
Is a water quality index an appropriate substitute for a biotic index?

While the draft Algal Stream Condition Index (ASCI) was developed to respond to a general stressor gradient, the component metrics appear to be in-line with a water quality index. In addition, each of the "target" water quality constituents is routinely monitored. While algal assemblages have been used for decades as a water quality indicator, this index is intended to address aquatic life beneficial uses (i.e., does the algal community look similar to reference). Water quality specific metrics seem to be an indirect means to answer questions about water quality which seem unnecessary given the abundance of direct measurement data available. Such water quality monitoring provides high quality data, reduces the inherent spatial and temporal of biomonitoring, is far less expensive to conduct, and has a much faster turnaround time.

Do the proposed indices offer sufficient resolution along a disturbance gradient?

Very few of the proposed indices appear to clearly differentiate between reference sites and those with intermediate levels of anthropogenic stress (Figure 1) and the ability to discriminate between such a stressor gradient is at the very core of biotic indices. While better discrimination is observed between reference and stressed sites, it is likely that far less expensive and more consistent observations could provide the same information.

Figure 1. Various ASCIs and Response to a Stressor Gradient

Is soft-bodied algal (SBA) taxonomy robust enough to include in a regulatory program?

Morphological SBA taxonomy is currently problematic due to high cost¹, a lack of taxonomic capacity¹, and documented inconsistency among taxonomists². SCCWRP researchers are currently working to circumvent these problems with the development of molecular algal taxonomy methods. With the doubts surrounding the inclusion of SBA in any ASCI, does it make scientific sense to take pause and increase certainty?

Has the reference condition been sufficiently defined for a statewide algal assessment?

Application of a predecessor to the CSCI, the Southern Coastal California Index of Biotic Integrity (IBI), was hampered by a lack of relevant reference sites leading to an incomplete understanding of the reference condition for certain geographical regions (e.g., low-gradient coastal streams)³. The modeled reference approach, at least, partially addressed the concerns surrounding underrepresented environmental variables in the reference condition. Does the ASCI reference pool sufficiently characterize low gradient, low elevation, large watershed systems?

Were redundant metrics sufficiently screened?

Multi-metric index development commonly includes analyses for exclusion of redundant metrics^{4,5,6}. The SBA metrics appear to be highly redundant. BCG 3 taxa richness, proportion non-reference taxa, and proportion tolerant taxa seem to all tell the same story. Should redundant metrics be included and were such metrics sufficiently addressed?

Should "BCG Taxa" be used as metrics?

The BCG process was a subjective (expert opinion based) and not entirely successful effort to bin sites based on ecological function. Whether or not taxa are often observed in samples falling into a specific bin seems overly subjective, inconsistent, and open to human bias. Further, if the State opts to use a reference based approach and not the BCG, is reliance upon products coming from the BCG work technically defensible?

¹ Molecular Tools for Bioassessment (2018). Presented to SCCWRP Commission, June 1, 2018. Attachment 1.

² Weech, S., Orr, P., White, M., and C. Fraser. 2014. Inter-laboratory Comparison Reveals Critical Issues with Periphyton Community Assessment. Presented at the SETAC North America annual meeting, Vancouver, British Columbia. Attachment 2.

³ Diamond, Jerry. Reference Conditions and Bioassessments in Southern California Streams. July 31, 2009. Memorandum to Phil Markle of the Sanitation Districts. Attachment 3.

⁴ Ode, P. R., Rehn, A. C., & May, J. T. (2005). A quantitative tool for assessing the integrity of southern coastal California streams. *Environmental management*, *35*(4), 493-504.

⁵ Rehn, A. C., P. R. Ode, and J. T. May. 2005. Development of a Benthic Index of Biotic Integrity (B-IBI) for Wadeable Streams in Northern Coastal California and its Application to Regional 305(b) Assessment. Final Technical Report, State Water Resources Control Board, Sacramento, CA.

⁶ Rehn, A. C. (2009). Benthic macroinvertebrates as indicators of biological condition below hydropower dams on west slope Sierra Nevada streams, California, USA. *River Research and Applications, 25*(2), 208-228.

Was the BCG process successful at communicating ecological structure, function, and beneficial use attainment?

The BCG output has created additional confusion among entities quite familiar with the reference condition. The CSCI is based on a well vetted, objective, index which will give you the same score every time with the same taxa list (excluding insignificant changes across iterations). However, when looking at the BCG to CSCI crosswalk (Figure 2), one can see that a CSCI score of 1.0 (the mean of reference) is most likely in BCG bin 3. Bin 3 is described as a group "in which some changes in structure due to loss of some rare native taxa; shifts in relative abundance of taxa but sensitive–ubiquitous taxa are common and abundant; ecosystem functions are fully maintained through redundant attributes of the system." There appears to be a disconnect between the expert opinion-based and modeled approaches. Can they both be correct? In addition, the BCG practitioner's guide recognizes the challenges and shortcomings of most monitoring programs to assess ecosystem function⁷ and notes that the BCG conceptual model "includes ecosystem function for future application." Has the BCG either addressed or communicated ecosystem function any better than the reference condition approach?

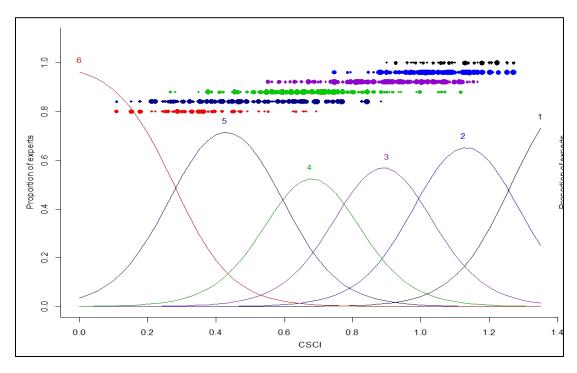


Figure 2. Relative Distribution of BCG Bins vs. CSCI Scores

Has a mechanistic linkage been sufficiently demonstrated between the biotic indices and eutrophication?

