
Freshwater Science
 

Prioritizing management goals for stream biological integrity within the developed
landscape context
--Manuscript Draft--

 
Manuscript Number:

Full Title: Prioritizing management goals for stream biological integrity within the developed
landscape context

Short Title: Stream priorities in developed landscapes

Article Type: Regular

Corresponding Author: Marcus Beck
Southern California Coastal Water Research Project
Costa Mesa, CA UNITED STATES

Corresponding Author's Institution: Southern California Coastal Water Research Project

First Author: Marcus William Beck

Order of Authors: Marcus William Beck

Raphael D Mazor

Scott Johnson

Karin Wisenbaker

Joshua Westfall

Peter R Ode

Ryan Hill

Chad Loflen

Martha Sutula

Eric D Stein

Order of Authors Secondary Information:

Manuscript Region of Origin: UNITED STATES

Abstract: Stream management goals for biological integrity may be difficult to achieve in
developed landscapes where channel modification and other factors impose
constraints on in-stream conditions. To evaluate potential constraints on biological
integrity, we developed a statewide landscape model for California that estimates
ranges of likely scores for a macroinvertebrate-based index that are typical at a site for
the observed level of landscape alteration. This context can support prioritization
decisions for stream management, like identifying reaches for restoration or enhanced
protection based on how observed scores relate to the model expectations. Median
scores were accurately predicted by the model for all sites in California with
bioassessment data (Pearson correlation r = 0.75 between observed and predicted for
calibration data, r = 0.72 for validation). The model also predicted that 15% of streams
statewide are unlikely to achieve biological integrity within their present developed
landscape, particularly for urban and agricultural areas in the South Coast, Central
Valley, and Bay Area regions. We worked with a local stakeholder group from the San
Gabriel River watershed (Los Angeles County, California) to evaluate how the
statewide model could support local management decisions. To achieve this purpose,
we created an interactive application, the Stream Classification and Priority Explorer
(SCAPE), that compares observed scores with expectations from the landscape model
to assign priorities. We observed model predictions that were consistent with the clear
land use gradient from the upper to lower watershed, where potential limits to
achieving biological integrity were more common in the heavily urbanized lower
watershed. However, most of the sites in the lower watershed scored within their
expected ranges, and were therefore given a low priority for restoration. In contrast,
two low-scoring sites in the undeveloped upper watershed were prioritized for causal

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation



assessment and possible future restoration, whereas three high-scoring sites were
prioritized for protection. The availability of geospatial and bioassessment data at the
national level suggests that these tools can easily be applied to inform management
decisions at other locations where altered landscapes may limit biological integrity.

Suggested Reviewers: Michael Paul
Tetratech
Michael.Paul@tetratech.com

Dave Penrose
Penrose Consulting
dave@penrose.consulting

Robert Hughes
Amnis Opes Institute and Department of Fisheries & Wildlife, Oregon State University
hughes.bob@amnisopes.com

Opposed Reviewers:

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation



                                                                                                   

 
 

 

 

 

September 10th, 2018 

 

Dr. Charles Hawkins 

Chief Editor 

Freshwater Science 

 

I am pleased to submit our manuscript, “Prioritizing management goals for stream biological integrity 

within the developed landscape context,” to be considered as an original research article in Freshwater 

Science. 

 

Many streams in urban and agricultural areas have degraded biological integrity and managing for 

reference conditions in developed landscapes may be a costly goal.  This research addresses a critical 

need within the management community by providing a bioassessment tool that establishes a context of 

expectation for biological integrity in developed landscapes.  Our model can be used to predict a range 

of expected scores for a biological index that can be compared to observed scores.  Sites can then be 

ranked and prioritized relative to the expectation.  We developed the landscape model for all stream 

reaches in California and worked with a regional monitoring program from a highly urbanized 

watershed to develop management priorities using results from the model.  This model is an effective 

prioritization tool that can help managers identify stream sites for restoration, protection, or additional 
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Abstract 26 

Stream management goals for biological integrity may be difficult to achieve in developed 27 

landscapes where channel modification and other factors impose constraints on in-stream 28 

conditions. To evaluate potential constraints on biological integrity, we developed a statewide 29 

landscape model for California that estimates ranges of likely scores for a macroinvertebrate-30 

based index that are typical at a site for the observed level of landscape alteration. This context 31 

can support prioritization decisions for stream management, like identifying reaches for 32 

restoration or enhanced protection based on how observed scores relate to the model 33 

expectations. Median scores were accurately predicted by the model for all sites in California 34 

with bioassessment data (Pearson correlation r = 0.75 between observed and predicted for 35 

calibration data, r = 0.72 for validation). The model also predicted that 15% of streams statewide 36 

are unlikely to achieve biological integrity within their present developed landscape, particularly 37 

for urban and agricultural areas in the South Coast, Central Valley, and Bay Area regions. We 38 

worked with a local stakeholder group from the San Gabriel River watershed (Los Angeles 39 

County, California) to evaluate how the statewide model could support local management 40 

decisions. To achieve this purpose, we created an interactive application, the Stream 41 

Classification and Priority Explorer (SCAPE), that compares observed scores with expectations 42 

from the landscape model to assign priorities. We observed model predictions that were 43 

consistent with the clear land use gradient from the upper to lower watershed, where potential 44 

limits to achieving biological integrity were more common in the heavily urbanized lower 45 

watershed. However, most of the sites in the lower watershed scored within their expected 46 

ranges, and were therefore given a low priority for restoration. In contrast, two low-scoring sites 47 

in the undeveloped upper watershed were prioritized for causal assessment and possible future 48 
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restoration, whereas three high-scoring sites were prioritized for protection. The availability of 49 

geospatial and bioassessment data at the national level suggests that these tools can easily be 50 

applied to inform management decisions at other locations where altered landscapes may limit 51 

biological integrity. 52 

Key words: Bioassessment, biotic integrity, streams, urbanization, modified channels, landscape 53 

stressors, random forests, prioritization, data visualization, stakeholder group 54 

Introduction 55 

The widespread use of bioassessment data to assess ecological condition of aquatic environments 56 

is a significant advance over chemical or physical methods of assessment, yet managers and 57 

stakeholders require contextual information for synthesizing and interpreting biological 58 

information. The reference condition concept that is built into many biological indices provides a 59 

broad context for observed condition relative to unaltered habitats for a particular region 60 

(Reynoldson et al. 1997, Stoddard et al. 2006). However, achieving a reference condition of 61 

biological integrity (i.e., having structure and function comparable to natural habitat for the same 62 

region, Karr et al. 1986) may be challenging if site-specific conditions place limits on spatial and 63 

temporal scales that can be effectively managed (Chessman and Royal 2004, Chessman 2014). 64 

Use of bioassessment information to guide decisions that affect aquatic resources may also be 65 

challenging if the data are not accessible relative to the needs of local stakeholder groups. 66 

Accessibility can be limited from a contextual perspective of how likely a site is to achieve 67 

biological integrity, but also how bioassessment data collected over multiple locations and times 68 

can be used to support decisions or identify priorities. Explicit information is required to not only 69 
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synthesize site-level bioassessment data at the watershed scale, but also provide an assessment 70 

context that is sufficiently interpretable for prioritization. 71 

In developed urban and agricultural landscapes, the majority of stream miles are in poor biotic 72 

condition and in need of some level of management (USGS 1999, Finkenbine, Atwater, and 73 

Mavinic 2000, Morgan and Cushman 2005). Conventional approaches to protect and restore 74 

biological integrity have commonly focused on direct improvements at the site level to mitigate 75 

instream stressors (Carline and Walsh 2007, Lester and Boulton 2008, Roni and Beechi 2012, 76 

