ATTACHMENT E – NOTICE OF INTENT

GENERAL NPDES PERMIT FOR RESIDUAL AQUATIC PESTICIDE DISCHARGES FROM ALGAE AND AQUATIC WEED CONTROL APPLICATIONS

Attachment E – Notice of Intent

WATER QUALITY ORDER NO. 2013-0002-DWQ
GENERAL PERMIT NO. CAG990005

STATEWIDE GENERAL NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES) PERMIT FOR RESIDUAL AQUATIC PESTICIDE DISCHARGES TO WATERS OF THE UNITED STATES FROM ALGAE AND AQUATIC WEED CONTROL APPLICATIONS

I. NOTICE OF INTENT STATUS (see Instructions)

<table>
<thead>
<tr>
<th>Mark only one item.</th>
<th>A. New Applicator</th>
<th>B. Change of Information: WDID#</th>
<th>C. Change of ownership or responsibility: WDID#</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>YASB790000-5</td>
<td></td>
</tr>
</tbody>
</table>

II. DISCHARGER INFORMATION

<table>
<thead>
<tr>
<th>A. Name</th>
<th>Los Angeles County Department of Parks and Recreation</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. Mailing Address</td>
<td>265 Cloverleaf Drive</td>
</tr>
<tr>
<td>C. City</td>
<td>Baldwin Park</td>
</tr>
<tr>
<td>D. County</td>
<td>Los Angeles</td>
</tr>
<tr>
<td>E. State</td>
<td>CA</td>
</tr>
<tr>
<td>F. Zip</td>
<td>91706</td>
</tr>
<tr>
<td>G. Contact Person</td>
<td>Hayden W. Sohm</td>
</tr>
<tr>
<td>H. E-mail address</td>
<td>hsohm@parks.lacounty.gov</td>
</tr>
<tr>
<td>I. Title</td>
<td>Deputy Director</td>
</tr>
<tr>
<td>J. Phone</td>
<td>(520) 674-5885</td>
</tr>
<tr>
<td>K. Reg. Facility Agency</td>
<td></td>
</tr>
</tbody>
</table>

III. BILLING ADDRESS (Enter information only if different from Section II above)

<table>
<thead>
<tr>
<th>A. Name</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>B. Mailing Address</td>
<td></td>
</tr>
<tr>
<td>C. City</td>
<td></td>
</tr>
<tr>
<td>D. County</td>
<td></td>
</tr>
<tr>
<td>E. State</td>
<td></td>
</tr>
<tr>
<td>F. Zip</td>
<td></td>
</tr>
<tr>
<td>G. E-mail address</td>
<td></td>
</tr>
<tr>
<td>H. Title</td>
<td></td>
</tr>
<tr>
<td>I. Phone</td>
<td></td>
</tr>
</tbody>
</table>
IV. RECEIVING WATER INFORMATION

A. Algaecide and aquatic herbicides are used to treat (check all that apply):
 1. □ Canals, ditches, or other constructed conveyance facilities owned and controlled by Discharger.
 Name of the conveyance system: ____________________
 2. □ Canals, ditches, or other constructed conveyance facilities owned and controlled by an entity other
 than the Discharger.
 Owner's name: ____________________
 Name of the conveyance system: ____________________
 3. Directly to river, lake, creek, stream, bay, ocean, etc.
 Name of water body: Castaic Lagoon, Santa Fe Dam Lake, Puddingstone Lake, Legg Lake

B. Regional Water Quality Control Board(s) where treatment areas are located
 (REGION 1, 2, 3, 4, 5, 6, 7, 8, or 9): Region 4 (Los Angeles Regional Water Quality Control Board)
 (List all regions where algaecide and aquatic herbicide application is proposed.)

V. ALGAECIDE AND AQUATIC HERBICIDE APPLICATION INFORMATION

A. Target Organisms: Algae, submersed, floating and emergent aquatic plants

B. Algaecide and Aquatic Herbicide Used: List Name and Active ingredients
 One or more of the following active ingredients may be used (brand names are provided as examples):
 Copper (Cutrine), Diquat dibromide (Reward), GreenClean (sodium carbonate peroxyhydrate),
 Endothall (Aquathol K), Fluridone (Sonar), Glyphosate (Aquaneat), Imazapyr (Habitat), Imazamox (Clearcast),
 Triclopyr (Renovate)

C. Period of Application: Start Date January 1 End Date December 31 for permit life

D. Types of Adjuvants Used: various non ionic surfactants containing no nonylphenols, such as Cygnet Plus
 or LI-700

VI. AQUATIC PESTICIDE APPLICATION PLAN

Has an Aquatic Pesticide Application Plan been prepared and is the applicator familiar with its contents?
 □ Yes □ No
 If not, when will it be prepared? ____________________

VII. NOTIFICATION

Have potentially affected public and governmental agencies been notified?
 □ Yes □ No
 Potentially affected public agencies will be notified prior to treatment, if treatments are required

VIII. FEE

Have you included payment of the filing fee (for first-time enrollees only) with this submittal?
 □ Yes □ No □ NA
IX. CERTIFICATION

"I certify under penalty of law that this document and all attachments were prepared under my direction and supervision in accordance with a system designed to ensure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine or imprisonment. Additionally, I certify that the provisions of the General Permit, including developing and implementing a monitoring program, will be complied with."

A. Printed Name: Hayden W. Sohm
B. Signature: [Signature]
C. Title: Deputy Director, Regional Facilities Agency

Date: 1-5-15

XI. FOR STATE WATER BOARD STAFF USE ONLY

<table>
<thead>
<tr>
<th>WDID:</th>
<th>Date NOI Received:</th>
<th>Date NOI Processed:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case Handler's Initial:</td>
<td>Fee Amount Received: $</td>
<td>Check #:</td>
</tr>
<tr>
<td>□ Lyris List Notification of Posting of APAP</td>
<td>Date</td>
<td>Confirmation Sent</td>
</tr>
</tbody>
</table>

ATTACHMENT E – NOTICE OF INTENT
AQUATIC PESTICIDE APPLICATION PLAN (APAP)

For

Castaic Lagoon
Santa Fe Dam Lake
Bonelli Park - Puddingstone Reservoir
Whittier Narrows - Legg Lake

County of Los Angeles,
Department of Parks and Recreation Facilities

Prepared By
CLEAN LAKES INC.
2150 Franklin Canyon Road
Martinez, California 94553
PO Box 3186
Martinez, California 94553
www.cleanlake.com

Prepared For

County of Los Angeles, Department of Parks and Recreation
510 South Vermont Avenue
Los Angeles, CA 90020

December 2014

Purpose: To meet the requirements and ensure compliance with Water Quality Order No. 2013-0002-DWQ, Statewide General National Pollutant Discharge Elimination System Permit for Residual Aquatic Pesticide Discharges to Waters of the United States from Algae and Aquatic Weed Control Applications, General Permit No. CAG990005, adopted by the State Water Resource Control Board on March 5, 2013.
CERTIFICATION
(December 22, 2014)

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations." (40 C.F.R. § 122.22(d).)

