Water Loss Control in Los Angeles

Sofia Marcus MS,PE,D2,WAV
September 2018

www.ladwp.com

Presentation Agenda

1. Water Loss Control Program Background
2. Improving Data Validity and Targeting Apparent Losses
3. Targeting Real Losses
4. Data Trends & Program Conclusions

www.ladwp.com
1. Program History

Water Loss Control Program History

- 2010-2011 Water Loss Audit and Component Analysis
- State regulatory requirements
Water Loss Task Force Action Plan

1. System Input Volume
2. Database Management
3. Meter Testing and Replacement
4. Leak Detection and Prevention
5. Unmetered and Unauthorized Consumption

www.ladwp.com/waterconservation

Sources of Supply

Wet Year
- LA Aqueduct: 58%
- MWD Imports: 31%
- Ground Water: 9%
- Recycled Water: 2%

Dry Year
- LA Aqueduct: 10%
- MWD Imports: 75%
- Ground Water: 13%
- Recycled Water: 2%

Local Groundwater, Stormwater, Conservation & Recycling
Data Validity and Apparent Losses

Supply Meter Preventative Maintenance

67 LADWP supply metering devices, including:
- Flow Meters and Totalizers
- Pressure Transducers, Cells, and Floats

35 flow meters at MWD connections

- Develop Preventative Maintenance Program for Annual Calibration & Maintenance

Meter Types:
- Venturi
- Magnetic
- Ultrasonic
- Propeller
Preventative Maintenance Program Cost

<table>
<thead>
<tr>
<th>Maintenance and Calibration Program</th>
<th>Costs</th>
</tr>
</thead>
<tbody>
<tr>
<td>One Time Costs</td>
<td>$280,000</td>
</tr>
<tr>
<td>Ongoing Costs</td>
<td>$233,000</td>
</tr>
<tr>
<td>Total Program Costs</td>
<td>$513,000</td>
</tr>
</tbody>
</table>

How does this benefit the city of Los Angeles?

5 → 6

www.ladwp.com
Supply Meter Accuracy Testing

- **Tank Drop Test**
- **In-Place Comparative Test**

![Tank Drop Test Image](Image)

![In-Place Comparative Test Image](Image)

Meter Accuracy Testing Program Costs

<table>
<thead>
<tr>
<th>Testing Program</th>
<th>Costs</th>
</tr>
</thead>
<tbody>
<tr>
<td>One Time Costs</td>
<td>$218,000</td>
</tr>
<tr>
<td>Ongoing Costs</td>
<td>$273,000</td>
</tr>
<tr>
<td>Total Program Costs</td>
<td>$491,000</td>
</tr>
</tbody>
</table>

![Meter Testing Program Image](Image)

Source Meter Testing Program

<table>
<thead>
<tr>
<th>Testing Year</th>
<th>Planning</th>
<th>Annual Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>100%</td>
<td>0%</td>
</tr>
<tr>
<td>2</td>
<td>75%</td>
<td>25%</td>
</tr>
<tr>
<td>3</td>
<td>50%</td>
<td>50%</td>
</tr>
<tr>
<td>4</td>
<td>25%</td>
<td>75%</td>
</tr>
</tbody>
</table>
How does this benefit the city of Los Angeles?

Improves DVG: 6 → 7

Customer Meter Accuracy Improvements

- Bench testing 1,000+ small meters annually
- Goal to replace 30,000 small meters annually
Customer Meter Testing Program Costs

<table>
<thead>
<tr>
<th>Meter Testing Program</th>
<th>Costs</th>
</tr>
</thead>
<tbody>
<tr>
<td>One Time Costs</td>
<td>$146,000</td>
</tr>
<tr>
<td>Ongoing Costs</td>
<td>$513,000</td>
</tr>
<tr>
<td>Total Program Costs</td>
<td>$659,000</td>
</tr>
</tbody>
</table>

How does this benefit the city of Los Angeles?
Customer Meter Replacement Costs

<table>
<thead>
<tr>
<th>Small Meter Replacement Program</th>
<th>Costs</th>
</tr>
</thead>
<tbody>
<tr>
<td>One Time Costs</td>
<td>$34,000</td>
</tr>
<tr>
<td>Ongoing Costs</td>
<td>$6,362,000</td>
</tr>
<tr>
<td>Total Program Costs</td>
<td>$6,396,000</td>
</tr>
</tbody>
</table>

How does this benefit the city of Los Angeles?

- **Reduces Apparent Losses**
- **Potential Revenue Savings: $1 M**
Cost Summary

<table>
<thead>
<tr>
<th>Implemented Actions</th>
<th>One Time Costs</th>
<th>Ongoing Costs</th>
<th>Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meter Calibration</td>
<td>$280,000</td>
<td>$233,000</td>
<td>Improves DVG</td>
</tr>
<tr>
<td>Supply Meter Accuracy Testing</td>
<td>$218,000</td>
<td>$273,000</td>
<td>Improves DVG</td>
</tr>
<tr>
<td>Customer Meter Testing</td>
<td>$146,000</td>
<td>$513,000</td>
<td>Maintains DVG</td>
</tr>
<tr>
<td>Customer Meter Replacement</td>
<td>$34,000</td>
<td>$6,396,000</td>
<td>Apparent Losses</td>
</tr>
<tr>
<td>Total Costs</td>
<td>$678,000</td>
<td>$7,415,000</td>
<td></td>
</tr>
</tbody>
</table>

Real Losses

3.
LADWP’s Water Distribution System

- 473 square miles
- 7,327 miles of mains
- 737,583 services
- 111 Pressure Zones
- 60,804 Hydrants
- 1,320 AF of water delivered per day
- 4 million people served