Loflen et al. 2016), whereas upstream preventive measures may be incentivized or enforced 77 

through regulation. Although these approaches can lead to improvements in ecological condition, 78 

there is no universal remedy for achieving biological integrity in streams. Restoring streams in 79 

urban or agricultural settings can be costly and it may be difficult to achieve regional reference-80 

like conditions (Kenney et al. 2012, Shoredits and Clayton 2013). A confounding factor for 81 

managing streams in developed landscapes is the extensive modification to streams for flood 82 

control or water conveyance. In some cases, channel modification has been proposed as a basis 83 

for redefining water quality criteria or for re-evaluating use attainability goals (CRWQB 2014). 84 

For biological integrity, several states have implemented a tiered aquatic life use or alternative 85 

use designations to account for baseline shifts in ecosystem condition from channel modification 86 

(e.g., FDEP 2011, USEPA 2013, MBI 2016). Prioritizing among sites that are affected by 87 

landscape alteration is a critical challenge for managers in urban and agricultural settings (Walsh 88 

et al. 2005, Beechie et al. 2007, Paul et al. 2008). 89 

The application of bioassessment data to inform management requires understanding the effects 90 

of multiple stressors acting at local, catchment, or watershed scales (Novotny et al. 2005, 91 

Townsend, Uhlmann, and Matthaei 2008, Leps et al. 2015). Nearly half of all stream-miles in the 92 
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USA are estimated to be in poor biotic condition based on macroinvertebrate bioassesssment 93 

index scores and has been associated with in-stream stressors, such as excess phosphorus, 94 

nitrogen, or altered physical habitat (USEPA 2016). These immediate causes of poor biological 95 

condition are often linked to landscape-level alterations that occur in the watershed. Consistent 96 

and empirical links between land use thresholds and poor biotic integrity have been identified in 97 

many cases (Allan, Erickson, and Fay 1997, Wang et al. 1997, Clapcott et al. 2011). Although 98 

causal pathways linking land use and degraded biological condition have been described (e.g., 99 

Allan 2004, Riseng et al. 2011), not all pathways of stressors originating from the landscape are 100 

clear (e.g., Cormier et al. 2013). Regardless, land use has long been used as a proxy for 101 

environmental condition, and an associative link can be sufficient to predict condition as a 102 

function of watershed activities. 103 

Estimating the likely range of biological conditions as a function of historic alteration of the 104 

landscape could help prioritize where management actions are most likely to achieve intended 105 

outcomes, or conversely, where landscape alteration could limit management success in 106 

achieving biological integrity. Here, we define constrained streams as those where reference 107 

conditions for the biological community may be difficult to achieve with limited resources 108 

because of large-scale, historical impacts from landscape alteration. Anthropogenic stressors that 109 

constrain biology may originate from spatial or temporal scales that are difficult to address with 110 

most management applications. Understanding limits to biological potential is one approach to 111 

identify constraints, and is an important concept in bioassessment that has received some 112 

attention. Analysis methods have been explored in a bioassessment context to characterize 113 

environmental factors that limit assemblage composition (Chessman, Muschal, and Royal 2008, 114 

Chessman 2014). This approach is based on the limiting factor theory that proposes the most 115 
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limiting biotic or abiotic factor as the primary regulator of species abundance and distribution. 116 

Similar concepts have been applied in a landscape context to understand both variation in 117 

bioassessment data at different spatial scales and limits of bioassessment tools with land use 118 

gradients (Waite 2013, Waite et al. 2014). Applying these concepts in a predictive framework 119 

could facilitate an expectation of bioassessment and management potential relative to a site-120 

specific context. 121 

The development of modelling tools for understanding biological condition across landscape 122 

gradients could provide a powerful approach to informing the use of limited resources to manage 123 

stream integrity. Previous modelling efforts for bioassessment have successfully used geospatial 124 

data to predict biological condition at regional or national scales (Vølstad et al. 2004, Carlisle, 125 

Falcone, and Meador 2009, Brown et al. 2012, Hill et al. 2017), with the general purpose of 126 

characterizing condition at unsampled locations. Macroinvertebrate communities can respond 127 

predictably to landscape alteration (Sponseller, Benfield, and Valett 2001, Waite 2013) and 128 

association of biological condition with landscape metrics that describe these changes could be 129 

used to predict a range of expectations for biotic integrity as related to observed watershed 130 

development. This approach differs fundamentally from previous efforts of estimating average 131 

condition by providing an estimate of the minimum and maximum scores that are likely for the 132 

landscape context. Once the responses of macroinvertebrate communities to landscape changes 133 

at large spatial scales are understood, expectations can be compared to field samples and sites 134 

can be prioritized by local managers based on deviation from the expectation. 135 

The goal of this study is to present the development and application of a landscape model to 136 

classify and prioritize stream monitoring sites based on probable ranges of bioassessment scores 137 

relative to landscape alteration. This model is presented as a screening tool for exploring 138 
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different priorities and is not intended for developing regulatory designations nor determining if 139 

a site can attain designated uses. The specific objectives were to 1) demonstrate development of 140 

a landscape model to predict expected ranges of biotic condition, 2) classify stream segments 141 

into biological constraint categories using modelling expectations, 3) assess the extent of stream 142 

classes and explore the sensitivity of the classifications to decision points in the model output, 143 

and 4) prioritize potential management decisions by comparing expectations to observed 144 

bioassessment scores. The model was developed and applied to all streams and rivers in 145 

California, specifically focusing on the potential of urban and agricultural land use to impact 146 

biological condition. We include a case study that demonstrates how the statewide model can be 147 

used to classify and prioritize in a regional context using guidance from a local stakeholder 148 

group from a heavily urbanized watershed where obstacles for achieving biological integrity 149 

have been encountered. An interactive software application, the Stream Classification and 150 

Priority Explorer (SCAPE), is also described that was developed to help choose management 151 

priorities using the landscape model. 152 

Methods 153 

Study area and data sources 154 

The landscape model was developed for California using land use data, stream hydrography, and 155 

biological assessments. California covers 424,000 km2 of land with extreme diversity in several 156 

environmental gradients, such as elevation, geology, and climate (Figure 1a, Ode et al. 2016). 157 

Temperate rainforests occur in the north (North Coast region), deserts and plateaus in the 158 

northeast and southeast (Deserts and Modoc Plateau region), and Mediterranean climates in 159 
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coastal regions (Chaparral and South Coast regions). The Central Valley region is largely 160 

agricultural and drains a large mountainous area in the east-central region of the state (Sierra 161 

Nevada region). Urban development is concentrated in coastal areas in the central (San Francisco 162 

Bay Area, Chapparal region) and southern (Los Angeles, San Diego metropolitan area, South 163 

Coast) regions of the state. California’s stream network is approximately 280,000 km in length 164 

and covers all of the major climate zones in the state. A high degree of endemism and 165 

biodiversity occurs in these streams including nearly 4000 species of vascular plants, 166 

macroinvertebrates, and vertebrates that depend on fresh water during their life history (Howard 167 

and Revenga 2009, Howard et al. 2015). Approximately 30% of streams in California are 168 

perennial with the remaining as intermittent or ephemeral. 169 

Landscape alteration has been relatively recent, with one estimate showing that developed lands 170 

have increased in California by 38% from 1973 to 2000 (Sleeter et al. 2011). Development prior 171 

to 2001 was generally not required to incorporate stormwater structural mitigation measures, 172 

such as site design and treatment controls, which are now required statewide to match hydrologic 173 

flows and to treat and prevent pollutants from leaving developed areas (SDRWQB 2001). For 174 

analysis, the state was evaluated as a whole and by major regions defined by hydrological and 175 

geopolitical boundaries (Figure 1a): Central Valley (CV), Chaparral (CH), Deserts and Modoc 176 