The technical team describes use of these organisms for diagnostic indicators as "caveated" because organism and population measures of health are impacted by a variety of different stressors in a complex environment which is not easy to model. Sites with elevated nutrients are likely to have elevated conductivity and any other ubiquitous water quality sign of development. Further, the models'

⁷ USEPA. 2016. A Practitioner's Guide to the Biological Condition Gradient: A Framework to Describe Incremental Change in Aquatic Ecosystems. EPA-842-R-16-001. U.S. Environmental Protection Agency, Washington, DC.

underlying data tends to have impacted sites and non-impacted sites. The impacted sites are typically impacted by nutrients, habitat alteration, urban/agricultural runoff, etc. The unimpacted sites tend to be unimpacted by nearly anything. Does this inability to isolate variables coupled with the two-step translation (index scores to eutrophication impacts to biostimulatory substance thresholds) limit certainty and applicability of these tools? Does the associative stressor modelling with the CSCI and the ASCI sufficiently diagnose eutrophication as expected by organizing assumption #1?

Can eutrophication be prevented at biostimulatory substance levels above those correlated with high biotic index scores?

The nutrient concentrations correlated with "protecting aquatic life beneficial uses" are unattainable. Would decoupling the eutrophication from the aquatic life beneficial uses provide a technically defensible, and potentially attainable, "first step"? While the technical team's initial investigation (Figure 3) suggests that it will not, are there any recommendations of ways to further explore this potential decoupling?

CSCI- 90% Pi REf10	rob A	SCI- 90% Prob REf10	Literature Recreational Use		
13%		21 %	> 20 to	> 20 to 25% Cover	
•		Thresholds (mg/ e Versus Range	•		
•			•		

Figure 2. Initial Investigation of Biomass Thresholds to Support Recreational Use

Guiding Principle #1 states that "the amendment should address both nutrient pollution and biostimulatory conditions." Have biostimulatory conditions been sufficiently addressed?

Attachment 1 - Soft algae cost and capacity

Molecular tools for bioassessment

Susie Theroux June 1, 2018

Background

- Bioassessment is an integral part of regulatory programs
 - Invertebrates in wastewater outfall assessment
 - Invertebrates and algae for stream biointegrity
- Sensitive/endangered species monitoring critical for protecting beneficial uses
- Invasive species monitoring

Problems facing bioassessment

Spatial/temporal resolution

- Rare species are difficult to detect
- Need to be in the right place at the right time

Accuracy

- Certain species are difficult to identify using morphology
- Ambiguous/cryptic species assemblages in algae, invertebrates, fish

Capacity

 Generating taxonomy data takes TIME (~6 months/sample) and MONEY (~\$1000/sample)

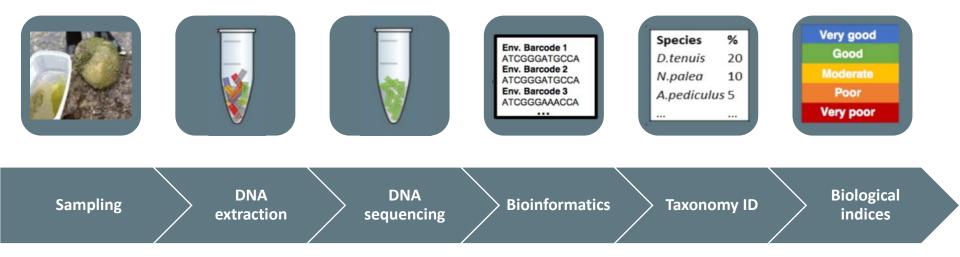
DNA-based solutions

Spatial/temporal resolution

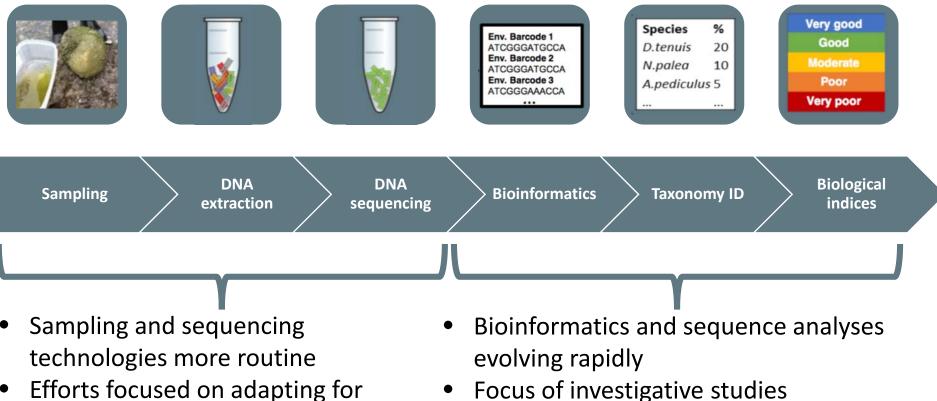
- Able to detect trace levels of DNA
- DNA can persist after an organism is gone

Accuracy

- DNA sequencing can result in higher taxonomic resolution
- Can even detect sub-species populations


Capacity

 DNA sequencing has the potential to generate data up to 10x faster and 10x cheaper than morphological approaches


Goals of this talk

- State of the science: DNA-based approaches
- SCCWRP's role in advancing DNAbased bioassessment
- •How close are we to using these methods on a routine basis?