Hayden W. Sohm
Deputy Director
Regional Facilities Agency
County of Los Angeles,
Department Parks and Recreation

Thomas Moorhouse
Licensed Aquatic Pest Control Adviser # 73950
Vice President
Clean Lakes, Inc.
Contents

- **BACKGROUND INFORMATION** ... 4
- **DESCRIPTION OF THE WATER SYSTEMS** .. 11
- **DESCRIPTION OF THE TREATMENT AREA** ... 17
- **DESCRIPTION OF THE TYPES OF AQUATIC WEEDS AND ALGAE TO BE CONTROLLED:** .. 18
- **AQUATIC PESTICIDES AND ADJUVANTS EXPECTED TO BE USED AND APPLICATION METHODS** .. 18
- **FACTORS INFLUENCING ALGAE AND WEED CONTROL** 19
- **MONITORING AND REPORTING PROGRAM** ... 21
 - Monitoring Requirements .. 21
 - General Monitoring .. 22
 - Receiving Water Monitoring .. 24
 - Reporting .. 32
- **DESCRIPTION OF PROCEDURES TO PREVENT SAMPLE CONTAMINATION** .. 34
- **DESCRIPTION OF BEST MANAGEMENT PRACTICES (BMPs) TO BE IMPLEMENTED:** ... 35
- **EXAMINATION OF AQUATIC VEGETATION CONTROL ALTERNATIVES** 38
BACKGROUND INFORMATION

This Aquatic Pesticide Application Plan (APAP) is a comprehensive plan developed by the discharger, the Los Angeles County Department Parks and Recreation, to comply with the provisions of Water Quality Order No. 2013-0002-DWQ, Statewide General National Pollutant Discharge Elimination System Permit for Residual Aquatic Pesticide Discharges to Waters of the United States from Algae and Aquatic Weed Control Applications, General Permit No. CAG990005, adopted by the State Water Resource Control Board on March 5, 2013.

This Aquatic Pesticide Application Plan (APAP) describes the project sites, aquatic plant and algae nuisances, aquatic pesticide products expected to be used, the monitoring program, and Best Management Practices to be followed, as well as the other conditions addressed in the General Permit, Section VIII C, Aquatic Pesticide Use Requirements, Aquatic Pesticide Application Plan.

The use of aquatic pesticides within the County of Los Angeles Parks and Recreation Control Program (County Program) is necessary to manage lake resources and maintain beneficial uses that can include irrigation water, swimming, recreation, aesthetics, boating, and fishing. The Aquatic Plant and Algae Control Program is an undertaking necessary to control specific types of aquatic plants and algae from becoming nuisances to the management of the water body which can otherwise cause impacts to beneficial uses. The need for aquatic pesticide application events as part of this program vary from week to week, season to season, and year to year due to such things as water temperature, sunlight, nutrient levels, plant and algae growth, and other factors. This APAP, per the General Permit requirements described below, provides the outline to ensure that the Aquatic Plant and Algae Control Program is successful.

PERMIT COVERAGE: The General Permit (No. CAG990005) addresses the discharge of aquatic pesticide residues related to the application of 2,4-D, acrolein, copper, diquat, endothall, fluridone, glyphosate, imazamox, imazapyr, penoxsulam, sodium carbonate peroxyhydrate, triclopyr-based algacides and aquatic herbicides, and adjuvants containing ingredients represented by the surrogate nonylphenol. Aquatic pesticides that
are applied to application areas within waters of the United States in accordance with FIFRA label requirements and Use Permit restrictions are not considered pollutants. However, residues associated with aquatic pesticide application require coverage under the General Permit. These include over-applied or misdirected pesticide products and pesticide residues. Residues are any pesticide byproduct, or breakdown product, or pesticide product that is present after the use of the pesticide to kill or control the target weed.

The General Permit does not cover agricultural storm water discharges or return flows from irrigated agriculture because these discharges are not defined as “point sources” and do not require coverage under an NPDES permit. The General Permit also does not cover other indirect or non point source discharges from applications of pesticides, including discharges of pesticides to land that may be conveyed in storm water or irrigation runoff. The General Permit does not cover the discharge of pollutants related to applications of pesticides other than 2,4-D, acrolein, copper, diquat, endothall, fluridone, imazapyr, glyphosate, sodium carbonate peroxyhydrate, triclopyr - based algaecides and aquatic pesticides, and adjuvants containing ingredients represented by the surrogate nonylphenol based pesticides; however, the General Permit includes a re-opener statement specifying that the permit may be reopened for the specific purpose of modifying the list of pesticides whose associated discharge is authorized by this General Permit.

WATERS OF THE UNITED STATES: The General Permit regulates the discharge of residues associated with the application of aquatic pesticides to waters of the United States. “Waters of the United States” are defined by the General Permit as follows:

1. All waters which are currently used, were used in the past, or may be susceptible to use in interstate or foreign commerce, including all waters which are subject to the ebb and flow of the tide;
2. All interstate waters, including interstate “wetlands”;
3. All other waters such as intrastate lakes, rivers, streams (including intermittent streams), mudflats, sand flats, “wetlands,” sloughs, prairie potholes, wet meadows, playa lakes, or natural ponds the use, degradation, or destruction of which would affect or could affect interstate or foreign commerce including any such waters:
 a. Which are or could be used by interstate or foreign travelers for recreational or other purposes;
b. From which fish or shellfish are or could be taken and sold in interstate or foreign commerce; or
c. Which are used or could be used for industrial purposes by industries in interstate commerce.

4. All impoundments of waters otherwise defined as waters of the United States under this definition;
5. Tributaries of waters identified in items 1 through 4 of this definition;
6. The territorial sea; and
7. "Wetlands" adjacent to waters (other than waters that are themselves wetlands) identified in paragraphs (1) through (6) of this definition. Waste treatment systems, including treatment ponds or lagoons designed to meet the requirements of CWA (other than cooling ponds as defined in 40 C.F.R. section 423.11(m) which also meet the criteria of this definition) are not waters of the United States. This exclusion applies only to manmade bodies of water which neither were originally created in waters of the United States (such as disposal area in wetlands) nor resulted from the impoundment of waters of the United States [See Note 1 of this Section.] Waters of the United States do not include prior converted cropland. Notwithstanding the determination of an area's status as prior converted cropland by any other federal agency, for the purposes of the Clean Water Act, the final authority regarding Clean Water Act jurisdiction remains with U.S. EPA.