Plateau (DM), North Coast (NC), Sierra Nevada (SN), and South Coast (SC). Some of these 177 

regions have large urban areas (SC, CH) or agriculture (CV), whereas others are largely forested, 178 

but may be impacted by silviculture or logging (NC, SN). 179 

Stream data from the National Hydrography Dataset Plus (NHD-plus) (McKay et al. 2012) were 180 

used to identify stream segments in California for modelling biological integrity. The NHD-plus 181 

is a surface water framework that maps drainage networks and associated features (e.g., streams, 182 
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lakes, canals, etc.) in the United States. Stream segments designated in the NHD-plus were used 183 

as the discrete spatial unit for modelling biological integrity. Here and throughout, “segment” is 184 

defined in the context of NHD-Plus flowlines. Hydrography data were combined with landscape 185 

metrics available from the StreamCat Dataset (Hill et al. 2016) to estimate land use at the 186 

riparian zone (i.e., a 100-m buffer on each side of the stream segment), the catchment (i.e., 187 

nearby landscape flowing directly into the immediate stream segment, excluding upstream 188 

segments), and the entire upstream watershed for each segment. Many of the metrics in 189 

StreamCat were derived from the 2006 National Land Cover Database (Fry et al. 2011). 190 

The California Stream Condition Index (CSCI) (Mazor et al. 2016) was used as a measure of 191 

biological condition in California streams. The CSCI is a predictive index that compares the 192 

observed taxa and metrics at a site to those expected under reference conditions. Expected values 193 

at a site are based on models that estimate the likely macroinvertebrate community in relation to 194 

factors that naturally influence biology, e.g., watershed size, elevation, climate, etc. (Moss et al. 195 

1987, Cao et al. 2007). The index score at a site can vary from 0 to ~ 1.4, with higher values 196 

indicating less deviation from reference state. Because the index was developed to minimize the 197 

influence of natural gradients, the index scores have consistent meaning across the state (Mazor 198 

et al. 2016). A CSCI threshold of 0.79, based on the tenth percentile of scores at all reference 199 

calibration sites, has been used to identify stream degradation by state regulatory agencies 200 

(SDRWQB 2016) and was used herein to represent a potential management target. 201 

Benthic macroinvertebrate data were used to calculate 6270 individual CSCI scores at nearly 202 

3400 unique sites between 2000 and 2016 (Figure 1b). Samples were collected during base flow 203 

conditions typically between May and July following methods in Ode et al. (2016). 204 

Bioassessment sites were snapped to the closest NHD-plus stream segment in ArcGIS (ESRI 205 



10 

 

2016). In cases where multiple sites were located on the same segment, the most downstream site 206 

was selected for further analysis under the assumption that the landscape data in StreamCat was 207 

most relevant to this site. This created a final dataset of 2620 unique field observations used to 208 

calibrate and validate the landscape model. 209 

Building and validating the landscape model 210 

A quantile random forest model was developed to estimate ranges of CSCI scores associated 211 

with land use gradients, such as road density or urban and agricultural land use. Measures of land 212 

use development were quantified for riparian, catchment, and watershed areas (as defined above) 213 

of each stream segment in California using the StreamCat dataset (Hill et al. 2016). Expected 214 

CSCI scores were modelled using estimates of canal/ditch density, imperviousness, road 215 

density/crossings, and urban and agricultural land use for each stream segment (Table 1). These 216 

variables were chosen specifically to model scores only in relation to potential impacts on 217 

biological condition that are typically beyond the scope of management intervention or where 218 

costs to mitigate are likely prohibitive. Potential effects on biological condition that may vary 219 

through time or from stressors not associated with urban or agricultural land use were not 220 

captured by the model (e.g., timber harvesting). Similarly, potential differences in the magnitude 221 

of effects on stream condition for the chosen variables were also not explicitly evaluated, such 222 

that all variables were given equal weighting in the models. Within these limits, we considered 223 

deviation of observed scores from model predictions to be diagnostic of human activity not 224 

related to anthropogenic stressors that can be measured on the landscape, in addition to potential 225 

model error. Methods for evaluating predictive performance of the model are described below. 226 
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The model was developed using quantile regression forests to estimate ranges of likely CSCI 227 

scores in different landscapes (Meinshausen 2006, 2017). Random forests are an ensemble 228 

learning approach to predictive modelling that aggregates information from a large number of 229 

regression trees and have been used extensively in bioassessment applications (Carlisle, Falcone, 230 

and Meador 2009, Chen et al. 2014, Mazor et al. 2016, Fox et al. 2017). Random forest models 231 

provide robust predictions by evaluating complex, non-linear relationships and interactions 232 

between variables relative to more commonly-used modelling approaches, such as multiple 233 

regression (Breiman 2001, Hastie, Tibshirani, and Friedman 2009). Quantile models, such as 234 

quantile regression forests, evaluate the conditional response across the range of values that are 235 

expected, in contrast to conventional models that provide only an estimate of the mean response 236 

(Cade and Noon 2003). This modelling approach allows use of prediction intervals to describe 237 

the range of likely scores, which can be used to identify sites where that range includes 238 

management targets. Quantile regression forests were used to predict CSCI scores in each stream 239 

segment at five percent increments (i.e., 5th, 10th, etc.) from the 5th to 95th percentile of 240 

expectations. The quantregForest package for the R Statistical Programming Language was used 241 

to develop the landscape model using the default settings, with the exception that out of bag 242 

estimates were used for model predictions (Meinshausen 2017, RDCT 2018). 243 

We stratified sample data to ensure sufficient representation of landscape gradients major regions 244 

in the state and across percentiles of catchment imperviousness (Figure 1). Calibration data for 245 

the landscape model were obtained from a random selection of 75% of segments with observed 246 

CSCI scores across this stratification and where sufficient data were available in StreamCat (n = 247 

1965 segments). The remaining sites were used for model validation (n = 655). Where multiple 248 

samples were available at a single site, one sample was selected at random for both calibration 249 
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and validation purposes. Model performance was assessed for the statewide dataset and within 250 

each major region by comparing differences between observed CSCI scores and median 251 

predictions at the same locations. Differences were evaluated using Pearson correlations and root 252 

mean squared errors (RMSE); high correlation coefficients and low RMSE values indicated good 253 

performance. Regression analysis between predicted and observed scores was used to assess 254 

potential bias based on intercept and slope values differing from 0 and 1, respectively. 255 

Collectively, the performance metrics were chosen to evaluate both predictive ability of the 256 

landscape model and potential for bias which may vary depending on different land use gradients 257 

across the state. 258 

Statewide application of the landscape model 259 

We applied the landscape model to 138,716 stream segments statewide to estimate the extent of 260 

streams in one of four different constraint classes: likely unconstrained, possibly unconstrained, 261 

possibly constrained, and likely constrained (Table 2). Here and throughout, constrained is 262 

defined as a biological community that is impacted by large-scale, historic alteration of the 263 

landscape. Consequently, achieving biological integrity in constrained communities may present 264 

management challenges given that many stressors in altered landscapes originate at spatial or 265 

temporal scales that are typically beyond the scope of most management applications or where 266 

resources for mitigation may be prohibitive. 267 

The classification process is described in Figure 2a through c. Classifications were based on the 268 

comparison of a CSCI threshold representing a management goal and the predicted range or 269 

predicted median score at a segment. These two decision points (i.e., the threshold and the size of 270 

the predicted range) were critical in defining segment classifications. For most analyses, we used 271 
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a CSCI treshold of 0.79 (i.e., the 10th percentile of reference calibration sites) following previous 272 

examples (Mazor et al. 2016, SDRWQB 2016) and a prediction interval ranging from the 10th to 273 

the 90th percentiles. Stream segments with the range of CSCI score expectations entirely below 274 

the threshold were considered likely constrained, whereas those with expectations entirely above 275 

were considered likely unconstrained (Figure 2c). The remaining sites were classified as possibly 276 

unconstrained or possibly constrained, based on whether the median expectation was above or 277 

below the threshold (respectively) (Table 2). 278 

A sensitivity analysis was conducted to evaluate the influence of these key decision points on the 279 

extent of segment classifications created by the landscape model. Stream segment classifications 280 

depend on the chosen range of score expectations (or certainty) from the landscape model 281 

