient receiving water loads for the selected constituents. Discharge volumes at the selected points of interest were also computed from stormwater program monitoring data for ‘average’ gauged storm events and for dry weather flow.

In the Proposed 2002 Clean Water Act (CWA) Section 303(d) List of Water Quality Limited Segments, Santa Ana River (Reach 3 and 4) and San Diego Creek (Reach 1 and 2) were listed for pathogens and fecal coliform, pesticides, and metals, respectively. Of the pollutant/stressors listed, only pathogens would be expected to be exported in significant quantities from a failed septic system. There is currently a Total Maximum Daily Load (TMDL) in place for pathogens and nutrients in Upper Newport Bay.
(downstream of San Diego Creek). Total Kjeldahl Nitrogen (TKN), total coliform and fecal coliform were selected for the load analysis to estimate the potential impact of septic systems on the quality of receiving waters.

Two locations were selected for the loading estimate. For the Santa Ana River watershed, the Santa Ana River at its discharge into the Pacific Ocean was selected since the river mouth is located near a popular swimming beach. For the San Diego Creek watershed, San Diego Creek near Campus Drive was selected because it is at a point near the Creek’s discharge into Upper Newport Bay. (See Figure 1-2 for the selected analysis locations.) Upper Newport Bay is impaired for pathogens that have impacted shellfish harvesting. Portions of Upper Newport Bay (Dunes area) are also used for body contact recreation.

Section 4 provides a discussion of the predicted pollutant loadings from failed septic systems within each of the two watersheds. Section 5 discusses the ambient constituent loadings within the two watersheds and compares the septic system loadings to that of the total pollutant loading in the watersheds.
4 SEPTIC SYSTEM POLLUTANT LOADINGS

4.1 Background and Loading Estimation

A conventional soil absorption septic system is estimated to last a minimum of 30 years when properly designed and maintained (Hallahan, 2002). Poorly designed or unmaintained systems can fail or partially fail and introduce pollutants via surfacing and overland flow to surface waters. This section describes the steps taken to estimate the load of TKN and pathogen indicators (total and fecal coliform) from failed septic systems to receiving waters.

4.1.1 Analysis of Septic System Constituent Loading

Overall, the septic system failure rate was assumed to be 2% in any one year (taken as the average of the computed 95% confidence interval from the results of this study).

For the purpose of calculating a load to the receiving water, surface flow from the failed systems was assumed constant with a flow generated for the assumed number of failed systems as previously described. There are 1272 septic systems inventoried in the Santa Ana River watershed and 292 septic systems inventoried in the San Diego Creek watershed (see Appendix F for listing of systems). A 2% hypothetical septic system failure rate translates to 25.4 septic system failures per year in the Santa Ana River watershed and 5.8 per year in the San Diego Creek watershed (See Table 4-1).

The average daily discharge (Q_s) from a failed septic system was assumed to be one-half of the estimated daily per-capita water consumption of the dwelling, assuming three persons per dwelling and excluding consumption for landscape (see Table 4-2). The daily per capita flow from the failed septic system was reduced by half to account for the fact that the septic system would probably only partially fail.

Table 4-1 Estimated Number of Failed Septic Systems

<table>
<thead>
<tr>
<th>Santa Ana River (SAR) Watershed</th>
<th>San Diego Creek (SDC) Watershed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Failure rate at any one year</td>
<td>2%</td>
</tr>
<tr>
<td>No. of septic system in SAR watershed</td>
<td>1272</td>
</tr>
<tr>
<td>No. of failed septic systems in 1 year</td>
<td>25.4</td>
</tr>
<tr>
<td>No. of septic system in SDC watershed</td>
<td>292</td>
</tr>
<tr>
<td>No. of failed septic systems in 1 year</td>
<td>5.8</td>
</tr>
</tbody>
</table>

Table 4-2 Estimated Daily Wastewater Flows for a Single-Family Dwelling

<table>
<thead>
<tr>
<th>Estimated Daily Flow, (gal/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Per capita water consumption*</td>
</tr>
<tr>
<td>Using 3 persons per dwelling</td>
</tr>
<tr>
<td>Assume a failed septic system only discharges 50% of the per capita daily water usage (Q_s)</td>
</tr>
</tbody>
</table>

*Goldstein and Moberg, 1973
Two assessment scenarios, representing the dry season and wet season, were examined in the load analysis. During the dry season (May 1st through September 30th), it was assumed that the discharge from the failed septic systems would be different (reduced flow to the receiving water) as compared to the wet season: infiltration and evaporation of surface discharge would be significantly higher during the dry season as compared to the wet season. Accordingly, for dry weather load assessment, 50% of the surface flow from a failed septic system is assumed to infiltrate and evaporate prior to reaching the primary receiving water. This reduction accounts for the fact that most systems surveyed were in turfed areas, often with often 10 or more feet of buffer area, before reaching a street or other impervious conveyance. During the wet season (October 1st through April 30th), the reduction for infiltration and evaporation was conservatively assumed to be zero, reflecting the potential for saturated soils and consequent relatively efficient runoff to transport the constituent load to a lined conveyance. The constituents of concern used in the analysis reflected the 303(d) list (list of impaired water bodies) and REC-1 beneficial use for the receiving waters. TKN, total coliform (TC), and fecal coliform (FC) were selected for a load analysis. Characteristics of septic system surface effluent are shown in Table 4-3.

Table 4-3 Mean Pollutant Concentration Utilized in Load Calculation

<table>
<thead>
<tr>
<th>Mean Values of Septic System Pollutant, P_o</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Coliform (per 100mL)</td>
<td>105.57</td>
</tr>
<tr>
<td>Fecal Coliform (per 100mL)</td>
<td>104.57</td>
</tr>
<tr>
<td>TKN (mg/L)</td>
<td>44.2</td>
</tr>
</tbody>
</table>

Finally, a die-off of bacteria indicators was assumed from the time the effluent was discharged from the failed septic system until it reached the ocean outfall or point of interest. The function used to estimate the die-off was the exponential bacteria decay rate equation:

$$P = P_o \times e^{(-kt)}$$

Where:

- k = bacterial decay rate constant, day$^{-1}$ or d$^{-1}$
- t = time, day or d
- P_o = initial bacterial population
- P = bacterial population after time t

A conservative decay rate constant (k) of 0.590/day for TC and FC in fresh water was used. This was calculated using a median value of 3.9 days for 90% die-off, and then solved for k with $P/P_o = 0.10$ or 90% die-off (Bartram, et al.).

Travel time for the pathogens to be transported from the failed septic systems to the receiving water and then into the ocean is assumed in both the dry and the wet season to be 14.7 and 7.6 hours for SAR and SDC, respectively. When the travel times are applied to the decay function, a reduction of 30 and 17% in bacterial population is obtained for SAR and SDC, respectively. The travel time is for average conditions (distances) within

...
the watersheds from the center of mass of the septic system locations and the points of interest in the receiving water, at a velocity of 2 ft/s. The travel velocity of 2 ft/s is a conservative assumption when compared to the results of Southern California Coastal Water Research Project (SCCWRP’s) travel time study in Tustin, which was as high as 1.15 ft/s (see Appendix G). Given the uncertainty in the number of hours the pathogens might spend under the sunlight, no additional bacterial die-off function (such as die-off caused sunlight exposure) was applied.

A monthly pollutant-loading model for each of the two seasonal conditions described was developed using the following equation:

\[L = (1 - D) \times (1 - R) \times Q_s \times t \times N \times C \times 3785.412 \times 10^a \]

where:

\[L = \text{monthly pollutant load (# of TC/ FC or mg of TKN)} \]
\[D = \% \text{ bacterial decay (enter 0 for non-bacterial analysis)} \]
\[R = \% \text{ discharge volume removal by infiltration & evaporation (dry season only)} \]
\[Q_s = \text{a failed system’s partial daily discharge for 3 persons/ dwelling (gal/ d)} \]
\[t = \text{time (d; 30 days is used to represent a month)} \]
\[N = \text{the number of failed septic system in a watershed (#)} \]
\[C = \text{mean pollutant concentration (TC/ 100mL, FC/ 100mL, or TKN mg/ L)} \]
\[3785.412 = \text{units conversion factor from gal/ d to mL/ d.} \]
\[10^a = \text{units conversion factor from mL/ d to L/ d, where } a = -3 \text{ for TKN and 0 otherwise} \]

4.2 Failed Septic System Loading Rates

The loading equation and parameters were used to obtain the results listed in Table 4-4 for the Santa Ana River (SAR) assessment location and the San Diego Creek (SDC) assessment location (see Figure 1-1).

<table>
<thead>
<tr>
<th>Constituent/Indicator</th>
<th>SAR Dry</th>
<th>SAR Wet</th>
<th>SDC Dry</th>
<th>SDC Wet</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC (MPN/ 100mL/month)</td>
<td>4.2 x 10^{11}</td>
<td>8.5 x 10^{11}</td>
<td>1.2 x 10^{11}</td>
<td>2.3 x 10^{11}</td>
</tr>
<tr>
<td>FC (MPN/ 100mL/month)</td>
<td>4.2 x 10^{10}</td>
<td>8.5 x 10^{10}</td>
<td>1.2 x 10^{10}</td>
<td>2.3 x 10^{10}</td>
</tr>
<tr>
<td>TKN (mg/ month)</td>
<td>7.2 x 10^4</td>
<td>1.4 x 10^5</td>
<td>1.6 x 10^4</td>
<td>3.3 x 10^4</td>
</tr>
</tbody>
</table>
5 WATERSHED IMPACT ASSESSMENT

5.1 Watershed Constituent Contribution

The Water Quality section of the County of Orange Health Care Agency was the source for bacterial monitoring data for each of the two study watersheds. A stream gage and a bacterial sampling station at the intersection of Santa Ana River and Imperial Highway provided the local data for the Santa Ana watershed. The local monitoring data for the San Diego Creek watershed for stream flow and indicator bacteria were collected at the intersection of San Diego Creek and Campus Drive from an existing sampling station. The mean value for each month was determined and then grouped for the analysis as either ‘dry’ or ‘wet’ season. Various mean monthly parameters for the dry and wet seasons are shown in Table 5-1.

Table 5-1 Mean Monthly Monitoring Data

<table>
<thead>
<tr>
<th>Mean Monitoring Data</th>
<th>SAR</th>
<th>SDC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avg. stream flow (cfs)</td>
<td>80</td>
<td>13.3</td>
</tr>
<tr>
<td>Avg. TC (MPN/100mL/month)</td>
<td>100466</td>
<td>38155</td>
</tr>
<tr>
<td>Avg. FC (MPN/100mL/month)</td>
<td>275</td>
<td>389</td>
</tr>
<tr>
<td>Avg. TKN (mg/L/month)</td>
<td>0.63</td>
<td>1.68</td>
</tr>
</tbody>
</table>

Note: SAR is 303(d) listed for pathogens within Reach 3 (Prado Dam to Mission Blvd. in Riverside County).

5.1.1 Watershed Load

Given the average monthly concentrations in dry and wet seasons (Table 5-1) for the indicators/constituents, a watershed load was calculated for SAR and SDC watersheds (see Table 5-2). The values given in Table 5-2 were computed based on average discharges from monitoring data during the years 1998-1999 for SAR and 2000-2001 for SDC, multiplied by the concentrations shown in Table 5-1.

Table 5-2 Watershed Load for Selected Constituents - Santa Ana River Watershed and San Diego Creek Watershed

<table>
<thead>
<tr>
<th>Watershed Loading</th>
<th>SAR</th>
<th>SDC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Coliform</td>
<td>5.9 x 10^{15}</td>
<td>1.8 x 10^{14}</td>
</tr>
<tr>
<td>Fecal Coliform</td>
<td>1.6 x 10^{13}</td>
<td>3.8 x 10^{12}</td>
</tr>
<tr>
<td>TKN (mg)</td>
<td>3.7 x 10^{10}</td>
<td>1.6 x 10^{9}</td>
</tr>
</tbody>
</table>

Note: Coliform units in MPN/100 ml.
5.2 Septic System Loading Analysis

The loads computed in Table 4-4 (failed septic system loads) were divided by the estimated total watershed load provided in Table 5-2 to determine the relative contribution of the septic systems to the overall watershed load for the selected constituents/indicators. Table 5-3 provides the results of this comparison.

Table 5-3 Estimated Failed Septic System Loads as a Percentage of Total Watershed Load for Selected Constituents

<table>
<thead>
<tr>
<th>Constituent</th>
<th>SAR Dry, %</th>
<th>SAR Wet, %</th>
<th>SDC Dry, %</th>
<th>SDC Wet, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Coliform</td>
<td>0.007</td>
<td>0.010</td>
<td>0.065</td>
<td>0.037</td>
</tr>
<tr>
<td>Fecal Coliform</td>
<td>0.262</td>
<td>0.037</td>
<td>0.304</td>
<td>0.037</td>
</tr>
<tr>
<td>TKN (mg)</td>
<td>0.002</td>
<td>0.001</td>
<td>0.001</td>
<td>0.0003</td>
</tr>
</tbody>
</table>

Note: Coliform units in MPN/100 ml.

Table 5-3 shows that overall failed septic systems are not a significant source of pathogen indicator loading to the watersheds that were studied. Dry season pollutant/indicator contribution may be slightly higher than in the wet season because of a reduced receiving water flow. The contribution of TKN to the San Diego Creek and Santa Ana River watersheds from failing systems is shown not to be significant.

The assumptions used in this analysis may be considered conservative, particularly the estimates of flow from a failed septic system. Nevertheless, it is reasonable to assume that failed septic systems can contribute to pathogen indicator loading when septic system failures occur in Orange County watersheds.

Additional investigation relative to the rate of discharge from failed septic systems, the rate of discharge from a failed system that reaches an impervious conveyance, and the quality of surface discharge from a failed septic system would be desirable. The results of the Orange County assessment could be better interpreted with more systematic research data on septic system failures. Finally, a prompt response by the appropriate public health jurisdiction and subsequent septic system site-specific corrections are required regardless of the septic system total loading findings, since septic system failures constitute a direct localized human health concern.
6 CONCLUSIONS

The objectives of this study were to develop an inventory/database of the septic systems in Orange County, and to assess the potential impact of failing septic systems on receiving water quality. Septic systems are widely dispersed throughout Orange County but are located in the highest concentrations in the Santa Ana River watershed. The potential impact of failing septic systems was assessed at the mouth of the Santa Ana River with the Pacific Ocean, and in Upper Newport Bay where impacts to REC-1 beneficial use and shellfish harvesting are of particular practical significance.

The final inventory/database lists over 2776 active septic systems in Orange County. The failure rate for septic systems in Orange County was estimated through field investigation. Failure of a septic system was defined as the observance of surface flow during the inspection. Other information was also gathered from the homeowners during the field survey, and an educational pamphlet regarding operation and maintenance of septic system was left with each homeowner who was contacted.

Of the eighty field surveys that were conducted, one failed system was noted, or 1.25% of the systems surveyed. The findings were very similar to those from other more comprehensive surveys found in a literature review. King et al. (2002) surveyed performance of 389 septic systems in Oregon based on a similar surface flow criterion of failure, and reported a 1.3% failure rate.

King et al. further evaluated each of the failed systems to determine the cause of failure using a system first established by Adams et al., (1988). The analysis determined that he observed failures were primarily due to poor operation and maintenance (O&M) at the sites. Excessive water use (or insufficient system capacity) was also determined to be a potential contributing factor, but the authors stressed that inadequate O&M at the sites was the primary failure mechanism.

A load model was developed for two Orange County watersheds to estimate the relative contribution (load) of pathogen indicators in the receiving waters. Two cases were evaluated in each watershed: dry and wet weather. The results of the analysis show that the load from the failed septic systems in any given year is a very marginal contributor for pathogen indicators and is insignificant for TKN.

The estimated relative contribution of pathogen indicators to receiving waters from septic systems is an indication that this source may be considered a low priority for the implementation of management practices. However, this finding does not diminish the need for effective on-site corrections in those instances where seepage of inadequately treated effluent is observed leaving the property and constitutes a clear and immediate public health hazard. Correction of these situations would also effectively serve to secondarily protect the beneficial uses of potential downstream receiving waters.

The database developed for this study could be used by the County and co-permittees to initiate a direct-mail education program to homeowners who use septic systems. As
noted by King et al., lack of O&M by the homeowner was determined to be the primary cause of failure. The information handout developed as a part of this study describing O&M tips may be used as a part of the information included in the mailer. Other potential handout information would include the appropriate agency contact to determine if sewer system service is available to the homeowner, and a discussion relative to the system connection cost and annual fee associated with the service. It is estimated that such an informational program might reduce system failure incidence by 50%.

Finally, the information provided to homeowners could also include a method by which they can notify the County or permittee if they connect to the sewer system. With this information, the septic system database can be maintained and the number of systems tracked as an analysis tool. An option would be to forward an information package to septic system owners biannually to serve as a reminder for the homeowner for septic system maintenance, keep pace with change of ownership, and better maintain the septic system database.

A more aggressive inspection and enforcement program could include the following elements:

- Identify locations of all systems on individual properties.
- Regularly inspect each system for integrity and function.
- Review pumping records.
- Require upgrades to bring older systems into compliance with current codes.
- Establish minimum setbacks from streams.
- Establish maintenance requirements (pumping).
- Require leak alarms.
- Establish enforcement schedules and penalties.

However, such an inspection and enforcement program is not recommended at this time unless a location in Orange County is identified where septic systems are a larger contributor to the overall load in a specific stream segment than was revealed in the survey. Further, as sewer system service reaches rural areas and as homeowners connect to the County’s sewer system where service is available, the number of septic system failures would be expected to decline.
REFERENCES

Hallahan, Dennis F., 2002. WEM, October, p 33.

Web References

Proposed 2002 Clean Water Act (CWA) Section 303(d) List of Water Quality Limited Segments
(http://www.swrcb.ca.gov/tmdl/docs/draft_2002_cwa_303d_list_011303.pdf)
Glossary

Best Management Practice
Best practical and economically achievable measures to control the addition of pollutants to the waters of the United States through the application of pollution control practices, technologies, processes, siting criteria, operating methods, or other alternatives.

Clean Water Act and Amendments
The Federal Pollution Control Act (Public Law 92-500), as amended (33 U.S.C. 1251 et seq.). Federal regulation mandating a National Pollutant Discharge Elimination System permit for discharges into the Waters of the United States. The goals of the act are to restore and maintain the chemical, physical and biological integrity of the nation's waters.

Constituent
A substance found in dissolved, colloidal, or particulate form in water that can be measured as a concentration.

Constituent Load
The quantity of a constituent found in runoff expressed in mass per unit of time. Loads are commonly expressed in units of tons/year or pounds/year.

Hydrologic soil type
Based on the runoff potential, soils are grouped into four hydrologic soil types (A, B, C, or D); soil type A has the lowest runoff potential, while soil type D has the highest.

National Pollutant Discharge Elimination System (NPDES) Municipal Stormwater Permit
A provision of the CWA, section 402, that identifies municipal stormwater as a point source subject to regulation under the NPDES Permits.

NPDES Stormwater Program
The program designed by the Orange County Permittees for compliance with the NPDES permits.

Permittees
The cities of Anaheim, Brea, Buena Park, Costa Mesa, Cypress, Dana Point, Fountain Valley, Fullerton, Garden Grove, Huntington Beach, Irvine, Laguna Beach, Laguna Hills, Laguna Niguel, Laguna Woods, La Habra, La Palma, Lake Forest, Los Alamitos, Mission Viejo, Newport Beach, Orange, Placentia, Rancho Santa Margarita, San Clemente, San Juan Capistrano, Santa Ana, Seal Beach, Stanton, Tustin, Villa Park, Westminster, and Yorba Linda; the County of Orange; and the Orange County Flood Control District and any subsequently incorporated cities that
become subject to the NPDES permit. Each Permittee is individually responsible for the implementation of the program elements within its jurisdiction.

- **Principal Permittee**
 The County of Orange is the Permittee designated with the responsibility to manage the NPDES Municipal Stormwater Program on behalf of the Permittees.

- **REC-1**
 Water contact recreation (REC-1) defines waters that are used for recreational activities involving body contact with water where ingestion of water is reasonably possible (e.g. fishing, surfing, swimming, water-skiing, whitewater activities, etc.).

- **Regional Water Quality Control Boards**
 The Santa Ana and San Diego Regional Water Quality Control Boards are agencies that implement and enforce Clean Water Act Section 402(p) NPDES permit requirements, and are issuers and administrators of these permits on behalf of EPA within Orange County.

- **Septic System**
 A typical septic system includes a septic tank that traps solids and a soil drain field or leach field that purifies and disperses liquid effluent.

- **Septic system failure**
 Observed surface flow at the time of the survey

- **State Water Resources Control Board**
 State agency that sets statewide policy for the nine Regional Water Quality Control Boards.

- **Target Areas [Selected Areas]**
 The four target areas chosen for field assessment of septic systems, including the City of Yorba Linda, City of Orange and adjacent unincorporated area; City of Anaheim; and City of Tustin and the adjacent unincorporated area.

- **Total Kjeldahl nitrogen (TKN)**
 An analytical method for determining total organic nitrogen and ammonia.

- **Total Maximum Daily Loads (TMDL)**
 A written, quantitative plan and analysis for attaining and maintaining water quality standards in all seasons for a specific waterbody and pollutant.

- **Total Watershed Load**
 An estimation of the contribution of constituents of concern (i.e., of failed septic systems) to the total load in the watershed.
APPENDIX A

Survey Forms
County of Orange Septic System Survey

The proposed survey is presented below: Questions will be asked verbally and the answers recorded later. The property address and ARN will be recorded.

Introductory Statement

Introduce ourselves to resident as representatives from RBF Consulting, working for Orange County with the knowledge and concurrence of the local jurisdiction. We are conducting a survey of septic systems in Orange County in order to determine the extent to which systems are currently meeting homeowner/resident treatment and reliability needs. Along with the survey, we are also providing some operation and maintenance tips.

(We will have our own business cards, as well as those of County’s project manager, and of the local jurisdiction representative, should residents wish to learn more about the survey.)

Responses to the survey will be kept anonymous, and the survey will take just a few minutes to complete.

<table>
<thead>
<tr>
<th>Question</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>Do you own a septic system? (Y or N)</td>
</tr>
<tr>
<td>Q2</td>
<td>What is the approximate age of your septic system?</td>
</tr>
<tr>
<td>Q3a</td>
<td>Have you had problems with your septic system? (Y or N)</td>
</tr>
<tr>
<td>Q3b</td>
<td>(If no to Q3a, then skip to Q6) Could you describe the problem?</td>
</tr>
<tr>
<td>Q3c</td>
<td>(If no to Q3a, then skip to Q6) Were repairs or upgrades required? (Y or N)</td>
</tr>
<tr>
<td>Q4</td>
<td>When was the last time you serviced your septic tank?</td>
</tr>
<tr>
<td>Q5</td>
<td>Where is your septic tank or drainfield located? (Front or backyard)</td>
</tr>
<tr>
<td>Q6</td>
<td>How long have you lived here?</td>
</tr>
</tbody>
</table>

Record property address and APN:
APPENDIX B

Public Education Material
Septic System Maintenance

If you own a septic system, it is important that it be properly maintained. On-site septic systems have proven to be a reliable, inexpensive, and long-term method of wastewater treatment as long as homeowners follow a few simple, but important, steps to protect and maintain them. The failure to take these measures may result in reduced treatment performance and potential long-term damage to the system. Following are some maintenance tips for your system.

Septic Tank Pumping

A typical septic system includes a septic tank that traps solids and a soil drain field or leach field that purifies and disperses liquid effluent. It is critical that solids buildup in the tank do not exceed your septic tank’s design level, or else solids overflow will damage the leach field. How often you need to pump the solids out of your septic tank depends on three major factors:

1. The number of people in your household;
2. The amount of wastewater generated (based on the number of people in the household and the amount of water used); and
3. The volume of solids in the wastewater (e.g., using a garbage disposal will increase the amount of solids).

Depending on the factors listed above, a maintenance frequency could range anywhere from several months to years, with a typical range being 1 - 5 years. If you do not know the frequency at which your septic tank should be pumped to remove the solids or how to check for solids buildup, please contact your septic system manufacturer or a licensed provider listed in your local Yellow Pages under Septic Tanks & Systems. If you experience problems between pump-outs, more frequent maintenance may be necessary, or changes may be needed to your system.

Other Maintenance

Although your septic tank leach field generally does not require maintenance, you should adhere to the following rules to protect and prolong its functional life:

1. Do not drive over the leach field with cars, trucks, or heavy equipment.
2. Do not plant trees or shrubbery in the leach field area, because the roots can get into the lines and plug them.
3. Do not cover the leach field with hard surfaces, such as concrete or asphalt. Grass is the best cover, because it will help prevent erosion and help remove excess water.
4. Do divert surface runoff water from roofs, patios, driveways, and other areas away from the leach field.
5. Do not pave, build over, or otherwise limit relatively straightforward access to the septic tank.

Homeowners wanting to take good care of their septic systems should make note of the certain items that should never be flushed down the drain or toilet.

The following items can clog pumps (if you have them, most systems do not) and pipes or can overtax/destroy the biological processes taking place within your septic system:

- hair comings
- coffee grounds
- dental floss
- disposable diapers
- kitty litter
- sanitary napkins