Six steps to generate taxonomy data for bioassessment

Six steps to generate taxonomy data for bioassessment

 Efforts focused on adapting for regulatory programs

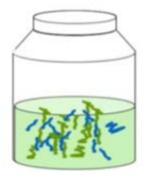
Step 1: Sampling

- SCCWRP is developing DNA sampling protocols for multiple species in multiple habitats:
 - Stream algae
 - Steam invertebrates
 - Marine invertebrates
 - Ichthyoplankton
 - Fish

Sampling DNA DNA extraction DNA sequencing Bioinformatics Taxonomy ID Biological indices

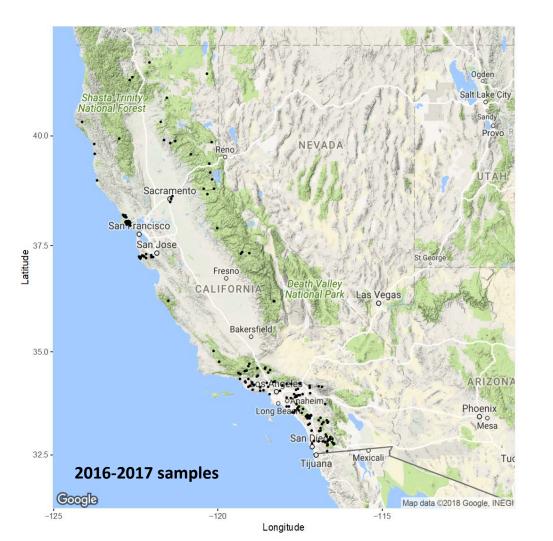
Algal DNA sampling

ALGAE DNA COLLECTION PROTOCOL

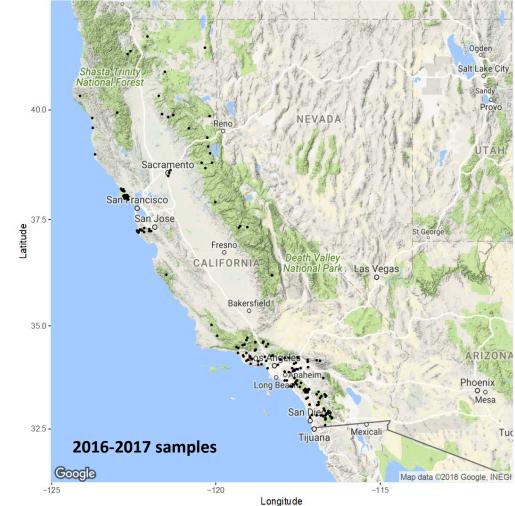

Supplies:

47mm Whatman/Swinnex filter holders* -OR- Filter funnel* 47mm polycarbonate filter, 0.2µm pore size (Whatman Nuclepore Polycarbonate #111106) 47mm polycarbonate filter, 5µm pore size (Willipore Isopore Polycarbonate #11MTP04700) 5ml screw cap tube pre-loaded with preservation solution (bead solution, Mobio #12855-50-BS) 60ml Syringe with luer lock* (for syringe filtering only) 25mm Swinnex filter holder with luer lock* (for syringe filtering only) 500ml or 11 bottle* 100ml deionized water (DI H2O) Latex gloves Tweezers/forceps*

 Items should be sterilized before use and between sampling sites to prevent cross-contamination. To sterilize, soak in acid wash (1% solution of hydrochloric or nitric acid), rinse in DI HZO, and autoclave OR soak in 10% bleach and rinse with DI HZO.


Figure 1. A: 47mm Swinnex, 25mm Swinnex. B: Assembled syringe, 25mm Swinnex and 47mm Swinnex. The 25mm Swinnex is used as a connector between the syringe and 47mm Swinnex. C. Filter funnel assembled.

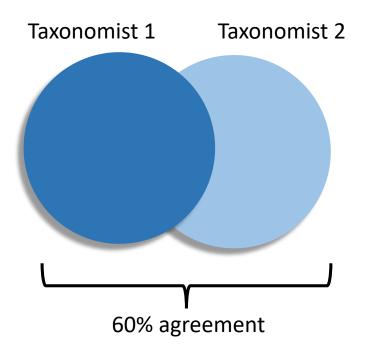
Composite sample


Algal DNA sampling

Partner sampling:

- Perennial Stream
 Assessment (PSA)
- Reference Condition Monitoring Program (RCMP)
- Stormwater
 Monitoring Coalition
 (SMC)
- Regional Water Boards 2, 4, 9

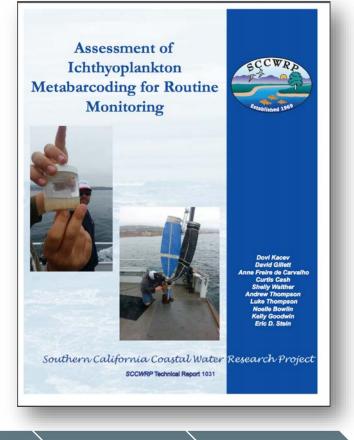
Algal DNA sampling


	Time	Cost/sample
Morphology	6 months	\$1200
DNA	3 weeks	\$300

Cheaper! Faster! Better?