(Figure 2b) and the CSCI threshold for evaluating the overlap extent (Figure 2c). Eight different 282 

ranges of values for the score expectations from wide to narrow were evaluated at five percent 283 

intervals, i.e., 5th-95th, 10th-90th, …, 45th-55th. Different CSCI thresholds were also evaluated 284 

using values of 0.63, 0.79, and 0.92, corresponding to the 1st, 10th, and 30th percentile of scores at 285 

reference calibration sites used to develop the CSCI (Figure 1b) (Mazor et al. 2016). The 286 

percentage of stream segments in each class statewide and by major regions were estimated for 287 

each of the twenty-four scenarios (width by threshold combinations) to evaluate sensitivity to 288 

changes in the decision points. 289 

Sites were further classified by comparing observed CSCI scores from biomonitoring data to the 290 

range of expected scores (Figure 2d). Relative site scores were determind based on location of 291 

the observed score to the range of expected CSCI scores. Sites with observed scores above the 292 

upper limit of the segment expectation (e.g., above the 90th percentile of expected scores) were 293 

considered “over-scoring” and sites below the lower limit (e.g., 10th percentile) were considered 294 
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“under-scoring”. If neither “over-scoring” nor “under-scoring”, the relative site score was 295 

considered as “expected” within the context of the landscape model. 296 

Defining management priorities in the San Gabriel River watershed 297 

Site and stream classifications from the landscape model allowed a local stakeholder group to 298 

develop a framework for evaluating data from a watershed monitoring program to prioritize 299 

management actions. The San Gabriel River (SGR) Regional Monitoring Program (Los Angeles 300 

County, California) includes stakeholders from water quality regulatory agencies, municipalities, 301 

and non-governmental organizations that cooperatively work to manage aquatic resources in the 302 

watershed and improve coordination of compliance and ambient monitoring efforts. The 303 

workgroup met monthly over a six-month period to discuss model application and to refine the 304 

interpretation of results. The model was applied to 751 stream segments in the watershed, of 305 

which 147 samples at 75 segments were collected for bioassessment (Figure 3a). CSCI scores 306 

ranged from 0.2 to 1.23 and were averaged for repeat visits, of which sixty segments had only 307 

one visit. Fifty-six samples from the SGR watershed were used in the statewide dateset to 308 

develop the landscape model. 309 

A strong land-use gradient occurs in the SGR watershed that creates challenges for managing 310 

stream condition (Figure 3b). The upper watershed in the San Gabriel mountains is largely 311 

undeveloped or protected for recreational use, whereas the lower watershed is in a heavily 312 

urbanized region of Los Angeles County. The SGR is dammed at four locations in the upper 313 

watershed for flood control. Spreading grounds in the middle of the watershed are used to 314 

recharge groundwater during high flow. As a result, the upper and lower watersheds are 315 

hydrologically disconnected when annual rainfall is normal. Nearly all of the stream segments in 316 
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the lower half of the watershed are channelized with concrete or other reinforcements. The 317 

majority of flow in the lower watershed is provided to the mainstem and major tributaries of the 318 

SGR by wastewater treatment plants releasing tertiary treated effluent. Approximately half of the 319 

monitored sites in the watershed are in poor biological condition, nearly all of which are in the 320 

lower watershed. 321 

Stakeholders identified their relevant priorities by evaluating the different site types that were 322 

possible from the landscape model relative to the stream classes. The priorities defined by the 323 

group were generalized into three categories: 324 

• Investigate: Conduct additional monitoring or review of supplementary data (e.g., field 325 

visits, review aerial imagery); 326 

• Protect: Recommend additional scrutiny of any proposed development and/or projects; 327 

• Restore: Pursue targeted action for causal assessment and/or restoration activity. 328 

A template that showed the possible site scores relative to the segment classifications was given 329 

to the stakeholders (Figure S1, left side). The three priorities were then assigned a low, medium, 330 

or high importance for the scoring possibilities that could occur from the landscape model 331 

(Figure S1, right side). The assignments were made with the explicit recognition that any priority 332 

recommendations were in addition to baseline monitoring and maintenance that is currently 333 

provided by existing management programs. The final assignments were then mapped to each 334 

monitoring site in the watershed. 335 

The outcomes of these assignments were visualized in an interactive and online application, the 336 

Stream Classification and Priority Explorer (SCAPE, Figure S2, http://shiny.sccwrp.org/scape/, 337 

Beck 2018). The application allowed stakeholders to provide input on the two key decision 338 

http://shiny.sccwrp.org/scape/
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points for classifying stream segments (i.e., choice of a threshold and a prediction interval), as 339 

well as to assign priorities to each management action described above. The application then 340 

allowed stakeholders to see the outcomes of these decisions. Specifically, SCAPE created maps 341 

showing the classifications for segments in the watershed, deviation of observed CSCI scores 342 

from the expectation, and maps of recommended priority actions that were assigned to each of 343 

the scoring possibilities. In addition, the application tabulated the extent of streams in each class, 344 

as well as the number of sites prioritized for each management action. Crucially, SCAPE allowed 345 

the stakeholders to modify key decisions points in the model and rapidly evaluate how these 346 

changes propogated to changes in recommended priorities for each site. 347 

Results 348 

Model performance 349 

Model performance statewide indicated generally good agreement between observed CSCI 350 

scores and the median prediction for the associated stream segment (Table 3). Agreement 351 

between observed and predicted values for the entire calibration dataset was r = 0.75 (Pearson) 352 

and RMSE = 0.17. The intercept and slope for a regression between observed and predicted 353 

values were 0.34 and 0.60, suggesting a slight negative bias of predictions at lower scores and 354 

slight positive bias at higher scores. The statewide validation data showed similar results, with 355 

slightly smaller correlation (r = 0.72) and larger RMSE (0.18) estimates. 356 

Overall, the model performed well in regions with a mix of urban, agricultural, and open land 357 

(e.g., South Coast and Chaparral regions), whereas performance was weakest in regions without 358 

strong development gradients (e.g., Sierra Nevada and North Coast regions) (Table 3, Figure S3). 359 
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Performance for the Chaparral and South Coast regions were comparable or slightly improved 360 

compared to the statewide dataset for both the calibration (r = 0.71, 0.75, respectively) and 361 

validation (r = 0.74, 0.72) datasets. Model predictions for the Central Valley, Desert/Modoc, and 362 

North Coast regions had slightly lower performance compared to the statewide results, with 363 

correlations of approximately 0.57 with observed values in the calibration dataset and 0.53 in the 364 

validation dataset. Model performance was weakest for the Sierra Nevada and North Coast 365 

regions, where timber harvesting, rather than urban or agricultural development, is the most 366 

widespread stressor. 367 

Statewide patterns in stream constraints 368 

Statewide patterns in stream constraints were apparent from the results of the landscape model 369 

that were consistent with land use (Figure 4). A majority of stream segments statewide were 370 

classified as possibly constrained (11% of all stream length) or possibly unconstrained (46%), 371 

whereas a minority were likely constrained (4%) or likely unconstrained (39%) (Table 4). Large 372 

rivers across the state were more commonly classified as possibly constrained (e.g., Klamath, 373 