- tampons
- cigarette butts
- condoms
- gauze bandages
- fat, grease, or oil
- paper towels
<table>
<thead>
<tr>
<th>Street Number/Name</th>
<th>Zip Code</th>
<th>Yr_bult</th>
<th>Q1</th>
<th>Q2</th>
<th>Q3</th>
<th>Q3b; Q3c</th>
<th>Q4</th>
<th>Q5</th>
<th>Q6</th>
</tr>
</thead>
<tbody>
<tr>
<td>18911 VIA SERENO</td>
<td>92886</td>
<td>1975</td>
<td>Switched</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5388 OHIO</td>
<td>92886</td>
<td>1966</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5279 TEDFORD</td>
<td>92886</td>
<td>1980</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18911 CAMINO VERDE</td>
<td>92886</td>
<td>1956</td>
<td>Y</td>
<td>NA</td>
<td>Y</td>
<td>Sewage backup</td>
<td>3</td>
<td>Front 8</td>
<td></td>
</tr>
<tr>
<td>5442 CHERRYLEE</td>
<td>92886</td>
<td>1957</td>
<td>Y</td>
<td>50</td>
<td>N</td>
<td></td>
<td>25</td>
<td>Back 25</td>
<td></td>
</tr>
<tr>
<td>18880 VIA SERENO</td>
<td>92886</td>
<td>1960</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18901 CAMINO VERDE</td>
<td>92886</td>
<td>1961</td>
<td>Y</td>
<td>35</td>
<td>N</td>
<td></td>
<td>2</td>
<td>Front 35</td>
<td></td>
</tr>
<tr>
<td>5141 LOS ALTOS</td>
<td>92886</td>
<td>1961</td>
<td>Y</td>
<td>NA</td>
<td>N</td>
<td></td>
<td>2.5</td>
<td>Back 2.5</td>
<td></td>
</tr>
<tr>
<td>5571 FIRCREST</td>
<td>92886</td>
<td>1961</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5522 PEBBLE BEACH</td>
<td>92886</td>
<td>1961</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5531 PEBBLE BEACH</td>
<td>92886</td>
<td>1961</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5532 PEBBLE BEACH</td>
<td>92886</td>
<td>1961</td>
<td>Y</td>
<td>45</td>
<td>N</td>
<td></td>
<td>7</td>
<td>Front 22</td>
<td></td>
</tr>
<tr>
<td>5531 TAMMARISK</td>
<td>92886</td>
<td>1961</td>
<td>Y</td>
<td>40</td>
<td>Y</td>
<td>Sewage backup</td>
<td>1</td>
<td>Front 12</td>
<td></td>
</tr>
<tr>
<td>5552 TAMMARISK</td>
<td>92886</td>
<td>1961</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5561 TAMMARISK</td>
<td>92886</td>
<td>1961</td>
<td>Y</td>
<td>5</td>
<td>Y</td>
<td>Clogged; new system installed</td>
<td>3</td>
<td>Front 6</td>
<td></td>
</tr>
<tr>
<td>5562 TAMMARISK</td>
<td>92886</td>
<td>1961</td>
<td>Y</td>
<td>40</td>
<td>Y</td>
<td>Backup in '94; installed pump access</td>
<td>8</td>
<td>Front 12</td>
<td></td>
</tr>
<tr>
<td>5192 MOUNTAIN VIEW</td>
<td>92886</td>
<td>1962</td>
<td>Y</td>
<td>40</td>
<td>Y</td>
<td>Large storms flooded the septic system; increased pump frequency</td>
<td>3</td>
<td>Back 40</td>
<td></td>
</tr>
<tr>
<td>5521 TAMMARISK</td>
<td>92886</td>
<td>1963</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18891 VIA ENCANTO</td>
<td>92886</td>
<td>1966</td>
<td>Y</td>
<td>37</td>
<td>N</td>
<td></td>
<td>2.5</td>
<td>Front 3</td>
<td></td>
</tr>
<tr>
<td>18856 VIA SERENO</td>
<td>92886</td>
<td>1975</td>
<td>Y</td>
<td>38</td>
<td>N</td>
<td></td>
<td>1</td>
<td>Front 1</td>
<td></td>
</tr>
<tr>
<td>5230 TEDFORD</td>
<td>92886</td>
<td>1976</td>
<td>Y</td>
<td>NA</td>
<td>N</td>
<td></td>
<td>2</td>
<td>Front 2</td>
<td></td>
</tr>
<tr>
<td>5583 PEBBLE BEACH</td>
<td>92886</td>
<td>1959</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Street_Number/Street Name</td>
<td>City</td>
<td>Zip code</td>
<td>Yr_bult</td>
<td>Q1</td>
<td>Q2</td>
<td>Q3</td>
<td>Q3b;Q3c</td>
<td>Q4</td>
<td>Q5</td>
</tr>
<tr>
<td>---------------------------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>--</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>1371 KENNETH</td>
<td>TUSTIN</td>
<td>92780</td>
<td>1954</td>
<td>switched</td>
<td>40</td>
<td>Y</td>
<td>Sewage backup in toilets; switched</td>
<td>never</td>
<td>Front</td>
</tr>
<tr>
<td>18121 THEODORA</td>
<td>TUSTIN</td>
<td>92780</td>
<td>1955</td>
<td>switched</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17921 BIGELOW</td>
<td>TUSTIN</td>
<td>92780</td>
<td>1959</td>
<td>switched</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1432 CAMEO</td>
<td>TUSTIN</td>
<td>92780</td>
<td></td>
<td>switched</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18151 BENETA</td>
<td>TUSTIN</td>
<td>92780</td>
<td></td>
<td>switched</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18211 LEON</td>
<td>TUSTIN</td>
<td>92780</td>
<td>1953</td>
<td>Y</td>
<td>50</td>
<td>N</td>
<td></td>
<td>2</td>
<td>Front</td>
</tr>
<tr>
<td>1431 KENNETH</td>
<td>TUSTIN</td>
<td>92780</td>
<td>1954</td>
<td>Y</td>
<td>NA</td>
<td>N</td>
<td></td>
<td>never</td>
<td>Front</td>
</tr>
<tr>
<td>13032 RED HILL</td>
<td>TUSTIN</td>
<td>92780</td>
<td>1954</td>
<td>Y</td>
<td>40</td>
<td>N</td>
<td></td>
<td>3</td>
<td>Front</td>
</tr>
<tr>
<td>14721 LIVINGSTON</td>
<td>TUSTIN</td>
<td>92780</td>
<td>1955</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17651 FIESTA</td>
<td></td>
<td>92780</td>
<td>1955</td>
<td>Y</td>
<td>45</td>
<td>Y</td>
<td>Pit collapsed; going to switch to sewer</td>
<td>never</td>
<td>Front</td>
</tr>
<tr>
<td>17962 THEODORA</td>
<td>TUSTIN</td>
<td>92780</td>
<td>1955</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18132 NORWOOD PARK</td>
<td>TUSTIN</td>
<td>92780</td>
<td>1955</td>
<td>Y</td>
<td>40</td>
<td>N</td>
<td></td>
<td>5</td>
<td>Back</td>
</tr>
<tr>
<td>1832 IRVINE</td>
<td>TUSTIN</td>
<td>92780</td>
<td>1957</td>
<td>Y</td>
<td>40</td>
<td>Y</td>
<td>Sewage backup in toilets</td>
<td>0.833</td>
<td>Front</td>
</tr>
<tr>
<td>13082 RED HILL</td>
<td>TUSTIN</td>
<td>92780</td>
<td>1957</td>
<td>Y</td>
<td>45</td>
<td>N</td>
<td></td>
<td>never</td>
<td>Front</td>
</tr>
<tr>
<td>14562 LIVINGSTON</td>
<td>TUSTIN</td>
<td>92780</td>
<td>1957</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14172 LAMBETH</td>
<td></td>
<td>92780</td>
<td>1958</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17821 WELLINGTON</td>
<td>TUSTIN</td>
<td>92780</td>
<td>1958</td>
<td>Y</td>
<td>45</td>
<td>Y</td>
<td>Clogged/sewage backup</td>
<td>9</td>
<td>Front</td>
</tr>
<tr>
<td>17965 WELLINGTON</td>
<td>TUSTIN</td>
<td>92780</td>
<td>1960</td>
<td>Y</td>
<td>40</td>
<td>N</td>
<td></td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>1661 MELVIN</td>
<td>TUSTIN</td>
<td>92780</td>
<td>1961</td>
<td>Y</td>
<td>41</td>
<td>Y</td>
<td>Lid of the tank collapsed</td>
<td>never</td>
<td>Front</td>
</tr>
<tr>
<td>1452 LANCE</td>
<td>TUSTIN</td>
<td>92780</td>
<td>1962</td>
<td>Y</td>
<td>40</td>
<td>Y</td>
<td>Surface flow from broken pipe at front yard; repaired</td>
<td>never</td>
<td>Front</td>
</tr>
<tr>
<td>14361 CLARISSA</td>
<td>TUSTIN</td>
<td>92780</td>
<td>1962</td>
<td>Y</td>
<td>40</td>
<td>N</td>
<td></td>
<td>2</td>
<td>Front</td>
</tr>
<tr>
<td>14082 MATRYCE</td>
<td>TUSTIN</td>
<td>92780</td>
<td>1963</td>
<td>Y</td>
<td>40</td>
<td>N</td>
<td>(switched in Oct, 2002)</td>
<td>never</td>
<td>Front</td>
</tr>
<tr>
<td>14342 CLARISSA</td>
<td>TUSTIN</td>
<td>92780</td>
<td>1963</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Street_Number/Street Name</td>
<td>Zip Code</td>
<td>Yr_bult</td>
<td>Q1</td>
<td>Q2</td>
<td>Q3</td>
<td>Q3b;Q3c</td>
<td>Q4</td>
<td>Q5</td>
<td>Q6</td>
</tr>
<tr>
<td>---------------------------</td>
<td>----------</td>
<td>---------</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>---------</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>181 POSSUM HOLW</td>
<td>92808</td>
<td>1976</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>123 DERBY</td>
<td>92808</td>
<td>1979</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7707 AUTRY</td>
<td>92808</td>
<td>1965</td>
<td></td>
<td></td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7710 AUTRY</td>
<td>92808</td>
<td></td>
<td></td>
<td></td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>109 EUCALYPTUS</td>
<td>92808</td>
<td>1964</td>
<td></td>
<td></td>
<td>25</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>136 EUCALYPTUS</td>
<td>92808</td>
<td>1979</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>142 EUCALYPTUS</td>
<td>92808</td>
<td>1980</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>157 EUCALYPTUS</td>
<td>92808</td>
<td>1979</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>162 EUCALYPTUS</td>
<td>92808</td>
<td>1980</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>165 EUCALYPTUS</td>
<td>92808</td>
<td>1978</td>
<td>Y</td>
<td></td>
<td>NA</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>195 EUCALYPTUS</td>
<td>92808</td>
<td>1948</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200 EUCALYPTUS</td>
<td>92808</td>
<td>1990</td>
<td>Y</td>
<td></td>
<td>12</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>202 EUCALYPTUS</td>
<td>92808</td>
<td>1978</td>
<td>Y</td>
<td></td>
<td>4.5</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>150 MOHLER</td>
<td>92808</td>
<td>1957</td>
<td>Y</td>
<td></td>
<td>NA</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>160 MOHLER</td>
<td>92808</td>
<td>1952</td>
<td>Y</td>
<td></td>
<td>55</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>180 POSSUM HOLW</td>
<td>92808</td>
<td>1975</td>
<td>Y</td>
<td></td>
<td>27</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>190 POSSUM HOLW</td>
<td>92808</td>
<td>1976</td>
<td>Y</td>
<td></td>
<td>25</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>191 POSSUM HOLW</td>
<td>92808</td>
<td>1976</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100 SADDLEBACK</td>
<td>92808</td>
<td>1979</td>
<td>Y</td>
<td></td>
<td>NA</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7695 SILVER DOLLAR</td>
<td>92808</td>
<td>1964</td>
<td>Y</td>
<td></td>
<td>NA</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Observations
- **Drainfield plugged 0.5 years ago; new one soon; surface flow noticed**
- **New drainfield installed by old owners before selling**
- **Septic tank collapsed when a drive way was paved**
<table>
<thead>
<tr>
<th>Street_No/Street_Name</th>
<th>Zip Code</th>
<th>Yr built</th>
<th>Q1</th>
<th>Q2</th>
<th>Q3</th>
<th>Q3b;Q3c</th>
<th>Q4</th>
<th>Q5</th>
<th>Q6</th>
</tr>
</thead>
<tbody>
<tr>
<td>726 Cumberland</td>
<td>City Orng</td>
<td>1957</td>
<td>Switched</td>
<td>NA</td>
<td>Y</td>
<td>Clogged in 2000; service needed</td>
<td>2</td>
<td>NA</td>
<td>3</td>
</tr>
<tr>
<td>16382 HEIM</td>
<td>92865</td>
<td>1956</td>
<td>Y</td>
<td>NA</td>
<td>Y</td>
<td>Sewage backup; pump service req'd</td>
<td>0.5</td>
<td>Front</td>
<td>40</td>
</tr>
<tr>
<td>16372 HEIM</td>
<td>92865</td>
<td>1955</td>
<td>Y</td>
<td>48</td>
<td>N</td>
<td></td>
<td>5</td>
<td>Front</td>
<td>48</td>
</tr>
<tr>
<td>16342 HEIM</td>
<td>92865</td>
<td>1955</td>
<td>Y</td>
<td>1</td>
<td>N</td>
<td>New septic system installed during remodeling</td>
<td>3</td>
<td>Front</td>
<td>15</td>
</tr>
<tr>
<td>16322 HEIM</td>
<td>92865</td>
<td>1953</td>
<td>Y</td>
<td>48</td>
<td>Y</td>
<td>Ground saturated/backup; serviced</td>
<td>3</td>
<td>Front</td>
<td>48</td>
</tr>
<tr>
<td>16331 FELLOWS</td>
<td>92865</td>
<td>1956</td>
<td>Y</td>
<td>40</td>
<td>N</td>
<td></td>
<td>Never</td>
<td>Front</td>
<td>41</td>
</tr>
<tr>
<td>16332 FELLOWS</td>
<td>92865</td>
<td>1958</td>
<td>Y</td>
<td>3</td>
<td>Y</td>
<td>Drainfield issues; new one installed 3yr ago</td>
<td>3</td>
<td>Front</td>
<td>43</td>
</tr>
<tr>
<td>16311 FELLOWS</td>
<td>92865</td>
<td>1961</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td>Never</td>
<td>Front</td>
<td>16</td>
</tr>
<tr>
<td>16316 FELLOWS</td>
<td>92865</td>
<td>1963</td>
<td>Y</td>
<td>NA</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16322 FELLOWS</td>
<td>92865</td>
<td>1960</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16392 HEIM</td>
<td>92865</td>
<td>1955</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16422 HEIM</td>
<td>92865</td>
<td>1955</td>
<td>Y</td>
<td>5</td>
<td>N</td>
<td>40yr old system replaced</td>
<td>3</td>
<td>Front</td>
<td>23</td>
</tr>
<tr>
<td>16522 HEIM</td>
<td>92865</td>
<td>1949</td>
<td>Y</td>
<td>NA</td>
<td>N</td>
<td></td>
<td>6</td>
<td>Front</td>
<td>25</td>
</tr>
<tr>
<td>519 CUMBERLAND</td>
<td>92865</td>
<td>1962</td>
<td>Y</td>
<td>NA</td>
<td>N</td>
<td>last serviced yr 2000</td>
<td>5</td>
<td>Front</td>
<td>7</td>
</tr>
<tr>
<td>703 Cumberland</td>
<td>City Orng</td>
<td>1961</td>
<td>Y</td>
<td>NA</td>
<td>Y</td>
<td>Sewage backup in toilets (Yr 1999)</td>
<td>3</td>
<td>F</td>
<td>19</td>
</tr>
<tr>
<td>727 Cumberland</td>
<td>City Orng</td>
<td>1960</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>849 Cumberland</td>
<td>City Orng</td>
<td>1958</td>
<td>Y</td>
<td>40</td>
<td>N</td>
<td></td>
<td>Never</td>
<td>F</td>
<td>0.25</td>
</tr>
<tr>
<td>910 Cumberland</td>
<td>City Orng</td>
<td>1958</td>
<td>Y</td>
<td>50</td>
<td>N</td>
<td></td>
<td>5</td>
<td>F</td>
<td>16</td>
</tr>
<tr>
<td>935 Cumberland</td>
<td>City Orng</td>
<td>1958</td>
<td>Y</td>
<td>47</td>
<td>Y</td>
<td>Clogged; service needed</td>
<td>0.17</td>
<td>F</td>
<td>47</td>
</tr>
<tr>
<td>1142 Cumberland</td>
<td>City Orng</td>
<td>1959</td>
<td>Y</td>
<td>NA</td>
<td>N</td>
<td></td>
<td>Never</td>
<td>F</td>
<td>0.25</td>
</tr>
</tbody>
</table>
APPENDIX D

Septic System Inventory/Database
Table D.1
Septic System Location Data Dictionary
(ArcView shapefile name: septictankapr103final.shp)

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Septic System Identifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>JURISDICTION</td>
<td>City name</td>
</tr>
<tr>
<td>STREET_NO</td>
<td>Street number</td>
</tr>
<tr>
<td>NAME</td>
<td>Street name</td>
</tr>
<tr>
<td>APN</td>
<td>Assessor Parcel Number</td>
</tr>
<tr>
<td>WATERSHED</td>
<td>Watershed name</td>
</tr>
</tbody>
</table>