WATER QUALITY STANDARDS: The Clean Water Act (CWA) defines Water Quality Standards as “Provisions of state or federal law which consist of designated uses for the waters of the United States, water quality criteria for waters based upon such uses, and antidegradation policies. Water quality standards are to protect the public health or welfare, enhance the quality of water and serve the purposes of the Act.” [40 Code of Federal Regulations (CFR) section 131.3(i)].

In California, Water Quality Control Plans designate the beneficial uses of waters of the State and water quality objectives (WQOs) to protect those uses. The Water Quality Control Plans are adopted by the State and Regional Boards through a formal administrative rulemaking process, and, upon approval by USEPA, the WQOs for waters of the United States (generally surface waters) become State water quality standards.

USEPA has established water quality criteria in California for priority pollutants in the National Toxics Rule and the California Toxics Rule (CTR). The CTR criteria are also water quality standards.

EFFLUENT LIMITATIONS: NPDES permits for discharges to surface waters must meet all applicable provisions of sections 301 and 402 of the CWA. These provisions
require controls that utilize best available technology economically achievable (BAT),
best conventional pollutant control technology (BCT), and any more stringent controls
necessary to reduce pollutant discharge and meet water quality standards.

Title 40, CFR section 122.44 states that if a discharge causes, has the reasonable potential
to cause, or contributes to an excursion (Reasonable Potential) of a numeric or narrative
water quality criterion, the permitting authority must develop effluent limits as necessary
to meet water quality standards. Title 40, CFR section 122.44(k)(3) allows these effluent
limits to be requirements to implement BMPs if numeric effluent limits are infeasible. It
is infeasible for the State Board to establish numeric effluent limitations in this General
Permit, because the application of aquatic pesticides is not necessarily considered a
discharge of pollutants according to the Talent decision (Headwaters, Inc. v. Talent
Irrigation District - ref: 243 F.3d 526 (9th Cir., 2001)). The regulated discharge is the
discharge of residues associated with the application of aquatic pesticides. These include
over-applied and misdirected pesticide product and pesticide residue. At what point the
pesticide becomes a residue is not precisely known and varies depending on such things
as target weed or algae, water chemistry, and flow. Therefore, the effluent limitations
contained in the General Permit are narrative and include requirements to develop and
implement this APAP that describes appropriate BMPs, including compliance with all
pesticide label instructions, and to comply with receiving water limitations.

The BMPs required herein constitute BAT and BCT and will be implemented to
minimize the area and duration of impacts caused by the discharge of aquatic pesticides
in the treatment area, and to allow for the restoration of water quality and protection of
beneficial uses of the receiving waters to pre-application quality following completion of
a treatment event.

Once an aquatic pesticide has been applied to an application area, the pesticide product
can actively treat the target species within the treatment area. During the treatment event,
the aquatic pesticide is at a sufficient concentration to actively kill or control the target
weeds plants or algae. When active ingredient concentrations are below this effective
concentration, the aquatic pesticide becomes a residue. The minimum effective
concentration, and the time required to reach it, vary due to site specific conditions, such
as flow, target species, and water chemistry. The Receiving Water Limitations require that an application event does not result in an exceedence of water quality standards in the receiving water. The receiving water includes:

- Anywhere outside of the treatment area at any time, and
- Anywhere inside the treatment area after completion of the treatment event.

In recognition of the variability in the temporal extent of a treatment event, the General Permit does not require it to be discretely defined. Instead, post-event monitoring of the water is required no more than a week from the time of aquatic pesticide application.

Receiving water limitations are provided in the General Permit and are provided as follows: The instantaneous maximum receiving water limitations are based on promulgated water quality criteria such as those provided in the CTR, water quality objectives adopted by the State and Regional Water Boards in their Basin Plans, water quality criteria adopted by the California Department of Fish and Wildlife, water quality standards such as drinking water standards adopted by U.S. EPA or the California Department of Public Health (CDPH), or the U.S. EPA’s National Recommended Ambient Water Quality Criteria.

This General Permit provides receiving water limitations based on the lowest water quality criteria/objectives to protect all designated beneficial uses of the receiving water. The receiving water limitations in this General Permit are similar as those in Order No. 2004-0009-DWQ, with the exception of copper, which has an updated revised formula (copper chronic = 0.96*EXP(0.8545*(LN(harness as CaCO3))-1.702)) to calculate copper exceedence limits based on the CTR.
The rationale for each limitation is summarized in the table below:

<table>
<thead>
<tr>
<th>Constituent/Parameter</th>
<th>BENEFICIAL USE</th>
<th>Basis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MUN, WARM or COLD µg/L</td>
<td>Other than MUN, WARM or COLD, µg/L</td>
</tr>
<tr>
<td>2,4-D</td>
<td>70</td>
<td>U.S. EPA MCL</td>
</tr>
<tr>
<td>Copper</td>
<td>20</td>
<td>California Toxics Rule</td>
</tr>
<tr>
<td>Diquat</td>
<td>20</td>
<td>U.S. EPA MCL</td>
</tr>
<tr>
<td>Endothall</td>
<td>100</td>
<td>U.S. EPA MCL</td>
</tr>
<tr>
<td>Fluridone</td>
<td>560</td>
<td>U.S. EPA Integrated Risk Information System</td>
</tr>
<tr>
<td>Glyphosate</td>
<td>700</td>
<td>U.S. EPA MCL</td>
</tr>
<tr>
<td>Nonylphenol</td>
<td>700</td>
<td>Regional Water Boards' Basin Plans</td>
</tr>
<tr>
<td>Toxicity</td>
<td>Algaecide and aquatic herbicide applications shall not cause or contribute to toxicity in receiving water(s).</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

1. See Regional Water Boards' Water Quality Control Plans (Basin Plans) for beneficial use definitions.
2. Public entities and mutual water companies listed in Attachment G are not required to meet this receiving water limitation during the exception period described in Section VIII.C.10, Limitations.
3. For waters in which the salinity is equal to or less than 1 part per thousand 95% or more of the time, the freshwater criteria apply. For waters in which the salinity is equal to or greater than 10 parts per thousand 95% or more of the time, saltwater criteria apply. For waters in which the salinity is between 1 and 10 parts per thousand, the applicable criteria are the more stringent of the freshwater or saltwater criteria.
4. For freshwater aquatic life criteria, waters with a hardness of over 400 mg/L as calcium carbonate shall be used with a default Water-Effect Ratio of 1.
5. Values should be rounded to two significant figures.
6. This limitation does not apply to the Sacramento River and its tributaries above the State Highway 32 Bridge at Hamilton City. See Table III – 1 of the Basin Plan for the Sacramento and San Joaquin River Basins for copper limitation.
MONITORING REQUIREMENTS: The General Permit requires dischargers to comply with the Monitoring and Reporting Program (MRP). The goals of the MRP are to:

1. Identify and characterize algacide or aquatic herbicide application projects conducted by the Discharger;
2. Determine compliance with the receiving water limitations and other requirements specified in this General Permit;
3. Measure and improve the effectiveness of the APAP;
4. Support the development, implementation, and effectiveness of BMPs;
5. Assess the chemical, physical, and biological impacts on receiving waters resulting from algacide or aquatic herbicide applications;
6. Assess the overall health and evaluate long-term trends in receiving water quality;
7. Demonstrate that water quality of the receiving waters following completion of resource or weed management projects are equivalent to pre-application conditions; and
8. Ensure that projects that are monitored are representative of all algacide or aquatic herbicide (treatments) and application methods used by the Discharger.

This APAP was prepared to address the above requirements and those detailed in the General Permit.
DESCRIPTION OF THE WATER SYSTEMS

Lakes are found in several County operated recreational areas adding important beneficial uses and recreational opportunities for park operations, people and wildlife. These lakes are: Castaic Lagoon, Santa Fe Dam Lake, Puddingstone Reservoir and Legg Lakes. A description of each lake is provided below.

Castaic Lake Lagoon – Castaic Lake Recreation Area, 32132 Castaic Lake Drive, Castaic.

The lake system is approximately 197 acres, and both submerged aquatic vegetation growth and filamentous algae have impacted the beneficial uses in parts of the lake system in previous years. Historical methods that have been utilized for the control of aquatic vegetation include the use of the United States Environmental Protection Agency (US-EPA) and the State of California Department of Pesticide Regulation (DPR) registered Aquatic Herbicides and Algaecides containing diquat and copper, as well as mechanical harvesting, and manual removal methods. Aquatic herbicide application would be limited to the areas of the lake system where aquatic vegetation growth impacts the beneficial uses of the system.
Nuisance growths of aquatic vegetation within Castaic Lake Lagoon have caused negative impacts to the beneficial uses of the lake system for park users as well as County Park maintenance personnel in past years. Plants impacting the lake have included submersed non-native species such as Eurasian watermilfoil (Myriophyllum spicatum) and various native species of pondweeds (Potamogeton and Stuckenia) and Naiads (Najas). Filamentous algae can occur in association with submersed aquatic plants by growing under or at the water surface creating unsightly mats that can impede boating and fishing. In the past the north end of the lake and shorelines along the east side and southern end of the lake developed nuisance levels of aquatic plants that required control. Castaic Lagoon receives water from Castaic Lake based on water availability. No water discharge control structure exists at Castaic Lagoon to control water release. The Lagoon discharges to Castaic Creek which is a tributary to the Santa Clara River. The CA Department of Water Resources discharges water from the upper lake to satisfy downstream requirements during parts of the year. Under normal weather conditions downstream water discharge occur only during or immediately after the rains in the winter months with no discharges during summer months when aquatic pesticide applications would occur. The lake is used for recreation, swimming, fishing, boating (electric only), and benefits waterfowl and other wildlife. Potentially impacted downstream public agencies could include Los Angeles County and the City of Santa Clarita, though no impacts are envisioned since waters do not discharge from Castaic lagoon during the treatment season.
Santa Fe Dam Lake is approximately 70 surface acres, with an average depth of 6 to 8 foot. As the lake is relatively shallow, and submerged vegetation growth has been present in greater than 80% of the lake area in recent years, the entire lake system is capable of producing submersed weed growth to the lake surface. Nuisance growths of aquatic vegetation within Santa Fe Dam Lake have caused negative impacts to the beneficial uses of the lake system for park users as well as contributed workload to County Park maintenance personnel in recent years. Plants impacting the lake have included various submersed native species of pondweeds (*Potamogeton* and *Stuckenia*) and Naiads (*Najas*). Cattail (*Typha*) is present, have not reached nuisance condition or required treatment, but have the potential to cause a nuisance in the future. For this reason, aquatic herbicide applications are necessary to prevent impacts to the beneficial uses. Historical methods that have been utilized for the control of aquatic vegetation include the use of the United States Environmental Protection Agency (US-EPA) and the State of California Department of Pesticide Regulation (DPR) registered Aquatic Herbicides and Algaecides containing fluridone, as well as mechanical harvesting, and manual removal methods. Santa Fe Dam Lake receives water through groundwater.
wells operated by the Park. Santa Fe Dam Lake does not discharge into a creek during the year and serves primarily as a flood control structure. A small water discharge control structure exists at Santa Fe Dam Lake to control water releases though it is operated infrequently for maintenance purposes. The US Army Corps of Engineers may potentially be an impacted public agency; therefore they should be informed in advance of any treatments. The lake is used for recreation, swimming, fishing, boating, irrigation, and benefits waterfowl and other wildlife.

Puddingstone Reservoir - Bonelli Regional County Park, 120 Via Verde Drive, San Dimas

Puddingstone Reservoir is approximately 250 acres and in the past has required limited small scale aquatic herbicide applications for submersed plant growth to discrete areas such as shallow coves and the swim beach area. Historical methods that have been utilized for the control of aquatic vegetation include the use of the United States Environmental Protection Agency (US-EPA) and the State of California Department of Pesticide Regulation (DPR) registered Aquatic Herbicides and Algaecides containing diquat and copper, as well as manual removal methods. Nuisance growths of aquatic vegetation within Puddingstone Reservoir have at times caused negative impacts on the
beneficial uses of the lake system for park users as well as County Park maintenance personnel. Filamentous algae can occur in association with submersed aquatic plants by growing under or at the water surface creating unsightly mats that can impede boating and fishing. In the event that filamentous or planktonic algae problems develop, a chelated copper algaecide could be used as a means of control in addition to a non copper product containing sodium carbonate peroxyhydride. Aquatic Herbicide and Algaecide treatments under this APAP will ensure that nuisance growths of aquatic vegetation do not impact the beneficial uses of the lake system in future years. Puddingstone Reservoir receives water through the County Flood Control Division to maintain lake level for recreational uses. Puddingstone Reservoir does not discharge into a creek during the year and serves primarily as a flood control structure. A water discharge control structure exists at Puddingstone Reservoir to control water releases, if needed, during winter rainfall events. The County owns the shoreline property, thus there are no potentially impacted public or governmental agencies should aquatic herbicide or algaecide applications be required. The lake is used for recreation, swimming, fishing, boating, irrigation, and benefits waterfowl and other wildlife.

