Credit for Drought-Resilient Water Supplies

Sustainable and Balanced Approach to Managing Droughts

Proposed Modification to Emergency Regulation Presented by:

Mark Weston, Chair, Board of Directors, San Diego County Water Authority
Mike Markus, General Manager, Orange County Water District
Dana Friehauf, Water Resources Manager, San Diego County Water Authority

SWRCB Public Workshop, December 7, 2015
Urban Water Suppliers are Implementing Governor Brown’s Water Action Plan

<table>
<thead>
<tr>
<th>Key Actions</th>
<th>Water Agencies Implementing?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Make conservation a way of life</td>
<td>✓</td>
</tr>
<tr>
<td>Increase regional self-reliance and integrated water management</td>
<td>✓</td>
</tr>
<tr>
<td>Manage and prepare for dry periods</td>
<td>✓</td>
</tr>
<tr>
<td>Expand water storage capacity and improve groundwater management</td>
<td>✓</td>
</tr>
</tbody>
</table>

“All Californians have a stake in our water future. These actions set us on a path toward reliability, restoration, and resilience in California water.”
Urban Water Suppliers are Implementing State Law Requiring Reduced Reliance on the Bay-Delta

2009 Delta Reform Act (Water Code §85021):
- “reduce reliance on the Delta”
- “invest in improved regional supplies”
- “improve regional self-reliance”
- “invest in conservation, and water use efficiency”
- “invest in advanced water technologies”
Implementing Gov. Brown’s Water Action Plan
Making Conservation a Way of Life
San Diego County Reduction in Per Capita Water Use

40% Reduction in GPCD Since 1990

<table>
<thead>
<tr>
<th>Year</th>
<th>Total Potable GPCD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>235</td>
</tr>
<tr>
<td>2000</td>
<td>216</td>
</tr>
<tr>
<td>2005</td>
<td>190</td>
</tr>
<tr>
<td>2010</td>
<td>152</td>
</tr>
<tr>
<td>2015</td>
<td>143</td>
</tr>
<tr>
<td>2020</td>
<td>167</td>
</tr>
</tbody>
</table>

State-Mandated 2020 Target
Implementing Gov. Brown’s Water Action Plan
Increasing San Diego County’s Regional Self-Reliance

1991
- 28 TAF (5%)
- 550 TAF (95%)
Total = 578 TAF

1991 - Metropolitan Water District
1991 - Imperial Irrigation District Transfer
1991 - All American & Coachella Canal Lining
1991 - Local Surface Water
1991 - Recycled Water
1991 - Seawater Desalination
1991 - Groundwater
1991 - Potable Reuse (Includes conceptual and planned projects)

Estimated 2020
- 80 TAF (14%)
- 190 TAF (32%)
- 150 TAF (26%)
- 48 TAF (8%)
- 27 TAF (5%)
- 48 TAF (8%)
Total = 587 TAF

2020 - Metropolitan Water District
2020 - Imperial Irrigation District Transfer
2020 - All American & Coachella Canal Lining
2020 - Local Surface Water
2020 - Recycled Water
2020 - Seawater Desalination
2020 - Groundwater
2020 - Potable Reuse (Includes conceptual and planned projects)

2020 - Estimated Water Sources
2020 - Projected Water Sources

Projected 2035
- 80 TAF (12%)
- 50 TAF (7%)
- 50 TAF (7%)
- 30 TAF (4%)
- 50 TAF (7%)
- 100 TAF (15%)
Total = 680 TAF

2035 - Metropolitan Water District
2035 - Imperial Irrigation District Transfer
2035 - All American & Coachella Canal Lining
2035 - Local Surface Water
2035 - Recycled Water
2035 - Seawater Desalination
2035 - Groundwater
2035 - Potable Reuse (Includes conceptual and planned projects)