(Note: 24”x36” septic system location map is placed at the end of this report)
<table>
<thead>
<tr>
<th>JURISDICTION</th>
<th>STREET_NO NAME</th>
<th>APN</th>
<th>WATERSHED</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANAHEIM</td>
<td>7707 AUTRY</td>
<td>358-321-07</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ANAHEIM</td>
<td>7710 AUTRY</td>
<td>358-321-08</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ANAHEIM</td>
<td>2280 BROADWAY</td>
<td>127-121-34</td>
<td>Carbon Creek</td>
</tr>
<tr>
<td>ANAHEIM</td>
<td>221 BROOKHURST</td>
<td>071-181-07</td>
<td>Carbon Creek</td>
</tr>
<tr>
<td>ANAHEIM</td>
<td>518 CHERRY TREE</td>
<td>083-020-32</td>
<td>Carbon Creek</td>
</tr>
<tr>
<td>ANAHEIM</td>
<td>519 CHERRY TREE</td>
<td>083-020-22</td>
<td>Carbon Creek</td>
</tr>
<tr>
<td>ANAHEIM</td>
<td>426 COUNTRY HILL</td>
<td>356-131-06</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ANAHEIM</td>
<td>341 COYOTE</td>
<td>356-101-16</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ANAHEIM</td>
<td>350 COYOTE</td>
<td>356-101-14</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ANAHEIM</td>
<td>3324 CRESTHILL</td>
<td>343-242-09</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ANAHEIM</td>
<td>3326 CRESTHILL</td>
<td>343-431-03</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ANAHEIM</td>
<td>5386 CRESTHILL</td>
<td>343-431-11</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ANAHEIM</td>
<td>5392 CRESTHILL</td>
<td>343-431-12</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ANAHEIM</td>
<td>135 DALE</td>
<td>126-012-13</td>
<td>Carbon Creek</td>
</tr>
<tr>
<td>ANAHEIM</td>
<td>101 EUCALYPTUS</td>
<td>358-301-03</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ANAHEIM</td>
<td>108 EUCALYPTUS</td>
<td>358-321-06</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ANAHEIM</td>
<td>109 EUCALYPTUS</td>
<td>358-301-02</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ANAHEIM</td>
<td>132 EUCALYPTUS</td>
<td>356-221-37</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ANAHEIM</td>
<td>136 EUCALYPTUS</td>
<td>356-221-36</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ANAHEIM</td>
<td>142 EUCALYPTUS</td>
<td>356-221-35</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ANAHEIM</td>
<td>148 EUCALYPTUS</td>
<td>356-221-36</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ANAHEIM</td>
<td>152 EUCALYPTUS</td>
<td>356-221-53</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ANAHEIM</td>
<td>157 EUCALYPTUS</td>
<td>356-221-31</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ANAHEIM</td>
<td>162 EUCALYPTUS</td>
<td>356-221-52</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ANAHEIM</td>
<td>165 EUCALYPTUS</td>
<td>356-221-30</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ANAHEIM</td>
<td>175 EUCALYPTUS</td>
<td>356-221-32</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ANAHEIM</td>
<td>185 EUCALYPTUS</td>
<td>356-221-33</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ANAHEIM</td>
<td>195 EUCALYPTUS</td>
<td>356-221-34</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ANAHEIM</td>
<td>200 EUCALYPTUS</td>
<td>356-221-56</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ANAHEIM</td>
<td>202 EUCALYPTUS</td>
<td>356-221-07</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ANAHEIM</td>
<td>202 EUCALYPTUS</td>
<td>356-221-57</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ANAHEIM</td>
<td>222 EUCALYPTUS</td>
<td>356-221-08</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ANAHEIM</td>
<td>242 EUCALYPTUS</td>
<td>356-221-10</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ANAHEIM</td>
<td>7690 EUCALYPTUS</td>
<td>358-321-12</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ANAHEIM</td>
<td>111 GRAND</td>
<td>135-283-06</td>
<td>Carbon Creek</td>
</tr>
<tr>
<td>ANAHEIM</td>
<td>2850 GRETA</td>
<td>344-061-16</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ANAHEIM</td>
<td>300 HENNING</td>
<td>356-261-07</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ANAHEIM</td>
<td>361 HENNING</td>
<td>356-401-02</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ANAHEIM</td>
<td>365 HENNING</td>
<td>356-401-03</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ANAHEIM</td>
<td>381 HENNING</td>
<td>356-401-05</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ANAHEIM</td>
<td>391 HENNING</td>
<td>356-401-11</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ANAHEIM</td>
<td>1845 HOLBROOK</td>
<td>343-201-01</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ANAHEIM</td>
<td>6591 JEFFERSON</td>
<td>345-161-04</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ANAHEIM</td>
<td>1920 KELLOGG</td>
<td>343-231-04</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ANAHEIM</td>
<td>2323 MANCHESTER</td>
<td>137-451-24</td>
<td>Los Alamitos/East Garden Grove/Bolsa Chica</td>
</tr>
<tr>
<td>ANAHEIM</td>
<td>6591 MARYNEZ</td>
<td>356-311-07</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ANAHEIM</td>
<td>1631 MELLS</td>
<td>129-361-21</td>
<td>Los Alamitos/East Garden Grove/Bolsa Chica</td>
</tr>
<tr>
<td>ANAHEIM</td>
<td>150 MOHLER</td>
<td>356-124-05</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ANAHEIM</td>
<td>150 MOHLER</td>
<td>356-311-11</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ANAHEIM</td>
<td>160 MOHLER</td>
<td>356-311-10</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ANAHEIM</td>
<td>170 MOHLER</td>
<td>356-311-09</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ANAHEIM</td>
<td>1825 ORANGE</td>
<td>128-121-17</td>
<td>Carbon Creek</td>
</tr>
<tr>
<td>ANAHEIM</td>
<td>1825 ORANGE</td>
<td>128-121-02</td>
<td>Carbon Creek</td>
</tr>
<tr>
<td>ANAHEIM</td>
<td>1825 ORANGE</td>
<td>128-121-14</td>
<td>Carbon Creek</td>
</tr>
<tr>
<td>ANAHEIM</td>
<td>1825 ORANGE</td>
<td>128-121-16</td>
<td>Carbon Creek</td>
</tr>
<tr>
<td>ANAHEIM</td>
<td>2820 ORANGE</td>
<td>128-152-02</td>
<td>Carbon Creek</td>
</tr>
<tr>
<td>ANAHEIM</td>
<td>3000 ORANGETHORPE</td>
<td>070-751-01</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ANAHEIM</td>
<td>4501 ORANGETHORPE</td>
<td>343-351-60</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ANAHEIM</td>
<td>1516 ORANGEWOOD</td>
<td>090-514-24</td>
<td>Los Alamitos/East Garden Grove/Bolsa Chica</td>
</tr>
<tr>
<td>ANAHEIM</td>
<td>5191 PASEO DE GRACE</td>
<td>343-231-67</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ANAHEIM</td>
<td>411 PERALTA HILLS</td>
<td>361-252-02</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ANAHEIM</td>
<td>351 PERALTA HILLS</td>
<td>361-242-04</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ANAHEIM</td>
<td>561 PERALTA HILLS</td>
<td>361-242-02</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ANAHEIM</td>
<td>571 PERALTA HILLS</td>
<td>361-171-07</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ANAHEIM</td>
<td>777 PERALTA HILLS</td>
<td>361-232-01</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ANAHEIM</td>
<td>190 POSSUM</td>
<td>356-221-17</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>JURISDICTION</td>
<td>STREET_NO NAME</td>
<td>APN</td>
<td>DAMAGES</td>
</tr>
<tr>
<td>--------------</td>
<td>----------------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>ANAHEIM</td>
<td>191 POSSUM</td>
<td>356-221-18</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ANAHEIM</td>
<td>180 POSSUM HOLW</td>
<td>356-221-16</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ANAHEIM</td>
<td>100 SADDLEBACK</td>
<td>358-301-04</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ANAHEIM</td>
<td>7655 SILVER DOLLAR</td>
<td>358-301-07</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ANAHEIM</td>
<td>7665 SILVER DOLLAR</td>
<td>358-321-16</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ANAHEIM</td>
<td>7685 SILVER DOLLAR</td>
<td>358-321-14</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ANAHEIM</td>
<td>7695 SILVER DOLLAR</td>
<td>358-321-13</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ANAHEIM</td>
<td>3180 TYLER</td>
<td>135-221-01</td>
<td>Carbon Creek</td>
</tr>
<tr>
<td>ANAHEIM</td>
<td>623 WESTERN</td>
<td>079-631-27</td>
<td>Carbon Creek</td>
</tr>
<tr>
<td>ANAHEIM</td>
<td>851 WESTERN</td>
<td>079-441-10</td>
<td>Carbon Creek</td>
</tr>
<tr>
<td>ANAHEIM</td>
<td>905 WESTERN</td>
<td>079-441-11</td>
<td>Carbon Creek</td>
</tr>
<tr>
<td>ANAHEIM</td>
<td>241 WIDAN</td>
<td>356-071-23</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>BREA</td>
<td>1361 BEXLEY</td>
<td>304-191-12</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>BREA</td>
<td>1362 BEXLEY</td>
<td>304-191-25</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>BREA</td>
<td>1381 BEXLEY</td>
<td>304-191-13</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>BREA</td>
<td>1382 BEXLEY</td>
<td>304-191-24</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>BREA</td>
<td>1402 BEXLEY</td>
<td>304-191-23</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>BREA</td>
<td>1421 BEXLEY</td>
<td>304-191-14</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>BREA</td>
<td>1431 BEXLEY</td>
<td>304-191-15</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>BREA</td>
<td>1440 BEXLEY</td>
<td>304-191-21</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>BREA</td>
<td>1441 BEXLEY</td>
<td>304-191-07</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>BREA</td>
<td>1444 BEXLEY</td>
<td>304-191-22</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>BREA</td>
<td>1462 BEXLEY</td>
<td>304-191-16</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>BREA</td>
<td>6751 CARBON CANYON</td>
<td>315-091-06</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>BREA</td>
<td>7351 CARBON CANYON</td>
<td>312-031-02</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>BREA</td>
<td>3730 MAUNA LOA</td>
<td>322-022-03</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>BREA</td>
<td>1190 PUENTE</td>
<td>304-202-29</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>BREA</td>
<td>No NO UNKNOWN ADDRESS</td>
<td>304-202-28</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>BREA</td>
<td>12551 WHITTIER</td>
<td>304-191-17</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>BREA</td>
<td>12571 WHITTIER</td>
<td>304-191-18</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>BREA</td>
<td>12583 WHITTIER</td>
<td>304-191-20</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>BREA</td>
<td>12585 WHITTIER</td>
<td>304-191-31</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>BREA</td>
<td>12591 WHITTIER</td>
<td>304-191-33</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>BUENA PARK</td>
<td>8401 PIERCE</td>
<td>135-051-03</td>
<td>Carbon Creek</td>
</tr>
<tr>
<td>BUENA PARK</td>
<td>6851 STANTON</td>
<td>276-322-23</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>COSTA MESA</td>
<td>1010 18TH</td>
<td>424-331-07</td>
<td>Talbert Channel/Greenville Banning</td>
</tr>
<tr>
<td>COSTA MESA</td>
<td>2515 ELDEN</td>
<td>439-171-38</td>
<td>East Costa Mesa/Newport Beach</td>
</tr>
<tr>
<td>COSTA MESA</td>
<td>492 FLOWER</td>
<td>117-341-19</td>
<td>East Costa Mesa/Newport Beach</td>
</tr>
<tr>
<td>COSTA MESA</td>
<td>2191 RURAL</td>
<td>425-121-24</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>DANA POINT</td>
<td>34311 COAST</td>
<td>682-165-01</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>DANA POINT</td>
<td>34363 DANA STRAND</td>
<td>672-291-04</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>DANA POINT</td>
<td>32741 DEL OBISPO</td>
<td>673-191-02</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>DANA POINT</td>
<td>No NO PROJECT 931-54</td>
<td>672-291-06</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>DANA POINT</td>
<td>No NO PROJECT 933-60</td>
<td>672-291-05</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>DANA POINT</td>
<td>No NO PROJECT 933-50</td>
<td>672-291-39</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>FOUNTAIN VALLEY</td>
<td>17225 NEWHOPE</td>
<td>159-391-01</td>
<td>Talbert Channel/Greenville Banning</td>
</tr>
<tr>
<td>FULLERTON</td>
<td>1830 ACACIA</td>
<td>285-181-04</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>FULLERTON</td>
<td>508 GREEN ACRE</td>
<td>028-472-32</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>FULLERTON</td>
<td>1061 LA MESA</td>
<td>028-091-02</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>FULLERTON</td>
<td>1077 LA MESA</td>
<td>028-091-01</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>FULLERTON</td>
<td>1085 LA MESA</td>
<td>028-081-23</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>FULLERTON</td>
<td>1113 LA MESA</td>
<td>028-120-02</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>FULLERTON</td>
<td>3110 LAS FALDAS</td>
<td>295-271-25</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>FULLERTON</td>
<td>3120 LAS FALDAS</td>
<td>295-271-24</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>FULLERTON</td>
<td>400 LAS PALMAS</td>
<td>293-123-02</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>FULLERTON</td>
<td>900 LAS PALMAS</td>
<td>292-371-11</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>FULLERTON</td>
<td>1220 LINDA</td>
<td>285-071-08</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>FULLERTON</td>
<td>1860 PAGE</td>
<td>071-502-01</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>FULLERTON</td>
<td>1870 PAGE</td>
<td>071-502-14</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>FULLERTON</td>
<td>1311 RAYMOND</td>
<td>029-133-17</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>FULLERTON</td>
<td>1314 RIDGEVIEW</td>
<td>029-362-02</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>FULLERTON</td>
<td>1159 VALLEY VIEW</td>
<td>028-081-33</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>FULLERTON</td>
<td>1165 VALLEY VIEW</td>
<td>028-081-37</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>FULLERTON</td>
<td>1349 WEST</td>
<td>031-331-16</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>FULLERTON</td>
<td>1215 WEST VALLEY VIEW DR</td>
<td>028-081-40</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>JURISDICTION</td>
<td>STREET_NO_NAME</td>
<td>APN</td>
<td>WATERSHED</td>
</tr>
<tr>
<td>--------------</td>
<td>----------------</td>
<td>-------</td>
<td>--------------</td>
</tr>
<tr>
<td>GARDEN GROVE</td>
<td>10071</td>
<td>099-173-50</td>
<td>Los Alamitos/East Garden Grove/Bolsa Chica</td>
</tr>
<tr>
<td>GARDEN GROVE</td>
<td>10132</td>
<td>089-432-32</td>
<td>Los Alamitos/East Garden Grove/Bolsa Chica</td>
</tr>
<tr>
<td>GARDEN GROVE</td>
<td>9041</td>
<td>132-442-29</td>
<td>Los Alamitos/East Garden Grove/Bolsa Chica</td>
</tr>
<tr>
<td>GARDEN GROVE</td>
<td>3081</td>
<td>132-442-32</td>
<td>Los Alamitos/East Garden Grove/Bolsa Chica</td>
</tr>
<tr>
<td>GARDEN GROVE</td>
<td>9101</td>
<td>132-442-33</td>
<td>Los Alamitos/East Garden Grove/Bolsa Chica</td>
</tr>
<tr>
<td>GARDEN GROVE</td>
<td>12421</td>
<td>231-423-11</td>
<td>Los Alamitos/East Garden Grove/Bolsa Chica</td>
</tr>
<tr>
<td>GARDEN GROVE</td>
<td>12431</td>
<td>231-423-12</td>
<td>Los Alamitos/East Garden Grove/Bolsa Chica</td>
</tr>
<tr>
<td>GARDEN GROVE</td>
<td>12441</td>
<td>231-423-13</td>
<td>Los Alamitos/East Garden Grove/Bolsa Chica</td>
</tr>
<tr>
<td>GARDEN GROVE</td>
<td>12451</td>
<td>231-423-14</td>
<td>Los Alamitos/East Garden Grove/Bolsa Chica</td>
</tr>
<tr>
<td>GARDEN GROVE</td>
<td>12442</td>
<td>231-423-04</td>
<td>Los Alamitos/East Garden Grove/Bolsa Chica</td>
</tr>
<tr>
<td>GARDEN GROVE</td>
<td>13871</td>
<td>097-302-12</td>
<td>Los Alamitos/East Garden Grove/Bolsa Chica</td>
</tr>
<tr>
<td>GARDEN GROVE</td>
<td>13861</td>
<td>097-302-11</td>
<td>Los Alamitos/East Garden Grove/Bolsa Chica</td>
</tr>
<tr>
<td>GARDEN GROVE</td>
<td>11811</td>
<td>089-531-15</td>
<td>Los Alamitos/East Garden Grove/Bolsa Chica</td>
</tr>
<tr>
<td>GARDEN GROVE</td>
<td>13261</td>
<td>101-322-16</td>
<td>Los Alamitos/East Garden Grove/Bolsa Chica</td>
</tr>
<tr>
<td>GARDEN GROVE</td>
<td>13271</td>
<td>101-322-15</td>
<td>Los Alamitos/East Garden Grove/Bolsa Chica</td>
</tr>
<tr>
<td>GARDEN GROVE</td>
<td>13291</td>
<td>101-322-14</td>
<td>Los Alamitos/East Garden Grove/Bolsa Chica</td>
</tr>
<tr>
<td>GARDEN GROVE</td>
<td>13301</td>
<td>101-322-13</td>
<td>Los Alamitos/East Garden Grove/Bolsa Chica</td>
</tr>
<tr>
<td>GARDEN GROVE</td>
<td>13531</td>
<td>101-652-04</td>
<td>Los Alamitos/East Garden Grove/Bolsa Chica</td>
</tr>
<tr>
<td>GARDEN GROVE</td>
<td>13551</td>
<td>101-652-05</td>
<td>Los Alamitos/East Garden Grove/Bolsa Chica</td>
</tr>
<tr>
<td>GARDEN GROVE</td>
<td>13531</td>
<td>101-652-06</td>
<td>Los Alamitos/East Garden Grove/Bolsa Chica</td>
</tr>
<tr>
<td>GARDEN GROVE</td>
<td>14062</td>
<td>099-162-06</td>
<td>Los Alamitos/East Garden Grove/Bolsa Chica</td>
</tr>
<tr>
<td>GARDEN GROVE</td>
<td>14121</td>
<td>099-173-51</td>
<td>Los Alamitos/East Garden Grove/Bolsa Chica</td>
</tr>
<tr>
<td>GARDEN GROVE</td>
<td>8231</td>
<td>131-462-16</td>
<td>Los Alamitos/East Garden Grove/Bolsa Chica</td>
</tr>
<tr>
<td>GARDEN GROVE</td>
<td>12781</td>
<td>133-421-06</td>
<td>Los Alamitos/East Garden Grove/Bolsa Chica</td>
</tr>
<tr>
<td>GARDEN GROVE</td>
<td>12782</td>
<td>133-421-03</td>
<td>Los Alamitos/East Garden Grove/Bolsa Chica</td>
</tr>
<tr>
<td>GARDEN GROVE</td>
<td>12791</td>
<td>133-421-55</td>
<td>Los Alamitos/East Garden Grove/Bolsa Chica</td>
</tr>
<tr>
<td>GARDEN GROVE</td>
<td>12792</td>
<td>133-421-04</td>
<td>Los Alamitos/East Garden Grove/Bolsa Chica</td>
</tr>
<tr>
<td>GARDEN GROVE</td>
<td>12771</td>
<td>231-041-29</td>
<td>Los Alamitos/East Garden Grove/Bolsa Chica</td>
</tr>
<tr>
<td>GARDEN GROVE</td>
<td>13471</td>
<td>101-302-04</td>
<td>Los Alamitos/East Garden Grove/Bolsa Chica</td>
</tr>
<tr>
<td>GARDEN GROVE</td>
<td>9032</td>
<td>132-442-23</td>
<td>Los Alamitos/East Garden Grove/Bolsa Chica</td>
</tr>
<tr>
<td>GARDEN GROVE</td>
<td>12931</td>
<td>231-423-15</td>
<td>Los Alamitos/East Garden Grove/Bolsa Chica</td>
</tr>
<tr>
<td>GARDEN GROVE</td>
<td>8771</td>
<td>097-302-10</td>
<td>Los Alamitos/East Garden Grove/Bolsa Chica</td>
</tr>
<tr>
<td>GARDEN GROVE</td>
<td>8772</td>
<td>097-302-06</td>
<td>Los Alamitos/East Garden Grove/Bolsa Chica</td>
</tr>
<tr>
<td>GARDEN GROVE</td>
<td>8781</td>
<td>097-302-09</td>
<td>Los Alamitos/East Garden Grove/Bolsa Chica</td>
</tr>
<tr>
<td>GARDEN GROVE</td>
<td>8782</td>
<td>097-302-07</td>
<td>Los Alamitos/East Garden Grove/Bolsa Chica</td>
</tr>
<tr>
<td>GARDEN GROVE</td>
<td>8792</td>
<td>097-302-08</td>
<td>Los Alamitos/East Garden Grove/Bolsa Chica</td>
</tr>
<tr>
<td>GARDEN GROVE</td>
<td>8782</td>
<td>097-281-35</td>
<td>Los Alamitos/East Garden Grove/Bolsa Chica</td>
</tr>
<tr>
<td>GARDEN GROVE</td>
<td>8802</td>
<td>097-281-33</td>
<td>Los Alamitos/East Garden Grove/Bolsa Chica</td>
</tr>
<tr>
<td>GARDEN GROVE</td>
<td>10412</td>
<td>089-272-42</td>
<td>Los Alamitos/East Garden Grove/Bolsa Chica</td>
</tr>
<tr>
<td>GARDEN GROVE</td>
<td>10422</td>
<td>089-272-41</td>
<td>Los Alamitos/East Garden Grove/Bolsa Chica</td>
</tr>
<tr>
<td>GARDEN GROVE</td>
<td>10432</td>
<td>089-272-40</td>
<td>Los Alamitos/East Garden Grove/Bolsa Chica</td>
</tr>
<tr>
<td>GARDEN GROVE</td>
<td>10442</td>
<td>089-272-39</td>
<td>Los Alamitos/East Garden Grove/Bolsa Chica</td>
</tr>
<tr>
<td>GARDEN GROVE</td>
<td>12912</td>
<td>133-382-04</td>
<td>Los Alamitos/East Garden Grove/Bolsa Chica</td>
</tr>
<tr>
<td>GARDEN GROVE</td>
<td>10222</td>
<td>099-162-28</td>
<td>Los Alamitos/East Garden Grove/Bolsa Chica</td>
</tr>
<tr>
<td>GARDEN GROVE</td>
<td>10222</td>
<td>099-162-28</td>
<td>Los Alamitos/East Garden Grove/Bolsa Chica</td>
</tr>
<tr>
<td>HUNTINGTON BEACH</td>
<td>19471</td>
<td>1025-180-21</td>
<td>Talbert Channel/Greenville Banning</td>
</tr>
<tr>
<td>HUNTINGTON BEACH</td>
<td>17082</td>
<td>163-123-01</td>
<td>Los Alamitos/East Garden Grove/Bolsa Chica</td>
</tr>
<tr>
<td>HUNTINGTON BEACH</td>
<td>6901</td>
<td>110-180-16</td>
<td>Los Alamitos/East Garden Grove/Bolsa Chica</td>
</tr>
<tr>
<td>HUNTINGTON BEACH</td>
<td>815</td>
<td>024-231-38</td>
<td>Talbert Channel/Greenville Banning</td>
</tr>
<tr>
<td>HUNTINGTON BEACH</td>
<td>80</td>
<td>024-291-16</td>
<td>Talbert Channel/Greenville Banning</td>
</tr>
<tr>
<td>HUNTINGTON BEACH</td>
<td>5431</td>
<td>146-201-08</td>
<td>Los Alamitos/East Garden Grove/Bolsa Chica</td>
</tr>
<tr>
<td>HUNTINGTON BEACH</td>
<td>5451</td>
<td>146-201-06</td>
<td>Los Alamitos/East Garden Grove/Bolsa Chica</td>
</tr>
<tr>
<td>HUNTINGTON BEACH</td>
<td>17121</td>
<td>111-024-07</td>
<td>Los Alamitos/East Garden Grove/Bolsa Chica</td>
</tr>
<tr>
<td>HUNTINGTON BEACH</td>
<td>4831</td>
<td>178-201-38</td>
<td>Los Alamitos/East Garden Grove/Bolsa Chica</td>
</tr>
<tr>
<td>HUNTINGTON BEACH</td>
<td>4831</td>
<td>178-201-38</td>
<td>Los Alamitos/East Garden Grove/Bolsa Chica</td>
</tr>
<tr>
<td>HUNTINGTON BEACH</td>
<td>4832</td>
<td>178-201-40</td>
<td>Los Alamitos/East Garden Grove/Bolsa Chica</td>
</tr>
<tr>
<td>HUNTINGTON BEACH</td>
<td>7622</td>
<td>165-291-09</td>
<td>Los Alamitos/East Garden Grove/Bolsa Chica</td>
</tr>
<tr>
<td>HUNTINGTON BEACH</td>
<td>7632</td>
<td>165-291-10</td>
<td>Los Alamitos/East Garden Grove/Bolsa Chica</td>
</tr>
<tr>
<td>HUNTINGTON BEACH</td>
<td>18792</td>
<td>111-110-01</td>
<td>Los Alamitos/East Garden Grove/Bolsa Chica</td>
</tr>
<tr>
<td>LA HABRA</td>
<td>1930</td>
<td>303-021-31</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>LA HABRA</td>
<td>1931</td>
<td>303-021-25</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>LA HABRA</td>
<td>1940</td>
<td>303-021-30</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>LA HABRA</td>
<td>1941</td>
<td>303-021-26</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>LA HABRA</td>
<td>1300</td>
<td>355-101-10</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>LA HABRA</td>
<td>1325</td>
<td>017-271-07</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>LA HABRA</td>
<td>1341</td>
<td>017-271-05</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>JURISDICTION</td>
<td>STREET_NO</td>
<td>NAME</td>
<td>APN</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
<td>------</td>
<td>-----</td>
</tr>
<tr>
<td>LA HABRA</td>
<td>1401</td>
<td>EUCLID</td>
<td>017-271-03</td>
</tr>
<tr>
<td>LA HABRA</td>
<td>1241</td>
<td>HENSEL</td>
<td>303-081-18</td>
</tr>
<tr>
<td>LA HABRA</td>
<td>641</td>
<td>HENSEL</td>
<td>303-081-04</td>
</tr>
<tr>
<td>LA HABRA</td>
<td>700</td>
<td>HENSEL</td>
<td>303-081-17</td>
</tr>
<tr>
<td>LA HABRA</td>
<td>701</td>
<td>HENSEL</td>
<td>303-081-03</td>
</tr>
<tr>
<td>LA HABRA</td>
<td>751</td>
<td>HENSEL</td>
<td>303-081-02</td>
</tr>
<tr>
<td>LA HABRA</td>
<td>114</td>
<td>HIDDEN</td>
<td>017-271-15</td>
</tr>
<tr>
<td>LA HABRA</td>
<td>124</td>
<td>HIDDEN</td>
<td>017-271-16</td>
</tr>
<tr>
<td>LA HABRA</td>
<td>1340</td>
<td>HIDDEN</td>
<td>017-271-25</td>
</tr>
<tr>
<td>LA HABRA</td>
<td>141</td>
<td>HIDDEN</td>
<td>017-271-22</td>
</tr>
<tr>
<td>LA HABRA</td>
<td>1420</td>
<td>HIDDEN</td>
<td>017-271-28</td>
</tr>
<tr>
<td>LA HABRA</td>
<td>151</td>
<td>HILLSIDE</td>
<td>017-271-37</td>
</tr>
<tr>
<td>LA HABRA</td>
<td>181</td>
<td>HILLSIDE</td>
<td>017-271-36</td>
</tr>
<tr>
<td>LA HABRA</td>
<td>227</td>
<td>HILLSIDE</td>
<td>017-271-35</td>
</tr>
<tr>
<td>LA HABRA</td>
<td>1411</td>
<td>IDAHO</td>
<td>017-161-32</td>
</tr>
<tr>
<td>LA HABRA</td>
<td>1930</td>
<td>JENNIE</td>
<td>303-021-23</td>
</tr>
<tr>
<td>LA HABRA</td>
<td>12112</td>
<td>LAMBERT</td>
<td>296-352-09</td>
</tr>
<tr>
<td>LA HABRA</td>
<td>1414</td>
<td>ORANGE</td>
<td>017-311-41</td>
</tr>
<tr>
<td>LA HABRA</td>
<td>1530</td>
<td>WALNUT</td>
<td>017-231-11</td>
</tr>
<tr>
<td>LA HABRA</td>
<td>380</td>
<td>WALNUT</td>
<td>017-240-33</td>
</tr>
<tr>
<td>LA HABRA</td>
<td>2501</td>
<td>WHITIER</td>
<td>017-033-20</td>
</tr>
<tr>
<td>LAGUNA BEACH</td>
<td>20881</td>
<td>CASTLE ROCK</td>
<td>632-061-09</td>
</tr>
<tr>
<td>LAGUNA BEACH</td>
<td>20882</td>
<td>CASTLE ROCK</td>
<td>632-061-22</td>
</tr>
<tr>
<td>LAGUNA BEACH</td>
<td>20902</td>
<td>CASTLE ROCK</td>
<td>632-061-40</td>
</tr>
<tr>
<td>LAGUNA BEACH</td>
<td>20912</td>
<td>CASTLE ROCK</td>
<td>632-061-51</td>
</tr>
<tr>
<td>LAGUNA BEACH</td>
<td>20920</td>
<td>CASTLE ROCK</td>
<td>632-061-50</td>
</tr>
<tr>
<td>LAGUNA BEACH</td>
<td>20938</td>
<td>CASTLE ROCK</td>
<td>632-061-45</td>
</tr>
<tr>
<td>LAGUNA BEACH</td>
<td>21121</td>
<td>CASTLE ROCK</td>
<td>632-061-21</td>
</tr>
<tr>
<td>LAGUNA BEACH</td>
<td>21162</td>
<td>CASTLE ROCK</td>
<td>632-061-15</td>
</tr>
<tr>
<td>LAGUNA BEACH</td>
<td>21172</td>
<td>CASTLE ROCK</td>
<td>632-061-19</td>
</tr>
<tr>
<td>LAGUNA BEACH</td>
<td>220</td>
<td>CASTLE ROCK</td>
<td>632-061-23</td>
</tr>
<tr>
<td>LAGUNA BEACH</td>
<td>31106</td>
<td>COAST</td>
<td>056-240-50</td>
</tr>
<tr>
<td>LAGUNA BEACH</td>
<td>31106</td>
<td>COAST</td>
<td>056-240-47</td>
</tr>
<tr>
<td>LAGUNA BEACH</td>
<td>31106</td>
<td>COAST</td>
<td>056-240-48</td>
</tr>
<tr>
<td>LAGUNA BEACH</td>
<td>31361</td>
<td>COAST</td>
<td>056-032-06</td>
</tr>
<tr>
<td>LAGUNA BEACH</td>
<td>32005</td>
<td>COAST</td>
<td>056-160-08</td>
</tr>
<tr>
<td>LAGUNA BEACH</td>
<td>851</td>
<td>DIAMOND</td>
<td>644-303-15</td>
</tr>
<tr>
<td>LAGUNA BEACH</td>
<td>565</td>
<td>FERN</td>
<td>656-122-02</td>
</tr>
<tr>
<td>LAGUNA BEACH</td>
<td>2401</td>
<td>JUANITA</td>
<td>656-131-01</td>
</tr>
<tr>
<td>LAGUNA BEACH</td>
<td>20862</td>
<td>LAGUNA CANYON</td>
<td>632-061-20</td>
</tr>
<tr>
<td>LAGUNA BEACH</td>
<td>20358</td>
<td>SUN VALLEY</td>
<td>629-041-31</td>
</tr>
<tr>
<td>LAGUNA HILLS</td>
<td>24461</td>
<td>RIDGE ROUTE</td>
<td>588-162-03</td>
</tr>
<tr>
<td>LAKE FOREST</td>
<td>24361</td>
<td>MUIRLANDS</td>
<td>617-280-07</td>
</tr>
<tr>
<td>MISSION VIEJO</td>
<td>26692</td>
<td>AVERY</td>
<td>740-013-35</td>
</tr>
<tr>
<td>NEWPORT BEACH</td>
<td>1500</td>
<td>DOROTHY</td>
<td>117-503-14</td>
</tr>
<tr>
<td>NEWPORT BEACH</td>
<td>2128</td>
<td>MESA</td>
<td>439-061-14</td>
</tr>
<tr>
<td>NEWPORT BEACH</td>
<td>2140</td>
<td>MIST</td>
<td>439-061-04</td>
</tr>
<tr>
<td>NEWPORT BEACH</td>
<td>2214</td>
<td>SANTIAGO</td>
<td>426-111-10</td>
</tr>
<tr>
<td>NEWPORT BEACH</td>
<td>1455</td>
<td>SUPERIOR</td>
<td>424-011-19</td>
</tr>
<tr>
<td>ORANGE</td>
<td>129</td>
<td>1ST</td>
<td>383-093-14</td>
</tr>
<tr>
<td>ORANGE</td>
<td>135</td>
<td>1ST</td>
<td>383-093-15</td>
</tr>
<tr>
<td>ORANGE</td>
<td>143</td>
<td>1ST</td>
<td>383-093-02</td>
</tr>
<tr>
<td>ORANGE</td>
<td>191</td>
<td>1ST</td>
<td>383-093-01</td>
</tr>
<tr>
<td>ORANGE</td>
<td>4525</td>
<td>AGUA</td>
<td>094-503-33</td>
</tr>
<tr>
<td>ORANGE</td>
<td>4525</td>
<td>AGUA</td>
<td>094-503-34</td>
</tr>
<tr>
<td>ORANGE</td>
<td>4605</td>
<td>AGUA</td>
<td>094-503-40</td>
</tr>
<tr>
<td>ORANGE</td>
<td>4690</td>
<td>AGUA</td>
<td>094-503-39</td>
</tr>
<tr>
<td>ORANGE</td>
<td>4629</td>
<td>AGUA</td>
<td>094-503-41</td>
</tr>
<tr>
<td>ORANGE</td>
<td>1442</td>
<td>ALBION</td>
<td>390-533-07</td>
</tr>
<tr>
<td>ORANGE</td>
<td>1503</td>
<td>ALBION</td>
<td>390-533-03</td>
</tr>
<tr>
<td>ORANGE</td>
<td>3540</td>
<td>AUSTIN</td>
<td>094-444-31</td>
</tr>
<tr>
<td>ORANGE</td>
<td>2172</td>
<td>BATAVIA</td>
<td>374-751-25</td>
</tr>
<tr>
<td>ORANGE</td>
<td>2175</td>
<td>BATAVIA</td>
<td>374-451-03</td>
</tr>
<tr>
<td>ORANGE</td>
<td>2176</td>
<td>BATAVIA</td>
<td>374-751-24</td>
</tr>
<tr>
<td>ORANGE</td>
<td>2180</td>
<td>BATAVIA</td>
<td>374-751-23</td>
</tr>
<tr>
<td>ORANGE</td>
<td>2184</td>
<td>BATAVIA</td>
<td>374-751-22</td>
</tr>
<tr>
<td>ORANGE</td>
<td>2188</td>
<td>BATAVIA</td>
<td>374-751-21</td>
</tr>
<tr>
<td>JURISDICTI</td>
<td>STREET_NO_NAME</td>
<td>APN</td>
<td>WATERSHED_</td>
</tr>
<tr>
<td>-----------</td>
<td>---------------</td>
<td>------</td>
<td>------------</td>
</tr>
<tr>
<td>ORANGE</td>
<td>2192</td>
<td>374-751-20</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>2260</td>
<td>374-751-12</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>2270</td>
<td>374-751-11</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>2280</td>
<td>374-751-10</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>2323</td>
<td>374-622-01</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>2336</td>
<td>374-751-06</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>2339</td>
<td>374-621-13</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>2351</td>
<td>374-621-12</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>2365</td>
<td>374-621-10</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>2367</td>
<td>374-621-09</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>2369</td>
<td>374-621-08</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>2372</td>
<td>374-751-04</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>2372</td>
<td>374-751-05</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>2387</td>
<td>374-621-07</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>2396</td>
<td>374-751-02</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>2401</td>
<td>374-621-06</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>2410</td>
<td>374-751-01</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>2425</td>
<td>374-621-04</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>9100</td>
<td>374-751-04</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>1622</td>
<td>375-071-05</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>1655</td>
<td>386-281-04</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>864</td>
<td>386-261-04</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>874</td>
<td>386-261-03</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>886</td>
<td>386-261-02</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>890</td>
<td>386-261-01</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>922</td>
<td>375-212-25</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>934</td>
<td>375-212-23</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>944</td>
<td>375-212-22</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>956</td>
<td>375-212-21</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>966</td>
<td>375-212-20</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>978</td>
<td>375-212-19</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>988</td>
<td>375-212-18</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>3308</td>
<td>094-354-21</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE</td>
<td>3331</td>
<td>094-353-03</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE</td>
<td>3024</td>
<td>383-091-04</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>3038</td>
<td>383-091-05</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>3044</td>
<td>383-091-06</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>3400</td>
<td>094-491-21</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>3827</td>
<td>137-463-40</td>
<td>Los Alamitos/East Garden Grove/Bolsa Chica</td>
</tr>
<tr>
<td>ORANGE</td>
<td>4402</td>
<td>392-181-17</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE</td>
<td>4009</td>
<td>093-372-14</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>4021</td>
<td>093-372-15</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>4520</td>
<td>094-503-35</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE</td>
<td>433</td>
<td>039-012-19</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>2915</td>
<td>378-394-10</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>710</td>
<td>386-261-21</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>720</td>
<td>386-261-23</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>809</td>
<td>375-212-10</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>810</td>
<td>386-261-25</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>815</td>
<td>375-212-27</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>825</td>
<td>375-212-28</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>2809</td>
<td>372-571-18</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>2825</td>
<td>372-571-13</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>2839</td>
<td>372-571-15</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>2845</td>
<td>372-571-16</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>4238</td>
<td>392-182-20</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE</td>
<td>15711</td>
<td>374-611-19</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>531</td>
<td>374-611-18</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>543</td>
<td>374-611-17</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>615</td>
<td>374-611-15</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>627</td>
<td>374-611-14</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>639</td>
<td>374-611-13</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>1008</td>
<td>374-144-01</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>1021</td>
<td>374-142-02</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>1045</td>
<td>374-142-04</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>1106</td>
<td>374-144-05</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>1118</td>
<td>374-144-06</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>JURISDICTION</td>
<td>STREET_NAME</td>
<td>APN</td>
<td>WATERSHED</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
<td>------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>ORANGE</td>
<td>1130</td>
<td>374-144-07</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>1142</td>
<td>374-144-08</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>1143</td>
<td>374-144-09</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>1204</td>
<td>374-144-10</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>1216</td>
<td>374-144-11</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>519</td>
<td>374-131-02</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>528</td>
<td>374-132-03</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>531</td>
<td>374-131-03</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>605</td>
<td>374-131-05</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>617</td>
<td>374-131-06</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>628</td>
<td>374-132-07</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>629</td>
<td>374-131-07</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>703</td>
<td>374-131-09</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>727</td>
<td>374-131-11</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>801</td>
<td>374-132-13</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>824</td>
<td>374-132-15</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>836</td>
<td>374-143-01</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>848</td>
<td>374-143-02</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>849</td>
<td>374-141-02</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>910</td>
<td>374-143-03</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>934</td>
<td>374-143-05</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>935</td>
<td>374-141-05</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>181</td>
<td>094-491-11</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>190</td>
<td>094-492-02</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>205</td>
<td>094-491-09</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>225</td>
<td>094-491-07</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>858</td>
<td>093-344-25</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>870</td>
<td>386-521-10</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>3918</td>
<td>093-374-11</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>2544</td>
<td>372-582-02</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>2615</td>
<td>372-581-04</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>295</td>
<td>094-503-25</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE</td>
<td>201</td>
<td>392-192-12</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>207</td>
<td>392-192-13</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>217</td>
<td>392-192-14</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>4045</td>
<td>094-121-56</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE</td>
<td>6314</td>
<td>379-481-02</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>6315</td>
<td>379-481-03</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>6337</td>
<td>379-481-11</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>6348</td>
<td>379-481-03</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>1490</td>
<td>375-262-07</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>19001</td>
<td>379-311-23</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>4933</td>
<td>379-311-12</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>4934</td>
<td>379-311-22</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>5006</td>
<td>379-311-21</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>5021</td>
<td>379-311-13</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>5026</td>
<td>379-311-20</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>5041</td>
<td>379-311-54</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>5108</td>
<td>379-311-18</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>5111</td>
<td>379-311-16</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>5117</td>
<td>379-311-14</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>5119</td>
<td>379-311-56</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>5121</td>
<td>379-311-55</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>601</td>
<td>093-344-07</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>642</td>
<td>093-344-02</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>147</td>
<td>233-113-12</td>
<td>Los Alamitos/East Garden Grove/Bolsa Chica</td>
</tr>
<tr>
<td>ORANGE</td>
<td>147</td>
<td>233-113-13</td>
<td>Los Alamitos/East Garden Grove/Bolsa Chica</td>
</tr>
<tr>
<td>ORANGE</td>
<td>6439</td>
<td>379-481-04</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>6440</td>
<td>379-481-11</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>6501</td>
<td>379-481-05</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>6508</td>
<td>379-481-10</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>6523</td>
<td>379-481-06</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>6542</td>
<td>379-481-08</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>6545</td>
<td>379-481-07</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>1960</td>
<td>374-033-42</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>872</td>
<td>390-532-16</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>603</td>
<td>093-373-06</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>JURISDICTION</td>
<td>STREET_NO NAME</td>
<td>APN</td>
<td>WATERSHED</td>
</tr>
<tr>
<td>--------------</td>
<td>----------------</td>
<td>-------</td>
<td>-----------</td>
</tr>
<tr>
<td>ORANGE</td>
<td>615 HEATHERSTONE</td>
<td>093-373-05</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>653 HEATHERSTONE</td>
<td>093-373-01</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>600 HILM</td>
<td>374-511-02</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>188 HEWES</td>
<td>392-182-02</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE</td>
<td>256 HEWES</td>
<td>392-182-10</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE</td>
<td>259 HEWES</td>
<td>094-502-09</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE</td>
<td>283 HEWES</td>
<td>094-503-27</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE</td>
<td>288 HEWES</td>
<td>392-172-01</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE</td>
<td>296 HEWES</td>
<td>392-172-02</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE</td>
<td>304 HEWES</td>
<td>392-172-18</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE</td>
<td>309 HEWES</td>
<td>094-503-28</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE</td>
<td>321 HEWES</td>
<td>094-503-29</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE</td>
<td>329 HEWES</td>
<td>094-503-30</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE</td>
<td>423 HEWES</td>
<td>393-341-42</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE</td>
<td>429 HEWES</td>
<td>393-341-41</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE</td>
<td>441 HEWES</td>
<td>393-341-39</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE</td>
<td>447 HEWES</td>
<td>393-341-38</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE</td>
<td>467 HEWES</td>
<td>393-341-35</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE</td>
<td>473 HEWES</td>
<td>393-341-34</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE</td>
<td>497 HEWES</td>
<td>393-341-30</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE</td>
<td>505 HEWES</td>
<td>393-341-29</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE</td>
<td>12501 HILL</td>
<td>393-341-17</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE</td>
<td>421 HILL</td>
<td>393-342-03</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE</td>
<td>421 HILL</td>
<td>393-342-04</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE</td>
<td>460 HILL</td>
<td>393-341-13</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE</td>
<td>469 HILL</td>
<td>393-342-11</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE</td>
<td>485 HILL</td>
<td>393-342-14</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE</td>
<td>491 HILL</td>
<td>393-342-15</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE</td>
<td>1292 HILTON</td>
<td>379-481-12</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>1655 HILTMERS</td>
<td>379-421-24</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>126 KATHLEEN</td>
<td>094-552-02</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>160 KATHLEEN</td>
<td>094-552-05</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>10282 KENNYMEAD</td>
<td>093-241-18</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>10282 KENNYMEAD</td>
<td>093-241-04</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>1387 KENNYMEAD</td>
<td>093-241-25</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>1425 KENNYMEAD</td>
<td>093-241-26</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>1463 KENNYMEAD</td>
<td>093-241-37</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>1515 KENNYMEAD</td>
<td>093-241-22</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>1537 KENNYMEAD</td>
<td>093-241-21</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>1571 KENNYMEAD</td>
<td>093-241-19</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>656 LA NAE</td>
<td>093-371-17</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>665 LA NAE</td>
<td>093-371-11</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>666 LA NAE</td>
<td>093-371-16</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>678 LA NAE</td>
<td>093-371-15</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>963 LAUREL</td>
<td>378-394-16</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>147 LINCOLN</td>
<td>360-241-07</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>300 LINCOLN</td>
<td>374-291-04</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>410 LINCOLN</td>
<td>374-273-01</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>500 LINCOLN</td>
<td>374-301-38</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>516 LINCOLN</td>
<td>374-301-04</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>802 LINCOLN</td>
<td>374-491-03</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>805 LINCOLN</td>
<td>386-302-18</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>900 LINCOLN</td>
<td>374-491-09</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>332 MAGNOLIA</td>
<td>386-122-20</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>344 MAGNOLIA</td>
<td>386-122-43</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>348 MAGNOLIA</td>
<td>386-152-22</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>375 MAGNOLIA</td>
<td>386-123-04</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>3412 MAPLE</td>
<td>093-361-06</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>3514 MAPLE</td>
<td>093-361-11</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>4121 MARMON</td>
<td>392-192-27</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>4417 MARMON</td>
<td>392-172-16</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE</td>
<td>131 MCPHERSON</td>
<td>383-092-01</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>185 MCPHERSON</td>
<td>383-091-01</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>10831 MEADS</td>
<td>379-421-05</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>1377 MEADS</td>
<td>379-084-14</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>1560 MEADS</td>
<td>379-581-01</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>896 MEADS</td>
<td>379-421-28</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>JURISDICTION</td>
<td>STREET_NO NAME</td>
<td>APN</td>
<td>WATERSHED</td>
</tr>
<tr>
<td>--------------</td>
<td>----------------</td>
<td>--------------</td>
<td>---------------</td>
</tr>
<tr>
<td>ORANGE</td>
<td>926 MEADS</td>
<td>379-421-02</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>928 MEADS</td>
<td>379-421-03</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>930 MEADS</td>
<td>379-421-28</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>4612 MONTGOMERY</td>
<td>393-341-02</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE</td>
<td>4618 MONTGOMERY</td>
<td>393-341-03</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE</td>
<td>4626 MONTGOMERY</td>
<td>393-341-04</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE</td>
<td>4638 MONTGOMERY</td>
<td>393-341-06</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE</td>
<td>1060 MORADA</td>
<td>379-421-07</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>1443 NUBIAN</td>
<td>390-533-10</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>6705 OAK</td>
<td>370-051-01</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>6719 OAK</td>
<td>370-051-02</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>241 OLYMPIA</td>
<td>093-361-15</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>242 OLYMPIA</td>
<td>093-362-15</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>2026 ORANGE GROVE</td>
<td>386-173-02</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>2035 ORANGE GROVE</td>
<td>386-172-30</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>1250 ORANGE PARK</td>
<td>379-441-11</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>1272 ORANGE PARK</td>
<td>379-441-10</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>1290 ORANGE PARK</td>
<td>379-441-09</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>1328 ORANGE PARK</td>
<td>379-481-09</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>198 PARK</td>
<td>393-184-28</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE</td>
<td>211 PARK</td>
<td>392-182-18</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE</td>
<td>219 PARK</td>
<td>392-182-17</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE</td>
<td>230 PARK</td>
<td>392-184-24</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE</td>
<td>235 PARK</td>
<td>392-182-16</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE</td>
<td>242 PARK</td>
<td>392-184-22</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE</td>
<td>248 PARK</td>
<td>392-184-21</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE</td>
<td>259 PARK</td>
<td>392-182-13</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE</td>
<td>266 PARK</td>
<td>392-184-19</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE</td>
<td>527 PARK</td>
<td>386-173-11</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>539 PARK</td>
<td>386-173-12</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>3720 PARK CENTRAL</td>
<td>231-283-04</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>2934 PEARL</td>
<td>383-092-02</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>2942 PEARL</td>
<td>383-092-03</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>3003 PEARL</td>
<td>383-091-02</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>3004 PEARL</td>
<td>383-092-04</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>3014 PEARL</td>
<td>383-092-05</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>3015 PEARL</td>
<td>383-091-02</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>3022 PEARL</td>
<td>383-092-06</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>3023 PEARL</td>
<td>383-091-09</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>3034 PEARL</td>
<td>383-092-07</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>3035 PEARL</td>
<td>383-091-08</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>3042 PEARL</td>
<td>383-092-08</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>3043 PEARL</td>
<td>383-091-07</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>4627 PHILLIPS</td>
<td>393-341-25</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE</td>
<td>4645 PHILLIPS</td>
<td>393-341-24</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE</td>
<td>4402 PHILLO</td>
<td>390-172-09</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE</td>
<td>4410 PHILLO</td>
<td>392-172-12</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE</td>
<td>4416 PHILLO</td>
<td>392-172-17</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE</td>
<td>4505 PHILLO</td>
<td>094-502-08</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE</td>
<td>4515 PHILLO</td>
<td>094-502-07</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE</td>
<td>4529 PHILLO</td>
<td>094-502-06</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE</td>
<td>4543 PHILLO</td>
<td>094-502-10</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE</td>
<td>4615 PHILLO</td>
<td>094-502-11</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE</td>
<td>11863 PROSPECT</td>
<td>383-093-06</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>156 PROSPECT</td>
<td>383-093-08</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>170 PROSPECT</td>