Algal DNA: bias and repeatability

Morphology-based taxonomy



Algae DNA sampling: cost/time

Take-home:

- Algae DNA sampling is easily integrated into existing protocols
- DNA results delivered faster and lower cost/sample
- DNA sequencing results have better repeatability than morphology-results
- SCCWRP also has DNA sampling protocols for other organisms in other systems (ichthyoplankton, invertebrates)

Sampling

DNA extraction DNA sequencing

Bioinformatics

Taxonomy ID

Biological indices

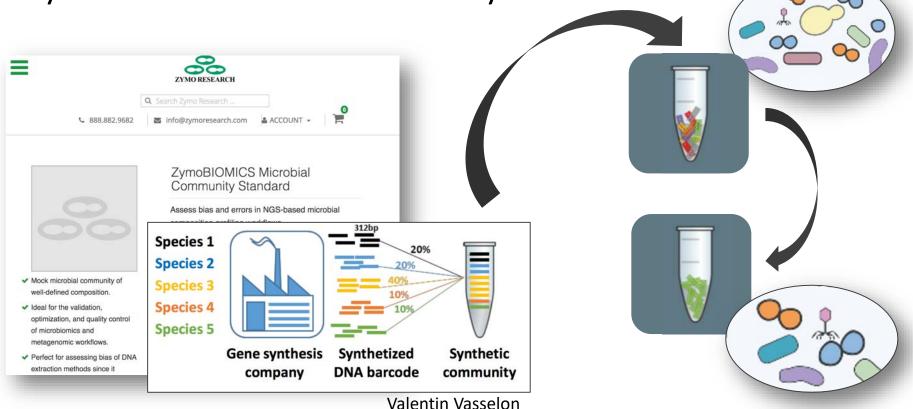
Step 2: DNA extraction

- Many commercial DNA extraction kits available
- Taxonomy results can vary depending on extraction method

Sampling

extraction

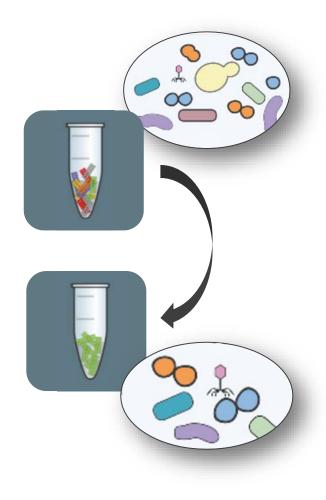
DNA sequencing


> **Bioinformatics**

Taxonomy ID

Biological indices

Step 2: DNA extraction


- Use DNA standard to quantify DNA extraction efficiency
- Synthesized microbial community

Step 2: DNA extraction

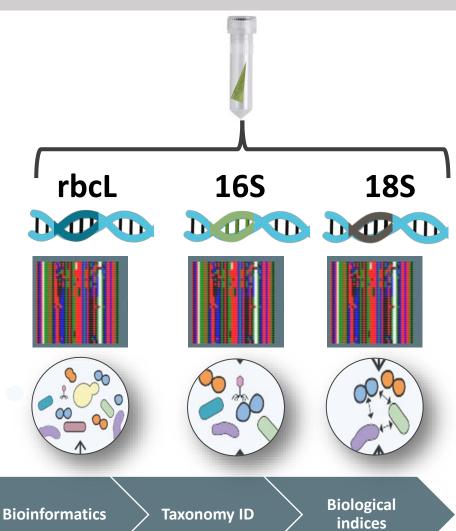
Take-home:

- DNA extractions with defined synthetic communities can be used to set quality control thresholds
- Will ensure that program-wide methods yield comparable data

Step 3: DNA sequencing

- There are many popular DNA (meta)barcode regions for sequencing environmental communities:
 - 16S: bacteria

Sampling

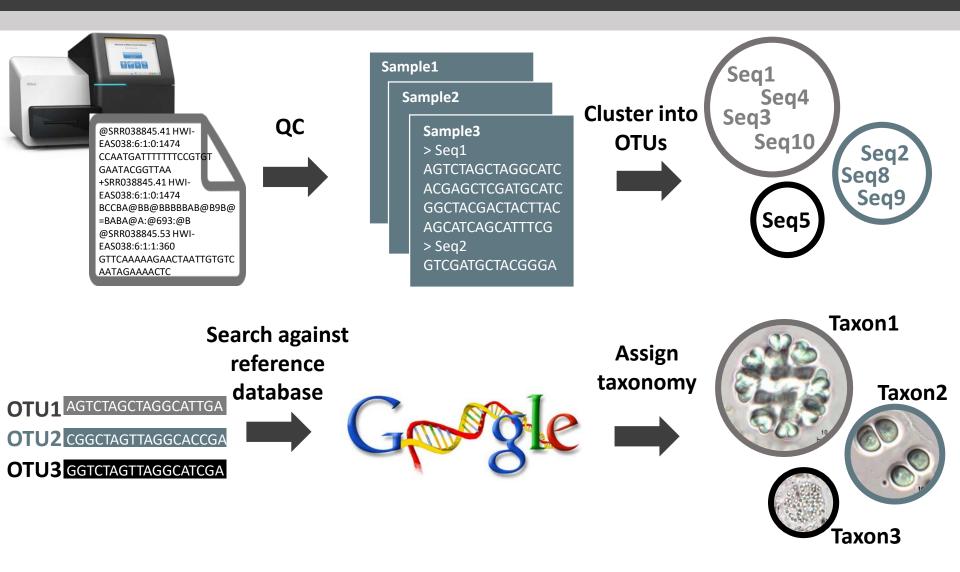

- 18S: eukaryotic organisms
- **CO1**: eukaryotic organisms
- rbcL: phototrophs
- Algae DNA pilot studies: compare taxonomy results using different barcode regions