Legg Lakes - Whittier Narrows Recreation Area, 750 South Santa Anita Ave., S. El Monte
Legg Lakes consist of three interconnected lakes, known as North Lake, Center Lake and South Lake, collectively is approximately 80 acres in size, and in the past has required limited small scale aquatic herbicide applications for submersed plant growth to discrete areas of North Lake. Plants impacting the lake have included various submersed native species of pondweeds (*Potamogeton* and *Stuckenia*) and Naiads (*Najas*). Cattail (*Typha*) and Bulrush have caused nuisances in the past, but have been controlled through manual control efforts, but could require aquatic herbicide control. Filamentous algae can occur in association with submersed aquatic plants by growing under or at the water surface creating unsightly mats that can impede boating and fishing. Historical methods that have been utilized for the control of aquatic vegetation include the use of the United States Environmental Protection Agency (US-EPA) and the State of California Department of Pesticide Regulation (DPR) registered Aquatic Herbicides and Algaecides containing endothall and copper, as well as mechanical (aquatic weed harvester) and manual removal methods. Nuisance growths of aquatic vegetation within Legg Lakes (North Lake) have at times caused negative impacts on the beneficial uses of the lake system for park users as well as County Park maintenance personnel. In the event that filamentous or planktonic algae problems develop, a chelated copper algaecide could be used as a means of control in addition to a non copper product containing sodium carbonate peroxyhydrate. An aquatic weed harvester has been used in South Lake and Center Lake, and an aeration system is operational in the eastern part of North Lake. The County has also used microbial/enzyme lake treatment products as well in an attempt to improve lake conditions. Whittier Narrows receives water through wells operated by the State of California Environmental Protection Agency, Department of Toxic Substance Control. Approximately 1,100 gallons per minute is provided to the lakes, which is sufficient to keep them full and to allow some year around discharge to Mission Creek. Legg Lakes discharges to Mission Creek through the west side of Center Lake where it joins Rio Hondo from which it continues to the Whittier Narrows Dam that serves as a flood control structure. A water control structure exists (weir and gate valve) exists at the lake outlet (Mission Creek) to maintain lake levels to control water release when necessary. The US Army Corps of Engineers may potentially be an impacted public agency; therefore they should be informed in advance of any treatments. The lake is used for recreation, swimming, fishing, boating, and benefits waterfowl and other wildlife.
DESCRIPTION OF THE TREATMENT AREA

Based on non native plant growth (Eurasian watermilfoil), native submersed aquatic plant growth (Potamogeton spp., Najas spp., Stuckenia spp.), emergent vegetation (Cattail Typha spp.) and Bulrush (Shoenoplectus spp.), and filamentous or planktonic algae growth conditions, the lake systems can from time to time require aquatic herbicide or algacide treatments to prevent nuisance aquatic plant levels from developing. Aquatic plant growth occurs typically from approximately April 1 to October 30 each year. Some water bodies may require whole water body treatments (e.g. Santa Fe Dam Lake) for submersed aquatic weed control while other lakes will only require partial lake treatments (e.g. Puddingstone Reservoir). Spot treatments would be carried out as required for any emergent vegetation control. Though not anticipated at this time, whole lake planktonic algae treatments for Blue Green Algae or Golden Algae (Prymnesium parvum) could also be necessary. Golden Algae has appeared in some southern California lakes in recent years. According to the Arizona Game and Fish Department, a state that has also in recent years seen this new algae species appear in its waters, “Golden alga releases unique toxins that affect gill-breathing aquatic organisms (mainly fish and clams). The alga is a rapid growing and resilient algae species, out-competing other algae for nutrients and thriving in a wide variety of environmental conditions. In a bloom situation (a bloom is an explosive increase in the population of one or several species of algae); enough toxins are released into the water to kill fish and other gill breathers that come in contact with it. The toxins cause fish gills to bleed internally, and lose their ability to exchange water and absorb oxygen. Fish then die of asphyxiation (lack of oxygen).

APPLICATION SCHEDULE

The County will provide a phone number or other specific contact information to all persons who request the application schedule and will inform the requester if the schedule is subject to change.

PUBLIC NOTICE REQUIREMENTS

Some public or governmental agencies may potentially be impacted by herbicide treatments, though it is unlikely due to limited scale of the treatments or the time of year.
when treatments will occur (dry season). However, for treatments at Santa Fe Dam and Whittier Narrow, each year the US Army Corps of Engineers should be notified as soon as it is known if treatments will occur in those water bodies. Potentially impacted public or governmental agencies downstream of Castaic Lagoon may include the County of Los Angeles and/or the City of Santa Clarita.

DESCRIPTION OF THE TYPES OF AQUATIC WEEDS AND ALGAE TO BE CONTROLLED:

There are three basic types of aquatic plants known to occupy southern California lakes; Free Floating, Submerged (those found growing below the water line), and Emergent (those found growing above the water line). There are also three basic types of algae, known as attached, filamentous, or planktonic algae. Submersed aquatic plants will be the main focus of the aquatic plant control program, though emergent vegetation and planktonic algae (cyanobacteria) can cause nuisances that may require treatment with aquatic herbicides or algaecides.

AQUATIC PESTICIDES AND ADJUVANTS EXPECTED TO BE USED AND APPLICATION METHODS

Provided in the table below are examples of aquatic herbicide and algaecide active ingredients and brand names that may be used in the County program. The need for treatments is based on physical visual inspections, water quality monitoring, and potential and existing impacts to recreation, public health, and beneficial uses.

<table>
<thead>
<tr>
<th>Herbicide* Algaecide*</th>
<th>Water Use Restrictions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Days for Swimming</td>
</tr>
<tr>
<td>Cutrine Plus</td>
<td>0</td>
</tr>
<tr>
<td>(Copper as elemental 9.0%)</td>
<td></td>
</tr>
<tr>
<td>Captain</td>
<td>0</td>
</tr>
<tr>
<td>(Copper Carbonate 9.1%)</td>
<td></td>
</tr>
<tr>
<td>Copper Sulfate</td>
<td>0</td>
</tr>
<tr>
<td>(Copper as metallic, 25.1%)</td>
<td></td>
</tr>
<tr>
<td>Reward</td>
<td>0</td>
</tr>
<tr>
<td>(Diquat dibromide)</td>
<td></td>
</tr>
</tbody>
</table>
Aquatic herbicide and algaecide applications are to be performed utilizing Best Management Practices (BMP’s) by licensed personnel in accordance with a Pest Control Recommendations (PCR) issued by a State of California, Department of Pesticide Regulation (DPR) contract Pest Control Advisor (PCA). Qualified contractor staff will perform aquatic herbicide and algae control applications and water quality monitoring. Contractor staff must hold State of California, Department of Pesticide Regulation (DPR) Qualified Applicator Licenses (QAL) or Certificates (QAC). Applications would be performed from a boat as a surface application, subsurface application, or from land as appropriate.