Owens, and Russian rivers). Overall, stream segments were more often constrained for biotic 374 

integrity in regions with more development, either as urban or agricultural land. For example, 375 

likely unconstrained streams were common in the Sierra Nevada (50%), North Coast (46%), and 376 

Desert/Modoc (46%) regions, whereas likely constrained were relatively abundant in the Central 377 

Valley (22%) and South Coast (15%) regions. However, constrained and unconstraind streams 378 

were both found in every region (Figure 4) 379 

Observed CSCI scores were within the predicted range as often as expected (i.e., 80% statewide, 380 

based on the 10th and 90th prediction interval), and over-scoring sites were roughly as common 381 
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(9%) as under-scoring sites (10%) (Table 5). Similar patterns were observed within regions, 382 

although a slightly larger percentage of sites in the Central Valley were under-scoring compared 383 

to the other regions. Over-scoring sites were slightly more common in certain regions (i.e., the 384 

South Coast and Sierra Nevada regions) than others (i.e., the Chaparral, Central Valley, and 385 

Desert/Modoc regions). 386 

Sensitivity analyses underscored the influence of key decision points of the landscape model on 387 

estimates of the extent of streams in each class (Figure 5). Unsurprisingly, decreasing the 388 

certainty of predictions from the landscape model by narrowing the prediction interval (5th-95th 389 

to 45th-55th) shifted a number of streams from the possible to likely category in both constrained 390 

and unconstrained segments. Similarly, changing the CSCI threshold from relaxed to more 391 

conservative (0.63 to 0.92) increased the number of streams classified as possibly or likely 392 

constrained and decreased the number of streams as possibly or likely unconstrained. However, 393 

the sensitivity to these decision points varied greatly by region. For example, over 80% of 394 

segments in the Central Valley were classified as likely constrained using a high CSCI threshold 395 

with the narrowest range of predictions, whereas less than 1% of segments were in this category 396 

using a low CSCI threshold with the widest range of predictions. Opposite trends were observed 397 

in regions with reduced land use pressures. For example, almost all stream segments in the North 398 

Coast and Sierra Nevada regions were classified as likely unconstrained using a low CSCI 399 

threshold and narrow range of predictions. 400 

San Gabriel River Case study 401 

Application of the landscape model results to the CSCI scores provided a context of expectations 402 

consistent with the strong land use gradient in the watershed (Figure 6). Stream segments in the 403 
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upper watershed were a mix of likely and possibly unconstrained (40% and 28%), whereas 404 

stream segments in the lower watershed were classified as likely and possibly constrained (25% 405 

and 7%). Several segments in the lower watershed had median CSCI scores that were very close 406 

to the 10th percentile (i.e., right-skewed) consistent with extreme landscape pressures (bottom 407 

left, Figure 6b). 408 

Using the same classification decision points described above for the statewide model, only six 409 

sites were under-scoring (two likely unconstrained and four likely constrained) and eight sites 410 

were over-scoring (five likely constrained, one possibly unconstrained, and two likely 411 

unconstrained) (Figure 7, top). One of the under-scoring sites in the likely unconstrained class 412 

was below the CSCI threshold (Figure 6). One site scoring as expected in the possibly 413 

unconstrained class was below the chosen CSCI threshold, whereas none of the constrained 414 

(possibly or likely) sites were above the threshold. 415 

The SCAPE application was effectively used to select management priorities for all monitoring 416 

sites in the SGR watershed. In general, the stakeholder group assigned high priority 417 

recommendations to over- and under-scoring sites in likely unconstrained segments or those 418 

below the biological threshold with possibly unconstrained classification (Figure S1). Continuing 419 

current practices (e.g., routine monitoring) were generally recommended at constrained sites or 420 

restoration actions were recommended as a lower priority despite low CSCI scores. 421 

Recommended actions to investigate were more common for both over-scoring and under-422 

scoring sites, protect was given a high priority exclusively at over-scoring sites, and restore was 423 

more common at under-scoring sites. 424 

The SCAPE application also allowed the stakeholders to identify spatial patterns among the 425 

watershed priorities. For example, a clear distinction between low and high priority actions was 426 
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observed on the watershed map (Figure 7, bottom). Sites in the lower watershed were lower 427 

priority if an action was recommended, whereas the five high priority sites were in the upper 428 

watershed (multiple recommendations were assigned to the sites). The distinction between lower 429 

and higher priorities between the lower and upper watershed was driven exclusively by the 430 

segment classifications, where constrained segments were in the lower watershed and 431 

unconstrained segments were in the upper watershed. Several sites that were scoring as expected 432 

for likely and possibly unconstrained segments in the upper watershed were recommended as 433 

medium priority for protection. 434 

Discussion 435 

The prevalence of degraded streams in California requires the use of 1) assessment tools that can 436 

accurately evaluate condition, and 2) tools that can provide a context for evaluating the range of 437 

likely scores associated with different settings. The landscape model was developed with these 438 

needs in mind to better inform application of the CSCI for decision-making in the context of 439 

landscape constraints on biological condition. Statewide application of the model demonstrated 440 

where streams are likely constrained on a regional basis, whereas application to the SGR 441 

watershed demonstrated how the model can be used by local stakeholders to prioritize 442 

management actions that are informed by landscape context. Most importantly, the analyses 443 

underlying the model do not diagnose causes of impairment, nor do they justify by themselves an 444 

exemption from management intervention where constraints are high. The landscape model can 445 

inform the interpretation of biotic condition and is an exploratory tool that can help identify 446 

where management goals are more likely to be achieved. 447 
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Results from our analysis could be used for managing the biological integrity of streams under 448 

state or federal water quality mandates (e.g. “biological criteria” under the Clean Water Act). 449 

Regulatory management for biological integrity involves the protection of sites meeting 450 

biological objectives and the restoration of sites that do not meet biological objectives. The 451 

selection of appropriate regulatory management actions for streams requires the consideration of 452 

the physical and chemical condition of streams concurrent with biological monitoring results. 453 

The landscape model can evaluate sites that are or are not meeting biological objectives relative 454 

to their modeled condition. This information could provide flexibility in the selection of 455 

regulatory or management actions at specific sites or watershed scales (e.g., hydrologic 456 

subareas), and to further prioritize where and when actions should take place based on the 457 

temporal and spatial scale needed for protection or restoration actions. For example, for sites that 458 

meet biological objectives but where the models predict some degree of constraint (e.g., Figure 459 

S1, site types 5, 9, 10, or 13), regulatory actions may be associated with protecting that condition 460 

and could be implemented in the short-term to prevent degradation. This flexibility is not 461 

intended to exclude sites from consideration that are less likely to achieve biological objectives, 462 

but rather to facilitate the decision-making process through a more transparent application of the 463 

model in a regulatory context. 464 

Non-regulatory applications of the landscape model are also possible by identifying where 465 

additional restoration, monitoring, or protection may have the most benefit. For example, 466 

landscape models could be used to support conservation planning, particularly at the watershed 467 

scale where land use practices can be a critical factor for decision-making. Ongoing work in 468 

California has focused on setting priorities for managing biodiversity that focus on watersheds 469 

within a conservation network (Howard et al. 2018). Results from the landscape model could be 470 



22 

 

used to enhance this network by providing supporting information on constraints in an 471 

assessment framework. More generally, these applications could represent a novel use of 472 

bioassessment data beyond the pass/fail paradigm of the regulatory context, for example, as tools 473 

for land use planning (Bailey et al. 2007). In many cases, including California, bioassessment 474 

indices have been sufficiently developed to allow large-scale condition assessment across 475 

regions, yet they are rarely used as planning tools to guide decisions on where resources should 476 

be focused (Nel et al. 2009). Our landscape model makes bioassessment data in California more 477 

accessible and identifies an appropriate context for the information, enabling the potential for 478 

both regulatory and non-regulatory applications. 479 

The landscape model is a tool for exploring options 480 

The primary objective of developing the landscape model was to provide a screening tool for 481 

exploring biological constraints to facilitate a discussion of management options relative to site 482 

contexts. This model by itself is not intended for direct application of regulatory designations at 483 

individual sites, nor is it fully adequate to assess whether a site can attain a particular use. 484 