DNA

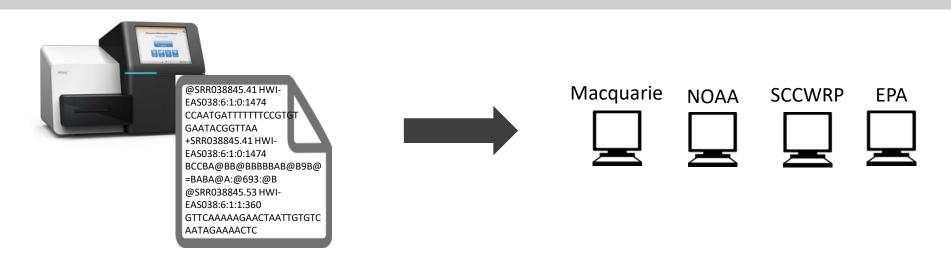
extraction

DNA

sequencing



Step 4: Bioinformatics


- Bioinformatics is a rapidly evolving field
- Many pipelines available to process raw DNA sequences and generate taxonomy data
- Every step in the bioinformatics pipeline can influence your end result
- SCCWRP is working to standardize these pipelines
- Create recommended pipelines that can be used by broader community

Example bioinformatics pipeline

Intercalibration study

- Setting standards for QA/QC helped resolve differences in pipeline output
 - Clustering method
 - DNA reference database
- **Take-home:** Bioinformatic QC guidelines will ensure results are comparable when generated by outside user community

Step 5: Taxonomy assignment

- Your DNA taxonomy is only as good as your DNA library
- The quality and completeness of your DNA reference database heavily influences the quality of resulting taxonomy data
- SCCWRP is spearheading the development of DNA libraries for:

DNA

extraction

DNA

sequencing

• Algae

Sampling

• Invertebrates

West Coast invertebrate DNA library

- Key partnerships to help create West Coast DNA library for invertebrates:
 - Bight program
 - WAML
 - Smithsonian Institution
- Coordinated sampling with member agencies and partner organizations to sample a broad geographic range

Western Association of Marine Laboratories (WAML)

West Coast invertebrate DNA library

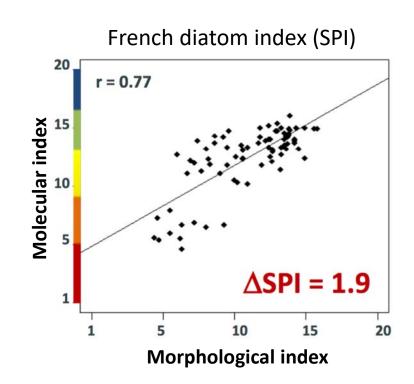
- Smithsonian will identify and sequence DNA barcode of organisms
- This effort will help fill in the critical gaps in the marine invertebrate DNA library
- Building capacity to use molecular approach for marine invertebrate bioassessment

Western Association of Marine Laboratories (WAML)

Step 6: Biological indices

- Adapting existing bioassessment indices to be compatible with molecular data
- Creating new bioassessment indices from DNA sequence data
- State Water Board prioritizing the development of DNAcompatible algal index

DNA


extraction

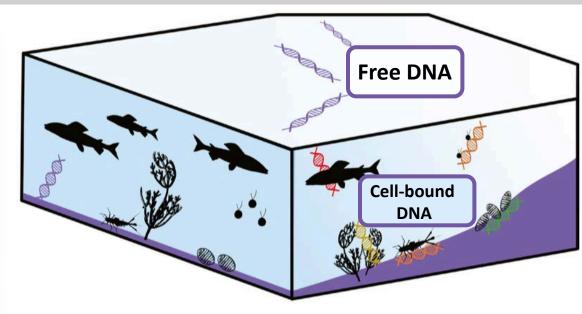
Sampling

DNA

sequencing

Bioinformatics

Taxonomy ID


Valentine Vasselon

Biological

indices

eDNA sampling: the future of bioassessment

- eDNA = "environmental" DNA
- Excellent option for monitoring of sensitive, endangered, or invasive species
- Quantify DNA of interest using speciesspecific probes and qPCR

Understanding the fate of eDNA

eDNA "spiking" studies

- Use non-native DNA to track eDNA dispersal, degradation, and propagation
- Test under both "natural" and unnatural conditions

California mussel (Mytilus californianus)

Coyote Creek

Upper San Juan Creek

Understanding the fate of eDNA

eDNA "spiking" studies

- Use non-native DNA to track eDNA dispersal, degradation, and propagation
- Test under both "natural" and unnatural conditions

California mussel (Mytilus californianus)

Coyote Creek

Upper San Juan Creek

Implications of eDNA study

- 1. Standardized eDNA sampling protocols
 - Scalable
 - Consistent
 - Sterile
- 2. Guidance on predicting the fate of DNA
- 3. Recommendations regarding negative results
 - Setting confidence thresholds for nondetection

RB9 eDNA study

Holy Jim

Bluewater Creek

Arroyo Seco

Pauma Creek

W fork SLR Agua Caliente

Boden Creek

Cedar Creek

Boulder Creek 🤜

Sweetw

Oak Spring Canyon

Pine Valley

Airport Trib

Status: DNA-based bioassessment

Algal bioassessment

- State Water Board is moving forward with developing algae DNA for bioassessment
- Field collection methods established
- Refining sequencing approach and bolstering DNA libraries

Invertebrate bioassessment

- Nationally, many efforts to test barcoding in invertebrates
- Sequencing approaches are standardized
- DNA library development still needed
- More CA-based studies needed

eDNA monitoring

- Sampling methods are standardized
- Sampling programs are scalable and adaptable to a variety of settings
- Pilot studies across California
- eDNA modeling ongoing

How can SCCWRP support you?

Joint studies

- eDNA sampling for species of interest
- eDNA spiking studies in variable systems
- Paired morphology and DNA surveys for invertebrates, algae, ichthyoplankton
- Sampling for DNA library development
- Training in DNA sampling and computational analyses

Attachment 2 - Soft algae taxonomy comparison Inter-laboratory Comparison Reveals Critical Issues with Periphyton Community

Assessment

Shari Weech, Patti Orr, Mike White – Minnow Environmental Inc. Carla Fraser – Teck Coal Ltd.