<td>383-093-07</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>215 PROSPECT</td>
<td>094-493-19</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>259 PROSPECT</td>
<td>094-493-15</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>285 PROSPECT</td>
<td>094-493-13</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>716 PROSPECT</td>
<td>094-385-41</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE</td>
<td>724 PROSPECT</td>
<td>094-385-44</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE</td>
<td>724 PROSPECT</td>
<td>094-385-44</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE</td>
<td>736 PROSPECT</td>
<td>094-385-15</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE</td>
<td>1065 RANCHO SANTIAGO</td>
<td>379-311-11</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>1079 RANCHO SANTIAGO</td>
<td>379-311-10</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>1087 RANCHO SANTIAGO</td>
<td>379-311-02</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>JURISDICTION</td>
<td>STREET_NO NAME</td>
<td>APN</td>
<td>WATERSHED_</td>
</tr>
<tr>
<td>--------------</td>
<td>----------------</td>
<td>-----------</td>
<td>------------</td>
</tr>
<tr>
<td>ORANGE</td>
<td>1089 RANCHO SANTIAGO</td>
<td>379-311-03</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>394 RANCHO SANTIAGO</td>
<td>383-061-10</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>666 RICK</td>
<td>093-371-04</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>692 RICK</td>
<td>093-371-01</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>938 RIDGELINE</td>
<td>379-173-02</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>2633 RIDING</td>
<td>372-582-09</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>2710 RIDING</td>
<td>372-583-04</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>2734 RIDING</td>
<td>372-583-01</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>7843 SANDBERG</td>
<td>370-111-08</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>1425 SANTIAGO</td>
<td>370-231-08</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>2215 SANTIAGO</td>
<td>372-581-01</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>6938 SANTIAGO CANYON</td>
<td>379-581-02</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>7729 SANTIAGO CANYON</td>
<td>093-250-48</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>7837 SANTIAGO CANYON</td>
<td>370-111-12</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>8001 SANTIAGO CANYON</td>
<td>093-160-24</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>2000 SHAFFER</td>
<td>374-431-14</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>2217 SHAFFER</td>
<td>374-132-02</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>180 SHASTA</td>
<td>094-493-01</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>181 SHASTA</td>
<td>094-492-22</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>215 SHASTA</td>
<td>094-492-19</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>221 SHASTA</td>
<td>093-382-05</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>237 SHASTA</td>
<td>093-382-04</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>248 SHASTA</td>
<td>094-493-07</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>258 SHASTA</td>
<td>094-493-08</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>284 SHASTA</td>
<td>094-493-10</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>295 SHASTA</td>
<td>094-492-12</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>3321 STEARNS</td>
<td>094-354-05</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE</td>
<td>342 SWIDLER</td>
<td>094-444-04</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE</td>
<td>545 SWIDLER</td>
<td>094-443-04</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE</td>
<td>559 SWIDLER</td>
<td>094-443-05</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE</td>
<td>595 SWIDLER</td>
<td>094-443-09</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE</td>
<td>3529 TILDEN</td>
<td>094-444-29</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>No NO UNKNOWN ADDRESS</td>
<td>370-111-09</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>No NO UNKNOWN ADDRESS</td>
<td>374-611-20</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>No NO UNKNOWN ADDRESS</td>
<td>379-171-02</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>No NO UNKNOWN ADDRESS</td>
<td>379-311-01</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>No NO UNKNOWN ADDRESS</td>
<td>379-421-25</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>No NO UNKNOWN ADDRESS</td>
<td>379-481-13</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>No NO UNKNOWN ADDRESS</td>
<td>392-183-02</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE</td>
<td>No NO UNKNOWN ADDRESS</td>
<td>392-101-10</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>No NO UNKNOWN ADDRESS</td>
<td>392-231-06</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>No NO UNKNOWN ADDRESS</td>
<td>379-311-09</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>No NO UNKNOWN ADDRESS</td>
<td>392-172-15</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE</td>
<td>No NO UNKNOWN ADDRESS</td>
<td>393-342-02</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE</td>
<td>No NO UNKNOWN ADDRESS</td>
<td>093-250-26</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>No NO UNKNOWN ADDRESS</td>
<td>094-503-31</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE</td>
<td>No NO UNKNOWN ADDRESS</td>
<td>094-503-32</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE</td>
<td>No NO UNKNOWN ADDRESS</td>
<td>392-221-07</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>4505 VIA LARDO</td>
<td>094-503-13</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE</td>
<td>4531 VIA LARDO</td>
<td>094-503-15</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE</td>
<td>4538 VIA LARDO</td>
<td>094-502-03</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE</td>
<td>4604 VIA LARDO</td>
<td>094-502-04</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE</td>
<td>4615 VIA LARDO</td>
<td>094-503-18</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE</td>
<td>2442 VILLA VISTA</td>
<td>372-572-01</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>2529 VILLA VISTA</td>
<td>372-571-04</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>2544 VILLA VISTA</td>
<td>372-572-05</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>1275 WALNUT</td>
<td>386-215-06</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>137 WALNUT</td>
<td>039-133-13</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>912 WANDA</td>
<td>378-394-09</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>932 WANDA</td>
<td>378-394-08</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>962 WANDA</td>
<td>378-394-05</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>990 WANDA</td>
<td>378-394-03</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>18521 WASHINGTON</td>
<td>392-191-16</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>4310 WASHINGTON</td>
<td>392-184-05</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE</td>
<td>4317 WASHINGTON</td>
<td>392-183-08</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE</td>
<td>4332 WASHINGTON</td>
<td>392-184-02</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE</td>
<td>4340 WASHINGTON</td>
<td>392-184-01</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>JURISDICTION</td>
<td>STREET_NAME</td>
<td>APN</td>
<td>WATERSHED</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
<td>-----</td>
<td>-----------</td>
</tr>
<tr>
<td>ORANGE</td>
<td>WINDES</td>
<td>370-051-06</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>WINDES</td>
<td>370-063-03</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>WINDES</td>
<td>370-063-02</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>WINDES</td>
<td>370-063-04</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>WINDES</td>
<td>370-063-09</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>WONDER VIEW</td>
<td>379-311-19</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>WOODBURY</td>
<td>390-533-28</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>WOODBURY</td>
<td>390-533-29</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>WOODBURY</td>
<td>390-533-23</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>WOODBURY</td>
<td>390-533-22</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>WOODBURY</td>
<td>390-533-21</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>WOODBURY</td>
<td>390-533-34</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE</td>
<td>WOODVIEW</td>
<td>379-441-01</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>17TH</td>
<td>401-441-03</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>ADKINSON</td>
<td>842-112-25</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>ADKINSON</td>
<td>842-112-33</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>ADKINSON</td>
<td>842-112-38</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>ADKINSON</td>
<td>842-112-29</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>AMAPOLA</td>
<td>379-211-03</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>APPIAN</td>
<td>502-242-22</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>APPIAN</td>
<td>502-231-04</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>APUESTO</td>
<td>804-181-04</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>ARTNELL</td>
<td>393-301-42</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>AVE SA</td>
<td>804-171-05</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>AVEIDA PALMAR</td>
<td>379-294-02</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>BALDWIN</td>
<td>017-043-02</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>BALDWIN</td>
<td>017-043-03</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>BALDWIN</td>
<td>017-043-04</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>BALDWIN</td>
<td>017-043-06</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>BALDWIN</td>
<td>017-044-16</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>BALDWIN</td>
<td>017-044-06</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>BALDWIN</td>
<td>017-044-18</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>BALDWIN</td>
<td>017-044-14</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>BALDWIN</td>
<td>017-044-19</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>BARRETT</td>
<td>393-191-01</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>BARRETT</td>
<td>393-181-04</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>BARRY</td>
<td>393-011-11</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>BENETA</td>
<td>401-473-13</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>BENT TREE</td>
<td>104-290-16</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>BEVERLY GLEN</td>
<td>502-312-10</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>BLUE RIDGE</td>
<td>395-343-06</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>Bowman</td>
<td>395-352-01</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>BR Wayne</td>
<td>393-462-03</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>BRENTWOOD</td>
<td>303-081-08</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>BRENDY</td>
<td>303-081-09</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>BRENDY</td>
<td>303-081-10</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>BRENDY</td>
<td>303-081-13</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>BRENDY</td>
<td>303-081-12</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>BRENDY</td>
<td>303-081-11</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>BRENTWOOD</td>
<td>503-281-03</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>BRITANY WOODS</td>
<td>103-394-02</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>BROADVIEW</td>
<td>503-551-02</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>BROADVIEW</td>
<td>503-705-10</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>BROOKHURST</td>
<td>127-392-14</td>
<td>Los Alamitos/East Garden Grove/Bolsa Chica</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>BUENA VISTA</td>
<td>360-362-01</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>BURDIE</td>
<td>392-143-15</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>BYTHA</td>
<td>876-035-01</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>CALVO</td>
<td>395-191-04</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>CAMERON</td>
<td>401-081-08</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>CANAL</td>
<td>374-472-40</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>CANAL</td>
<td>374-472-39</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>CANAL</td>
<td>374-472-38</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>CANAL</td>
<td>374-472-37</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>JURISDICTION</td>
<td>STREET NO NAME</td>
<td>APN</td>
<td>WATERSHED</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------------------</td>
<td>-----------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>8891 CANAL</td>
<td>374-472-36</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>11042 CANASTA</td>
<td>017-320-21</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>11061 CANASTA</td>
<td>017-320-61</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>11102 CANASTA</td>
<td>017-320-22</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>30041 CANYON</td>
<td>856-041-27</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>30061 CANYON</td>
<td>856-041-29</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>30062 CANYON</td>
<td>856-041-42</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>30081 CANYON</td>
<td>856-041-30</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>30122 CANYON</td>
<td>856-041-22</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>19081 CENTER</td>
<td>093-311-07</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>19091 CENTER</td>
<td>093-311-08</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>19911 CHAPMAN</td>
<td>395-291-06</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>19931 CHAPMAN</td>
<td>395-291-05</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>1111 CHARWOOD</td>
<td>502-101-27</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>1131 CITRUS</td>
<td>017-396-01</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>1182 CITRUS</td>
<td>017-173-02</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>1231 CITRUS</td>
<td>017-174-02</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>1241 CITRUS</td>
<td>017-174-04</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>1261 CITRUS</td>
<td>017-174-07</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>1271 CITRUS</td>
<td>017-174-08</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>1359 CITRUS</td>
<td>017-174-11</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>1365 CITRUS</td>
<td>017-174-12</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>1371 CITRUS</td>
<td>017-174-13</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>14211 CLARISSA</td>
<td>401-121-18</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>14242 CLARISSA</td>
<td>401-121-08</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>14271 CLARISSA</td>
<td>401-121-13</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>14342 CLARISSA</td>
<td>401-121-24</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>14361 CLARISSA</td>
<td>401-121-30</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>31741 CONTIJOC</td>
<td>804-181-07</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>10202 CRAWFORD CANYON</td>
<td>393-462-12</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>10262 CRAWFORD CANYON</td>
<td>393-101-03</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>CRYSTAL COVE STATE PARK</td>
<td>NO APN</td>
<td>Los Trancos/Muddy Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>15521 CULLY</td>
<td>374-611-04</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>15531 CULLY</td>
<td>374-611-05</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>15592 CULLY</td>
<td>374-612-11</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>15602 CULLY</td>
<td>374-612-12</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>15612 CULLY</td>
<td>374-612-13</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>15662 CULLY</td>
<td>374-612-17</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>1003 CYPRESS</td>
<td>017-311-37</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>1042 CYPRESS</td>
<td>017-320-69</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>1052 CYPRESS</td>
<td>017-320-63</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>1122 CYPRESS</td>
<td>017-320-62</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>1160 CYPRESS</td>
<td>017-320-20</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>1222 CYPRESS</td>
<td>017-320-39</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>20352 CYPRESS</td>
<td>439-372-12</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>19831 DALL</td>
<td>395-412-03</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>13761 DEODAR</td>
<td>396-303-26</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>13792 DEODAR</td>
<td>396-304-05</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>13842 DEODAR</td>
<td>396-304-10</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>13862 DEODAR</td>
<td>396-314-01</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>13871 DEODAR</td>
<td>396-313-10</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>13911 DEODAR</td>
<td>396-313-08</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>12941 DUNAS</td>
<td>094-354-34</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>18751 EL CARMEN</td>
<td>093-332-26</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>12632 ELIZABETH</td>
<td>501-072-07</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>19741 ESPERANZA</td>
<td>349-071-25</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>13011 ETON</td>
<td>395-053-02</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>13981 ETON</td>
<td>395-474-07</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>13982 ETON</td>
<td>395-474-06</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>12451 EVENINGSIDE</td>
<td>104-332-07</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>18231 FAIRHAVEN</td>
<td>094-365-06</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>12612 FAIRMONT</td>
<td>392-142-02</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>13411 FAIRMONT</td>
<td>395-252-44</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>13431 FAIRMONT</td>
<td>395-252-45</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>16311 FELLOWS</td>
<td>374-091-09</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>16312 FELLOWS</td>
<td>374-091-21</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>16316 FELLOWS</td>
<td>374-091-23</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>JURISDICTION</td>
<td>STREET_NO NAME</td>
<td>APN</td>
<td>WATERSHED</td>
</tr>
<tr>
<td>--------------</td>
<td>----------------</td>
<td>-----</td>
<td>-------------</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>16322 FELLOWS</td>
<td>374-091-18</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>16331 FELLOWS</td>
<td>374-091-10</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>16332 FELLOWS</td>
<td>374-091-17</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>16381 FELLOWS</td>
<td>374-091-13</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>16382 FELLOWS</td>
<td>374-091-14</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>16402 FELLOWS</td>
<td>374-101-26</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>17966 FIESTA</td>
<td>401-413-10</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>1262 FLAMINIAN</td>
<td>502-233-04</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>20301 FLANAGAN</td>
<td>842-161-03</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>20302 FLANAGAN</td>
<td>842-161-04</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>20331 FLANAGAN</td>
<td>842-161-02</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>20342 FLANAGAN</td>
<td>842-161-05</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>20371 FLANAGAN</td>
<td>842-161-01</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>13592 FLINT</td>
<td>395-281-06</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>1092 FOOTHILL</td>
<td>502-223-05</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>1802 FOOTHILL</td>
<td>502-431-03</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>11591 FORUM</td>
<td>502-222-12</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>18872 FOWLER</td>
<td>393-301-29</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>18955 FOWLER</td>
<td>094-192-58</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>10692 FORDON</td>
<td>503-452-09</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>9761 GORDON</td>
<td>017-022-08</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>9162 GORDON</td>
<td>017-023-04</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>9181 GORDON</td>
<td>017-022-07</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>9182 GORDON</td>
<td>017-023-03</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>9192 GORDON</td>
<td>017-023-02</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>9212 GORDON</td>
<td>017-023-01</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>9231 GORDON</td>
<td>017-052-07</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>9242 GORDON</td>
<td>017-043-01</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>9251 GORDON</td>
<td>017-052-08</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>9281 GORDON</td>
<td>017-052-10</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>9291 GORDON</td>
<td>017-052-11</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>9292 GORDON</td>
<td>017-041-03</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>9311 GORDON</td>
<td>017-052-12</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>9312 GORDON</td>
<td>017-041-02</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>9322 GORDON</td>
<td>017-041-01</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>10391 GREENBRIER</td>
<td>503-881-04</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>1181 HACIENDA</td>
<td>017-102-45</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>30854 HAMILTON</td>
<td>856-151-06</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>29199 HAZEL BELL</td>
<td>105-133-31</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>16292 HEIM</td>
<td>374-091-50</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>16322 HEIM</td>
<td>374-091-05</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>16342 HEIM</td>
<td>374-091-04</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>16352 HEIM</td>
<td>374-091-03</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>16372 HEIM</td>
<td>374-091-02</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>16382 HEIM</td>
<td>374-091-01</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>16392 HEIM</td>
<td>374-101-01</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>16402 HEIM</td>
<td>374-101-03</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>16422 HEIM</td>
<td>374-101-04</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>16472 HEIM</td>
<td>374-101-06</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>16502 HEIM</td>
<td>374-101-07</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>16522 HEIM</td>
<td>374-101-08</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>16542 HEIM</td>
<td>374-101-09</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>1291 HENSEL</td>
<td>303-081-15</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>1301 HENSEL</td>
<td>303-081-14</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>19782 HIGHLAND</td>
<td>379-421-03</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>10012 HIGHLAND</td>
<td>503-301-05</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>10012 HIGHLAND</td>
<td>503-301-04</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>10055 HIGHLAND</td>
<td>503-311-15</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>10060 HIGHLAND</td>
<td>503-671-05</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>20081 HILLSIDE</td>
<td>379-541-13</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>12631 HINTON</td>
<td>393-121-03</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>14042 HOLT</td>
<td>401-052-03</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>1075 IDAHO</td>
<td>017-161-30</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>1101 IDAHO</td>
<td>017-415-07</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>1114 IDAHO</td>
<td>017-396-08</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>1272 IDAHO</td>
<td>017-174-32</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>1302 IDAHO</td>
<td>017-174-29</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>JURISDICTION</td>
<td>STREET NO NAME</td>
<td>APN</td>
<td>WATERSHED_</td>
</tr>
<tr>
<td>---------------</td>
<td>----------------</td>
<td>-----</td>
<td>------------</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>IDAHO</td>
<td>017-174-28</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>IDAHO</td>
<td>017-174-27</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>IDAHO</td>
<td>017-174-24</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>IMPALA</td>
<td>401-441-09</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>IRVINE</td>
<td>103-363-26</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>IRVINE</td>
<td>103-376-07</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>IVY</td>
<td>093-452-15</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>KENNETH</td>
<td>103-342-07</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>KENSING</td>
<td>502-081-13</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>KERMORE</td>
<td>079-752-09</td>
<td>Los Alamitos/East Garden Grove/Bolsa Chica</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>KERMORE</td>
<td>079-752-17</td>
<td>Los Alamitos/East Garden Grove/Bolsa Chica</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>KERMORE</td>
<td>079-752-18</td>
<td>Los Alamitos/East Garden Grove/Bolsa Chica</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>KERMORE</td>
<td>079-751-05</td>
<td>Los Alamitos/East Garden Grove/Bolsa Chica</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>KERMORE</td>
<td>079-751-13</td>
<td>Los Alamitos/East Garden Grove/Bolsa Chica</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>KERMORE</td>
<td>079-752-12</td>
<td>Los Alamitos/East Garden Grove/Bolsa Chica</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>KERMORE</td>
<td>079-751-14</td>
<td>Los Alamitos/East Garden Grove/Bolsa Chica</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>KERMORE</td>
<td>079-752-13</td>
<td>Los Alamitos/East Garden Grove/Bolsa Chica</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>KERMORE</td>
<td>079-751-11</td>
<td>Los Alamitos/East Garden Grove/Bolsa Chica</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>KERMORE</td>
<td>079-751-08</td>
<td>Los Alamitos/East Garden Grove/Bolsa Chica</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>KOOPMANS</td>
<td>017-033-13</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>KOOPMANS</td>
<td>017-033-14</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>KOOPMANS</td>
<td>017-034-02</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>KOOPMANS</td>
<td>017-033-15</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>KOOPMANS</td>
<td>017-034-03</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>KOOPMANS</td>
<td>017-034-04</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>LA COLINA</td>
<td>103-142-29</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>LA CUESTA</td>
<td>502-353-05</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>LA CUESTA</td>
<td>502-352-06</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>LA CUESTA</td>
<td>502-333-05</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>LA CUESTA</td>
<td>502-332-08</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>LADERA SENDA</td>
<td>503-102-28</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>LAMBERT</td>
<td>401-433-04</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>LAMAROSE CANYON</td>
<td>856-031-16</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>LAMAROSE CANYON</td>
<td>856-031-12</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>LAMAROSE CANYON</td>
<td>856-031-13</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>LANDFAIR</td>
<td>502-121-11</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>LARKSTONE</td>
<td>094-403-06</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>LAURINDA</td>
<td>395-222-15</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>LEAFWOOD</td>
<td>395-282-12</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>LEAL</td>
<td>856-032-90</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>LEMON</td>
<td>503-491-20</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>LEMON HEIGHTS</td>
<td>503-491-28</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>LEMON HEIGHTS</td>
<td>502-362-16</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>LEMON HEIGHTS</td>
<td>502-381-02</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>LEMON HEIGHTS</td>
<td>502-381-03</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>LEMON HEIGHTS</td>
<td>502-341-06</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>LEMON HEIGHTS</td>
<td>502-401-03</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>LEMON HEIGHTS</td>
<td>401-481-42</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>LEWIS</td>
<td>093-270-29</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>LEWIS</td>
<td>093-270-36</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>LEWIS</td>
<td>093-270-22</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>LEWIS</td>
<td>093-270-23</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>LEWIS</td>
<td>093-270-07</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>LIVE OAK CANYON</td>
<td>856-031-01</td>
<td>Aliso Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>LIVE OAK CANYON</td>
<td>856-031-15</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>LIVE OAK CANYON</td>
<td>856-031-18</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>LIVE OAK CANYON</td>
<td>856-031-17</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>LIVE OAK CANYON</td>
<td>856-041-21</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>LIVE OAK CANYON</td>
<td>856-041-34</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>LIVE OAK CANYON</td>
<td>856-041-39</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>LIVE OAK CANYON</td>
<td>856-042-09</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>LIVE OAK CANYON</td>
<td>856-041-35</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>LIVE OAK CANYON</td>
<td>856-041-26</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>LIVE OAK CANYON</td>
<td>856-041-13</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>LIVE OAK CANYON</td>
<td>856-041-25</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>LIVE OAK CANYON</td>
<td>856-041-11</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>LIVE OAK CANYON</td>
<td>856-052-20</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>JURISDICTION</td>
<td>STREET_NAME</td>
<td>APN</td>
<td>WATERSHED</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------------</td>
<td>-------</td>
<td>-----------</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>MOUNTAIN VIEW</td>
<td>842-091-56</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>MOUNTAIN VIEW</td>
<td>842-091-55</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>MOUNTAIN VIEW</td>
<td>842-091-52</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>MOUNTAIN VIEW</td>
<td>842-091-57</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>MOUNTAIN VIEW</td>
<td>842-091-58</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>MOUNTAIN VIEW</td>
<td>348-104-03</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>MOUNTAIN VIEW</td>
<td>348-104-05</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>N COAST</td>
<td>NO APN</td>
<td>Los Trancos/Muddy Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>NEWPORT</td>
<td>502-221-12</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>NORTH</td>
<td>842-111-01</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>NORWOOD PARK</td>
<td>401-463-09</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>OAK</td>
<td>842-101-32</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>OAK</td>
<td>105-171-59</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>OAK</td>
<td>105-171-78</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>OAK RIDGE</td>
<td>395-361-03</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>OAK RIDGE</td>
<td>395-502-07</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>OCEANVIEW</td>
<td>360-361-09</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>OCEANVIEW</td>
<td>360-364-03</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>OLIVE</td>
<td>842-101-25</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>OLYMPIA</td>
<td>364-364-01</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>ORANGE</td>
<td>127-231-49</td>
<td>Carbon Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>ORANGE OLIVE</td>
<td>374-091-08</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>ORANGE OLIVE</td>
<td>374-091-20</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>OAK PARK</td>
<td>NO APN</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>OAK PARK</td>
<td>379-412-01</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>ORANGE PARK</td>
<td>093-433-21</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>ORTEGA</td>
<td>125-162-12</td>
<td>Prima Deshecha/Segunda Deshecha</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>ORTEGA</td>
<td>125-161-11</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>ORTEGA</td>
<td>125-161-03</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>OVERHILL</td>
<td>503-171-01</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>OVERHILL</td>
<td>503-171-05</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>PAGE</td>
<td>071-511-17</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>PAGE</td>
<td>071-511-16</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>PAGE</td>
<td>071-501-01</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>PAGE</td>
<td>071-502-13</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>PALM</td>
<td>303-061-03</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>PALM</td>
<td>303-021-04</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>PALM</td>
<td>303-372-01</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>PASADENA</td>
<td>396-303-12</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>PASADENA</td>
<td>396-303-14</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>PASADENA</td>
<td>396-303-15</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>PASADENA</td>
<td>396-303-16</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>PASADENA</td>
<td>396-303-17</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>PASADENA</td>
<td>396-303-18</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>PASADENA</td>
<td>396-303-19</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>PASADENA</td>
<td>396-303-20</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>PASADENA</td>
<td>396-303-05</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>PASADENA</td>
<td>396-303-04</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>PERIWINKLE</td>
<td>393-071-20</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>PINE</td>
<td>842-111-31</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>PINE</td>
<td>842-111-33</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>PINE</td>
<td>842-111-34</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>PINE</td>
<td>842-111-35</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>PINE</td>
<td>842-111-68</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>PINE</td>
<td>842-111-73</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>PONDEROSA</td>
<td>396-313-01</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>PROSPECT</td>
<td>094-402-22</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>PROSPECT</td>
<td>395-222-27</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>PROSPECT</td>
<td>395-331-20</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>PROSPECT</td>
<td>395-335-08</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>PROSPECT</td>
<td>395-281-05</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>RAINIER</td>
<td>395-251-04</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>RAINIER</td>
<td>395-324-03</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>RANCHO SANTIAGO</td>
<td>379-141-37</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>JURISDICTION</td>
<td>STREET_NO NAME</td>
<td>APN</td>
<td>WATERSHED_</td>
</tr>
<tr>
<td>--------------</td>
<td>----------------</td>
<td>-----------</td>
<td>------------------</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>11821 RANCHO SANTIAGO</td>
<td>383-082-19</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>12822 RANCHWOOD</td>
<td>104-474-10</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>9002 RANDALL</td>
<td>017-003-01</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>9021 RANDALL</td>
<td>017-031-02</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>9022 RANDALL</td>
<td>017-033-02</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>9031 RANDALL</td>
<td>017-031-03</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>9032 RANDALL</td>
<td>017-033-03</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>9041 RANDALL</td>
<td>017-031-04</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>9042 RANDALL</td>
<td>017-033-04</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>9061 RANDALL</td>
<td>017-031-05</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>9062 RANDALL</td>
<td>017-033-05</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>9071 RANDALL</td>
<td>017-031-06</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>9081 RANDALL</td>
<td>017-031-07</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>9082 RANDALL</td>
<td>017-033-07</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>9101 RANDALL</td>
<td>017-031-08</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>9102 RANDALL</td>
<td>017-033-08</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>9112 RANDALL</td>
<td>017-033-09</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>9121 RANDALL</td>
<td>017-031-09</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>9132 RANDALL</td>
<td>017-033-10</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>9142 RANDALL</td>
<td>017-033-11</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>9161 RANDALL</td>
<td>017-032-02</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>9162 RANDALL</td>
<td>017-033-12</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>9241 RANDALL</td>
<td>017-043-07</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>9242 RANDALL</td>
<td>017-044-17</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>9261 RANDALL</td>
<td>017-042-06</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>9262 RANDALL</td>
<td>017-044-05</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>9281 RANDALL</td>
<td>017-042-07</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>9282 RANDALL</td>
<td>017-044-04</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>9291 RANDALL</td>
<td>017-042-08</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>9292 RANDALL</td>
<td>017-044-03</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>9311 RANDALL</td>
<td>017-042-09</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>9312 RANDALL</td>
<td>017-044-02</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>9321 RANDALL</td>
<td>017-042-10</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>9732 RANGEVIEW</td>
<td>503-271-05</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>11976 RED HILL</td>
<td>502-011-05</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>13032 RED HILL</td>
<td>103-471-03</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>13062 RED HILL</td>
<td>103-471-05</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>2011 RISABERRY</td>
<td>104-444-18</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>1302 RISA</td>
<td>502-021-08</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>20151 ROGERS</td>
<td>379-061-27</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>20191 ROGERS</td>
<td>379-061-28</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>14711 ROMANZA</td>
<td>401-481-26</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>13092 ROSALIND</td>
<td>395-202-08</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>20091 ROSE CANYON</td>
<td>842-122-16</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>9272 RUSSELL</td>
<td>017-052-04</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>9292 RUSSELL</td>
<td>017-052-03</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>3108 RUSSELL</td>
<td>842-111-50</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>17431 SANTA CLARA</td>
<td>395-252-15</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>18042 SANTA CLARA</td>
<td>395-335-01</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>20022 SANTIAGO CANYON</td>
<td>379-571-12</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>20649 SANTIAGO CANYON</td>
<td>093-242-82</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>20657 SANTIAGO CANYON</td>
<td>093-242-77</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>20661 SANTIAGO CANYON</td>
<td>093-242-52</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>31062 SHADY</td>
<td>842-101-20</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>11811 SHADYCREST</td>
<td>303-021-07</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>11812 SHADYCREST</td>
<td>303-021-12</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>11890 SHADYCREST</td>
<td>303-021-11</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>11931 SHADYCREST</td>
<td>303-021-02</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>9021 SHARON</td>
<td>017-033-47</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>9022 SHARON</td>
<td>017-033-26</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>9041 SHARON</td>
<td>017-033-45</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>9061 SHARON</td>
<td>017-033-44</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>9062 SHARON</td>
<td>017-033-29</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>9071 SHARON</td>
<td>017-033-43</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>9072 SHARON</td>
<td>017-033-50</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>9082 SHARON</td>
<td>017-033-31</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>9101 SHARON</td>
<td>017-033-41</td>
<td>San Gabriel River/Coyote Creek</td>
</tr>
<tr>
<td>JURISDICTION</td>
<td>STREET_NO</td>
<td>NAME</td>
<td>APN</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
<td>---------------</td>
<td>------------</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>9111</td>
<td>SHARON</td>
<td>017-033-40</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>9112</td>
<td>SHARON</td>
<td>017-033-33</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>9113</td>
<td>SHARON</td>
<td>017-033-39</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>9132</td>
<td>SHARON</td>
<td>017-033-34</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>9142</td>
<td>SHARON</td>
<td>017-033-35</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>9145</td>
<td>SHARON</td>
<td>017-033-37</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>9146</td>
<td>SHARON</td>
<td>017-033-36</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>1171</td>
<td>SHARPLESS</td>
<td>017-021-39</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>1172</td>
<td>SHARPLESS</td>
<td>017-022-02</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>1191</td>
<td>SHARPLESS</td>
<td>017-021-07</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>1201</td>
<td>SHARPLESS</td>
<td>017-021-08</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>1221</td>
<td>SHARPLESS</td>
<td>017-021-09</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>1231</td>
<td>SHARPLESS</td>
<td>017-021-10</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>1762</td>
<td>SIERRA ALTA</td>
<td>103-512-02</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>11670</td>
<td>SKYLINE</td>
<td>502-441-07</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>12051</td>
<td>SKYLINE</td>
<td>502-312-08</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>12122</td>
<td>SKYLINE</td>
<td>502-311-04</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>1282</td>
<td>SKYLINE</td>
<td>103-154-22</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>1596</td>
<td>SKYLINE</td>
<td>103-501-51</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>12181</td>
<td>SKYWAY</td>
<td>502-301-02</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>1032</td>
<td>SMOKE TREE</td>
<td>502-252-02</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>1052</td>
<td>SMOKE TREE</td>
<td>502-252-03</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>1241</td>
<td>SMOKE TREE</td>
<td>502-271-16</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>1262</td>
<td>SMOKE TREE</td>
<td>502-271-11</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>1091</td>
<td>ST JOHN</td>
<td>502-261-16</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>1112</td>
<td>ST JOHN</td>
<td>502-251-02</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>1131</td>
<td>ST JOHN</td>
<td>502-261-14</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>1111</td>
<td>ST VINCENT</td>
<td>502-261-09</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>1112</td>
<td>ST VINCENT</td>
<td>502-261-12</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>1132</td>
<td>ST VINCENT</td>
<td>502-261-13</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>14052</td>
<td>STRATTON</td>
<td>401-072-07</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>10041</td>
<td>SUNRISE</td>
<td>503-631-09</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>159</td>
<td>SYCAMORE</td>
<td>842-111-23</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>201</td>
<td>SYCAMORE</td>
<td>842-101-45</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>20276</td>
<td>SYCAMORE</td>
<td>842-111-03</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>20281</td>
<td>SYCAMORE</td>
<td>842-111-62</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>20282</td>
<td>SYCAMORE</td>
<td>842-111-04</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>20292</td>
<td>SYCAMORE</td>
<td>842-111-05</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>20392</td>
<td>SYCAMORE</td>
<td>842-111-06</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>20301</td>
<td>SYCAMORE</td>
<td>842-111-76</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>20311</td>
<td>SYCAMORE</td>
<td>842-111-75</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>20322</td>
<td>SYCAMORE</td>
<td>842-111-64</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>20331</td>
<td>SYCAMORE</td>
<td>842-111-78</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>20341</td>
<td>SYCAMORE</td>
<td>842-111-54</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>20352</td>
<td>SYCAMORE</td>
<td>842-111-09</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>20401</td>
<td>SYCAMORE</td>
<td>842-111-30</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>20411</td>
<td>SYCAMORE</td>
<td>842-111-29</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>20412</td>
<td>SYCAMORE</td>
<td>842-111-15</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>20421</td>
<td>SYCAMORE</td>
<td>842-111-28</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>20422</td>
<td>SYCAMORE</td>
<td>842-111-16</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>20422</td>
<td>SYCAMORE</td>
<td>842-111-17</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>20431</td>
<td>SYCAMORE</td>
<td>842-111-27</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>20432</td>
<td>SYCAMORE</td>
<td>842-111-70</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>20462</td>
<td>SYCAMORE</td>
<td>842-111-19</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>20471</td>
<td>SYCAMORE</td>
<td>842-111-25</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>20472</td>
<td>SYCAMORE</td>
<td>842-111-20</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>20492</td>
<td>SYCAMORE</td>
<td>842-111-22</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>20532</td>
<td>SYCAMORE</td>
<td>842-101-44</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>20551</td>
<td>SYCAMORE</td>
<td>842-101-26</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>20571</td>
<td>SYCAMORE</td>
<td>842-101-27</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>20572</td>
<td>SYCAMORE</td>
<td>842-101-23</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>20581</td>
<td>SYCAMORE</td>
<td>842-101-28</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>20592</td>
<td>SYCAMORE</td>
<td>842-101-58</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>20601</td>
<td>SYCAMORE</td>
<td>842-101-29</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>20611</td>
<td>SYCAMORE</td>
<td>842-101-30</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>20631</td>
<td>SYCAMORE</td>
<td>842-101-40</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>20632</td>
<td>SYCAMORE</td>
<td>842-101-21</td>
</tr>
<tr>
<td>JURISDICTION</td>