2035 - Projected Water Sources

TAF=Thousand Acre-Feet
Groundwater Replenishment System
Indirect Potable Reuse

- Operational since January 2008
- Creates 100 million gallons per day (103,000 acre-feet per year) of new water supply for Southern California
- Treating sewer water and purifies it to near-distilled quality for groundwater recharge
- Reduces imported water need for Southern California
- Provides a new source of water—enough for nearly 850,000 people
- $623 million capital cost
Regulations Must Account for Potable Reuse Projects

- Identical benefit to “Purple Pipe” non-potable reuse projects – should also receive credit in Regulation
- Potable reuse projects are more efficient as they avoid dual plumbing issues
- Reduces TDS concentration of local water supplies
- Not including potable reuse projects disincentives development of new projects
- More sustainable local supplies reduces imported water need and the frequency of drought events
 - Actions consistent with Governor Brown’s Water Action Plan
Drought-Resilient Supply Credit
Basis and Rationale

1. Provides a sustainable approach to managing California’s Drought
 - Combination of conservation and drought-resilient supplies

2. Protects California’s economy
 - Approach doesn’t just rely on reduction mandates, which can stymie economic growth
3. Allows agencies to realize the benefits from drought-resilient supplies
 • Consistent with Governor’s Action Plan to increase self-reliance and reduce demands on Bay-Delta
 • Provide incentive for agencies to develop sustainable supplies
Drought-Resilient Supply Credit

Alternative Path to Compliance

- Simple and straightforward approach
- Urban water supplier conservation standard remains the same – no impact to other suppliers
- Reduction target is met through combination of conservation and drought sustainable supplies
- Include conservation savings floor of 8% to ensure balanced approach to managing droughts
 - Consistent with range included in current emergency regulations
Drought-Resilient Supply Credit
Alternative Path to Compliance (cont.)

- Applies to potable reuse, desalination, long-term transfers of conserved water or other potable drought-resilient supplies

- Urban agency must provide written proof that identifies long-term availability of supply
 - Written agreements, contracts or other guarantee

- Wholesaler has the ability to assign its sustainable supplies to agencies it serves
Proposed Alternative Path to Compliance

Illustrative Example (Figures in AF)

<table>
<thead>
<tr>
<th></th>
<th>Agency A</th>
<th>Agency B</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2013 Base Period Month</td>
<td>3,000</td>
</tr>
<tr>
<td>B</td>
<td>Conservation Standard</td>
<td>20%</td>
</tr>
<tr>
<td>C=A*B</td>
<td>Total Reduction Target</td>
<td>600</td>
</tr>
</tbody>
</table>

Reduction target may be met through conservation and sustainable supplies

<table>
<thead>
<tr>
<th></th>
<th>Agency A</th>
<th>Agency B</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>Drought-resilient supplies available</td>
<td>200</td>
</tr>
<tr>
<td>E=C-D</td>
<td>Conservation savings</td>
<td>400</td>
</tr>
<tr>
<td>F=E/A</td>
<td>Does savings drop below 8%?</td>
<td>13% (no)</td>
</tr>
</tbody>
</table>

Determine sustainable supplies and conservation applied to reduction target, assuming 8% conservation floor

<table>
<thead>
<tr>
<th></th>
<th>Agency A</th>
<th>Agency B</th>
</tr>
</thead>
<tbody>
<tr>
<td>G=A*.08</td>
<td>Conservation required with 8% floor</td>
<td>400</td>
</tr>
<tr>
<td>H=C-G</td>
<td>Adjusted drought-resilient supplies applied to reduction target</td>
<td>200</td>
</tr>
</tbody>
</table>
Conclusion

Drought-Resilient Supply Credit

1. Provides a sustainable, balanced approach to managing California’s Drought
2. Protects California’s economy
3. Allows agencies to realize the benefits from investments in drought-resilient supplies
 - Consistent with Governor’s Action Plan to increase self-reliance and reduce demands on Bay-Delta

Desalination Water-Use Efficiency Potable Reuse