Why should you care?

- Analysis of periphyton community structure is routinely requested by some Canadian regulators as part of aquatic baseline and operational monitoring programs for mines
- * Few commercial laboratories provide this type of analysis (Canada and US included)
- Differences between community endpoints in mineexposed compared to reference areas may be taken as evidence of mine-related effect, but...
 - What if this is simply due to methodological issues encountered during sample analysis?

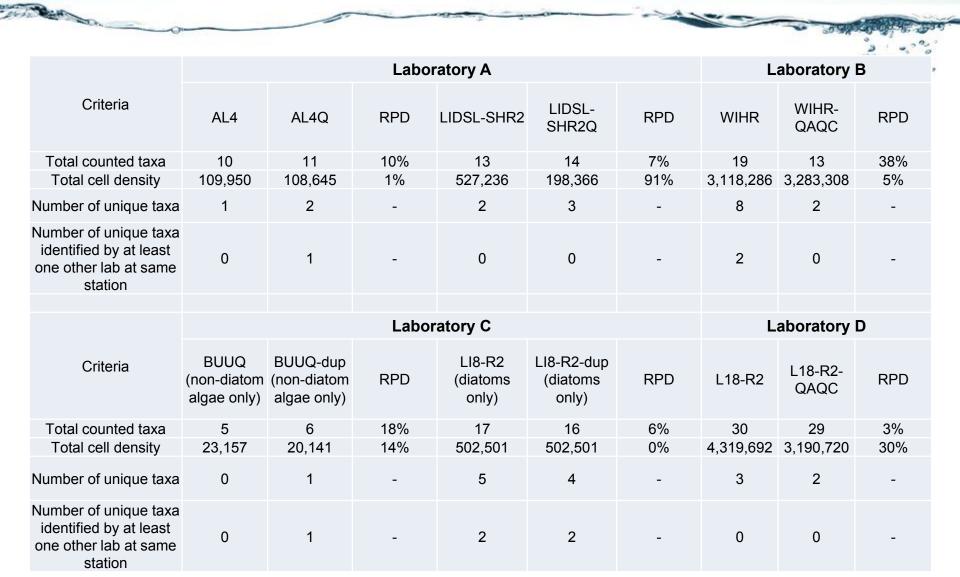
- Study implemented in September 2013, one component being to identify if different laboratories give comparable results
- Four different commercial laboratories were sent split samples from seven different field locations, representing both reference and mine-exposed conditions (one lab initially turned down work)
- Duplicate analysis of at least one sample requested (as a measure of QA/QC) and copies of SOPs
- Results compared to determine (in)consistencies in taxonomic identification and enumeration among laboratories

Periphyton – ID Variability: Nomenclature

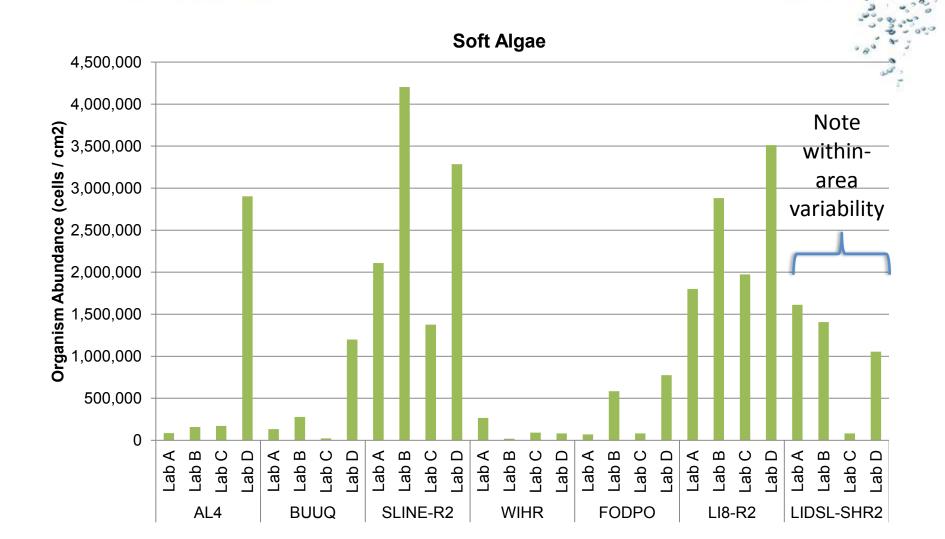
Group	Name used	Interlab synonyms						
-	Achnanthes ventralis	Navicula ventralis						
	Achnanthidium alpestre	Achnanthes deflexa var. alpestris						
	Achnanthidium gracillimum	Achnanthes minutissima var. gracillima, Achnanthes gracillima						
	Achnanthidium minutissimum	Achnanthes minutissima						
	Achnanthidium minutissimum var. scoticum	Achnanthes microcephala f. scotica						
	Achnanthidium pyrenaicum	Achnanthes pyrenaica						
	Achnanthidium rosenstockii	Achnanthes rosenstockii						
	Didymosphenia geminata	Echinella geminata, Gomphonema geminatum						
	Encyonema minutum	Cymbella minuta						
	Encyonema silesiacum	Cymbella silesiaca						
	Encyonopsis microcephala	Cymbella microcephala						
Diatoms	Eucocconeis flexella	Achnanthes flexella						
	Eucocconeis laevis	Achnanthes laevis						
	Fragilaria capucina var. vaucheriae	Fragilaria vaucheriae						
	Fragilaria recapitellata	Fragilaria vaucheriae var. capitellata						
	Gomphoneis olivaceum	Gomphoneis olivacea						
	Gomphonema parvulum var. micropus	Gomphonema micropus						
	Hannaea arcus	Ceratoneis arcus						
	Planothidium lanceolatum	Achnanthes lanceolata						
	Reimeria sinuata	Cymbella sinuata						
	Rhoicosphenia abbreviata	Rhoicosphenia curvata						
	Staurosirella leptostauron	Fragilaria leptostauron						
	Staurosirella pinnata	Fragilaria pinnata						
Cyanophyte	e Heteroleibleinia sp.	Lyngbya sp.						