FACTORS INFLUENCING ALGAE AND WEED CONTROL

The decision to implement aquatic vegetation control treatments is based on plant growth stage in the spring of each season, and re-evaluated during the summer months. Planktonic and filamentous algal treatments are based on growth as well their nuisance level as they develop, typically through the spring and summer months. When submerged vegetation or planktonic algae is treated in an early growth stage, there is less

Aquatic Herbicide and Algaecide Applications

<table>
<thead>
<tr>
<th>Product</th>
<th>Action Duration</th>
<th>Residue Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>GreenClean (Sodium carbonate perosxyhydrate)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Aquathol K (Dipotassium salt of endothall)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sonar formulations (fluridone)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AquaNeat (glyphosate, 53.8%)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Habitat (Imazapapyr)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Clearcast (Imazamox)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Renovate (triclopyr)</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Refer to Product Labels and MSDS’s for Further Information
plant biomass that is controlled, and decomposing in the system, which helps reduce and protect against impacts to dissolved oxygen depletion from decomposing biomass. Based on nuisance levels of aquatic plant growth, and or algae densities and their potential to impact beneficial uses of the lake system, a Pest Control Advisor (PCA) will review control options. Based on the PCA’s findings, a Pest Control Recommendation (PCR) will be developed for aquatic pesticide applications.

A plant density scale was developed to support decision making for aquatic vegetation control. Treatments for the control of submerged aquatic vegetation are implemented when plants are actively growing and preferably prior or when plant densities reach a Ranking of 3 per Table 1 below.

Table 1: Plant Density Scale

<table>
<thead>
<tr>
<th>Ranking 1</th>
<th>Ranking 2</th>
<th>Ranking 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-10% Coverage</td>
<td>30 % Coverage</td>
<td>50% Coverage</td>
</tr>
<tr>
<td>Scattered Plants</td>
<td></td>
<td>Moderate Plant Growth</td>
</tr>
</tbody>
</table>

AQUATIC PESTICIDE APPLICATION PLAN (APAP)
County of Los Angeles, Department of Parks and Recreation
Page 20 of 46
Aquatic herbicide and algaecide treatments are determined based on various site characteristic. Site characteristics will vary for each lake and aquatic plant or algae nuisance. Acreage and water depths will be taken into consideration for each treatment to determine the proper aquatic pesticide quantities required on a spot treatment basis or a whole lake basis. Beneficial uses such as irrigation, swimming, fishing, and other use will be considered when determining specific treatments using the aquatic herbicides and algaecides listed above. In addition, a lakes Clean Water Act Status 303(d) List/305 (b) report will also be considered to ensure any active ingredients are not used for which the lake may be currently listed. Water hardness will be analyzed and results reviewed prior to any scheduling any copper algaecide treatments to ensure that copper residue limits can be met within seven (7) days after treatment.

MONITORING AND REPORTING PROGRAM

Monitoring Requirements: The General Permit requires that dischargers comply with the Monitoring and Reporting Program (MRP) outlined in the General Permit. The goals of the MRP are to:
1. Identify and characterize algaecide or aquatic herbicide application projects conducted by the Discharger;
2. Determine compliance with the receiving water limitations and other requirements specified in this General Permit;
3. Measure and improve the effectiveness of the APAP;
4. Support the development, implementation, and effectiveness of BMPs;
5. Assess the chemical, physical, and biological impacts on receiving waters resulting from algaecide or aquatic herbicide applications;
6. Assess the overall health and evaluate long-term trends in receiving water quality;
7. Demonstrate that water quality of the receiving waters following completion of resource or weed management projects are equivalent to pre-application conditions; and
8. Ensure that projects that are monitored are representative of all algaecide or aquatic herbicide and application methods used by the Discharger.

General Monitoring

1. County lake aquatic weed or algae treatments will occur as partial lake treatments, shoreline treatments, or whole lake treatments. Sample locations will be established in the lake proper according to pre and post event monitoring schedules outlined in the General Permit. The Event Monitoring sample will be adjacent to the treatment area while the pre and post event monitoring will occur within the treatment area. GPS coordinates for these locations will be noted.

2. Algaecide and aquatic herbicide application practices will be established based on the Pest Control Recommendations (PCR) from a DPR licensed Pest Control Advisor (PCA). Aquatic plant and algae growth will be evaluated along with to determine the potential for creating impacts or nuisances to lake use and management prior to any treatments. The aquatic herbicide and or algaecide labels directions are factored into treatments to determine timing and application rates. Application practices utilize the most appropriate application technique to comply with BMP’s via surface or subsurface treatment methods. GIS and GPS technology allow a high level of precision when calculating area and for guiding treatments, respectively.

3. Aquatic herbicides and algaecides are registered by the US Environmental Protection Agency (USEPA) nationally, and the CA Department of Pesticide Regulation (CADPR) within California. Manufacturers of products must provide information to the USEPA for registration or re-registration purposes that includes
information with regard to transport, environmental fate and effects of algaecides and aquatic herbicides. Algaecides and aquatic herbicides planned for use in County lakes are registered for use by both the USEPA and the CADPR. Detailed information about transport, fate and effects of algaecides and aquatic herbicides are addressed in USEPA’s Re-registration Eligibility Decisions (RED) documents for each of the active ingredients, as follows:

- **Copper (Cutrine Plus/Captain/Copper sulfate):**
 http://www.epa.gov/oppsrrdl/REDs/copper_red.pdf
- **Diquat dibromide (Reward):**
 http://www.epa.gov/oppsrrdl/REDs/0288.pdf
- **GreenClean (Sodium carbonate peroxyhydrate/Peroxyacetic acid)**
- **Endothall (Aquathol K):**
 http://www.epa.gov/oppsrrdl/REDs/endothall_red.pdf
- **Fluridone (Sonar Formulations):**
 http://www.epa.gov/oppsrrdl/REDs/fluridone_red.pdf
- **Glyphosate (AquaNeat):**
 http://www.epa.gov/oppsrrdl/REDs/old_reds/glyphosate.pdf
- **Imazapyr (habitat and equivalents)**
 http://www.epa.gov/oppsrrdl/REDs/imazapyr_red.pdf
- **Imazamox (Clearcast and equivalents)**
- **Triclopyr (Renovate 3 and equivalents)**
 http://www.epa.gov/oppsrrdl/REDs/2710red.pdf

4. Designated Beneficial Uses for the County Lakes are described in the Water Quality Control Plans for the Los Angeles Region (1994). Those Beneficial Uses can be found at the following State Waters Resources Control Board website:
 http://www.swrcb.ca.gov/losangeles/water_issues/programs/basin_plan/electronic_s_documents/BeneficialUseTables.pdf. In addition, the 2010 California 303(d) List of Water Quality Limited Segments should be consulted prior to planning aquatic pesticide applications to ensure impacted waterbodies are not further degraded by the active ingredients for which the lakes may be listed:

5. The potential for algaecide applications leading to designated use impacts is unlikely since DPR licensed Qualified Applicators will implement the treatments
based on a Pest Control Recommendation (PCR) following herbicide label directions. Misuse, over use, or use of incorrect products are not expected to occur due to the preparations and planning that take place prior to implementing a treatment.