<td>STREET_NAME</td>
<td>APN</td>
<td>WATERSHED</td>
</tr>
<tr>
<td>--------------</td>
<td>----------------------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>Sycamore Gulch</td>
<td>842-101-61</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>Terry Lynn</td>
<td>503-491-14</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>Theodora</td>
<td>401-312-16</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>Trabuco Canyon</td>
<td>125-035-03</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>Trabuco Canyon</td>
<td>125-035-09</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>Trabuco Oaks</td>
<td>842-091-52</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>Trabuco Oaks</td>
<td>842-121-01</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>Trabuco Oaks</td>
<td>842-122-01</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>Trabuco Oaks</td>
<td>842-121-03</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>Trabuco Oaks</td>
<td>842-121-07</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>Trabuco Oaks</td>
<td>842-122-02</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>Trabuco Oaks</td>
<td>842-122-04</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>Trabuco Oaks</td>
<td>842-121-06</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>Trabuco Oaks</td>
<td>842-122-06</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>Trabuco Oaks</td>
<td>842-111-02</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>Trabuco Oaks</td>
<td>842-112-37</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>Trabuco Oaks</td>
<td>842-111-61</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>Trabuco Oaks</td>
<td>842-111-77</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>Trabuco Oaks</td>
<td>842-112-04</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>Trabuco Oaks</td>
<td>842-111-74</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>Trabuco Oaks</td>
<td>842-111-58</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>Trabuco Oaks</td>
<td>842-111-55</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>Trabuco Oaks</td>
<td>842-112-29</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>Trabuco Oaks</td>
<td>842-111-52</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>Trabuco Oaks</td>
<td>842-111-49</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>Trabuco Oaks</td>
<td>842-111-51</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>Trabuco Oaks</td>
<td>842-112-34</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>Trabuco Oaks</td>
<td>842-111-48</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>Trabuco Oaks</td>
<td>842-112-10</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>Trabuco Oaks</td>
<td>842-111-47</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>Trabuco Oaks</td>
<td>842-112-11</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>Trabuco Oaks</td>
<td>842-111-46</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>Trabuco Oaks</td>
<td>842-112-14</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>Trabuco Oaks</td>
<td>842-111-63</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>Trabuco Oaks</td>
<td>842-112-15</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>Trabuco Oaks</td>
<td>842-111-42</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>Trabuco Oaks</td>
<td>842-112-17</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>Trabuco Oaks</td>
<td>842-111-41</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>Trabuco Oaks</td>
<td>842-112-18</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>Trabuco Oaks</td>
<td>842-111-39</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>Trabuco Oaks</td>
<td>842-112-19</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>Trabuco Oaks</td>
<td>842-111-38</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>Trabuco Oaks</td>
<td>842-112-20</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>Trabuco Oaks</td>
<td>842-111-37</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>Trabuco Oaks</td>
<td>842-102-01</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>Trabuco Oaks</td>
<td>842-102-02</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>Trabuco Oaks</td>
<td>842-102-21</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>Trabuco Oaks</td>
<td>842-101-64</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>Trabuco Oaks</td>
<td>842-102-04</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>Trabuco Oaks</td>
<td>842-101-63</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>Trabuco Oaks</td>
<td>842-101-36</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>Trabuco Oaks</td>
<td>842-102-05</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>Trabuco Oaks</td>
<td>842-101-34</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>Trabuco Oaks</td>
<td>842-101-33</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>Trabuco Oaks</td>
<td>842-102-08</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>Trabuco Oaks</td>
<td>842-101-19</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>Trabuco Oaks</td>
<td>842-101-18</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>Trabuco Oaks</td>
<td>842-102-24</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>Trabuco Oaks</td>
<td>842-102-25</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>Trabuco Oaks</td>
<td>842-101-17</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>Trabuco Oaks</td>
<td>842-101-16</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>Trabuco Oaks</td>
<td>842-102-23</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>Trabuco Oaks</td>
<td>842-101-15</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>Trabuco Oaks</td>
<td>842-102-22</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>Trabuco Oaks</td>
<td>842-101-14</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>JURISDICTION</td>
<td>STREET_NO</td>
<td>NAME</td>
<td>APN</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
<td>--------------------</td>
<td>--------</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>20731</td>
<td>TRABUCO OAKS</td>
<td>842-102-13</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>20741</td>
<td>TRABUCO OAKS</td>
<td>842-102-14</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>20742</td>
<td>TRABUCO OAKS</td>
<td>842-101-12</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>20751</td>
<td>TRABUCO OAKS</td>
<td>842-102-15</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>20762</td>
<td>TRABUCO OAKS</td>
<td>842-101-11</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>20782</td>
<td>TRABUCO OAKS</td>
<td>842-101-57</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>31071</td>
<td>TRABUCO OLIVE</td>
<td>842-111-72</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>1132</td>
<td>TRIUMPHAL</td>
<td>502-242-02</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>1192</td>
<td>TRIUMPHAL</td>
<td>502-242-05</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>1221</td>
<td>TRIUMPHAL</td>
<td>502-241-22</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>1251</td>
<td>TRIUMPHAL</td>
<td>502-241-20</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>1022</td>
<td>TURNDELL</td>
<td>017-320-02</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>1031</td>
<td>TURNDELL</td>
<td>017-320-59</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>1082</td>
<td>TURNDELL</td>
<td>017-320-05</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>1091</td>
<td>TURNDELL</td>
<td>017-320-45</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>1092</td>
<td>TURNDELL</td>
<td>017-320-06</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>1102</td>
<td>TURNDELL</td>
<td>017-320-38</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>1181</td>
<td>TURNDELL</td>
<td>017-320-28</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>1182</td>
<td>TURNDELL</td>
<td>017-320-25</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>1188</td>
<td>TURNDELL</td>
<td>017-320-26</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>1192</td>
<td>TURNDELL</td>
<td>017-320-27</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>No NO</td>
<td>UNKNOWN ADDRESS</td>
<td>856-061-24</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>No NO</td>
<td>UNKNOWN ADDRESS</td>
<td>856-052-03</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>No NO</td>
<td>UNKNOWN ADDRESS</td>
<td>842-101-06</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>1942</td>
<td>VALENCIA</td>
<td>308-021-03</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>10012</td>
<td>VECINO</td>
<td>017-174-31</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>10041</td>
<td>VECINO</td>
<td>017-174-03</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>12862</td>
<td>VIA AVENTURA</td>
<td>393-032-11</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>12871</td>
<td>VIA AVENTURA</td>
<td>393-032-07</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>31801</td>
<td>VICTA</td>
<td>804-201-13</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>31812</td>
<td>VICTA</td>
<td>804-191-09</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>31932</td>
<td>VICTA</td>
<td>804-191-07</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>11171</td>
<td>VISTA DEL LAGO</td>
<td>502-341-24</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>12301</td>
<td>VISTA PANORAMA</td>
<td>094-201-03</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>1242</td>
<td>WALKER</td>
<td>303-081-05</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>1271</td>
<td>WALKER</td>
<td>303-101-03</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>1272</td>
<td>WALKER</td>
<td>303-081-06</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>9141</td>
<td>WALLACE</td>
<td>017-023-06</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>9142</td>
<td>WALLACE</td>
<td>017-023-14</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>9161</td>
<td>WALLACE</td>
<td>017-023-07</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>9181</td>
<td>WALLACE</td>
<td>017-023-08</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>9182</td>
<td>WALLACE</td>
<td>017-023-12</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>9281</td>
<td>WALLACE</td>
<td>017-041-07</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>9282</td>
<td>WALLACE</td>
<td>017-042-04</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>9291</td>
<td>WALLACE</td>
<td>017-041-08</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>18590</td>
<td>WARRIEN</td>
<td>401-211-30</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>17921</td>
<td>WESLEYTON</td>
<td>401-412-21</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>17961</td>
<td>WELLINGTON</td>
<td>401-414-13</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>17865</td>
<td>WELLINGTON</td>
<td>401-413-15</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>18392</td>
<td>WELLINGTON</td>
<td>401-121-07</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>17922</td>
<td>WHITNEY</td>
<td>395-322-09</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>17942</td>
<td>WHITNEY</td>
<td>395-322-08</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>9882</td>
<td>WINDES</td>
<td>370-061-02</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>9942</td>
<td>WINDES</td>
<td>370-061-06</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>9962</td>
<td>WINDES</td>
<td>370-061-05</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>11 WINDY RIDGE</td>
<td>842-122-12</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>2 WINDY RIDGE</td>
<td>842-122-14</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>3 WINDY RIDGE</td>
<td>842-122-13</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>ORANGE CO</td>
<td>5 WINDY RIDGE</td>
<td>842-122-18</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>PLACENTIA</td>
<td>830</td>
<td>BERKENSTOCK</td>
<td>336-483-29</td>
</tr>
<tr>
<td>PLACENTIA</td>
<td>2232</td>
<td>CALIFORNIA</td>
<td>336-291-34</td>
</tr>
<tr>
<td>PLACENTIA</td>
<td>2243</td>
<td>CALIFORNIA</td>
<td>336-293-11</td>
</tr>
<tr>
<td>PLACENTIA</td>
<td>2251</td>
<td>CALIFORNIA</td>
<td>336-293-12</td>
</tr>
<tr>
<td>PLACENTIA</td>
<td>506</td>
<td>FEE ANA</td>
<td>346-241-01</td>
</tr>
<tr>
<td>PLACENTIA</td>
<td>1049</td>
<td>GOLDEN</td>
<td>334-021-03</td>
</tr>
<tr>
<td>PLACENTIA</td>
<td>1111</td>
<td>GOLDEN</td>
<td>334-021-04</td>
</tr>
<tr>
<td>PLACENTIA</td>
<td>1941</td>
<td>HARTE</td>
<td>336-352-02</td>
</tr>
<tr>
<td>JURISDICTION</td>
<td>STREET_NO</td>
<td>NAME</td>
<td>APN</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
<td>------</td>
<td>-----</td>
</tr>
<tr>
<td>PLACENTIA</td>
<td>1947</td>
<td>HARTE</td>
<td>336-352-01</td>
</tr>
<tr>
<td>PLACENTIA</td>
<td>1950</td>
<td>HARTE</td>
<td>336-351-04</td>
</tr>
<tr>
<td>PLACENTIA</td>
<td>1964</td>
<td>HARTE</td>
<td>336-351-02</td>
</tr>
<tr>
<td>PLACENTIA</td>
<td>1962</td>
<td>HARTE</td>
<td>336-351-02</td>
</tr>
<tr>
<td>PLACENTIA</td>
<td>636</td>
<td>HEMINGWAY</td>
<td>336-361-14</td>
</tr>
<tr>
<td>PLACENTIA</td>
<td>664</td>
<td>LEMKE</td>
<td>336-356-04</td>
</tr>
<tr>
<td>PLACENTIA</td>
<td>2084</td>
<td>MCCORMACK</td>
<td>336-083-30</td>
</tr>
<tr>
<td>PLACENTIA</td>
<td>2102</td>
<td>MCCORMACK</td>
<td>336-083-28</td>
</tr>
<tr>
<td>PLACENTIA</td>
<td>2108</td>
<td>MCCORMACK</td>
<td>336-083-27</td>
</tr>
<tr>
<td>PLACENTIA</td>
<td>2114</td>
<td>MCCORMACK</td>
<td>336-083-26</td>
</tr>
<tr>
<td>PLACENTIA</td>
<td>2130</td>
<td>MCCORMACK</td>
<td>336-083-22</td>
</tr>
<tr>
<td>PLACENTIA</td>
<td>2136</td>
<td>MCCORMACK</td>
<td>336-083-21</td>
</tr>
<tr>
<td>PLACENTIA</td>
<td>2142</td>
<td>MCCORMACK</td>
<td>336-083-20</td>
</tr>
<tr>
<td>PLACENTIA</td>
<td>2154</td>
<td>MCCORMACK</td>
<td>336-292-01</td>
</tr>
<tr>
<td>PLACENTIA</td>
<td>2160</td>
<td>MCCORMACK</td>
<td>336-292-02</td>
</tr>
<tr>
<td>PLACENTIA</td>
<td>2238</td>
<td>MCCORMACK</td>
<td>336-293-03</td>
</tr>
<tr>
<td>PLACENTIA</td>
<td>2244</td>
<td>MCCORMACK</td>
<td>336-293-02</td>
</tr>
<tr>
<td>PLACENTIA</td>
<td>17711</td>
<td>ORCHARD</td>
<td>343-681-02</td>
</tr>
<tr>
<td>PLACENTIA</td>
<td>2001-</td>
<td>ORCHARD</td>
<td>339-58-001 to 002</td>
</tr>
<tr>
<td>PLACENTIA</td>
<td>990</td>
<td>PLACENTIA</td>
<td>344-131-02</td>
</tr>
<tr>
<td>PLACENTIA</td>
<td>550</td>
<td>PORTER</td>
<td>339-081-12</td>
</tr>
<tr>
<td>PLACENTIA</td>
<td>560</td>
<td>PORTER</td>
<td>339-081-24</td>
</tr>
<tr>
<td>PLACENTIA</td>
<td>818</td>
<td>RICHFIELD</td>
<td>346-041-09</td>
</tr>
<tr>
<td>PLACENTIA</td>
<td>2407</td>
<td>ROSE</td>
<td>322-071-05</td>
</tr>
<tr>
<td>PLACENTIA</td>
<td>2413</td>
<td>ROSE</td>
<td>322-071-04</td>
</tr>
<tr>
<td>PLACENTIA</td>
<td>2419</td>
<td>ROSE</td>
<td>322-071-03</td>
</tr>
<tr>
<td>PLACENTIA</td>
<td>2425</td>
<td>ROSE</td>
<td>322-071-02</td>
</tr>
<tr>
<td>PLACENTIA</td>
<td>2501</td>
<td>ROSE</td>
<td>322-023-26</td>
</tr>
<tr>
<td>PLACENTIA</td>
<td>2509</td>
<td>ROSE</td>
<td>322-023-27</td>
</tr>
<tr>
<td>PLACENTIA</td>
<td>2525</td>
<td>ROSE</td>
<td>322-023-05</td>
</tr>
<tr>
<td>PLACENTIA</td>
<td>No NO</td>
<td>UNKNOWN ADDRESS</td>
<td>343-541-30</td>
</tr>
<tr>
<td>PLACENTIA</td>
<td>541</td>
<td>VAN BUREN</td>
<td>346-164-01</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>32671</td>
<td>DEERHOLLOW</td>
<td>842-153-42</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>32672</td>
<td>DEERHOLLOW</td>
<td>842-153-43</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>32681</td>
<td>DEERHOLLOW</td>
<td>842-153-41</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>32682</td>
<td>DEERHOLLOW</td>
<td>842-153-44</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>32691</td>
<td>DEERHOLLOW</td>
<td>842-153-40</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>32692</td>
<td>DEERHOLLOW</td>
<td>842-153-45</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>21021</td>
<td>HEADLAND</td>
<td>842-144-03</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>21025</td>
<td>HEADLAND</td>
<td>842-144-04</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>21031</td>
<td>HEADLAND</td>
<td>842-144-05</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>21041</td>
<td>HEADLAND</td>
<td>842-144-06</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>21051</td>
<td>HEADLAND</td>
<td>842-144-07</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20831</td>
<td>MAYFAIR</td>
<td>842-153-01</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20841</td>
<td>MAYFAIR</td>
<td>842-153-02</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20851</td>
<td>MAYFAIR</td>
<td>842-153-03</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20861</td>
<td>MAYFAIR</td>
<td>842-153-04</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20871</td>
<td>MAYFAIR</td>
<td>842-153-05</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20881</td>
<td>MAYFAIR</td>
<td>842-153-06</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20891</td>
<td>MAYFAIR</td>
<td>842-153-07</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20911</td>
<td>MAYFAIR</td>
<td>842-153-08</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20921</td>
<td>MAYFAIR</td>
<td>842-153-09</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20931</td>
<td>MAYFAIR</td>
<td>842-153-10</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20941</td>
<td>MAYFAIR</td>
<td>842-153-11</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20961</td>
<td>MAYFAIR</td>
<td>842-153-12</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>32692</td>
<td>MEADOWPARK</td>
<td>842-143-02</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>32696</td>
<td>MEADOWPARK</td>
<td>842-143-03</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>32702</td>
<td>MEADOWPARK</td>
<td>842-143-04</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>32712</td>
<td>MEADOWPARK</td>
<td>842-143-05</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>32722</td>
<td>MEADOWPARK</td>
<td>842-143-06</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>32732</td>
<td>MEADOWPARK</td>
<td>842-143-07</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>32742</td>
<td>MEADOWPARK</td>
<td>842-143-08</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>32752</td>
<td>MEADOWPARK</td>
<td>842-143-09</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>32766</td>
<td>MEADOWPARK</td>
<td>842-143-10</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>32762</td>
<td>MEADOWPARK</td>
<td>842-143-11</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>32772</td>
<td>MEADOWPARK</td>
<td>842-143-12</td>
</tr>
<tr>
<td>JURISDICTION</td>
<td>STREET_NO</td>
<td>NAME</td>
<td>APN</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
<td>------------</td>
<td>--------</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>32782</td>
<td>MEADOWPARK</td>
<td>842-143-13</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>32792</td>
<td>MEADOWPARK</td>
<td>842-143-14</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>32716</td>
<td>MEADOWPARK</td>
<td>842-143-15</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>32802</td>
<td>MEADOWPARK</td>
<td>842-143-16</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>32806</td>
<td>MEADOWPARK</td>
<td>842-143-17</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20881</td>
<td>MORNINGSIDE</td>
<td>842-154-08</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20891</td>
<td>MORNINGSIDE</td>
<td>842-154-09</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20902</td>
<td>MORNINGSIDE</td>
<td>842-154-07</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20911</td>
<td>MORNINGSIDE</td>
<td>842-154-10</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20912</td>
<td>MORNINGSIDE</td>
<td>842-154-06</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20916</td>
<td>MORNINGSIDE</td>
<td>842-154-05</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20922</td>
<td>MORNINGSIDE</td>
<td>842-154-04</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20932</td>
<td>MORNINGSIDE</td>
<td>842-154-03</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20942</td>
<td>MORNINGSIDE</td>
<td>842-154-02</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20951</td>
<td>MORNINGSIDE</td>
<td>842-154-05</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20952</td>
<td>MORNINGSIDE</td>
<td>842-154-01</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20961</td>
<td>MORNINGSIDE</td>
<td>842-132-06</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20962</td>
<td>MORNINGSIDE</td>
<td>842-131-01</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20971</td>
<td>MORNINGSIDE</td>
<td>842-132-07</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20972</td>
<td>MORNINGSIDE</td>
<td>842-131-02</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20981</td>
<td>MORNINGSIDE</td>
<td>842-132-08</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20982</td>
<td>MORNINGSIDE</td>
<td>842-131-03</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20991</td>
<td>MORNINGSIDE</td>
<td>842-132-09</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20992</td>
<td>MORNINGSIDE</td>
<td>842-132-10</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>21001</td>
<td>MORNINGSIDE</td>
<td>842-132-11</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>21011</td>
<td>MORNINGSIDE</td>
<td>842-132-11</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>21012</td>
<td>MORNINGSIDE</td>
<td>842-131-05</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>21021</td>
<td>MORNINGSIDE</td>
<td>842-132-12</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>21031</td>
<td>MORNINGSIDE</td>
<td>842-132-13</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>21032</td>
<td>MORNINGSIDE</td>
<td>842-131-06</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>21041</td>
<td>MORNINGSIDE</td>
<td>842-132-14</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>21042</td>
<td>MORNINGSIDE</td>
<td>842-131-07</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>21051</td>
<td>MORNINGSIDE</td>
<td>842-132-15</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>21052</td>
<td>MORNINGSIDE</td>
<td>842-131-08</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>21061</td>
<td>MORNINGSIDE</td>
<td>842-132-16</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20532</td>
<td>PORTER RANCH</td>
<td>842-152-18</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20541</td>
<td>PORTER RANCH</td>
<td>842-152-19</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20542</td>
<td>PORTER RANCH</td>
<td>842-152-17</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20546</td>
<td>PORTER RANCH</td>
<td>842-152-16</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20551</td>
<td>PORTER RANCH</td>
<td>842-152-20</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20552</td>
<td>PORTER RANCH</td>
<td>842-152-15</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20561</td>
<td>PORTER RANCH</td>
<td>842-152-21</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20562</td>
<td>PORTER RANCH</td>
<td>842-152-14</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20571</td>
<td>PORTER RANCH</td>
<td>842-152-22</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20572</td>
<td>PORTER RANCH</td>
<td>842-152-23</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20581</td>
<td>PORTER RANCH</td>
<td>842-152-23</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20591</td>
<td>PORTER RANCH</td>
<td>842-152-24</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20592</td>
<td>PORTER RANCH</td>
<td>842-152-12</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20612</td>
<td>PORTER RANCH</td>
<td>842-152-11</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20622</td>
<td>PORTER RANCH</td>
<td>842-152-10</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20632</td>
<td>PORTER RANCH</td>
<td>842-152-09</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20641</td>
<td>PORTER RANCH</td>
<td>842-152-51</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20642</td>
<td>PORTER RANCH</td>
<td>842-152-08</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20651</td>
<td>PORTER RANCH</td>
<td>842-152-52</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20652</td>
<td>PORTER RANCH</td>
<td>842-152-07</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20656</td>
<td>PORTER RANCH</td>
<td>842-152-06</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20661</td>
<td>PORTER RANCH</td>
<td>842-152-53</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20662</td>
<td>PORTER RANCH</td>
<td>842-152-05</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20671</td>
<td>PORTER RANCH</td>
<td>842-152-54</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20681</td>
<td>PORTER RANCH</td>
<td>842-152-55</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20682</td>
<td>PORTER RANCH</td>
<td>842-152-04</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20691</td>
<td>PORTER RANCH</td>
<td>842-152-56</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20692</td>
<td>PORTER RANCH</td>
<td>842-152-03</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20701</td>
<td>PORTER RANCH</td>
<td>842-152-57</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20702</td>
<td>PORTER RANCH</td>
<td>842-152-02</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20711</td>
<td>PORTER RANCH</td>
<td>842-152-58</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20712</td>
<td>PORTER RANCH</td>
<td>842-152-01</td>
</tr>
<tr>
<td>JURISDICTION</td>
<td>STREET NO NAME</td>
<td>APN</td>
<td>WATERSHED</td>
</tr>
<tr>
<td>--------------</td>
<td>----------------</td>
<td>--------</td>
<td>--------------------</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20721 PORTER RANCH</td>
<td>842-152-59</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20731 PORTER RANCH</td>
<td>842-154-25</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20741 PORTER RANCH</td>
<td>842-154-26</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20761 PORTER RANCH</td>
<td>842-154-27</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20771 PORTER RANCH</td>
<td>842-154-28</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20772 PORTER RANCH</td>
<td>842-154-29</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20781 PORTER RANCH</td>
<td>842-154-30</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20782 PORTER RANCH</td>
<td>842-154-31</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20791 PORTER RANCH</td>
<td>842-154-32</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20792 PORTER RANCH</td>
<td>842-154-33</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20811 PORTER RANCH</td>
<td>842-154-34</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20812 PORTER RANCH</td>
<td>842-154-35</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20831 PORTER RANCH</td>
<td>842-154-36</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20841 PORTER RANCH</td>
<td>842-154-37</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20851 PORTER RANCH</td>
<td>842-154-38</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20852 PORTER RANCH</td>
<td>842-154-39</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20871 PORTER RANCH</td>
<td>842-154-40</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20872 PORTER RANCH</td>
<td>842-154-41</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20911 PORTER RANCH</td>
<td>842-154-42</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20912 PORTER RANCH</td>
<td>842-154-43</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20931 PORTER RANCH</td>
<td>842-154-44</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20932 PORTER RANCH</td>
<td>842-154-45</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20951 PORTER RANCH</td>
<td>842-154-46</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20952 PORTER RANCH</td>
<td>842-154-47</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20971 PORTER RANCH</td>
<td>842-154-48</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20972 PORTER RANCH</td>
<td>842-154-49</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20991 PORTER RANCH</td>
<td>842-154-50</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20992 PORTER RANCH</td>
<td>842-154-51</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20993 PORTER RANCH</td>
<td>842-154-52</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>JURISDICTION</td>
<td>STREET NO. NAME</td>
<td>APN</td>
<td>WATERSHED</td>
</tr>
<tr>
<td>--------------</td>
<td>----------------</td>
<td>-------</td>
<td>------------</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20612</td>
<td>SHADOW ROCK</td>
<td>842-152-48</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20615</td>
<td>SHADOW ROCK</td>
<td>842-152-26</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20621</td>
<td>SHADOW ROCK</td>
<td>842-152-27</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20622</td>
<td>SHADOW ROCK</td>
<td>842-152-47</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20625</td>
<td>SHADOW ROCK</td>
<td>842-152-28</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20631</td>
<td>SHADOW ROCK</td>
<td>842-152-29</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20632</td>
<td>SHADOW ROCK</td>
<td>842-152-46</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20635</td>
<td>SHADOW ROCK</td>
<td>842-152-30</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20641</td>
<td>SHADOW ROCK</td>
<td>842-152-31</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20642</td>
<td>SHADOW ROCK</td>
<td>842-152-45</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20651</td>
<td>SHADOW ROCK</td>
<td>842-152-32</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20652</td>
<td>SHADOW ROCK</td>
<td>842-152-44</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20661</td>
<td>SHADOW ROCK</td>
<td>842-152-33</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20662</td>
<td>SHADOW ROCK</td>
<td>842-152-43</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20671</td>
<td>SHADOW ROCK</td>
<td>842-152-34</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20672</td>
<td>SHADOW ROCK</td>
<td>842-152-42</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20681</td>
<td>SHADOW ROCK</td>
<td>842-152-35</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20692</td>
<td>SHADOW ROCK</td>
<td>842-152-41</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20701</td>
<td>SHADOW ROCK</td>
<td>842-152-36</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20702</td>
<td>SHADOW ROCK</td>
<td>842-152-40</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20711</td>
<td>SHADOW ROCK</td>
<td>842-152-37</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20712</td>
<td>SHADOW ROCK</td>
<td>842-152-39</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20721</td>
<td>SHADOW ROCK</td>
<td>842-152-38</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20722</td>
<td>SHADOW ROCK</td>
<td>842-154-60</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20731</td>
<td>SHADOW ROCK</td>
<td>842-154-61</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20732</td>
<td>SHADOW ROCK</td>
<td>842-154-59</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20741</td>
<td>SHADOW ROCK</td>
<td>842-154-62</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20742</td>
<td>SHADOW ROCK</td>
<td>842-154-58</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20752</td>
<td>SHADOW ROCK</td>
<td>842-154-57</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20761</td>
<td>SHADOW ROCK</td>
<td>842-154-64</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20762</td>
<td>SHADOW ROCK</td>
<td>842-154-56</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20771</td>
<td>SHADOW ROCK</td>
<td>842-154-65</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20772</td>
<td>SHADOW ROCK</td>
<td>842-154-55</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20776</td>
<td>SHADOW ROCK</td>
<td>842-154-54</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20781</td>
<td>SHADOW ROCK</td>
<td>842-154-66</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20782</td>
<td>SHADOW ROCK</td>
<td>842-154-53</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20791</td>
<td>SHADOW ROCK</td>
<td>842-154-67</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20792</td>
<td>SHADOW ROCK</td>
<td>842-154-52</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20801</td>
<td>SHADOW ROCK</td>
<td>842-154-68</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20802</td>
<td>SHADOW ROCK</td>
<td>842-154-51</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20811</td>
<td>SHADOW ROCK</td>
<td>842-154-69</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20812</td>
<td>SHADOW ROCK</td>
<td>842-154-50</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20821</td>
<td>SHADOW ROCK</td>
<td>842-154-70</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20822</td>
<td>SHADOW ROCK</td>
<td>842-154-49</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20825</td>
<td>SHADOW ROCK</td>
<td>842-154-71</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20831</td>
<td>SHADOW ROCK</td>
<td>842-154-72</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20832</td>
<td>SHADOW ROCK</td>
<td>842-154-48</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20841</td>
<td>SHADOW ROCK</td>
<td>842-154-73</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20842</td>
<td>SHADOW ROCK</td>
<td>842-154-47</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20851</td>
<td>SHADOW ROCK</td>
<td>842-154-74</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20861</td>
<td>SHADOW ROCK</td>
<td>842-154-75</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20862</td>
<td>SHADOW ROCK</td>
<td>842-154-46</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20871</td>
<td>SHADOW ROCK</td>
<td>842-154-76</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20872</td>
<td>SHADOW ROCK</td>
<td>842-154-46</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20881</td>
<td>SHADOW ROCK</td>
<td>842-154-77</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20882</td>
<td>SHADOW ROCK</td>
<td>842-154-44</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20891</td>
<td>SHADOW ROCK</td>
<td>842-154-78</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20892</td>
<td>SHADOW ROCK</td>
<td>842-154-43</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20911</td>
<td>SHADOW ROCK</td>
<td>842-154-80</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20931</td>
<td>SHADOW ROCK</td>
<td>842-133-01</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20941</td>
<td>SHADOW ROCK</td>
<td>842-133-02</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20942</td>
<td>SHADOW ROCK</td>
<td>842-132-30</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20951</td>
<td>SHADOW ROCK</td>
<td>842-133-03</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20961</td>
<td>SHADOW ROCK</td>
<td>842-133-04</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20962</td>
<td>SHADOW ROCK</td>
<td>842-132-28</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>20971</td>
<td>SHADOW ROCK</td>
<td>842-133-05</td>
</tr>
<tr>
<td>JURISDICTION</td>
<td>STREET_NAME</td>
<td>APN</td>
<td>WATERSHED</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>SHADOW ROCK</td>
<td>842-133-05</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>SHADOW ROCK</td>
<td>842-132-27</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>SHADOW ROCK</td>
<td>842-133-06</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>SHADOW ROCK</td>
<td>842-132-26</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>SHADOW ROCK</td>
<td>842-133-07</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>SHADOW ROCK</td>
<td>842-132-25</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>SHADOW ROCK</td>
<td>842-133-08</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>SHADOW ROCK</td>
<td>842-132-24</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>SHADOW ROCK</td>
<td>842-133-09</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>SHADOW ROCK</td>
<td>842-132-23</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>SHADOW ROCK</td>
<td>842-133-10</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>SHADOW ROCK</td>
<td>842-133-11</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>SHADOW ROCK</td>
<td>842-132-22</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>SHADOW ROCK</td>
<td>842-133-12</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>SHADOW ROCK</td>
<td>842-132-21</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>SHADOW ROCK</td>
<td>842-133-13</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>SHADOW ROCK</td>
<td>842-132-20</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>SHADOW ROCK</td>
<td>842-133-14</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>SHADOW ROCK</td>
<td>842-133-15</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>SHADOW ROCK</td>
<td>842-133-19</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>SHADOW ROCK</td>
<td>842-133-16</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>SHADOW ROCK</td>
<td>842-133-17</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>SKY COUNTRY</td>
<td>842-142-02</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>SKY COUNTRY</td>
<td>842-142-03</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>SKY COUNTRY</td>
<td>842-142-04</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>SKY COUNTRY</td>
<td>842-142-05</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>SKY COUNTRY</td>
<td>842-142-06</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>SKY COUNTRY</td>
<td>842-142-07</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>SKY COUNTRY</td>
<td>842-142-08</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>SKY COUNTRY</td>
<td>842-142-09</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>SKY COUNTRY</td>
<td>842-142-10</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>SKY COUNTRY</td>
<td>842-141-01</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>SKY COUNTRY</td>
<td>842-142-11</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>RANCHO SANTA MARGARITA</td>
<td>SKY COUNTRY</td>
<td>842-142-12</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>AGUACATE</td>
<td>121-070-60</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>AGUACATE</td>
<td>121-070-58</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>AGUACATE</td>
<td>649-101-01</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>AGUACATE</td>
<td>649-101-02</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>AGUACATE</td>
<td>649-311-15</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>AGUACATE</td>
<td>649-311-16</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>AGUACATE</td>
<td>649-311-17</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>AGUACATE</td>
<td>649-101-09</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>AGUACATE</td>
<td>649-101-10</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>AGUACATE</td>
<td>649-101-11</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>AGUACATE</td>
<td>649-321-04</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>AGUACATE</td>
<td>649-091-07</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>AQUIACATE</td>
<td>649-091-31</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>AGUACATE</td>
<td>649-091-05</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>AGUACATE</td>
<td>649-311-20</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>AGUACATE</td>
<td>649-321-03</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>AGUACATE</td>
<td>649-291-24</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>AGUACATE</td>
<td>649-291-15</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>ALTA PINE</td>
<td>121-442-16</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>ALTA PINE</td>
<td>121-442-15</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>ALTA PINE</td>
<td>121-442-12</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>ALTA PINE</td>
<td>121-442-13</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>ALTA PINE</td>
<td>121-442-12</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>ASCOT</td>
<td>650-311-14</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>Avenida De La VISTA</td>
<td>121-070-03</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>Avenida De La VISTA</td>
<td>649-111-01</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>Avenida Los Cerrito</td>
<td>650-552-05</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>Avenida Los Cerrito</td>
<td>650-152-05</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>Avenida Los Cerrito</td>
<td>650-152-03</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>JURISDICTION</td>
<td>STREET NO NAME</td>
<td>APN</td>
<td>WATERSHED</td>
</tr>
<tr>
<td>--------------</td>
<td>----------------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>31331 AVENIDA LOS CERRITO</td>
<td>650-152-06</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>31332 AVENIDA LOS CERRITO</td>
<td>650-152-02</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>31333 AVENIDA LOS CERRITO</td>
<td>650-152-07</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>31334 AVENIDA LOS CERRITO</td>
<td>650-152-01</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>31451 AVENIDA LOS CERRITO</td>
<td>650-151-14</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>31531 AVENIDA LOS CERRITO</td>
<td>650-151-15</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>31551 AVENIDA LOS CERRITO</td>
<td>650-151-16</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>31601 AVENIDA LOS CERRITO</td>
<td>650-151-17</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>25961 CALLE ASPERO</td>
<td>649-082-07</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>26560 CALLE LORENZO</td>
<td>649-052-08</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>32421 CALLE PERFECTO</td>
<td>668-501-07</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>32701 CALLE PERFECTO</td>
<td>668-501-02</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>26162 CALLE ROBERTO</td>
<td>649-311-23</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>33555 CAMINO CAI STRANO</td>
<td>121-240-19</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>29931 CAMINO CAPISTRANO</td>
<td>121-050-02</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>31721 CAMINO CAPISTRANO</td>
<td>121-141-09</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>31792 CAMINO CAPISTRANO</td>
<td>124-160-20</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>33741 CAMINO CAPISTRANO</td>
<td>121-254-19</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>28442 CAMINO LA RONDA</td>
<td>664-211-04</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>32501 CARRETERA</td>
<td>121-431-01</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>32511 CARRETERA</td>
<td>121-431-02</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>32521 CARRETERA</td>
<td>121-431-03</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>32531 CARRETERA</td>
<td>121-431-04</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>32541 CARRETERA</td>
<td>121-431-05</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>32551 CARRETERA</td>
<td>121-431-06</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>32561 CARRETERA</td>
<td>121-434-01</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>32571 CARRETERA</td>
<td>121-434-02</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>32581 CARRETERA</td>
<td>121-434-03</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>32591 CARRETERA</td>
<td>121-434-04</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>32601 CARRETERA</td>
<td>121-440-01</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>32611 CARRETERA</td>
<td>121-441-02</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>32621 CARRETERA</td>
<td>121-441-03</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>32622 CARRETERA</td>
<td>121-442-26</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>32631 CARRETERA</td>
<td>121-441-04</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>32632 CARRETERA</td>
<td>121-442-25</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>32641 CARRETERA</td>
<td>121-441-05</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>32642 CARRETERA</td>
<td>121-442-24</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>32651 CARRETERA</td>
<td>121-441-06</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>32652 CARRETERA</td>
<td>121-442-23</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>32661 CARRETERA</td>
<td>121-441-07</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>32662 CARRETERA</td>
<td>121-442-22</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>32671 CARRETERA</td>
<td>121-441-08</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>32672 CARRETERA</td>
<td>121-442-21</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>32681 CARRETERA</td>
<td>121-441-09</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>32691 CARRETERA</td>
<td>121-441-10</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>25412 CHARRO</td>
<td>121-441-11</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>25422 CHARRO</td>
<td>121-441-12</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>25432 CHARRO</td>
<td>121-441-13</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>25442 CHARRO</td>
<td>121-441-14</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>25451 CHARRO</td>
<td>121-442-20</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>25462 CHARRO</td>
<td>121-441-15</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>25471 CHARRO</td>
<td>121-442-19</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>25472 CHARRO</td>
<td>121-441-16</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>25482 CHARRO</td>
<td>121-441-17</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>25502 CHARRI</td>
<td>121-441-18</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>25522 CHARRO</td>
<td>121-441-19</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>25531 CHARRO</td>
<td>121-442-11</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>25532 CHARRO</td>
<td>121-441-20</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>25551 CHARRO</td>
<td>121-442-10</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>25552 CHARRO</td>
<td>121-441-21</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>25562 CHARRO</td>
<td>121-441-22</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>25571 CHARRO</td>
<td>121-441-31</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>25572 CHARRO</td>
<td>121-441-23</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>25581 CHARRO</td>
<td>121-441-30</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>25592 CHARRO</td>
<td>121-441-24</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>25591 CHARRO</td>
<td>121-441-29</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>25592 CHARRO</td>
<td>121-441-25</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>JURISDICTION</td>
<td>STREET_NO_NAME</td>
<td>APN</td>
<td>WATERSHED</td>
</tr>
<tr>
<td>--------------</td>
<td>----------------</td>
<td>-------</td>
<td>-----------------</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>25601</td>
<td>CHARRO</td>
<td>121-441-28 San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>25602</td>
<td>CHARRO</td>
<td>121-441-26 San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>25612</td>
<td>CHARRO</td>
<td>121-441-27 San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>32221</td>
<td>COOK</td>
<td>673-061-46 San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>32241</td>
<td>COOK</td>
<td>673-061-44 San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>25501</td>
<td>DANA MESA</td>
<td>121-435-14 San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>25502</td>
<td>DANA MESA</td>
<td>121-442-01 San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>25511</td>
<td>DANA MESA</td>
<td>121-435-13 San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>25512</td>
<td>DANA MESA</td>
<td>121-442-02 San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>25521</td>
<td>DANA MESA</td>
<td>121-435-12 San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>25522</td>
<td>DANA MESA</td>
<td>121-442-03 San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>25531</td>
<td>DANA MESA</td>
<td>121-435-11 San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>25532</td>
<td>DANA MESA</td>
<td>121-442-04 San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>25541</td>
<td>DANA MESA</td>
<td>121-435-10 San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>25542</td>
<td>DANA MESA</td>
<td>121-442-05 San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>25551</td>
<td>DANA MESA</td>
<td>121-435-09 San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>25552</td>
<td>DANA MESA</td>
<td>121-442-06 San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>25561</td>
<td>DANA MESA</td>
<td>121-435-08 San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>25562</td>
<td>DANA MESA</td>
<td>121-442-07 San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>25591</td>
<td>DANA MESA</td>
<td>121-432-26 San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>25601</td>
<td>DANA MESA</td>
<td>121-432-27 San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>25602</td>
<td>DANA MESA</td>
<td>121-441-34 San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>25611</td>
<td>DANA MESA</td>
<td>121-432-28 San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>25612</td>
<td>DANA MESA</td>
<td>121-441-35 San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>25621</td>
<td>DANA MESA</td>
<td>121-432-29 San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>25622</td>
<td>DANA MESA</td>
<td>121-441-36 San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>25631</td>
<td>DANA MESA</td>
<td>121-432-30 San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>25632</td>