Real Loss Component Analysis Results

Majority is background leakage:
- Pressure management
- Infrastructure renewal and rehabilitation

Reported breaks:
- Reduce response time

Some potential to reduce hidden losses:
- Active leak detection
Increased Mainline Replacement

Mainline Replacement Program Costs

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>FY 21-22</td>
<td>158</td>
<td>118</td>
<td>118</td>
<td>119</td>
<td>113</td>
<td>170</td>
<td>184</td>
<td>216</td>
<td>232</td>
<td>249</td>
<td>266</td>
</tr>
<tr>
<td>FY 22-23</td>
<td>263</td>
<td>300</td>
<td>350</td>
<td>270</td>
<td>270</td>
<td>270</td>
<td>270</td>
<td>270</td>
<td>270</td>
<td>270</td>
<td>270</td>
</tr>
</tbody>
</table>

Annual Program Cost: $260 Million

How does this benefit the city of Los Angeles?

How does this benefit the city of Los Angeles?

- Reduces Real Losses
- Water Savings: ?

www.ladwp.com
Pressure Monitoring & Hydraulic Modeling

- Pilot began in December 2016
- Evaluating various technologies
- Targeting 13 leakiest zones

Pressure Monitoring & Modeling Costs

<table>
<thead>
<tr>
<th>Pressure Monitoring Phase 1</th>
<th>Costs</th>
</tr>
</thead>
<tbody>
<tr>
<td>One Time Costs</td>
<td>$5,500,000</td>
</tr>
<tr>
<td>Ongoing Costs</td>
<td>$2,100,000</td>
</tr>
<tr>
<td>Total Annual Costs</td>
<td>$7,600,000</td>
</tr>
</tbody>
</table>
Pressure Management: Phased Approach

Step 1: Install Pressure Loggers
Step 2: Monitor and Review Data
Step 3: Input Data into a Hydraulic Model
Step 4: Model Impact of Pressure Changes
Step 5: Select Pressure Management Options Based on Data and Modeling Results

- Decrease System Pressure
- Install Automated Regulator Valves
- Reduce Pressure Transients
- Create Smaller System Zones

How does this benefit the city of Los Angeles?

Water Savings: 94%
- Total Supplied Volume
- Real Losses 6%
- Background Losses 64%
- Reported Breaks 23%
- Hidden Losses 13%

www.ladwp.com
Leak Detection Pilot Program

Pilot Project Objectives

- Verify Accuracy and Effectiveness
- Evaluate Ease of Use
- Evaluate Large Scale Deployment

Evaluate Multiple Technologies

- Fixed leak detection and monitoring
- Manual leak survey

Leak Detection Pilot Program Cost

<table>
<thead>
<tr>
<th></th>
<th>Costs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed leak detection</td>
<td></td>
</tr>
<tr>
<td>One Time Costs</td>
<td>$304,000</td>
</tr>
<tr>
<td>Ongoing Costs</td>
<td>$720,000</td>
</tr>
<tr>
<td>Total Annual Costs</td>
<td>$1,024,000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manual leak survey</td>
<td></td>
</tr>
<tr>
<td>One Time Costs</td>
<td>$20,000</td>
</tr>
<tr>
<td>Ongoing costs</td>
<td>$175,000</td>
</tr>
<tr>
<td>Total Annual Costs</td>
<td>$195,000</td>
</tr>
</tbody>
</table>
Leak Detection: An Emerging Technology

Pros
- Identifies leaks
- Easy to operate
- Good user interface

Cons
- Cannot determine the size of the leak
- Too many false positives
- Theft is prevalent
- Installation can be difficult

How does this benefit the city of Los Angeles?

- Total Supplied Volume: 94%
- Real Losses: 6%
- Background Losses: 64%
- Hidden Losses: 13%
- Reported Breaks: 23%

Water Savings: ?

www.ladwp.com 31
Maximum Theoretical Savings

- **Reported Breaks, 23%**
 - Water Savings: 7,000 AF
 - Revenue Savings: $9 million

- **Hidden Losses, 13%**
 - Water Savings: 4,000 AF
 - Revenue Savings: $5 million

- **Background Leakage, 64%**
 - Water Savings: 19,000 AF
 - Revenue Savings: $25 million

Cost Summary

<table>
<thead>
<tr>
<th>Implemented Actions</th>
<th>One Time Costs</th>
<th>Ongoing Costs</th>
<th>Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mainline Replacement</td>
<td>-</td>
<td>$260,000,000</td>
<td>Real Losses</td>
</tr>
<tr>
<td>Pressure Management</td>
<td>$5,101,000</td>
<td>$2,109,000</td>
<td>Real Losses/Background Losses</td>
</tr>
<tr>
<td>Leak Detection Phase 1</td>
<td>$304,000</td>
<td>$720,000</td>
<td>Real Losses/Hidden Losses</td>
</tr>
<tr>
<td>Leak Detection Phase 2</td>
<td>$20,000</td>
<td>$175,000</td>
<td>Real Losses/Hidden Losses</td>
</tr>
<tr>
<td>Total Costs</td>
<td>$5,425,000</td>
<td>$263,000,000</td>
<td></td>
</tr>
</tbody>
</table>
Los Angeles Non-Revenue Water Trends

Non-revenue Water vs. Percent of Total Potable Water Use

Fiscal Year Ending June 30
National Trends: Real Losses

Real Loss Per Con Per Day

2013 2014 2015 2016 2017
WADI Georgia CA Audit

Recommendations: Phased Approach

Phase 1 Phase 2 Phase 3
Utility Specific Actions Utility Specific Actions Utility Specific Actions

Cost Effective Water Savings

www.ladwp.com WADI= Water Audit Data Initiative, American Water Works Association