6. No known or potential impacts from aquatic pesticide applications to water quality are anticipated based on following aquatic pesticide label requirements, the infrequent applications that are anticipated to take place, and the short duration that algaecides are present in the water column. A Risk Assessment is provided for copper in the USEPA RED discussed in Item 3.

7. Pre and post water quality sampling stations are sufficient to assess algaecide applications due to the small nature of the lake, the size of the treatments, and the relative ease that sample locations can be visited.

8. The monitoring plan prepared for this APAP is described below.

Receiving Water Monitoring

Treatment Maps: For each application, a treatment map will be developed with a convenient scale showing the application area, treatment area, immediately adjacent untreated areas (if entire water body is not treated), and water bodies receiving treated water. Information about surface area and/or volume of the application area, treatment area, and any other information used to calculate dosage and quantity of each pesticide used at each application site will be included with the algaecide application monitoring log forms (see below). Sampling locations will be noted on the treatment map and global positioning systems (GPS) coordinates for each sampling site will be noted on application monitoring log forms.

Control Structure Inspections: Prior to every application, an inspection of the integrity of the discharge valve will be performed to ensure that treated water does not unintentionally get discharged from the lake system.

Aquatic Pesticide Monitoring Frequency: Samples will be collected from a minimum of six application events for each active ingredient used in applications. If there are less than six application events in a year, samples will be collected during each
application event for each active ingredient. If the results from six consecutive sampling events show concentrations that are less than the receiving water limitation/trigger for an active ingredient, sampling shall be reduced to one application event per year for that active ingredient. If the yearly sampling event shows exceedence of the receiving water limitation/trigger for an active ingredient, then sampling shall return to six application events for that active ingredient. If less than six treatments are carried out per year, then monitoring will continue to occur in following years until six treatments, and thus six monitoring events, have been carried out and reported in the annual report.

Aquatic Pesticide Monitoring: The following monitoring activities will be performed for a minimum of six applications for each active ingredient events or for as many applications as occur in a year if there are less than six application events, over multiple years if necessary, at representative locations:

1. Background Monitoring. Background monitoring samples will be collected in the application area just prior to (up to 24 hours in advance of) the application event.
2. Event Monitoring. Event monitoring samples will be collected inside of the treatment area after the application event since the algacide treatment will be carried out as a whole lake treatment.
3. Post-Event Monitoring. Post-event monitoring samples will be collected within the treatment area within one week after application.

Sample Analysis: All samples requiring laboratory analyses will be collected and analyzed by a laboratory certified for such analyses by the California Department of Health Services. All analyses will be conducted in accordance with the latest edition of “Guidelines Establishing Test Procedures for Analysis of Pollutants” (Guidelines), promulgated by the U.S. Environmental Protection Agency (USEPA) (Title 40 Code of Federal Regulations part 136). Field analysis for the parameters of temperature, dissolved oxygen (DO), electrical conductivity, and pH will be performed using a Portable Multi-Parameter Meter (YSI or equivalent) with a sufficiently long probe cable, and will be maintained and calibrated at regular intervals according to the manufacturer specifications. Secchi Disk measurements will be performed using a
standard Secchi disk. Water samples collected for laboratory analysis will be accompanied with a completed chain of custody form identifying the chemical constituents requiring analysis, and delivered to a State of California Certified Laboratory.

Monitoring Parameters: The following parameters will be collected or analyzed:

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Constituent/Parameter</th>
<th>Units</th>
<th>Sample Method</th>
<th>Minimum Sampling Frequency</th>
<th>Sample Type Requirement</th>
<th>Required Analytical Test Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visual</td>
<td>1. Monitoring area description (pond, lake, open waterway, channel, etc.)</td>
<td>Not applicable</td>
<td>Visual Observation</td>
<td>1</td>
<td>Background, Event and Post-event Monitoring</td>
<td>Not applicable</td>
</tr>
<tr>
<td></td>
<td>2. Appearance of waterway (sheen, color, clarity, etc.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Weather conditions (fog, rain, wind, etc.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical</td>
<td>1. Temperature</td>
<td>°F</td>
<td>Grab</td>
<td>5</td>
<td>Background, Event and Post-event Monitoring</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>2. pH</td>
<td>Number</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Turbidity</td>
<td>NTU</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Electric Conductivity @ 25°C</td>
<td>µmhos/cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemical</td>
<td>1. Active Ingredient</td>
<td>µg/L</td>
<td>Grab</td>
<td>5</td>
<td>Background, Event and Post-event Monitoring</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>2. Nonylphenol</td>
<td>µg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Hardness (if copper is monitored)</td>
<td>mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Dissolved Oxygen</td>
<td>mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1: All applications at all sites.
2: Field testing.
3: Field or laboratory testing.
4: Samples shall be collected at three feet below the surface of the water body or at mid water column depth if the depth is less than three feet.
5: Collect samples from a minimum of six application events for each active ingredient in each environmental setting (flowing water and non-flowing water) per year, except for glyphosate. If there are less than six application events in a year, collect samples during each application event for each active ingredient in each environmental setting (flowing water and non-flowing water). If the results from six consecutive sampling events show concentrations that are less than the receiving water limitation/trigger for an active ingredient in an environmental setting, sampling shall be reduced to one application event per year for that active ingredient in that environmental setting. If the yearly sampling event shows exceedence of the receiving water limitation/trigger for an active ingredient in an environmental setting, then sampling shall return to six application events for that active ingredient in each environmental setting. For glyphosate, collect samples from one application event from each environmental setting (flowing water and non-flowing water) per year.
6: Pollutants shall be analyzed using the analytical methods described in 40 C.F.R. part 136.
7: 2,4-D, acrolein, dissolved copper, diquat, endothall, fluridone, glyphosate, imazamox, imazapyr, penoxsulam, and triclopyr.
8: It is required only when a surfactant is used.
Sampling Procedures: Samples will be collected using sampling procedures which minimize loss of monitored constituents during sample collection and analysis to maintain sample integrity.