<td>DANA MESA</td>
<td>121-441-37 San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>25641</td>
<td>DANA MESA</td>
<td>121-432-31 San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>25642</td>
<td>DANA MESA</td>
<td>121-441-38 San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>32602</td>
<td>DEADWOOD</td>
<td>121-441-33 San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>32631</td>
<td>DEADWOOD</td>
<td>121-442-08 San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>32642</td>
<td>DEADWOOD</td>
<td>121-441-32 San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>32651</td>
<td>DEADWOOD</td>
<td>121-442-09 San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>31938</td>
<td>DEL OBISPO</td>
<td>668-151-09 San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>32011</td>
<td>DEL OBISPO</td>
<td>649-082-20 San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>32015</td>
<td>DEL OBISPO</td>
<td>649-082-19 San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>32151</td>
<td>DEL OBISPO</td>
<td>673-111-17 San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>32221</td>
<td>DEL OBISPO</td>
<td>673-111-21 San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>32285</td>
<td>DEL OBISPO</td>
<td>121-171-19 San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>32341</td>
<td>DEL OBISPO</td>
<td>673-061-01 San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>32351</td>
<td>DEL OBISPO</td>
<td>673-061-09 San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>32382</td>
<td>DEL OBISPO</td>
<td>121-182-53 San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>32395</td>
<td>DEL OBISPO</td>
<td>673-061-08 San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>33955</td>
<td>DEHENY PARK</td>
<td>121-254-26 San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>31612</td>
<td>EL CAMINO REAL</td>
<td>124-170-11 San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>31776</td>
<td>EL CAMINO REAL</td>
<td>124-160-55 San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>30701</td>
<td>FOX RUN</td>
<td>650-351-10 San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>27081</td>
<td>GLENARIFF</td>
<td>675-271-22 San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>33781</td>
<td>GLOCAMORA</td>
<td>675-273-23 San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>27791</td>
<td>GOLDEN RIDGE</td>
<td>650-581-11 San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>27871</td>
<td>GOLDEN RIDGE</td>
<td>650-581-12 San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>29901</td>
<td>HILLSIDE</td>
<td>650-271-11 San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>30500</td>
<td>HILLTOP</td>
<td>650-171-01 San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>30522</td>
<td>HILLTOP</td>
<td>650-171-24 San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>30532</td>
<td>HILLTOP</td>
<td>650-181-16 San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>30702</td>
<td>HILLTOP</td>
<td>650-181-09 San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>30741</td>
<td>HILLTOP</td>
<td>650-181-11 San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>32962</td>
<td>HWY 101</td>
<td>666-301-02 San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>31378</td>
<td>JULIANA FARMS</td>
<td>664-231-01 San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>31398</td>
<td>JULIANA FARMS</td>
<td>664-231-02 San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>31412</td>
<td>JULIANA FARMS</td>
<td>664-231-03 San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>31445</td>
<td>JULIANA FARMS</td>
<td>664-231-11 San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>31488</td>
<td>JULIANA FARMS</td>
<td>664-231-07 San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>32532</td>
<td>LA CALMA</td>
<td>121-432-15 San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>32542</td>
<td>LA CALMA</td>
<td>121-432-16 San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>32562</td>
<td>LA CALMA</td>
<td>121-432-17 San Juan Creek</td>
</tr>
<tr>
<td>JURISDICTION</td>
<td>STREET_NO</td>
<td>NAME</td>
<td>APN</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
<td>------</td>
<td>-----</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>32562</td>
<td>LA CALMA</td>
<td>121-432-18</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>32592</td>
<td>LA CALMA</td>
<td>121-432-19</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>32602</td>
<td>LA CALMA</td>
<td>121-432-20</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>31421</td>
<td>LA MATANZA</td>
<td>124-203-21</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>31825</td>
<td>LOS RIOS</td>
<td>121-160-28</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>31875</td>
<td>LOS RIOS</td>
<td>121-160-13</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>30302</td>
<td>MARBELLA VISTA</td>
<td>650-612-34</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>30911</td>
<td>MARBELLA VISTA</td>
<td>650-641-15</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>30921</td>
<td>MARBELLA VISTA</td>
<td>650-641-16</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>27361</td>
<td>ORTEGA</td>
<td>650-201-12</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>27401</td>
<td>ORTEGA</td>
<td>650-201-12</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>27762</td>
<td>ORTEGA</td>
<td>666-191-18</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>27851</td>
<td>ORTEGA</td>
<td>650-621-02</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>28241</td>
<td>ORTEGA</td>
<td>650-171-14</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>28341</td>
<td>ORTEGA</td>
<td>650-171-10</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>28650</td>
<td>ORTEGA</td>
<td>664-041-10</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>5</td>
<td>PALM HILL</td>
<td>650-171-13</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>32782</td>
<td>PARKSIDE WAY</td>
<td>668-492-03</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>32802</td>
<td>PARKSIDE WAY</td>
<td>668-492-01</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>32400</td>
<td>PARKO ADELANTO</td>
<td>668-101-03</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>31801</td>
<td>PASEO ALTO PLANO</td>
<td>649-232-13</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>31802</td>
<td>PASEO ALTO PLANO</td>
<td>649-232-14</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>31812</td>
<td>PASEO ALTO PLANO</td>
<td>649-232-15</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>31821</td>
<td>PASEO ALTO PLANO</td>
<td>649-232-12</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>31832</td>
<td>PASEO ALTO PLANO</td>
<td>649-232-16</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>31841</td>
<td>PASEO ALTO PLANO</td>
<td>649-232-11</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>31861</td>
<td>PASEO ALTO PLANO</td>
<td>649-232-10</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>31872</td>
<td>PASEO ALTO PLANO</td>
<td>649-232-18</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>31881</td>
<td>PASEO ALTO PLANO</td>
<td>649-232-28</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>31886</td>
<td>PASEO ALTO PLANO</td>
<td>649-232-19</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>31891</td>
<td>PASEO ALTO PLANO</td>
<td>649-232-27</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>31485</td>
<td>PASEO CHRISTINA</td>
<td>124-671-21</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>31851</td>
<td>PASEO CIELO</td>
<td>649-232-25</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>31862</td>
<td>PASEO CIELO</td>
<td>649-082-02</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>31892</td>
<td>PASEO CIELO</td>
<td>649-082-04</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>31922</td>
<td>PASEO CIELO</td>
<td>649-082-06</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>30728</td>
<td>PASEO ELEGANCIA</td>
<td>650-392-09</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>30729</td>
<td>PASEO ELEGANCIA</td>
<td>650-392-12</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>27221</td>
<td>PASEO ESTRADA</td>
<td>666-241-06</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>31871</td>
<td>PASEO MONTE VISTA</td>
<td>649-082-13</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>31882</td>
<td>PASEO MONTE VISTA</td>
<td>649-082-14</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>31891</td>
<td>PASEO MONTE VISTA</td>
<td>649-082-12</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>31911</td>
<td>PASEO MONTE VISTA</td>
<td>649-082-11</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>31922</td>
<td>PASEO MONTE VISTA</td>
<td>649-082-16</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>31931</td>
<td>PASEO MONTE VISTA</td>
<td>649-082-10</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>31962</td>
<td>PASEO MONTE VISTA</td>
<td>649-082-17</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>31966</td>
<td>PASEO MONTE VISTA</td>
<td>649-082-18</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>31971</td>
<td>PASEO MONTE VISTA</td>
<td>649-082-08</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>31972</td>
<td>PASEO SAGRADO</td>
<td>664-101-18</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>31831</td>
<td>PEPPERTREE</td>
<td>649-352-01</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>32031</td>
<td>PEPPERTREE</td>
<td>649-352-11</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>31801</td>
<td>PEPPERTREE BND</td>
<td>649-342-09</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>31894</td>
<td>PLAZA DR</td>
<td>668-241-23</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>No NO</td>
<td>PROJECT 939-61</td>
<td>668-421-09</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>25501</td>
<td>PURPLE SAGE</td>
<td>121-433-24</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>25502</td>
<td>PURPLE SAGE</td>
<td>121-435-01</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>25511</td>
<td>PURPLE SAGE</td>
<td>121-433-23</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>25512</td>
<td>PURPLE SAGE</td>
<td>121-435-02</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>25521</td>
<td>PURPLE SAGE</td>
<td>121-433-22</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>25522</td>
<td>PURPLE SAGE</td>
<td>121-435-03</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>25531</td>
<td>PURPLE SAGE</td>
<td>121-433-21</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>25532</td>
<td>PURPLE SAGE</td>
<td>121-435-04</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>25541</td>
<td>PURPLE SAGE</td>
<td>121-433-20</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>25542</td>
<td>PURPLE SAGE</td>
<td>121-435-05</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>25561</td>
<td>PURPLE SAGE</td>
<td>121-433-19</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>25562</td>
<td>PURPLE SAGE</td>
<td>121-435-06</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>25571</td>
<td>PURPLE SAGE</td>
<td>121-433-18</td>
</tr>
<tr>
<td>JURISDICTION</td>
<td>STREET_NO</td>
<td>NAME</td>
<td>APN</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
<td>------</td>
<td>-----</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>25572</td>
<td>PURPLE SAGE</td>
<td>121-435-07</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>25591</td>
<td>PURPLE SAGE</td>
<td>121-433-17</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>25601</td>
<td>PURPLE SAGE</td>
<td>121-433-16</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>25602</td>
<td>PURPLE SAGE</td>
<td>121-432-25</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>25611</td>
<td>PURPLE SAGE</td>
<td>121-433-15</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>25612</td>
<td>PURPLE SAGE</td>
<td>121-432-24</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>25621</td>
<td>PURPLE SAGE</td>
<td>121-433-14</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>25622</td>
<td>PURPLE SAGE</td>
<td>121-432-23</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>25631</td>
<td>PURPLE SAGE</td>
<td>121-433-13</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>25632</td>
<td>PURPLE SAGE</td>
<td>121-432-22</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>25642</td>
<td>PURPLE SAGE</td>
<td>121-432-21</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>31600</td>
<td>RAMOS</td>
<td>121-143-02</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>30280</td>
<td>RANCHO VIEJO</td>
<td>550-162-14</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>31654</td>
<td>RANCHO VIEJO</td>
<td>666-261-13</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>31506</td>
<td>SAN JUAN CREEK</td>
<td>124-671-11</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>32391</td>
<td>SAN JUAN CREEK</td>
<td>666-011-23</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>33413</td>
<td>SAN JUAN CREEK</td>
<td>666-011-16</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>26232</td>
<td>SANDCASTLE</td>
<td>650-073-66</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>29301</td>
<td>SPOTTED BULL</td>
<td>650-031-05</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>29311</td>
<td>SPOTTED BULL</td>
<td>650-031-04</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>29312</td>
<td>SPOTTED BULL</td>
<td>650-031-06</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>29322</td>
<td>SPOTTED BULL</td>
<td>650-031-07</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>29341</td>
<td>SPOTTED BULL</td>
<td>650-031-03</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>29342</td>
<td>SPOTTED BULL</td>
<td>650-031-08</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>29361</td>
<td>SPOTTED BULL</td>
<td>650-031-02</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>29362</td>
<td>SPOTTED BULL</td>
<td>650-031-09</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>29392</td>
<td>SPOTTED BULL</td>
<td>650-031-10</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>29421</td>
<td>SPOTTED BULL</td>
<td>650-031-01</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>29422</td>
<td>SPOTTED BULL</td>
<td>650-031-11</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>29482</td>
<td>SPOTTED BULL</td>
<td>650-021-28</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>29502</td>
<td>SPOTTED BULL</td>
<td>650-021-42</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>29512</td>
<td>SPOTTED BULL</td>
<td>650-021-30</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>29520</td>
<td>SPOTTED BULL</td>
<td>650-021-44</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>29522</td>
<td>SPOTTED BULL</td>
<td>650-021-04</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>29532</td>
<td>SPOTTED BULL</td>
<td>650-021-45</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>29536</td>
<td>SPOTTED BULL</td>
<td>650-021-39</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>29542</td>
<td>SPOTTED BULL</td>
<td>650-021-24</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>29546</td>
<td>SPOTTED BULL</td>
<td>650-021-38</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>29552</td>
<td>SPOTTED BULL</td>
<td>650-021-05</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>29570</td>
<td>SPOTTED BULL</td>
<td>650-021-23</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>29572</td>
<td>SPOTTED BULL</td>
<td>650-021-14</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>29582</td>
<td>SPOTTED BULL</td>
<td>650-011-27</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>29614</td>
<td>SPOTTED BULL</td>
<td>650-021-12</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>29614</td>
<td>SPOTTED BULL</td>
<td>650-021-13</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>30772</td>
<td>STEEPLECHASE</td>
<td>650-341-06</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>1</td>
<td>STRAWBERRY</td>
<td>650-171-04</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>2</td>
<td>STRAWBERRY</td>
<td>550-171-22</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>29891</td>
<td>SUMMER WALK</td>
<td>550-073-72</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>29902</td>
<td>SUMMER WALK</td>
<td>550-073-67</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>29912</td>
<td>SUMMER WALK</td>
<td>550-073-68</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>29582</td>
<td>TRABUCO CREEK</td>
<td>650-441-04</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>No NO</td>
<td>UNKNOWN ADDRESS</td>
<td>668-391-02</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>No NO</td>
<td>UNKNOWN ADDRESS</td>
<td>650-594-13</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>No NO</td>
<td>UNKNOWN ADDRESS</td>
<td>650-593-21</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>No NO</td>
<td>UNKNOWN ADDRESS</td>
<td>650-602-30</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>32602</td>
<td>VALLE</td>
<td>666-292-05</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>33132</td>
<td>VALLE</td>
<td>675-331-12</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>33511</td>
<td>VALLE</td>
<td>675-331-09</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>33512</td>
<td>VALLE</td>
<td>675-331-10</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>33521</td>
<td>VALLE</td>
<td>675-331-08</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>33522</td>
<td>VALLE</td>
<td>675-331-13</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>33531</td>
<td>VALLE</td>
<td>675-331-07</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>33532</td>
<td>VALLE</td>
<td>675-331-14</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>33536</td>
<td>VALLE</td>
<td>675-331-11</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>33541</td>
<td>VALLE</td>
<td>675-331-06</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>33542</td>
<td>VALLE</td>
<td>675-331-15</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>33548</td>
<td>VALLE</td>
<td>675-331-16</td>
</tr>
<tr>
<td>JURISDICTION</td>
<td>STREET_NO NAME</td>
<td>APN</td>
<td>WATERSHED_</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------</td>
<td>----------</td>
<td>------------</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>33552 VALLE</td>
<td>675-331-17</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>33562 VALLE</td>
<td>675-341-02</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>33571 VALLE</td>
<td>675-331-08</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>33572 VALLE</td>
<td>675-341-01</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>33582 VALLE</td>
<td>675-341-03</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>33622 VALLE</td>
<td>675-341-04</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>33642 VALLE</td>
<td>675-351-09</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>33646 VALLE</td>
<td>675-351-08</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>33751 VALLE</td>
<td>675-351-10</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>33761 VALLE</td>
<td>675-351-11</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>33781 VALLE</td>
<td>675-351-05</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>33801 VALLE</td>
<td>675-351-04</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>33811 VALLE</td>
<td>675-351-03</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>33812 VALLE</td>
<td>675-341-05</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>33821 VALLE</td>
<td>675-351-02</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>30981 VIA CRISTAL</td>
<td>664-031-26</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>26300 VIA ESCOLAR</td>
<td>650-011-25</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>30422 VIA FESTIVO</td>
<td>650-613-29</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>25501 VIA INEZ</td>
<td>121-432-01</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>25502 VIA INEZ</td>
<td>121-432-01</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>25511 VIA INEZ</td>
<td>121-432-02</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>25512 VIA INEZ</td>
<td>121-432-02</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>25521 VIA INEZ</td>
<td>121-432-03</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>25522 VIA INEZ</td>
<td>121-432-03</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>25531 VIA INEZ</td>
<td>121-432-04</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>25532 VIA INEZ</td>
<td>121-432-04</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>25541 VIA INEZ</td>
<td>121-432-05</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>25542 VIA INEZ</td>
<td>121-432-05</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>25551 VIA INEZ</td>
<td>121-432-06</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>25552 VIA INEZ</td>
<td>121-432-06</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>25561 VIA INEZ</td>
<td>121-432-07</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>25562 VIA INEZ</td>
<td>121-432-07</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>25571 VIA INEZ</td>
<td>121-432-08</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>25572 VIA INEZ</td>
<td>121-432-08</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>25581 VIA INEZ</td>
<td>121-432-09</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>25582 VIA INEZ</td>
<td>121-432-09</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>25591 VIA INEZ</td>
<td>121-432-10</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>25592 VIA INEZ</td>
<td>121-432-10</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>25601 VIA INEZ</td>
<td>121-432-11</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>25602 VIA INEZ</td>
<td>121-432-11</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>25611 VIA INEZ</td>
<td>121-432-12</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>25622 VIA INEZ</td>
<td>121-432-12</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>25631 VIA INEZ</td>
<td>121-432-13</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>25641 VIA INEZ</td>
<td>121-432-14</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>27811 VIA MADRINA</td>
<td>666-341-07</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SAN JUAN CAPISTRANO</td>
<td>31201 VIA QUEBRADA</td>
<td>649-321-17</td>
<td>San Juan Creek</td>
</tr>
<tr>
<td>SANTA ANA</td>
<td>3226 5TH</td>
<td>198-281-12</td>
<td>Los Alamitos/East Garden Grove/Bolsa Chica</td>
</tr>
<tr>
<td>SANTA ANA</td>
<td>3226 5TH</td>
<td>198-281-12</td>
<td>Los Alamitos/East Garden Grove/Bolsa Chica</td>
</tr>
<tr>
<td>SANTA ANA</td>
<td>4906 7TH</td>
<td>198-241-25</td>
<td>Los Alamitos/East Garden Grove/Bolsa Chica</td>
</tr>
<tr>
<td>SANTA ANA</td>
<td>1628 EDINGER</td>
<td>408-261-56</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>SANTA ANA</td>
<td>1926 FRUIT</td>
<td>400-194-03</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>SANTA ANA</td>
<td>4018 GEORGINE</td>
<td>198-022-31</td>
<td>Los Alamitos/East Garden Grove/Bolsa Chica</td>
</tr>
<tr>
<td>SANTA ANA</td>
<td>2029 HARVARD</td>
<td>408-371-19</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>SANTA ANA</td>
<td>1318 LOGAN</td>
<td>398-182-16</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>SANTA ANA</td>
<td>5010 MAURIE</td>
<td>100-232-01</td>
<td>Los Alamitos/East Garden Grove/Bolsa Chica</td>
</tr>
<tr>
<td>SANTA ANA</td>
<td>2320 MCFADDEN</td>
<td>109-091-53</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>SANTA ANA</td>
<td>2320 MCFADDEN</td>
<td>109-091-53</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>SANTA ANA</td>
<td>1226 MCLEAN</td>
<td>198-224-03</td>
<td>Los Alamitos/East Garden Grove/Bolsa Chica</td>
</tr>
<tr>
<td>SANTA ANA</td>
<td>207 MOUNTAIN VIEW</td>
<td>100-281-28</td>
<td>Los Alamitos/East Garden Grove/Bolsa Chica</td>
</tr>
<tr>
<td>SANTA ANA</td>
<td>301 MOUNTAIN VIEW</td>
<td>100-281-05</td>
<td>Los Alamitos/East Garden Grove/Bolsa Chica</td>
</tr>
<tr>
<td>SANTA ANA</td>
<td>1584 SANTA CLARA</td>
<td>396-052-14</td>
<td>San Diego Creek</td>
</tr>
<tr>
<td>SANTA ANA</td>
<td>3225 SILVER</td>
<td>099-212-16</td>
<td>Los Alamitos/East Garden Grove/Bolsa Chica</td>
</tr>
<tr>
<td>SANTA ANA</td>
<td>3507 SILVER</td>
<td>099-212-26</td>
<td>Los Alamitos/East Garden Grove/Bolsa Chica</td>
</tr>
<tr>
<td>SANTA ANA</td>
<td>1417 SUSAN</td>
<td>198-211-02</td>
<td>Los Alamitos/East Garden Grove/Bolsa Chica</td>
</tr>
<tr>
<td>SANTA ANA</td>
<td>1424 SUSAN</td>
<td>198-211-01</td>
<td>Los Alamitos/East Garden Grove/Bolsa Chica</td>
</tr>
<tr>
<td>SANTA ANA</td>
<td>1501 SUSAN</td>
<td>198-191-07</td>
<td>Los Alamitos/East Garden Grove/Bolsa Chica</td>
</tr>
<tr>
<td>JURISDICTION</td>
<td>STREET_NO</td>
<td>NAME</td>
<td>APN</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td>SANTA ANA</td>
<td>515</td>
<td>SUSAN</td>
<td>144-271-08</td>
</tr>
<tr>
<td>SANTA ANA</td>
<td>1901</td>
<td>TRASK</td>
<td>101-042-30</td>
</tr>
<tr>
<td>SANTA ANA</td>
<td>1729</td>
<td>VALENCIA</td>
<td>600-164-22</td>
</tr>
<tr>
<td>SANTA ANA</td>
<td>3530</td>
<td>WASHINGTON</td>
<td>198-102-03</td>
</tr>
<tr>
<td>STANTON</td>
<td>8081</td>
<td>BEVER</td>
<td>131-242-07</td>
</tr>
<tr>
<td>STANTON</td>
<td>10820</td>
<td>DALE</td>
<td>126-532-13</td>
</tr>
<tr>
<td>STANTON</td>
<td>10211</td>
<td>FERN</td>
<td>126-282-19</td>
</tr>
<tr>
<td>STANTON</td>
<td>10221</td>
<td>FERN</td>
<td>126-282-18</td>
</tr>
<tr>
<td>STANTON</td>
<td>10231</td>
<td>FERN</td>
<td>126-282-17</td>
</tr>
<tr>
<td>STANTON</td>
<td>10572</td>
<td>LEXINGTON</td>
<td>079-313-06</td>
</tr>
<tr>
<td>STANTON</td>
<td>9002</td>
<td>PACIFIC</td>
<td>127-463-08</td>
</tr>
<tr>
<td>TUSTIN</td>
<td>235</td>
<td>A</td>
<td>401-562-10</td>
</tr>
<tr>
<td>TUSTIN</td>
<td>14681</td>
<td>BROOKLINE</td>
<td>401-032-04</td>
</tr>
<tr>
<td>TUSTIN</td>
<td>17651</td>
<td>FIESTA</td>
<td>401-382-14</td>
</tr>
<tr>
<td>TUSTIN</td>
<td>13611</td>
<td>GREEN VALLEY</td>
<td>500-081-15</td>
</tr>
<tr>
<td>TUSTIN</td>
<td>1542</td>
<td>KALUA</td>
<td>103-523-03</td>
</tr>
<tr>
<td>TUSTIN</td>
<td>1551</td>
<td>KALUA</td>
<td>103-522-33</td>
</tr>
<tr>
<td>TUSTIN</td>
<td>1571</td>
<td>KALUA</td>
<td>103-522-32</td>
</tr>
<tr>
<td>TUSTIN</td>
<td>1452</td>
<td>LANCE</td>
<td>500-082-13</td>
</tr>
<tr>
<td>TUSTIN</td>
<td>17552</td>
<td>LAURIE</td>
<td>395-264-03</td>
</tr>
<tr>
<td>TUSTIN</td>
<td>13532</td>
<td>MALINA</td>
<td>395-271-03</td>
</tr>
<tr>
<td>TUSTIN</td>
<td>17341</td>
<td>MCFADDEN</td>
<td>402-331-16</td>
</tr>
<tr>
<td>TUSTIN</td>
<td>180</td>
<td>MYRTLE</td>
<td>401-541-06</td>
</tr>
<tr>
<td>TUSTIN</td>
<td>12741</td>
<td>NEWPORT</td>
<td>401-211-57</td>
</tr>
<tr>
<td>TUSTIN</td>
<td>14532</td>
<td>PEPPER TREE</td>
<td>432-451-07</td>
</tr>
<tr>
<td>TUSTIN</td>
<td>13662</td>
<td>ROSALIND</td>
<td>395-263-13</td>
</tr>
<tr>
<td>TUSTIN</td>
<td>13672</td>
<td>ROSALIND</td>
<td>395-263-14</td>
</tr>
<tr>
<td>TUSTIN</td>
<td>13542</td>
<td>UTT</td>
<td>500-094-03</td>
</tr>
<tr>
<td>TUSTIN</td>
<td>13552</td>
<td>UTT</td>
<td>500-094-02</td>
</tr>
<tr>
<td>TUSTIN</td>
<td>13662</td>
<td>UTT</td>
<td>500-081-27</td>
</tr>
<tr>
<td>TUSTIN</td>
<td>1354</td>
<td>WALNUT</td>
<td>432-161-25</td>
</tr>
<tr>
<td>TUSTIN</td>
<td>18281</td>
<td>WARREN</td>
<td>401-122-17</td>
</tr>
<tr>
<td>TUSTIN</td>
<td>17662</td>
<td>WESTBURY</td>
<td>401-035-06</td>
</tr>
<tr>
<td>TUSTIN</td>
<td>13631</td>
<td>YORBA</td>
<td>395-011-20</td>
</tr>
<tr>
<td>TUSTIN</td>
<td>14891</td>
<td>YORBA STREET</td>
<td>401-302-15</td>
</tr>
<tr>
<td>VILLA PARK</td>
<td>9862</td>
<td>BRILEY</td>
<td>372-091-17</td>
</tr>
<tr>
<td>VILLA PARK</td>
<td>19332</td>
<td>CANYON</td>
<td>372-561-04</td>
</tr>
<tr>
<td>VILLA PARK</td>
<td>10051</td>
<td>CENTER</td>
<td>372-151-02</td>
</tr>
<tr>
<td>VILLA PARK</td>
<td>10202</td>
<td>CENTER</td>
<td>378-071-05</td>
</tr>
<tr>
<td>VILLA PARK</td>
<td>10232</td>
<td>CENTER</td>
<td>378-071-06</td>
</tr>
<tr>
<td>VILLA PARK</td>
<td>10802</td>
<td>CENTER</td>
<td>378-421-01</td>
</tr>
<tr>
<td>VILLA PARK</td>
<td>9516</td>
<td>CENTER</td>
<td>372-281-01</td>
</tr>
<tr>
<td>VILLA PARK</td>
<td>9711</td>
<td>CENTER</td>
<td>372-161-15</td>
</tr>
<tr>
<td>VILLA PARK</td>
<td>18352</td>
<td>CERRO VILLA</td>
<td>372-521-06</td>
</tr>
<tr>
<td>VILLA PARK</td>
<td>19182</td>
<td>CERRO VILLA</td>
<td>372-442-14</td>
</tr>
<tr>
<td>VILLA PARK</td>
<td>9642</td>
<td>CRESTVIEW</td>
<td>372-462-07</td>
</tr>
<tr>
<td>VILLA PARK</td>
<td>9646</td>
<td>CRESTVIEW</td>
<td>372-462-04</td>
</tr>
<tr>
<td>VILLA PARK</td>
<td>9652</td>
<td>CRESTVIEW</td>
<td>372-462-06</td>
</tr>
<tr>
<td>VILLA PARK</td>
<td>10141</td>
<td>LEMON</td>
<td>372-071-08</td>
</tr>
<tr>
<td>VILLA PARK</td>
<td>18161</td>
<td>LINCOLN</td>
<td>378-041-17</td>
</tr>
<tr>
<td>VILLA PARK</td>
<td>18169</td>
<td>LINCOLN</td>
<td>378-041-14</td>
</tr>
<tr>
<td>VILLA PARK</td>
<td>9082</td>
<td>LOMA</td>
<td>372-442-01</td>
</tr>
<tr>
<td>VILLA PARK</td>
<td>9121</td>
<td>LOMA</td>
<td>372-731-02</td>
</tr>
<tr>
<td>VILLA PARK</td>
<td>9131</td>
<td>LOMA</td>
<td>372-731-03</td>
</tr>
<tr>
<td>VILLA PARK</td>
<td>9141</td>
<td>LOMA</td>
<td>372-731-04</td>
</tr>
<tr>
<td>VILLA PARK</td>
<td>9161</td>
<td>LOMA</td>
<td>372-731-05</td>
</tr>
<tr>
<td>VILLA PARK</td>
<td>9182</td>
<td>LOMA</td>
<td>372-363-09</td>
</tr>
<tr>
<td>VILLA PARK</td>
<td>9192</td>
<td>LOMA</td>
<td>372-363-08</td>
</tr>
<tr>
<td>VILLA PARK</td>
<td>9221</td>
<td>LOMA</td>
<td>372-732-11</td>
</tr>
<tr>
<td>VILLA PARK</td>
<td>9571</td>
<td>LOMA</td>
<td>372-541-08</td>
</tr>
<tr>
<td>VILLA PARK</td>
<td>18605</td>
<td>MESA</td>
<td>372-491-01</td>
</tr>
<tr>
<td>VILLA PARK</td>
<td>18621</td>
<td>MESA</td>
<td>372-491-03</td>
</tr>
<tr>
<td>VILLA PARK</td>
<td>18882</td>
<td>MESA</td>
<td>372-251-07</td>
</tr>
<tr>
<td>VILLA PARK</td>
<td>18916</td>
<td>MESA</td>
<td>372-451-04</td>
</tr>
<tr>
<td>VILLA PARK</td>
<td>18976</td>
<td>MESA</td>
<td>372-451-20</td>
</tr>
<tr>
<td>VILLA PARK</td>
<td>19112</td>
<td>MESA</td>
<td>372-461-10</td>
</tr>
<tr>
<td>VILLA PARK</td>
<td>191121</td>
<td>MESA</td>
<td>372-461-11</td>
</tr>
<tr>
<td>JURISDICTION</td>
<td>STREET_NO_NAME</td>
<td>APN</td>
<td>WATERSHED_</td>
</tr>
<tr>
<td>--------------</td>
<td>----------------</td>
<td>-------</td>
<td>-----------------</td>
</tr>
<tr>
<td>VILLA PARK</td>
<td>19134 MESAS</td>
<td>372-461-12</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>VILLA PARK</td>
<td>19156 MESAS</td>
<td>372-461-16</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>VILLA PARK</td>
<td>19454 MESA</td>
<td>372-562-09</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>VILLA PARK</td>
<td>17926 MORROW</td>
<td>372-231-36</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>VILLA PARK</td>
<td>17932 MORROW</td>
<td>372-231-35</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>VILLA PARK</td>
<td>19401 NORTH MESA</td>
<td>372-561-07</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>VILLA PARK</td>
<td>18361 SANTIAGO</td>
<td>372-071-34</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>VILLA PARK</td>
<td>18422 SANTIAGO</td>
<td>372-071-33</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>VILLA PARK</td>
<td>9782 SANTIAGO</td>
<td>372-221-03</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>VILLA PARK</td>
<td>18161 SERRANO</td>
<td>372-161-09</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>VILLA PARK</td>
<td>18181 SERRANO</td>
<td>372-161-10</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>VILLA PARK</td>
<td>18191 SERRANO</td>
<td>372-161-12</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>VILLA PARK</td>
<td>18201 SHARON</td>
<td>378-052-25</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>VILLA PARK</td>
<td>18202 SHARON</td>
<td>378-052-20</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>VILLA PARK</td>
<td>18222 SHARON</td>
<td>378-052-21</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>VILLA PARK</td>
<td>18231 SHARON</td>
<td>378-052-24</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>VILLA PARK</td>
<td>18251 SHARON</td>
<td>378-052-26</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>VILLA PARK</td>
<td>18262 SHARON</td>
<td>378-052-23</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>VILLA PARK</td>
<td>18671 VALLEY</td>
<td>372-402-13</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>VILLA PARK</td>
<td>18962 VALLEY</td>
<td>372-402-25</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>VILLA PARK</td>
<td>18981 VALLEY</td>
<td>372-732-14</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>VILLA PARK</td>
<td>17922 VILLA PARK</td>
<td>378-231-37</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>VILLA PARK</td>
<td>17942 VILLA PARK</td>
<td>378-231-01</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>VILLA PARK</td>
<td>18072 VILLA PARK</td>
<td>378-291-03</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>WESTMINSTER</td>
<td>7902 18TH</td>
<td>096-325-09</td>
<td>Los Alamitos/East Garden Grove/Bolsa Chica</td>
</tr>
<tr>
<td>WESTMINSTER</td>
<td>13361 EDWARDS</td>
<td>203-581-01</td>
<td>Los Alamitos/East Garden Grove/Bolsa Chica</td>
</tr>
<tr>
<td>WESTMINSTER</td>
<td>7042 GARDEN GROVE</td>
<td>203-431-01</td>
<td>Los Alamitos/East Garden Grove/Bolsa Chica</td>
</tr>
<tr>
<td>WESTMINSTER</td>
<td>14611 MAGNOLIA</td>
<td>097-341-05</td>
<td>Los Alamitos/East Garden Grove/Bolsa Chica</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18551 ALTRUDY</td>
<td>323-231-09</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18597 ALTRUDY</td>
<td>323-231-18</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18602 ALTRUDY</td>
<td>323-231-19</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>17861 ANNA MARIE</td>
<td>343-111-18</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>17866 ANNA MARIE</td>
<td>343-111-06</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>17775 APALOOSA</td>
<td>343-551-26</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18622 ARC</td>
<td>343-661-15</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18401 ARROYO</td>
<td>323-322-06</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4240 AVOCADO</td>
<td>323-031-14</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4285 AVOCADO</td>
<td>323-281-06</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4291 AVOCADO</td>
<td>323-281-04</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4293 AVOCADO</td>
<td>323-281-10</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4295 AVOCADO</td>
<td>323-281-03</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4297 AVOCADO</td>
<td>323-281-02</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4303 AVOCADO</td>
<td>323-281-11</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4307 AVOCADO</td>
<td>323-281-09</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4309 AVOCADO</td>
<td>323-281-08</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4311 AVOCADO</td>
<td>323-281-13</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4642 AVOCADO</td>
<td>323-251-01</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4652 AVOCADO</td>
<td>323-251-02</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4659 AVOCADO</td>
<td>323-221-07</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4661 AVOCADO</td>
<td>323-221-05</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4662 AVOCADO</td>
<td>323-251-03</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4663 AVOCADO</td>
<td>323-221-06</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4672 AVOCADO</td>
<td>323-251-04</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4682 AVOCADO</td>
<td>323-251-05</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4692 AVOCADO</td>
<td>323-251-06</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4792 AVOCADO</td>
<td>323-261-13</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4956 AVOCADO</td>
<td>323-271-42</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4962 AVOCADO</td>
<td>323-271-13</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4972 AVOCADO</td>
<td>323-271-14</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18041 AVOLINDA</td>
<td>323-131-22</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18042 AVOLINDA</td>
<td>323-133-03</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18061 AVOLINDA</td>
<td>323-131-23</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18062 AVOLINDA</td>
<td>323-133-04</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18081 AVOLINDA</td>
<td>323-131-24</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18082 AVOLINDA</td>
<td>323-133-05</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18101 AVOLINDA</td>
<td>323-131-25</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18102 AVOLINDA</td>
<td>323-133-06</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>JURISDICTION</td>
<td>STREET_NO NAME</td>
<td>APN</td>
<td>WATERSHED_</td>
</tr>
<tr>
<td>-------------</td>
<td>----------------</td>
<td>-----------</td>
<td>------------</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18272 AVOLINDA</td>
<td>323-243-03</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>16629 BASTANCHURY</td>
<td>334-041-03</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>16941 BASTANCHURY</td>
<td>334-341-04</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>17222 BASTANCHURY</td>
<td>334-213-01</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>17611 BASTANCHURY</td>
<td>323-141-33</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18101 BASTANCHURY</td>
<td>323-181-06</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18103 BASTANCHURY</td>
<td>323-181-05</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18105 BASTANCHURY</td>
<td>323-171-03</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18141 BASTANCHURY</td>
<td>323-181-04</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18161 BASTANCHURY</td>
<td>323-181-03</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18241 BASTANCHURY</td>
<td>323-191-08</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18245 BASTANCHURY</td>
<td>323-191-06</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18251 BASTANCHURY</td>
<td>323-191-07</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18272 BASTANCHURY</td>
<td>323-111-01</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18471 BASTANCHURY</td>
<td>323-201-03</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18682 BEN LOMOND</td>
<td>323-221-10</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18692 BEN LOMOND</td>
<td>323-221-09</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18732 BEN LOMOND</td>
<td>323-221-08</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18042 BLAIR</td>
<td>343-561-11</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18052 BLAIR</td>
<td>343-561-07</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18063 BLAIR</td>
<td>343-561-03</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18092 BLAIR</td>
<td>343-561-06</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18093 BLAIR</td>
<td>343-561-05</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4802 BRIARHILL</td>
<td>334-301-27</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>17591 BUENA VISTA</td>
<td>341-261-09</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>17732 BUENA VISTA</td>
<td>343-151-14</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>17736 BUENA VISTA</td>
<td>343-151-12</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>17774 BUENA VISTA</td>
<td>343-151-05</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18161 BUENA VISTA</td>
<td>343-601-02</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18171 BUENA VISTA</td>
<td>343-601-03</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18175 BUENA VISTA</td>
<td>343-601-04</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18181 BUENA VISTA</td>
<td>343-601-05</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18182 BUENA VISTA</td>
<td>343-291-09</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18191 BUENA VISTA</td>
<td>343-601-06</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18211 BUENA VISTA</td>
<td>343-611-09</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18249 BUENA VISTA</td>
<td>343-611-10</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18251 BUENA VISTA</td>
<td>343-611-11</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18251 BUENA VISTA</td>
<td>343-611-12</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18271 BUENA VISTA</td>
<td>343-611-14</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18361 BUENA VISTA</td>
<td>343-611-19</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18365 BUENA VISTA</td>
<td>343-611-20</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18431 BUENA VISTA</td>
<td>343-611-21</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18451 BUENA VISTA</td>
<td>343-411-02</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18457 BUENA VISTA</td>
<td>343-401-13</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18461 BUENA VISTA</td>
<td>343-411-03</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18491 BUENA VISTA</td>
<td>343-411-04</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18561 BUENA VISTA</td>
<td>343-411-06</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18652 BUENA VISTA</td>
<td>348-351-01</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18662 BUENA VISTA</td>
<td>348-351-02</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18666 BUENA VISTA</td>
<td>348-351-03</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18672 BUENA VISTA</td>
<td>348-351-04</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18682 BUENA VISTA</td>
<td>348-351-05</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18691 BUENA VISTA</td>
<td>348-291-32</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18692 BUENA VISTA</td>
<td>348-351-06</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18701 BUENA VISTA</td>
<td>348-291-31</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>16601 CAMILLE</td>
<td>334-151-26</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>16662 CAMILLE</td>
<td>334-151-30</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>16701 CAMILLE</td>
<td>334-151-18</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>16721 CAMILLE</td>
<td>334-151-17</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18851 CAMINO VERDE</td>
<td>348-211-11</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18872 CAMINO VERDE</td>
<td>348-211-13</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18891 CAMINO VERDE</td>
<td>348-211-12</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18892 CAMINO VERDE</td>
<td>348-211-14</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18901 CAMINO VERDE</td>
<td>348-211-10</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18902 CAMINO VERDE</td>
<td>348-211-20</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18911 CAMINO VERDE</td>
<td>348-211-21</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5412 CHERRYLEE</td>
<td>348-291-03</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>JURISDICTION</td>
<td>STREET NO</td>
<td>NAME</td>
<td>APN</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
<td>------------</td>
<td>-----------</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5441</td>
<td>CHERRYLEE</td>
<td>348-281-14</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5442</td>
<td>CHERRYLEE</td>
<td>348-291-02</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5471</td>
<td>CHERRYLEE</td>
<td>348-281-15</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5472</td>
<td>CHERRYLEE</td>
<td>348-291-01</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>16881</td>
<td>CHESTNUT</td>
<td>322-111-41</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>16901</td>
<td>CHESTNUT</td>
<td>322-111-44</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18245</td>
<td>CITRUS</td>
<td>323-191-05</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18871</td>
<td>COUNTRY CLUB</td>
<td>348-151-04</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>19350</td>
<td>COUNTRYWOOD</td>
<td>323-411-10</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>19365</td>
<td>COUNTRYWOOD</td>
<td>323-411-16</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>19370</td>
<td>COUNTRYWOOD</td>
<td>323-411-11</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4501</td>
<td>DANITA</td>
<td>323-442-32</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4502</td>
<td>DANITA</td>
<td>323-442-33</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4532</td>
<td>DANITA</td>
<td>323-442-34</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4551</td>
<td>DANITA</td>
<td>323-442-31</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4562</td>
<td>DANITA</td>
<td>323-442-35</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4571</td>
<td>DANITA</td>
<td>323-442-30</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4581</td>
<td>DANITA</td>
<td>323-442-29</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4588</td>
<td>DANITA</td>
<td>323-442-36</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4598</td>
<td>DANITA</td>
<td>323-442-37</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5352</td>
<td>DANZA PLAZA</td>
<td>343-601-26</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5372</td>
<td>DANZA PLAZA</td>
<td>343-601-23</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5381</td>
<td>DANZA PLAZA</td>
<td>343-601-24</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18751</td>
<td>DE VILLE</td>
<td>323-271-01</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18762</td>
<td>DE VILLE</td>
<td>323-271-10</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18773</td>
<td>DE VILLE</td>
<td>323-271-03</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18782</td>
<td>DE VILLE</td>
<td>323-271-09</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18793</td>
<td>DE VILLE</td>
<td>323-271-04</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18802</td>
<td>DE VILLE</td>
<td>323-271-08</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18822</td>
<td>DE VILLE</td>
<td>323-271-07</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18852</td>
<td>DE VILLE</td>
<td>323-271-06</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>0</td>
<td>DEVILLE</td>
<td>NO APN</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18793</td>
<td>DEVILLE</td>
<td>323-271-04</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18321</td>
<td>DOS CASAS</td>
<td>343-391-02</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18331</td>
<td>DOS CASAS</td>
<td>343-391-01</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5320</td>
<td>DOUGLAS</td>
<td>348-201-02</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5323</td>
<td>DOUGLAS</td>
<td>348-201-03</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5330</td>
<td>DOUGLAS</td>
<td>348-201-05</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5331</td>
<td>DOUGLAS</td>
<td>348-201-04</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5340</td>
<td>DOUGLAS</td>
<td>348-201-06</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5345</td>
<td>DOUGLAS</td>
<td>348-201-10</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5350</td>
<td>DOUGLAS</td>
<td>348-201-09</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5374</td>
<td>DOUGLAS</td>
<td>348-201-20</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>19342</td>
<td>EASY</td>
<td>323-431-01</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>19350</td>
<td>EASY</td>
<td>323-431-03</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>19353</td>
<td>EASY</td>
<td>323-421-12</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>19363</td>
<td>EASY</td>
<td>323-421-11</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>19369</td>
<td>EASY</td>
<td>323-421-10</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>19370</td>
<td>EASY</td>
<td>323-431-04</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>17388</td>
<td>EL CAJON</td>
<td>334-251-07</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>17451</td>
<td>EL CAJON</td>
<td>334-221-44</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>17472</td>
<td>EL CAJON AVE</td>
<td>334-251-01</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4262</td>
<td>EUREKA</td>
<td>323-091-26</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4852</td>
<td>EUREKA</td>
<td>334-411-08</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5039</td>
<td>EUREKA</td>
<td>343-571-02</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5041</td>
<td>EUREKA</td>
<td>343-571-03</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5111</td>
<td>EUREKA</td>
<td>343-571-04</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5112</td>
<td>EUREKA</td>
<td>343-561-10</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5115</td>
<td>EUREKA</td>
<td>343-571-05</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5121</td>
<td>EUREKA</td>
<td>343-571-08</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5571</td>
<td>FIRCREST</td>
<td>348-291-10</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5575</td>
<td>FIRCREST</td>
<td>348-291-11</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5577</td>
<td>FIRCREST</td>
<td>348-291-12</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5579</td>
<td>FIRCREST</td>
<td>348-291-13</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5581</td>
<td>FIRCREST</td>
<td>348-291-14</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4696</td>
<td>FREDRICK</td>
<td>323-251-31</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4712</td>
<td>FREDRICK</td>
<td>323-251-33</td>
</tr>
<tr>
<td>JURISDICTION</td>
<td>STREET_NO_NAME</td>
<td>APN</td>
<td>WATERSHED_</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------</td>
<td>-----------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4881</td>
<td>334-151-22</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4882</td>
<td>334-151-19</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4892</td>