Instead, the model can help identify patterns among monitoring sites where more intensive 485 

analyses may be appropriate or assist with decisions of where a use attainability assessment may 486 

be warranted. This application was effectively demonstrated through engagement of our local 487 

stakeholder group. Rather than identifying individual sites in need of specific management 488 

actions, the group used the landscape model to characterize patterns on the landscape that were 489 

consistent with the recommended management priorities. In doing so, the group was able to 490 

explore and discuss potential management actions relative to the landscape context of the 491 

watershed. The final decision by the group to prioritize management actions for the different 492 
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sites in broad categories of protect, restore, and investigate was based on an iterative process 493 

where ideas were discussed and shared freely among stakeholders. This approach ensured that 494 

stakeholders were generally in agreement with the final product and, therefore, potentially more 495 

likely to adopt the recommendations provided by these tools in formal decision-making (Stein et 496 

al. 2017). The recommended actions have relevance only in the context of interests of the SGR 497 

Regional Monitoring Program. Localized applications of the statewide model must engage 498 

stakeholders in a similar process to develop recommendations that are specific to regional needs 499 

at the watershed scale (Brody 2003, Reed 2008). 500 

The development of the SCAPE application was also critical for applying the landscape model 501 

by synthesizing a large volume of bioassessment data. The application provided a means of 502 

demonstrating core concepts of the model and allowed stakeholders to explore the key decision 503 

points that affect the model output, specifically related to changing certainties in the CSCI score 504 

predictions and the ability to explore alternative thresholds for biological objectives. This 505 

functionality allowed the stakeholders to develop recommendations that were completely 506 

independent of the model, i.e., decisions were not hard-wired into the model nor SCAPE. 507 

Because of this application, this stakeholder group has a better understanding of the potential 508 

impacts of biointegrity policies currently under review in California. Additionally, the SCAPE 509 

application provided assurance to the prioritization process by correctly identifying sites where 510 

discrepancies between CSCI scores and other measures of stream condition had been observed. 511 

Without this context (i.e., Figure 6a), stakeholders struggled to prioritize among sites, 512 

particularly for restoration activities. For example, some advocated that the lowest scoring sites 513 

should be prioritized, whereas others prioritized sites that scored just below the CSCI threshold. 514 
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Conflicting priorities were common in the absence of information about the range of scores 515 

typical for these urban settings. 516 

Several states have implemented alternative use designations for applying bioassessment criteria 517 

in modified channels (FDEP 2011, USEPA 2013, MBI 2016). Although our results generally 518 

support the link between impacted biology and channel modification, a regulatory framework 519 

based on direct channel modification or other measures of channel morphology may be 520 

insufficient by failing to recognize constraints on urban streams with natural morphology. In the 521 

context of the model, a constrained channel may or may not be engineered, but an engineered 522 

channel will typically be constrained given the surrounding land use. For example, Tecolote 523 

Creek (San Diego County, USA) was identified by our model as a constrained channel in an 524 

urban landscape (Figure 8). The CSCI score is 0.61 indicating degraded biological integrity, 525 

whereas the in-stream physical habitat is unaltered (Rehn, Mazor, and Ode 2018). Other stressors 526 

originating at the landscape scale (e.g., water or sediment chemistry) have likely constrained the 527 

biological community at this site independent of the physical habitat quality. Furthermore, 528 

channel modification does not always result in biological degradation, particularly if the 529 

contributing watershed is largely undeveloped. For example, Stein et al. (2013) observed 530 

reference-like bioassessment index scores in armored reaches within national forest lands in 531 

southern California. A classification framework for biological constraints using only channel 532 

modification would provide incomplete and potentially misleading information on streams with 533 

limited biological potential. Ideally, context from a landscape model, in conjunction with reach-534 

specific data on channel modification, should be used to determine where aquatic life uses may 535 

be limited. 536 
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Our approach to assessing constrained streams is readily transferable outside of California. The 537 

landscape model could be applied to other bioassessment methods, such as a multi-metric index 538 

(the most common bioassessment approach within the US, Buss et al. 2014), O/E assessments 539 

(Moss et al. 1987), biological condition gradients (Davies and Jackson 2006), or with other 540 

biological endpoints (e.g., fish or diatoms). More importantly, our use of national geospatial 541 

datasets (i.e., NHDPlus, McKay et al. 2012; StreamCat, Hill et al. 2016) means that these 542 

methods could be applied across the United States. National bioassessment indices have been 543 

developed and the landscape model could be developed as a national-scale product of constraints 544 

on biological condition to complement recent work that predicted probable biological conditions 545 

with the National Rivers and Streams Assessment (Hill et al. 2017). Global geospatial datasets of 546 

freshwater-specific environmental variables are also available and could be used to develop 547 

similar models outside of the United States (Domisch, Amatulli, and Jetz 2015). 548 

Extension of the landscape models beyond California should also consider landscape stressors 549 

that are predictive of biotic condition in other regions. For example, urban and agricultural 550 

gradients were sufficient to characterize constraints in many regions of California, whereas Hill 551 

et al. (2017) found that the volume of water stored by dams was an important predictor of 552 

biological condition in the Northern Appalachian and Northern Plains regions of the US. In their 553 

paper, Hill et al. (2017) provided an example of how predictive models could be used to identify 554 

potential sites for restoration or conservation, however, their illustration did not explicitly 555 

identify sites that were over- or under-scoring relative to a biological endpoint. Doing so in 556 

California provided stakeholders with important context that helped establish management 557 

priorities, demonstrating the potential utility of this approach in other states. 558 
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Model assumptions and limitations 559 

There are several characteristics of the landscape model that could affect its performance when 560 

applied outside of urban and agricultural settings. First, the model was developed with a focus on 561 

the needs of managers that apply bioassessment tools in developed landscapes where conditions 562 

are presumably constrained. As such, landscape variables were chosen to capture the effects of 563 

development on CSCI scores in these areas (Table 1). Application of the model in regions where 564 

different stressors have strong impacts on stream condition should consider the relevance of 565 

urban and agricultural stressors and if an alternative model that better captures other stressor 566 

gradients is needed. For example, our results suggest that streams in the North Coast and Sierra 567 

Nevada regions are largely unconstrained, but the landscape model was a poor predictor of CSCI 568 

scores in these areas. The dominant stressors likely to affect stream condition in these regions 569 

originate from sources that are less common in developed landscapes, such as silviculture and 570 

cannabis cultivation. The current landscape model does not adequately capture these impacts 571 

outside of urban and agricultural environments. Moreover, poor model predictions are 572 

compounded by low sensitivity of the CSCI to relevant stressor gradients in these regions (Mazor 573 

et al. 2016). Accurate data for quantifying these potential stressors are not available in 574 

StreamCat, but this is an area where investments in improving spatial data could yield significant 575 

improvements in further development of bioassessment indices and tools for their interpretation. 576 