* List only includes synonyms used in this study. Many more exist. *

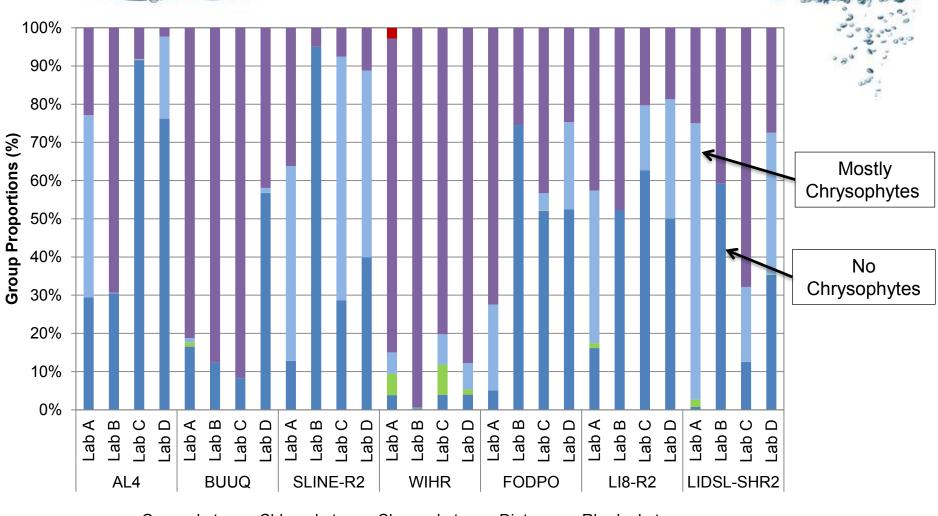
Periphyton – Inter-lab ID Variability: Species Level


Station	Criteria	Lab A	Lab B	Lab C	Lab D	Combined lab species Richness	Instances where all 4 labs identified same specie
	Total # of species identified	13	22	31	30		1
BUUQ	At least one match with another lab	3	11	10	9		
2004	% of spp. identified that were also counted by at least one other lab	23%	50%	32%	30%		
	Total # of species identified	16	18	21	26		2
WIHR	At least one match with another lab	9	5	10	10		
	% of spp. identified that were also counted by at least one other lab	56%	28%	48%	38%		
	Total # of species identified	13	19	25	21		3
LIDSL-SHR2	At least one match with another lab	7	11	14	8		
	% of spp. identified that were also counted by at least one other lab	54%	58%	56%	38%		
Combined	Total number of unique species						
Stations (7)	Total number of unique species identified by each lab	33	46	67	41		

Periphyton – Inter-lab ID Variability: Genus Level


							° 8°
Station	Criteria	Lab A	Lab B	Lab C	Lab D	Combined lab genera Richness	Instances where all 4 labs identified same genera
BUUQ	Total # of genera identified	13	17	19	23	38	4
	At least one match with another lab	9	13	14	15		
	% of genus identified that were also counted by at least one other lab	69%	76%	74%	65%		
	Total # of genera identified	14	10	12	21	27	6
WIHR	At least one match with another lab	12	8	11	13		
	% of genus identified that were also counted by at least one other lab	86%	80%	92%	62%		
	Total # of genera identified	12	13	15	19	27	7
LIDSL-SHR2	At least one match with another lab	10	11	13	13		
	% of genus identified that were also counted by at least one other lab	83%	85%	87%	68%		
			1				
Combined Stations (7)	Total number of unique genera identified	28	26	33	31		

Laboratory Duplicate Results



Periphyton Inter-lab study Soft algae density variability

Periphyton Inter-lab Study Proportional variability

minnow

Cyanophyte Chlorophyte Chrysophyte Diatom Rhodophyte

Standard Operating Procedure Variability

- Sample preparation: ranged from nothing to highpressure filtration for soft algae and nitric acid digestion for diatoms
- Magnification levels 200 to 1000X, with or without contrast/oil immersion
- Minimum # of cells counted: 100 of dominant species vs. 300-400 natural units of soft algae or 400-600 diatom valves
- Counting techniques: random fields vs. transects

Data Qualifiers

- Not consistently used. One lab used only one qualifier (i.e., sp.) while one used all of the following:
 - * sp. unknown single species of known genus
 - * spp. multiple unknown species belonging to same genus
 - & cf. looks like a particular organism, but not confirmed
 - * < organism identified in overall chamber scan, but not found during counts
 - * ? possibly unknown genus
 - UID unidentified
 - * '/' between two species 1 set of counts for both species combined (species could not be separated)

- Total lack of agreement in algal taxonomy and densities among 4 labs sent split periphyton samples
 - * possibly 7 species of Achnanthidium present, but one lab reported only Achnanthidium minutissimum)
 - Carge differences even at major group level of identification (cyanophyte, chrysophyte, chlorophyte, etc.)
- Nomenclature not standardized
- No standard QA/QC requirements for laboratory methods or reporting

- Periphyton taxonomic identification and sample handling procedures are not sufficiently standardized at the present time to use data in regulatory assessment programs:
 - * How do we know if reported data are an accurate reflection of relative taxon abundances?
 - What are the implications of methodological variations on the outcome of an impact assessment?
- Need to ensure that all laboratories being used by government, industry, and consultants provide accurate, reproducible data so results are useable

Recommendations

- Evaluate effect of method variations on results to determine "best" standard method for laboratory sample processing
- Agree upon standard nomenclature
 Agr
- Develop program for taxonomic certification, such as exists for benthic invertebrate taxonomists
- Determine standard QA/QC reporting to verify sample sub-sorting accuracy and precision

Question: Who should be responsible for leading/funding this?