<td>334-151-20</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4901</td>
<td>334-151-21</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4921</td>
<td>334-151-31</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4922</td>
<td>334-151-34</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4931</td>
<td>334-151-32</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4941</td>
<td>334-151-45</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4942</td>
<td>334-151-44</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4945</td>
<td>334-151-43</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5122</td>
<td>348-131-28</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5321</td>
<td>348-141-06</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5325</td>
<td>348-141-07</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5335</td>
<td>348-141-08</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5369</td>
<td>348-141-05</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5373</td>
<td>348-141-04</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5375</td>
<td>348-141-09</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5402</td>
<td>348-012-02</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5501</td>
<td>348-291-22</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5512</td>
<td>348-371-01</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5521</td>
<td>348-291-23</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5531</td>
<td>348-291-24</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5532</td>
<td>348-371-02</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5551</td>
<td>348-291-25</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5562</td>
<td>348-371-03</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5571</td>
<td>348-291-26</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5581</td>
<td>348-291-27</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5592</td>
<td>348-371-04</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5601</td>
<td>348-291-28</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5642</td>
<td>348-371-22</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5653</td>
<td>348-402-04</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5663</td>
<td>348-402-05</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5670</td>
<td>348-361-02</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5673</td>
<td>348-402-06</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5678</td>
<td>348-361-04</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5682</td>
<td>348-361-16</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5683</td>
<td>348-402-07</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5693</td>
<td>348-402-08</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5729</td>
<td>348-391-18</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5771</td>
<td>348-391-17</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>6061</td>
<td>343-532-16</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18751</td>
<td>323-261-01</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18752</td>
<td>323-261-10</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18761</td>
<td>323-261-02</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18762</td>
<td>323-261-09</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18781</td>
<td>323-261-03</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18782</td>
<td>323-261-08</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18791</td>
<td>323-261-04</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18792</td>
<td>323-261-07</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18801</td>
<td>323-261-05</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18802</td>
<td>323-261-06</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5145</td>
<td>343-582-04</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5191</td>
<td>343-582-11</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5211</td>
<td>343-582-10</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5212</td>
<td>343-581-13</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5236</td>
<td>343-591-22</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5221</td>
<td>343-582-09</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5222</td>
<td>343-591-20</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5531</td>
<td>343-551-21</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5671</td>
<td>343-111-12</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5681</td>
<td>343-111-14</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5771</td>
<td>343-111-17</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5792</td>
<td>343-311-25</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5795</td>
<td>343-121-04</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5799</td>
<td>343-121-11</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5811</td>
<td>343-121-06</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5922</td>
<td>343-321-14</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>JURISDICTION</td>
<td>STREET_NAME</td>
<td>APN</td>
<td>WATERSHED_REGION</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
<td>-----------</td>
<td>------------------------</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>6012 HIGHLAND</td>
<td>343-331-01</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>6062 HIGHLAND</td>
<td>343-331-03</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>6062 HIGHLAND</td>
<td>343-331-05</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18792 HUMMINGBIRD</td>
<td>322-251-08</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18801 HUMMINGBIRD</td>
<td>322-251-10</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18802 HUMMINGBIRD</td>
<td>322-251-11</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18142 HUTCHINGS</td>
<td>343-591-24</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>17651 IMPERIAL</td>
<td>322-051-23</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>17691 IMPERIAL</td>
<td>322-051-08</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4546 JAMESTOWN</td>
<td>334-323-13</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5582 JEFFERSON</td>
<td>341-104-33</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5650 KELLOGG</td>
<td>348-381-07</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5650 KELLOGG</td>
<td>348-381-07</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5652 KELLOGG</td>
<td>348-381-06</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5652 KELLOGG</td>
<td>348-381-36</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5771 KELLOGG</td>
<td>348-381-07</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5801 KELLOGG</td>
<td>348-361-08</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5831 KELLOGG</td>
<td>348-261-02</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5833 KELLOGG</td>
<td>348-261-03</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5843 KELLOGG</td>
<td>348-261-07</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5871 KELLOGG</td>
<td>348-261-10</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>19110 LA PRADERA</td>
<td>322-371-11</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>19111 LA PRADERA</td>
<td>322-371-01</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>19120 LA PRADERA</td>
<td>322-371-10</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>19121 LA PRADERA</td>
<td>322-371-02</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>19131 LA PRADERA</td>
<td>322-371-03</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>19140 LA PRADERA</td>
<td>322-371-09</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>19141 LA PRADERA</td>
<td>322-371-04</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>19151 LA PRADERA</td>
<td>322-371-05</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>19172 LA PRADERA</td>
<td>322-371-08</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5811 LAKE SHORE</td>
<td>343-421-29</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5819 LAKE SHORE</td>
<td>343-421-28</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5831 LAKE SHORE</td>
<td>343-421-27</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5841 LAKEHAVEN</td>
<td>343-421-26</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4242 LAKEVIEW</td>
<td>323-281-01</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4296 LAKEVIEW</td>
<td>323-281-18</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4322 LAKEVIEW</td>
<td>323-281-14</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4332 LAKEVIEW</td>
<td>323-281-15</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4341 LAKEVIEW</td>
<td>323-111-04</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4350 LAKEVIEW</td>
<td>323-341-22</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4352 LAKEVIEW</td>
<td>323-281-16</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4632 LAKEVIEW</td>
<td>323-231-04</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4672 LAKEVIEW</td>
<td>323-231-08</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4682 LAKEVIEW</td>
<td>323-231-07</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4802 LAKEVIEW</td>
<td>323-231-15</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4861 LAKEVIEW</td>
<td>323-321-04</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4881 LAKEVIEW</td>
<td>323-321-06</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4891 LAKEVIEW</td>
<td>323-321-07</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5142 LAKEVIEW</td>
<td>343-642-15</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5152 LAKEVIEW</td>
<td>343-642-03</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5172 LAKEVIEW</td>
<td>343-642-04</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5184 LAKEVIEW</td>
<td>343-642-05</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5192 LAKEVIEW</td>
<td>343-631-01</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5202 LAKEVIEW</td>
<td>343-631-02</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5212 LAKEVIEW</td>
<td>343-631-03</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5222 LAKEVIEW</td>
<td>343-631-28</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5232 LAKEVIEW</td>
<td>343-631-29</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5242 LAKEVIEW</td>
<td>343-631-05</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5314 LAKEVIEW</td>
<td>343-631-09</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5320 LAKEVIEW</td>
<td>343-631-10</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5342 LAKEVIEW</td>
<td>343-621-02</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5351 LAKEVIEW</td>
<td>343-491-01</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5352 LAKEVIEW</td>
<td>343-621-04</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5361 LAKEVIEW</td>
<td>343-601-27</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5362 LAKEVIEW</td>
<td>343-621-05</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5391 LAKEVIEW</td>
<td>343-601-21</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5422 LAKEVIEW</td>
<td>343-621-08</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>JURISDICTION</td>
<td>STREET_NO</td>
<td>NAME</td>
<td>APN</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
<td>----------------</td>
<td>---------</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5426</td>
<td>LAKEVIEW</td>
<td>343-621-11</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5428</td>
<td>LAKEVIEW</td>
<td>343-621-09</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5432</td>
<td>LAKEVIEW</td>
<td>343-611-01</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5434</td>
<td>LAKEVIEW</td>
<td>343-611-04</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5441</td>
<td>LAKEVIEW</td>
<td>343-601-13</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5442</td>
<td>LAKEVIEW</td>
<td>343-611-02</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5452</td>
<td>LAKEVIEW</td>
<td>343-611-17</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5462</td>
<td>LAKEVIEW</td>
<td>343-611-03</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5464</td>
<td>LAKEVIEW</td>
<td>343-611-15</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5466</td>
<td>LAKEVIEW</td>
<td>343-611-16</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5482</td>
<td>LAKEVIEW</td>
<td>343-611-05</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5502</td>
<td>LAKEVIEW</td>
<td>343-611-06</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5505</td>
<td>LAKEVIEW</td>
<td>343-601-54</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5522</td>
<td>LAKEVIEW</td>
<td>343-611-07</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5542</td>
<td>LAKEVIEW</td>
<td>343-611-08</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5551</td>
<td>LAKEVIEW</td>
<td>343-601-46</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5641</td>
<td>LAKEVIEW</td>
<td>343-291-12</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5881</td>
<td>LAKEVIEW</td>
<td>343-321-06</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5883</td>
<td>LAKEVIEW</td>
<td>343-321-05</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5885</td>
<td>LAKEVIEW</td>
<td>343-321-04</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5893</td>
<td>LAKEVIEW</td>
<td>343-321-09</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5951</td>
<td>LAKEVIEW</td>
<td>343-321-10</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5971</td>
<td>LAKEVIEW</td>
<td>343-321-30</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5981</td>
<td>LAKEVIEW</td>
<td>343-321-32</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>6000</td>
<td>LAKEVIEW</td>
<td>343-391-29</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>6006</td>
<td>LAKEVIEW</td>
<td>343-391-30</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>6032</td>
<td>LAKEVIEW</td>
<td>343-391-25</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>6050</td>
<td>LAKEVIEW</td>
<td>343-391-26</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4417</td>
<td>LARO</td>
<td>334-181-09</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4437</td>
<td>LARO</td>
<td>334-181-08</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4441</td>
<td>LARO</td>
<td>334-181-10</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4480</td>
<td>LARO</td>
<td>334-181-05</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4482</td>
<td>LARO</td>
<td>334-181-06</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>16631</td>
<td>LATHROP</td>
<td>334-031-06</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>16631</td>
<td>LATHROP</td>
<td>334-031-07</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>16641</td>
<td>LATHROP</td>
<td>334-031-05</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>16651</td>
<td>LATHROP</td>
<td>334-031-04</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>17832</td>
<td>LERENE</td>
<td>334-101-10</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5362</td>
<td>LINDFORD</td>
<td>348-201-22</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5368</td>
<td>LINDFORD</td>
<td>348-201-21</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>16661</td>
<td>LOIE</td>
<td>334-071-01</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>16732</td>
<td>LOIE</td>
<td>334-072-10</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>17745</td>
<td>LOMITA</td>
<td>341-251-07</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18550</td>
<td>LOOKOUT</td>
<td>343-481-09</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18565</td>
<td>LOOKOUT</td>
<td>343-481-02</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5111</td>
<td>LOS ALTOS</td>
<td>348-191-01</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5116</td>
<td>LOS ALTOS</td>
<td>348-191-27</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5141</td>
<td>LOS ALTOS</td>
<td>348-191-07</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5146</td>
<td>LOS ALTOS</td>
<td>348-191-26</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5170</td>
<td>LOS ALTOS</td>
<td>348-191-29</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5182</td>
<td>LOS ALTOS</td>
<td>348-191-30</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5194</td>
<td>LOS ALTOS</td>
<td>348-191-25</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5201</td>
<td>LOS ALTOS</td>
<td>348-191-09</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5206</td>
<td>LOS ALTOS</td>
<td>348-191-24</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5211</td>
<td>LOS ALTOS</td>
<td>348-191-08</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5291</td>
<td>LOS ALTOS</td>
<td>348-191-16</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>19005</td>
<td>LYNN</td>
<td>323-081-26</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>19010</td>
<td>LYNN</td>
<td>323-081-32</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4722</td>
<td>MAIN</td>
<td>323-311-13</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4732</td>
<td>MAIN</td>
<td>323-311-15</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4865</td>
<td>MAIN</td>
<td>323-304-17</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4897</td>
<td>MAIN</td>
<td>323-304-12</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4901</td>
<td>MAIN</td>
<td>323-304-11</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>16651</td>
<td>MALCOLM</td>
<td>334-151-05</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>16686</td>
<td>MALCOLM</td>
<td>334-151-12</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>17122</td>
<td>MARDA</td>
<td>322-172-06</td>
</tr>
</tbody>
</table>
| JURISDICTION | STREET NO NAME | APN | WATERSHED
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>YORBA LINDA</td>
<td>18031 MARIPOSA</td>
<td>343-331-06</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>17812 MEADOWVIEW</td>
<td>334-371-05</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>17832 MEADOWVIEW</td>
<td>334-371-06</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>17852 MEADOWVIEW</td>
<td>334-371-07</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4122 MIERIENDA</td>
<td>334-341-09</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4142 MIERIENDA</td>
<td>334-341-08</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4162 MIERIENDA</td>
<td>334-341-07</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4182 MIERIENDA</td>
<td>334-341-06</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4202 MIERIENDA</td>
<td>334-341-05</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>19320 MICKEL</td>
<td>323-421-09</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>19373 MICKEL</td>
<td>323-421-04</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>19382 MICKEL</td>
<td>323-421-08</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>19384 MICKEL</td>
<td>323-421-07</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>19388 MICKEL</td>
<td>323-431-07</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>19390 MICKEL</td>
<td>323-421-14</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>19390 MICKEL</td>
<td>323-421-14</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5061 MOUNTAIN VIEW</td>
<td>343-581-12</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5071 MOUNTAIN VIEW</td>
<td>343-581-01</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5162 MOUNTAIN VIEW</td>
<td>348-191-45</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5192 MOUNTAIN VIEW</td>
<td>348-191-39</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5196 MOUNTAIN VIEW</td>
<td>348-191-40</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5251 MOUNTAIN VIEW</td>
<td>348-271-19</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5253 MOUNTAIN VIEW</td>
<td>348-271-15</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5263 MOUNTAIN VIEW</td>
<td>348-271-16</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5282 MOUNTAIN VIEW</td>
<td>348-191-17</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5295 MOUNTAIN VIEW</td>
<td>348-271-17</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5302 MOUNTAIN VIEW</td>
<td>348-191-18</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5350 MOUNTAIN VIEW</td>
<td>348-201-08</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5361 MOUNTAIN VIEW</td>
<td>348-281-10</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5371 MOUNTAIN VIEW</td>
<td>348-281-09</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5372 MOUNTAIN VIEW</td>
<td>348-201-23</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5373 MOUNTAIN VIEW</td>
<td>348-281-11</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5377 MOUNTAIN VIEW</td>
<td>348-281-12</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5411 MOUNTAIN VIEW</td>
<td>348-281-13</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5421 MOUNTAIN VIEW</td>
<td>348-291-04</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5441 MOUNTAIN VIEW</td>
<td>348-292-01</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5552 MOUNTAIN VIEW</td>
<td>348-012-08</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5565 MOUNTAIN VIEW</td>
<td>348-371-35</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5571 MOUNTAIN VIEW</td>
<td>348-371-10</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5575 MOUNTAIN VIEW</td>
<td>348-371-11</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5582 MOUNTAIN VIEW</td>
<td>348-012-37</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>16831 NIGHTINGALE</td>
<td>334-181-03</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>16882 NIGHTINGALE</td>
<td>334-181-04</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>16892 NIGHTINGALE</td>
<td>334-191-07</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>16932 NIGHTINGALE</td>
<td>334-191-08</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5221 NORCRIS</td>
<td>348-201-29</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5239 NORCRIS</td>
<td>348-201-30</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5241 NORCRIS</td>
<td>348-201-28</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5246 NORCRIS</td>
<td>348-201-31</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5261 NORCRIS</td>
<td>348-201-27</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5266 NORCRIS</td>
<td>348-201-32</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5286 NORCRIS</td>
<td>348-201-33</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5296 NORCRIS</td>
<td>348-201-26</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>6099 NUTMEG</td>
<td>343-331-22</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4382 OHIO</td>
<td>323-381-25</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4511 OHIO</td>
<td>323-451-21</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4731 OHIO</td>
<td>323-251-21</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4779 OHIO</td>
<td>323-261-16</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4862 OHIO</td>
<td>323-081-14</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4872 OHIO</td>
<td>323-081-15</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4884 OHIO</td>
<td>323-081-16</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4888 OHIO</td>
<td>323-081-17</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4912 OHIO</td>
<td>323-081-18</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4932 OHIO</td>
<td>323-081-19</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4942 OHIO</td>
<td>323-081-20</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5122 OHIO</td>
<td>348-121-25</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5132 OHIO</td>
<td>348-141-41</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>JURISDICTION</td>
<td>STREET_NO NAME</td>
<td>APN</td>
<td>WATERSHED_</td>
</tr>
<tr>
<td>--------------</td>
<td>----------------</td>
<td>-----------</td>
<td>------------</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5241 OHIO</td>
<td>348-211-29</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5311 OHIO</td>
<td>348-201-14</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5362 OHIO</td>
<td>348-141-11</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5388 OHIO</td>
<td>348-141-10</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5400 OHIO</td>
<td>348-151-33</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5401 OHIO</td>
<td>348-201-25</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5531 OHIO</td>
<td>348-351-09</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5541 OHIO</td>
<td>348-351-08</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5781 OHIO</td>
<td>343-421-16</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5801 OHIO</td>
<td>343-421-17</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5802 OHIO</td>
<td>343-511-02</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5821 OHIO</td>
<td>343-421-18</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5851 OHIO</td>
<td>343-421-19</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5891 OHIO</td>
<td>343-661-08</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5901 OHIO</td>
<td>343-661-09</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5972 OHIO</td>
<td>343-661-25</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>6092 OHIO</td>
<td>343-661-19</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5757 ORCHARD</td>
<td>348-361-10</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5802 ORCHARD</td>
<td>348-361-17</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18552 ORIENTE</td>
<td>323-231-03</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18582 ORIENTE</td>
<td>323-231-01</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18771 ORIENTE</td>
<td>323-442-26</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18781 ORIENTE</td>
<td>323-442-27</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18782 ORIENTE</td>
<td>323-251-09</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18811 ORIENTE</td>
<td>323-442-28</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18812 ORIENTE</td>
<td>323-251-13</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18820 ORIENTE</td>
<td>323-251-14</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18982 ORIENTE</td>
<td>323-251-44</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18991 ORIENTE</td>
<td>323-451-34</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18995 ORIENTE</td>
<td>323-371-24</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>19051 ORIENTE</td>
<td>323-371-14</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>19076 ORIENTE</td>
<td>323-361-02</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>19077 ORIENTE</td>
<td>323-371-15</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>19087 ORIENTE</td>
<td>323-371-16</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>19111 ORIENTE</td>
<td>323-371-17</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>19136 ORIENTE</td>
<td>323-361-04</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>19141 ORIENTE</td>
<td>323-371-18</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>19151 ORIENTE</td>
<td>323-371-20</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>19152 ORIENTE</td>
<td>323-361-34</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>19162 ORIENTE</td>
<td>323-361-33</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>19171 ORIENTE</td>
<td>323-371-19</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>19182 ORIENTE</td>
<td>323-361-07</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>19211 ORIENTE</td>
<td>323-371-21</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>19222 ORIENTE</td>
<td>323-361-08</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>19235 ORIENTE</td>
<td>323-371-23</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>19311 ORIENTE</td>
<td>323-401-20</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>19321 ORIENTE</td>
<td>323-401-14</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>19414 ORIENTE</td>
<td>323-411-03</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>19416 ORIENTE</td>
<td>323-411-02</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>19420 ORIENTE</td>
<td>323-411-05</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>19421 ORIENTE</td>
<td>323-401-11</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>19424 ORIENTE</td>
<td>323-411-04</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>19441 ORIENTE</td>
<td>323-401-10</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>19452 ORIENTE</td>
<td>323-411-06</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>19031 ORO VERDE</td>
<td>323-361-19</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>19032 ORO VERDE</td>
<td>323-361-22</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>19082 ORO VERDE</td>
<td>323-361-25</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4282 OSMOND</td>
<td>334-213-02</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4342 OSMOND</td>
<td>334-213-04</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4372 OSMOND</td>
<td>334-213-06</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4392 OSMOND</td>
<td>334-361-16</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4400 OSMOND</td>
<td>334-361-15</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>17011 PACIFIC</td>
<td>322-164-28</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4431 PALM</td>
<td>323-381-05</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4452 PALM</td>
<td>323-391-01</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4458 PALM</td>
<td>323-391-13</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4481 PALM</td>
<td>323-381-06</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>JURISDICTION</td>
<td>STREET_NO NAME</td>
<td>APN</td>
<td>WATERSHED</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>PALM</td>
<td>323-391-02</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>PALM</td>
<td>323-391-04</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>PALM</td>
<td>323-391-22</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>PALM</td>
<td>323-401-16</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>PALM</td>
<td>323-361-11</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>PALM</td>
<td>323-351-02</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>PALM</td>
<td>323-351-03</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>PALM</td>
<td>323-351-04</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>PALM</td>
<td>323-351-08</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>PALM</td>
<td>323-351-08</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>PALM</td>
<td>323-351-07</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>PALM</td>
<td>323-351-06</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>PALM</td>
<td>323-421-01</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>PALM</td>
<td>323-431-02</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>PALM VISTA</td>
<td>323-351-17</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>PALOMINO</td>
<td>323-361-20</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>PALOMINO</td>
<td>323-361-21</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>PALOMINO</td>
<td>323-361-22</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>PARK</td>
<td>334-403-03</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>PARK</td>
<td>334-402-03</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>PEBBLE BEACH</td>
<td>348-292-09</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>PEBBLE BEACH</td>
<td>348-292-20</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>PEBBLE BEACH</td>
<td>348-292-08</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>PEBBLE BEACH</td>
<td>348-292-19</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>PEBBLE BEACH</td>
<td>348-292-07</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>PEBBLE BEACH</td>
<td>348-291-18</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>PEBBLE BEACH</td>
<td>348-292-06</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>PEBBLE BEACH</td>
<td>348-291-17</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>PEBBLE BEACH</td>
<td>348-291-15</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>PEBBLE BEACH</td>
<td>348-291-16</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>PLUMOSA</td>
<td>323-101-54</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>PLUMOSA</td>
<td>323-101-08</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>PLUMOSA</td>
<td>323-311-03</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>PROSPect</td>
<td>322-151-02</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>PROSPect</td>
<td>322-164-27</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>PROSPect</td>
<td>334-341-10</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>PROSPect</td>
<td>334-341-11</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>PROSPect</td>
<td>334-191-03</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>PROSPect</td>
<td>334-191-06</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>PROSPect</td>
<td>334-191-25</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>PROSPect</td>
<td>334-192-12</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>PROSPect</td>
<td>334-192-09</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>PROSPect</td>
<td>334-231-39</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>RICHFIELD</td>
<td>343-251-35</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>RICHFIELD</td>
<td>343-251-34</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>RICHFIELD</td>
<td>343-591-02</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>RICHFIELD</td>
<td>343-591-07</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>RICHFIELD</td>
<td>341-261-01</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>RICHFIELD</td>
<td>343-532-02</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>RICHFIELD</td>
<td>343-532-17</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>ROSE</td>
<td>322-061-19</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>ROSE</td>
<td>322-061-01</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>ROSE</td>
<td>322-061-14</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>ROSE</td>
<td>322-061-15</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>ROSE</td>
<td>322-061-16</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>ROSE</td>
<td>322-061-18</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>ROSE</td>
<td>322-061-17</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>ROSE</td>
<td>322-101-33</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>ROSE</td>
<td>334-081-20</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>ROSE</td>
<td>334-081-41</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>ROSE</td>
<td>334-131-34</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>ROSE</td>
<td>334-151-15</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>ROSE</td>
<td>334-151-16</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>JURISDICTION</td>
<td>STREET_NO NAME</td>
<td>APN</td>
<td>WATERSHED</td>
</tr>
<tr>
<td>--------------</td>
<td>----------------</td>
<td>----------</td>
<td>-----------</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4911 ROSE</td>
<td>334-151-36</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4931 ROSE</td>
<td>334-151-38</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4941 ROSE</td>
<td>334-151-39</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5852 SANDRA</td>
<td>343-661-07</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5951 SANDRA</td>
<td>343-661-01</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5961 SANDRA</td>
<td>343-661-02</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5962 SANDRA</td>
<td>343-661-05</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5971 SANDRA</td>
<td>343-661-03</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5972 SANDRA</td>
<td>343-661-04</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4641 SANTA FE</td>
<td>334-231-06</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4862 SCHOOL</td>
<td>323-322-07</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4871 SCHOOL</td>
<td>323-324-03</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18451 SHADY</td>
<td>343-642-11</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18452 SHADY</td>
<td>343-642-06</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18461 SHADY</td>
<td>343-642-09</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18472 SHADY</td>
<td>343-642-14</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4852 SHAW</td>
<td>334-403-14</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4872 SHAW</td>
<td>334-403-13</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4911 SHAW</td>
<td>334-403-09</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4921 SHAW</td>
<td>334-403-10</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18222 SHOOK</td>
<td>343-491-03</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18291 SHOOK</td>
<td>343-491-09</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5841 SHORT</td>
<td>343-661-28</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>6011 SHORT</td>
<td>343-521-06</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>6012 SHORT</td>
<td>343-511-14</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>6021 SHORT</td>
<td>343-521-07</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>6022 SHORT ST</td>
<td>343-522-01</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5032 SIESTA</td>
<td>343-571-11</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5061 SIESTA</td>
<td>343-571-14</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5062 SIESTA A</td>
<td>343-571-10</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5081 SIESTA</td>
<td>343-571-15</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5082 SIESTA</td>
<td>343-571-09</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5111 SIESTA</td>
<td>343-571-16</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5121 SIESTA</td>
<td>343-571-17</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5141 SIESTA</td>
<td>343-571-19</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>19141 SKYVIEW</td>
<td>323-361-27</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>19151 SKYVIEW</td>
<td>323-361-14</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>19171 SKYVIEW</td>
<td>323-361-12</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>19172 SKYVIEW</td>
<td>323-361-28</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>19182 SKYVIEW</td>
<td>323-361-29</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>19191 SKYVIEW</td>
<td>323-361-12</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>19192 SKYVIEW</td>
<td>323-361-30</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>19198 SKYVIEW</td>
<td>323-361-31</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5362 SOUTH OHIO</td>
<td>348-141-42</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4777 SOUTH PALM</td>
<td>323-351-05</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5282 SUNSET</td>
<td>348-281-07</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5300 SUNSET</td>
<td>348-281-08</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5501 TAMMARISK</td>
<td>348-291-05</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5521 TAMMARISK</td>
<td>348-291-06</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5522 TAMMARISK</td>
<td>348-292-02</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5531 TAMMARISK</td>
<td>348-291-07</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5532 TAMMARISK</td>
<td>348-292-03</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5551 TAMMARISK</td>
<td>348-291-08</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5552 TAMMARISK</td>
<td>348-292-04</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5561 TAMMARISK</td>
<td>348-291-09</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5562 TAMMARISK</td>
<td>348-292-05</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5216 TEDFORD</td>
<td>348-191-05</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5221 TEDFORD</td>
<td>348-191-43</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5225 TEDFORD</td>
<td>348-191-41</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5230 TEDFORD</td>
<td>348-191-11</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5231 TEDFORD</td>
<td>348-191-06</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5241 TEDFORD</td>
<td>348-191-10</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5275 TEDFORD</td>
<td>348-191-13</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5279 TEDFORD</td>
<td>348-191-12</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5292 TIKI TORCH</td>
<td>343-631-16</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5222 TIKI TORCH</td>
<td>343-631-17</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>5236 TIKI TORCH</td>
<td>343-631-13</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>JURISDICTION</td>
<td>STREET_NAME</td>
<td>APN</td>
<td>WATERSHED</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>-----</td>
<td>-----------</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>TIKI TORCH</td>
<td>343-631-18</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>TIKI TORCH</td>
<td>343-631-12</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>TIMBERLANE</td>
<td>343-391-19</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>TIMBERLANE</td>
<td>343-391-20</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>TIMBERLANE</td>
<td>343-391-18</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>TIMBERLANE</td>
<td>343-391-21</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>TIMBERLANE</td>
<td>343-391-22</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>TIMBERLANE</td>
<td>343-391-17</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>TIMBERLANE</td>
<td>343-391-23</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>TIMBERLANE</td>
<td>343-391-16</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>TIMBERLANE</td>
<td>343-391-15</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>TIMBERLANE</td>
<td>343-391-03</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>TIMBERLANE</td>
<td>343-391-14</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>TIMBERLANE</td>
<td>343-391-13</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>TIMBERLANE</td>
<td>343-391-05</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>TIMBERLANE</td>
<td>343-391-09</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>TIMBERLANE</td>
<td>343-391-04</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>TIMBERLANE</td>
<td>343-391-11</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>VALLECITO</td>
<td>323-451-37</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>VALLEY VIEW</td>
<td>323-011-45</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>VALLEY VIEW</td>
<td>323-012-14</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>VALLEY VIEW</td>
<td>334-251-02</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>VALLEY VIEW</td>
<td>334-251-05</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>VIA BUENA VIDA</td>
<td>343-571-31</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>VIA BUENA VIDA</td>
<td>343-571-25</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>VIA DE LA CIELO</td>
<td>323-391-05</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>VIA DE LA CIELO</td>
<td>323-391-06</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>VIA DE LA CIELO</td>
<td>323-391-07</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>VIA DEL CABALLO</td>
<td>323-381-10</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>VIA DEL CABALLO</td>
<td>323-381-03</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>VIA DEL CABALLO</td>
<td>323-381-11</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>VIA DEL CABALLO</td>
<td>323-381-08</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>VIA DEL CABALLO</td>
<td>323-381-09</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>VIA DEL CABALLO</td>
<td>323-371-06</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>VIA DEL CABALLO</td>
<td>323-371-05</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>VIA DEL CABALLO</td>
<td>323-401-01</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>VIA DEL CABALLO</td>
<td>323-401-02</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>VIA DEL CABALLO</td>
<td>323-401-03</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>VIA DEL CABALLO</td>
<td>323-391-08</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>VIA DEL CABALLO</td>
<td>323-401-04</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>VIA DEL CABALLO</td>
<td>323-391-09</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>VIA DEL CABALLO</td>
<td>323-401-05</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>VIA DEL CABALLO</td>
<td>323-391-10</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>VIA DEL CABALLO</td>
<td>323-401-06</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>VIA DEL CABALLO</td>
<td>323-391-11</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>VIA DEL CABALLO</td>
<td>323-391-12</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>VIA DEL CABALLO</td>
<td>323-401-08</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>VIA ENCANTO</td>
<td>348-201-19</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>VIA ENCANTO</td>
<td>348-201-16</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>VIA ENCANTO</td>
<td>348-201-18</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>VIA RANCHERO</td>
<td>343-121-16</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>VIA RANCHERO</td>
<td>343-121-15</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>VIA RANCHERO</td>
<td>343-121-21</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>VIA SERENO</td>
<td>348-211-05</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>VIA SERENO</td>
<td>348-211-01</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>VIA SERENO</td>
<td>348-211-16</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>VIA SERENO</td>
<td>348-211-15</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>VIA SERENO</td>
<td>348-211-17</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>VIA SERENO</td>
<td>348-211-18</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>VIA SERENO</td>
<td>348-211-27</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>VIA SERENO</td>
<td>348-211-30</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>VIA SERENO</td>
<td>323-451-25</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>VIA SERENO</td>
<td>323-451-24</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>VIA SERENO</td>
<td>323-451-23</td>
<td>Lower Santa Ana River</td>
</tr>
<tr>
<td>JURISDICTION</td>
<td>STREET_NO</td>
<td>NAME</td>
<td>APN</td>
</tr>
<tr>
<td>-------------</td>
<td>-----------</td>
<td>---------------</td>
<td>----------</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18321</td>
<td>VISTA DEL LAGO</td>
<td>343-401-16</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18331</td>
<td>VISTA DEL LAGO</td>
<td>343-401-08</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18372</td>
<td>VISTA DEL LAGO</td>
<td>343-401-04</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18381</td>
<td>VISTA DEL LAGO</td>
<td>343-401-09</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18921</td>
<td>VISTA REAL</td>
<td>348-131-24</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18940</td>
<td>VISTA REAL</td>
<td>348-131-18</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>16882</td>
<td>WABASH</td>
<td>322-111-38</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18711</td>
<td>WINDY KNOLL</td>
<td>348-121-04</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18721</td>
<td>WINDY KNOLL</td>
<td>348-121-01</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4662</td>
<td>WOODHAVEN</td>
<td>334-371-11</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4652</td>
<td>YORBA</td>
<td>323-251-15</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4666</td>
<td>YORBA</td>
<td>323-251-16</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4671</td>
<td>YORBA</td>
<td>323-251-12</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4701</td>
<td>YORBA</td>
<td>323-251-26</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4702</td>
<td>YORBA</td>
<td>323-251-25</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4712</td>
<td>YORBA</td>
<td>323-251-24</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4722</td>
<td>YORBA</td>
<td>323-251-23</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4727</td>
<td>YORBA</td>
<td>323-251-27</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4732</td>
<td>YORBA</td>
<td>323-251-28</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4741</td>
<td>YORBA</td>
<td>323-251-30</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>4742</td>
<td>YORBA</td>
<td>323-251-29</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>17897</td>
<td>YORBA LINDA</td>
<td>334-111-30</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18022</td>
<td>YORBA LINDA</td>
<td>343-561-20</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18052</td>
<td>YORBA LINDA</td>
<td>343-561-21</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18562</td>
<td>YORBA LINDA</td>
<td>348-162-13</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18862</td>
<td>YORBA LINDA</td>
<td>348-211-07</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>18881</td>
<td>YORBA LINDA</td>
<td>323-271-44</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>19045</td>
<td>YORBA LINDA</td>
<td>323-081-34</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>19111</td>
<td>YORBA LINDA</td>
<td>323-081-36</td>
</tr>
<tr>
<td>YORBA LINDA</td>
<td>19401</td>
<td>YORBA LINDA</td>
<td>323-431-11</td>
</tr>
</tbody>
</table>
Appendix E