An additional assumption is that the landscape model can adequately discriminate between 577 

intractable constraints on biology that are spatially and temporally pervasive relative to more 578 

manageable constraints. That is, we assumed that the impacts of stressors included in the model, 579 

such as urbanization, are not manageable in the short term, whereas stressors associated with 580 
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deviations from model predictions can be mitigated. These assumptions are not unique to our 581 

model and have been used in other applications that have evaluated biological potential (Paul et 582 

al. 2008, Chessman 2014, Waite et al. 2014). However, many stressors excluded from the model 583 

can have long-lasting impacts, leading to potentially irreversible degradation or management 584 

scenarios where long-term recovery may only be possible with sustained and costly application 585 

of resources. For example, logging activities can impact benthic macroinvertebrate communities 586 

for a decade or more after harvesting activities have stopped (Stone and Wallace 1998, Quinn 587 

and Wright-Stow 2008). In urban areas, pervasive and profound alteration to groundwater and 588 

hydrology is common and stream communities in groundwater fed systems may require 589 

substantial time and resources for restoration. The potential legacy impacts of large-scale 590 

alterations of the natural environment are not well-captured by the current model, neither from a 591 

spatial nor temporal perspective. A more refined application of the landscape model would be 592 

necessary to evaluate different scales of impact, which could include developing separate models 593 

for each region, as well as more careful selection of model inputs to capture scales of interest for 594 

potential impacts on stream condition. 595 

The landscape model is associative by design and does not identify mechanistic links between 596 

biological constraints and proximal causes. The model describes constraints at scales larger than 597 

instream characteristics as a necessary approach to accurately predict bioassessment scores. 598 

More comprehensive assessments at individual sites are needed to diagnose the immediate 599 

causes of degraded condition. Further, a distinction between constraints on biological condition 600 

and channel modification is implicit such that indication of the former by the model does not 601 

explicitly indicate presence of the latter. As noted above, our results consistently indicated that 602 

engineered channels are biologically constrained, but the model is based on an a priori selection 603 
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of land use variables to predict biotic integrity. A correspondence between habitat limitations and 604 

channel modification is likely in many cases but data are insufficient to evaluate biological 605 

effects statewide relative to land use constraints. Moreover, bioassessment scores can be similar 606 

in modified channels compared to natural streams independent of watershed land use, i.e., 607 

concordance between degraded stream condition and channel modification may not always be 608 

observed (Stein et al. 2013). 609 

An additional consideration in using the landscape model is the meaning of biologically 610 

constrained in the context of whole stream communities. Biologically constrained sites were 611 

considered those where present landscapes were likely to limit CSCI scores that describe 612 

macroinvertebrate condition. In many cases, poor biotic condition of the macroinvertebrate 613 

community translates to poor stream condition. However, a constrained macroinvertebrate 614 

community does not always mean other biological attributes of stream condition (e.g., fish 615 

assemblages) are also constrained. Urban streams sometimes support diverse algal assemblages 616 

such that algal-based measures of biotic condition may alternatively suggest good biotic 617 

condition relative to macroinvertebrate-based indices (Brown et al. 2009, Mazor, Beck, and 618 

Brown 2018). Broadening the landscape model to include multiple taxonomic assemblages or 619 

endpoints would allow a more complete assessment of how condition relates to landscape 620 

alteration. 621 

Summary 622 

The landscape model can be used to characterize the extent of biologically constrained channels 623 

in urban and agricultural landscapes. Our application to the SGR watershed demonstrated how 624 

the results of the model can be used at a spatial scale where many management decisions are 625 
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implemented through close interaction with a regional stakeholder group with direct interests in 626 

the local resources. Overall, the model provides a tool to determine how managers can best 627 

prioritize limited resources for stream management by focusing on segments where 628 

recommended actions are most likely to have the intended outcome of improving or protecting 629 

biological condition. The approach also leverages information from multiple sources to develop 630 

a context for biological assessment that provides an expectation of what is likely to be achieved 631 

based on current land use development. This can facilitate more targeted management actions 632 

that vary depending on the identified context and can also inform decisions on extent and effort 633 

for future monitoring locations. 634 
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Figure captions 889 

Figure 1 Urban and agricultural land use (a) and distribution of observed stream CSCI scores 890 

(b) in California. Cover of urban and agricultural land use in stream watersheds was used to 891 

develop a landscape model for stream segment expectations of bioassessment scores. 892 

Breakpoints for CSCI scores are the 1st, 10th, and 30th percentile of scores at least-disturbed, 893 

reference sites throughout the state. Altered and intact refers to biological condition (Mazor et 894 

al. 2016). Grey lines are major environmental regions in California defined by ecoregional and 895 

watershed boundaries, CV: Central Valley, CH: Chaparral, DM: Deserts and Modoc Plateau, 896 

NC: North Coast, SN: Sierra Nevada, SC: South Coast. 897 

Figure 2 Application of the landscape model to identify site expectations and bioassessment 898 

performance for sixteen example stream segments. A range of CSCI scores is predicted from the 899 

model (a) and the lower and upper limits of the expectations are cut to define a certainty range 900 

for the predictions (b). Overlap of the certainty range at each segment with a chosen CSCI 901 

threshold (c) defines the stream segment classification as likely unconstrained, possibly 902 

unconstrained, possibly constrained, and likely constrained. The observed bioassessment scores 903 

are described relative to the classification as over scoring (above the certainty threshold), 904 

expected (within), and under scoring (below) for each of four stream classes (d). 905 

Figure 3 San Gabriel River watershed in southern California. Land cover is shown in plot (a) 906 

and the predicted median CSCI scores at each stream segment and observed CSCI scores are 907 

shown in (b). 908 

Figure 4 Statewide application of the landscape model showing the stream segment 909 

classifications. Major regional boundaries are also shown (see Figure 1). 910 
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Figure 5 Changes in stream segment classes by region and statewide for different scenarios used 911 

to define biological constraints. Twenty-seven scenarios were tested that evaluated different 912 

combinations of certainty in the CSCI predictions (nine scenarios from wide to narrow 913 

prediction intervals as identified by the tail cutoff for the expected range) and potential CSCI 914 

thresholds (three scenarios from low to high). The percentage of total stream length for likely 915 

unconstrained and likely constrained is shown for each scenario. Stream classifications as 916 

possibly unconstrained or possibly constrained are not shown but can be inferred form the area 917 

of white space above or below each bar. The solid black line indicates the percentage division 918 

between unconstrained and constrained classifications. CV: Central Valley, CH: Chaparral, 919 

DM: Deserts and Modoc Plateau, NC: North Coast, SN: Sierra Nevada, SC: South Coast. 920 

Figure 6 Application of the landscape model to stream segments in the San Gabriel River 921 

watershed, Los Angeles County, California. CSCI scores with (a) no context from the model are 922 

on the left and (b) scores with context from the model are on the right. Relative site scores as 923 

under-scoring, expected, or over-scoring are based on observed scores given the segment class 924 

as likely constrained, possibly constrained, possibly unconstrained, and likely unconstrained. 925 

Segment classes are based on overlap of the expectations with a biological threshold for the 926 

CSCI (0.79, dashed lined) and location of the median expectation (white ticks). 927 

Figure 7 Relative site scores and recommended management actions for locations with CSCI 928 

scores in the San Gabriel River watershed. Relative site scores as under scoring, expected, or 929 

over scoring are based on observed scores given the segment class as likely constrained, 930 

possibly constrained, possibly unconstrained, and likely unconstrained. Recommended 931 

management actions were defined by a local stakeholder group (see Figure S1) and are ranked 932 
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by priority for actions to investigate, protect, and restore a site. No recommended actions 933 

assume baseline maintenance and monitoring is sufficient. 934 

Figure 8 Tecolote Creek (San Diego County, USA) is a constrained channel in an urban 935 

landscape (a, Source: 32.81736, -117.19986. Google Earth. November 8, 2016. Accessed July 936 

20, 2018.). Physical habitat (b, Source: R. Mazor) at the sample site suggests no channel 937 

alteration. The CSCI was scored at 0.61 indicating degraded biological integrity.  938 
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Tables 939 