MEMORANDUM

 Tetra Tech, Inc.

 400 Red Brook Blvd., Suite 200

 Owings Mills, MD 21117-6102

 phone
 410-356-8993

 fax
 410-356-9005

DATE:31 July 2009TO:Phil MarkleFROM:Jerry Diamond, Ph.D.

SUBJECT: Reference conditions and bioassessments in southern California streams

All bioassessment methods depend on having appropriate reference conditions with which to base an assessment; i.e., bioassessment data for a given site cannot be accurately interpreted by themselves—interpretation or assessment of the site data is done within the context of the biology that can be expected to occur naturally, given the type of habitat present, the type of aquatic system, and the physiographic region (i.e., ecoregion) of the country (Stoddard et al., 2006). Identifying appropriate reference conditions for certain types of aquatic systems, habitats, and ecoregions can be problematic because of wide-scale human land use changes such as hydrological modification (e.g., dams, levees, concrete channelization), urbanization (e.g., increased runoff, removal of riparian vegetation, bank protection structures), and agricultural/ livestock effects (e.g., water removal for irrigation, removal of riparian vegetation).

Southern California (Los Angeles, San Diego and surrounding counties) is an area that has experienced intense land use changes over the past 50 years, particularly in terms of urbanization and its many environmental consequences (e.g., changes in the natural hydrology, changes in stream geomorphology, etc.). In particular, low gradient as well as low elevation streams in this region have been especially prone to land use effects. This situation has resulted in high uncertainty regarding appropriate reference conditions for low gradient and low elevation streams in this region.

This observation was identified in a Technical Report I and others at Tetra Tech prepared for the Los Angeles Regional Water Quality Control Board (Tetra Tech, 2005; 2006). In that report we evaluated stream biological condition with respect to a generalized human disturbance gradient in the region, as part of an EPA-funded project to evaluate the possibility of developing tiered aquatic life uses (TALU) for southern California coastal streams. Relying on SWAMP and other data for the region, we attempted to use the recently developed southern California IBI (SoCal IBI, Ode et al., 2005) to define certain attributes of the Biological Condition Gradient for the region, which could then be used to develop TALU (Davies and Jackson, 2006). We observed that the BCG should be different (i.e., expectations lower) for low versus high elevation streams

in that project and that low elevation streams lacked a clear reference condition in this region. Working with a Technical Advisory Committee (TAC) on this project (consisting of regional experts from California Fish & Game, State Water Resources Control Board, other Regional Boards, EPA Region 9, and universities), we identified a lack of appropriate reference sites for low elevation/low gradient streams as a critical data gap in moving forward with TALU. A fairly extensive search of existing biological data in the region by Tetra Tech and the TAC indicated that suitable reference sites at lower elevations and/or for lower stream gradients were not available with which to benchmark a biological condition gradient.

Subsequent to the above project, I have been working with the Southern California Coastal Water Research Project (SCCWRP) and the LA Regional Board in facilitating two workshops on TALU for the region. In the most recent stakeholder workshop (held June 2008), there was focused discussion on the issue of appropriate reference conditions, in which there was agreement that low gradient (rather than low elevation) was perhaps the most critical factor distinguishing stream biology in the region and that reference condition for low gradient streams (many but not all of which occur at low elevation) is a critical data gap (Schiff and Diamond, 2009). In fact, in the "road map" of projects developed from this workshop, defining reference condition for streams in this region was identified as one of the top priority needs.

Given the difficulty in identifying appropriate reference conditions for low gradient coastal streams in southern California, it is perhaps premature to set regulatory requirements based on biology observed at these types of sites. The TALU framework, as well as the regional stakeholder workshops (e.g., Schiff and Diamond, 2009) recognize that different hydrologic, geomorphic, and other habitat-related factors will dictate the biological characteristics that can be expected in a given stream. The type of aquatic life uses one can reasonably expect from a low gradient or modified stream in southern California, for example, are not the same as from a high gradient or natural stream, as our previous work has demonstrated. What is the expected biological condition for low gradient or modified streams in southern California is a question that needs more attention and, as noted by all stakeholders at the June 2008 workshop, incorporation of information using other assemblages (e.g., algae) in addition to macroinvertebrates.

Literature Cited

- Davies, S. and S. Jackson. 2006. The Biological Condition Gradient: A descriptive model for interpreting change in aquatic ecosystems. Ecological Applications: 16: 1251–1266.
- Ode, P.R., A.C. Rehn and J.T. May. 2005. A quantitative tool for assessing the integrity of southern California coastal streams. *Environmental Management* 35:493-504.
- Stoddard, J., D. Larsen, C. Hawkins, R. Johnson, and R. Norris. 2006. Setting expectations for the ecological condition of streams: the concept of reference condition. Ecological Applications, 16: 1267–1276.
- Tetra Tech. 2005. Evaluation of Tiered Aquatic Life Uses (TALU) for Southern California Coastal Streams. Draft Summary Report. Prepared for: EPA Region 9 and California Los Angeles Regional Water Quality Board. Tetra Tech, Inc. Owings Mills, MD.
- Tetra Tech. 2006. Revised Analyses of Biological Data to Evaluate Tiered Aquatic Life Uses (TALU) for Southern California Coastal Streams. Prepared for: EPA Region 9 and California Los Angeles Regional Water Quality Board. Tetra Tech, Inc. Owings Mills, MD.