Referenced Data
APPENDIX V: Silverado Creek Aerial Map with Property Identification
Visible Layers
- County of Orange
- County of Orange Unincorporated Areas with MSLink ID Number
- Silverado Creek (303(d) Listed Water for Pathogen Impairment)
- 600 Foot Setback (each side) From Impaired Waterbody
- Rivers, Creeks, and Streams
- 200 foot setback (each side) from any waterbody
Visible Layers

- County of Orange
- Silverado Creek (303(d) Listed Water for Pathogen Impairment)
- 600 Foot Setback (each side) From Impaired Waterbody
- 200 foot setback (each side) from any waterbody
Silverado Creek
Orange County, California
Riverside County, California

Waterbody Minimum Setbacks for OWTS Placement Detail on Silverado Creek

Visible Layers
- County of Orange
- County of Orange Unincorporated Areas with MSLink ID Number
- Silverado Creek (303(d) Listed Water for Pathogen Impairment)
- 600 Foot Setback (each side) From Impaired Waterbody
- Rivers, Creeks, and Streams
- 200 foot setback (each side) from any waterbody

Source: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community
Visible Layers
- County of Orange
- County of Orange Unincorporated Areas with MSLink ID Number
- Silverado Creek (303(d) Listed Water for Pathogen Impairment)
- 600 Foot Setback (each side) From Impaired Waterbody
- Rivers, Creeks, and Streams
- 200 foot setback (each side) from any waterbody

Source: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community
Visible Layers
- County of Orange
- County of Orange Unincorporated Areas with MSLink ID Number
- Silverado Creek (303(d) Listed Water for Pathogen Impairment)
- 600 Foot Setback (each side) From Impaired Waterbody
- Rivers, Creeks, and Streams
- 200 foot setback (each side) from any waterbody
Visible Layers
- County of Orange
- Orange County Unincorporated Areas with MSLink ID Number
- Silverado Creek (303(d) Listed Water for Pathogen Impairment)
- 600 Foot Setback (each side) From Impaired Waterbody
- Rivers, Creeks, and Streams
- 200 foot setback (each side) from any waterbody
Silverado Creek
Orange County, California
Riverside County, California

Waterbody Minimum Setbacks for OWTS Placement Detail on Silverado Creek
Visible Layers
- County of Orange
- County of Orange Unincorporated Areas with MSLink ID Number
- Silverado Creek (303(d) Listed Water for Pathogen Impairment)
- 600 Foot Setback (each side) From Impaired Waterbody
- Rivers, Creeks, and Streams
- 200 foot setback (each side) from any waterbody

Waterbody Minimum Setbacks for OWTS Placement Detail on Silverado Creek

Orange County, California
Riverside County, California

Source: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community
Waterbody Minimum Setbacks for OWTS Placement Detail on Silverado Creek

Visible Layers
- County of Orange
- County of Orange Unincorporated Areas with MSLink ID Number
- Silverado Creek (303(d) Listed Water for Pathogen Impairment)
- 600 Foot Setback (each side) From Impaired Waterbody
- Rivers, Creeks, and Streams
- 200 foot setback (each side) from any waterbody