 940 

Table 1 Land use variables used to develop the landscape model of stream bioassessment scores. 941 

All variables were obtained from StreamCat (Hill et al. 2016) and applied to stream segments in 942 

the National Hydrography Dataset Plus (NHD-plus) (McKay et al. 2012). The measurement 943 

scales for each variable are at the riparian (100 m buffer), catchment, and/or watershed, scale 944 

relative to a stream segment. Combined scales for riparian measurements (e.g., riparian + 945 

catchment, riparian + watershed) are riparian estimates for the entire catchment or watershed 946 

area upstream, as compared to only the individual segment. Total urban and agriculture land 947 

use variables were based on sums of individual variables in StreamCat as noted in the 948 

description. Rp100: riparian, Cat: catchment, Ws: watershed 949 

Name Scale Description Unit 

CanalDens Cat, Ws Density of NHDPlus line features classified 

as canal, ditch, or pipeline 

km/sq km 

PctImp2006 Cat, Ws, Cat + 

Rp100, Ws + 

Rp100 

Mean imperviousness of anthropogenic 

surfaces (NLCD 2006) 

% 

TotUrb2011 Cat, Ws, Cat + 

Rp100, Ws + 

Rp100 

Total urban land use as sum of developed 

open, low, medium, and high intensity 

(NLCD 2011) 

% 

TotAg2011 Cat, Ws, Cat + 

Rp100, Ws + 

Total agricultural land use as sum of hay and 

crops (NLCD 2011) 

% 
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Rp100 

RdDens Cat, Ws, Cat + 

Rp100, Ws + 

Rp100 

Density of roads (2010 Census Tiger Lines) km/sq km 

RdCrs Cat, Ws Density of roads-stream intersections (2010 

Census Tiger Lines-NHD stream lines) 

crossings/sq 

km 

 950 

  951 
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Table 2 Stream class definitions describing potential biological constraints. Classes are based 952 

on the overlap of the range of likely bioassessment scores with a potential threshold for a 953 

biological objective. Identifying stream classes requires selecting the cutoff range of likely 954 

scores from the landscape model and a chosen threshold for the objective. 955 

Class Definition Example 

Likely 

unconstrained 

Lower bound of prediction interval is above threshold 10th percentile > 

0.79 

Possibly 

unconstrained 

Lower bound of prediction interval is below threshold, 

but median prediction is above 

50th percentile > 

0.79 

Possibly 

constrained 

Upper bound of prediction interval is above threshold, 

but median prediction is below 

50th percentile < 

0.79 

Likely constrained Upper bound of prediction interval is below threshold 90th percentile < 

0.79 

 956 

  957 
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Table 3 Performance of the landscape model by calibration (Cal) and validation (Val) datasets 958 

in predicting CSCI scores. The statewide dataset (Figure 4) and individual regions of California 959 

(Figure 1) are evaluated. Averages and standard deviations (in parentheses) for observed and 960 

predicted CSCI values of each dataset are shown. Pearson correlations (r), root mean squared 961 

errors (RMSE), intercept, and slopes are for comparisons of predicted and observed values to 962 

evaluate model performance. All correlations, intercepts, and slopes are significant at alpha = 963 

0.05. CV: Central Valley, CH: Chaparral, DM: Deserts and Modoc Plateau, NC: North Coast, 964 

SN: Sierra Nevada, SC: South Coast. 965 

Dataset Location n Observed Predicted r RMSE Intercept Slope 

Cal Statewide 1965 0.82 (0.26) 0.83 (0.20) 0.75 0.17 0.34 0.60 

 CH 512 0.76 (0.27) 0.79 (0.21) 0.71 0.19 0.38 0.54 

 CV 116 0.51 (0.18) 0.57 (0.15) 0.66 0.15 0.29 0.54 

 DM 86 0.87 (0.22) 0.91 (0.14) 0.50 0.20 0.63 0.31 

 NC 208 0.92 (0.20) 0.94 (0.13) 0.55 0.17 0.61 0.36 

 SC 631 0.79 (0.24) 0.78 (0.21) 0.75 0.16 0.27 0.65 

 SN 412 0.98 (0.18) 0.98 (0.09) 0.45 0.16 0.75 0.23 

Val Statewide 655 0.82 (0.25) 0.84 (0.20) 0.72 0.18 0.36 0.58 

 CH 172 0.76 (0.27) 0.81 (0.21) 0.74 0.19 0.39 0.56 

 CV 40 0.52 (0.19) 0.59 (0.16) 0.49 0.19 0.38 0.40 

 DM 28 0.84 (0.17) 0.93 (0.11) 0.55 0.17 0.63 0.36 

 NC 71 0.94 (0.19) 0.96 (0.11) 0.55 0.16 0.67 0.31 
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 SC 208 0.80 (0.24) 0.78 (0.21) 0.72 0.17 0.27 0.63 

 SN 136 0.97 (0.17) 0.98 (0.09) 0.21 0.17 0.88 0.11 

 966 

  967 
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Table 4 Summary of stream length for each stream class statewide and major regions of 968 

California (Figures 1, 4). Lengths are in kilometers with the percentage of the total length in a 969 

region in parentheses. All lengths are based on a CSCI threshold of 0.79 and the 10th to 90th 970 

percentile of expected scores from the landscape model. CV: Central Valley, CH: Chaparral, 971 

DM: Deserts and Modoc Plateau, NC: North Coast, SN: Sierra Nevada, SC: South Coast. 972 

 constrained unconstrained 

Region likely possibly possibly likely 

Statewide 8150 (4) 24735 (11) 101591 (46) 85317 (39) 

CV 3356 (22) 8010 (52) 3202 (21) 951 (6) 

CH 1642 (3) 7840 (13) 30693 (50) 21206 (35) 

DM 255 (0) 3395 (6) 27194 (47) 26479 (46) 

NC 108 (0) 1442 (5) 14152 (49) 13286 (46) 

SN 20 (0) 1067 (3) 18228 (48) 19032 (50) 

SC 2770 (15) 2981 (16) 8122 (45) 4363 (24) 

 973 

  974 
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Table 5 Summary of CSCI scores by relative expectations for each stream class statewide and in 975 

each major region of California (Figures 1, 4). Average CSCI scores (standard deviation) and 976 

counts (percent) of the number of monitoring stations in each relative score category and region 977 

are shown. Sites are over-scoring if the observed scores are above the range of expectations at a 978 

segment, expected if within the range, or under-scoring if below the range. CV: Central Valley, 979 

CH: Chaparral, DM: Deserts and Modoc Plateau, NC: North Coast, SN: Sierra Nevada, SC: 980 

South Coast. 981 

 under-scoring expected over-scoring 

Region CSCI n (%) CSCI n (%) CSCI n (%) 

Statewide 0.54 (0.21) 267 (10) 0.83 (0.23) 2041 (80) 1.08 (0.17) 242 (9) 

CH 0.47 (0.18) 89 (13) 0.79 (0.24) 535 (80) 1.08 (0.17) 45 (7) 

CV 0.34 (0.12) 25 (17) 0.54 (0.17) 118 (81) 0.63 (0.25) 2 (1) 

DM 0.6 (0.17) 15 (14) 0.9 (0.17) 89 (80) 1.15 (0.08) 7 (6) 

NC 0.66 (0.17) 28 (10) 0.93 (0.16) 228 (82) 1.15 (0.08) 22 (8) 

SC 0.54 (0.22) 56 (7) 0.78 (0.22) 656 (81) 1.02 (0.2) 97 (12) 

SN 0.67 (0.16) 54 (10) 0.99 (0.11) 415 (77) 1.16 (0.06) 69 (13) 

 982 
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