Sampling protocols: Samples will be retrieved, stored, recorded, and shipped or delivered to a laboratory using the following methods and precautions. Any deviation from these methods and precautions will be recorded and explained.

Materials for in field sampling:
1) New sampling bottles, one per sample with sample ID label.
2) Cooler(s) sufficient to hold ample bottles, with ice- or gel-packs
3) Plastic gloves
4) Subsurface grab sampler
5) Depth finder, marked pole, Secchi Disk (cord marked with half foot increments), or water quality monitoring probe with depth sensor.
6) Instrument(s) for measurement of temperature, pH, dissolved oxygen, hardness, electrical conductivity, depth.
7) GPS for sample location coordinates.
8) Field data sheets and clipboard
9) A clean boat and a transport vehicle

Method to collect a single sample: Samples will be simple grab samples.

1) When approaching a sampling location, care will be taken to not stir up sediments and to approach from downstream or down wind direction. If anchoring is required, lower anchor gently.
2) Immediately prior to collecting the sample, the sample bottle label details will be completed (i.e. date, time, sample collector...)
3) When taking the sample, the cap will be left on the bottle until it is at three feet of depth or at midpoint in the water column, per the monitoring forms outlined below.
4) Once the bottle is at the appropriate depth, the cap will be removed below the surface. Stirring of the sediments will be avoided.
5) The bottle will be rinsed with sample water and emptied twice, then filled completely
6) Once the bottle is full, it will be capped.
7) The bottle will be placed in the appropriate cooler. The bottles will be kept in contact with ice packs
8) Other water quality measurements will be taken and recorded
9) The Water Sampling Data Sheet will be filled out with information for the sample
10) In the office, the bottle will be placed into a refrigerator, unless samples are taken immediately to a laboratory.
Submitting sample to lab:

1) Samples will be submitted within 48 hours of sample collection or sooner to a laboratory as required by hold times for the constituents to be sampled.
2) Samples will be packed in a cooler with ice packs between each bottle.
3) Chain of Custody (COC) form will be prepared to include details on the sample bottle labels.
4) If the samples are shipped to the lab, the pick-up person will sign the COC and a copy will be made before sending out the shipment. If the samples are delivered to the lab, the delivering person will have the receiving person sign the COC form and provide a copy before turning over the shipment.

Retention of Records: Records of all monitoring information including all calibration and maintenance records, copies of all reports required by the General Permit, and records of all data used to complete the application per the General Permit will be retained. Records will be maintained for a minimum of three years from the date of the sampling event. This period may be extended during the course of any unresolved litigation regarding a discharge, or when requested by the appropriate Regional Board Executive Officer.

Monitoring Records: Records of monitoring events will include the following information:

a. The date, exact place, and time of sampling or measurements;
b. The individuals who performed the sampling or measurements;
c. The dates analyses were performed;
d. The individuals who performed the analyses;
e. The analytical techniques or method used; and
f. The results of such analyses.

The following forms will be used to collect and track information required for each treatment event as required by the General Permit:
AQUATIC WEED CONTROL
NPDES AQUATIC PESTICIDE APPLICATION LOG

<table>
<thead>
<tr>
<th>Date of Application:</th>
<th>Location:</th>
<th>App. Start Time:</th>
<th>App. Stop Time:</th>
</tr>
</thead>
</table>

Applicator Name:

APAP Certification:

Attach map showing application area, treatment area, immediately adjacent untreated area, and water bodies receiving treated water.

Discharge Gates or Control Structures

<table>
<thead>
<tr>
<th>Name</th>
<th>Date Closed</th>
<th>Time Closed</th>
<th>Date Opened</th>
<th>Time Opened</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Calculated Opening and Closures:

2. Provide information on surface area and/or volume of application area and treatment area and other information used to calculate dosage and quantity of each pesticide used at each application site:

2.a Application Area – Surface Area:

2.b Application Area – Volume:

2.c Treatment Area – Surface Area:

2.d Treatment Area – Volume:

2.e Dosage and Quantity Information for each pesticide used:

Application Details

<table>
<thead>
<tr>
<th>Plot Number</th>
<th>Area (ac. or sq. ft.)</th>
<th>Average Depth</th>
<th>Product</th>
<th>Product Quantity</th>
<th>Concentration or Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For additional treatment areas use additional forms.

CleLakes Inc.
AQUATIC Weed Control

NPDES Receiving Water Monitoring

Visual Observation Form (Background Monitoring)

<table>
<thead>
<tr>
<th>Monitoring Date:</th>
<th>Location:</th>
<th>Sampled by:</th>
</tr>
</thead>
</table>

Monitoring Area Description (pond, lake, waterway, channel,...):

Site Conditions/Appearance of Waterway

<table>
<thead>
<tr>
<th>Floating or suspended matter:</th>
<th>Discoloration:</th>
<th>Bottom deposits:</th>
<th>Aquatic life:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Present □</td>
<td>Present □</td>
<td>Present □</td>
<td>Present □</td>
</tr>
<tr>
<td>Absent □</td>
<td>Absent □</td>
<td>Absent □</td>
<td>Absent □</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Visible films, sheens or coatings:</th>
<th>Fungi, slimes, or objectionable growths:</th>
<th>Potential nuisance conditions:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Present □</td>
<td>Present □</td>
<td>Present □</td>
</tr>
<tr>
<td>Absent □</td>
<td>Absent □</td>
<td>Absent □</td>
</tr>
</tbody>
</table>

Weather conditions and other observations (fog, rain, wind, wind direction...):

Visual Observation Form (Event Monitoring)

<table>
<thead>
<tr>
<th>Monitoring Date:</th>
<th>Location:</th>
<th>Sampled by:</th>
</tr>
</thead>
</table>

Monitoring Area Description (pond, lake, waterway, channel,...):

Site Conditions/Appearance of Waterway

<table>
<thead>
<tr>
<th>Floating or suspended matter:</th>
<th>Discoloration:</th>
<th>Bottom deposits:</th>
<th>Aquatic life:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Present □</td>
<td>Present □</td>
<td>Present □</td>
<td>Present □</td>
</tr>
<tr>
<td>Absent □</td>
<td>Absent □</td>
<td>Absent □</td>
<td>Absent □</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Visible films, sheens or coatings:</th>
<th>Fungi, slimes, or objectionable growths:</th>
<th>Potential nuisance conditions:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Present □</td>
<td>Present □</td>
<td>Present □</td>
</tr>
<tr>
<td>Absent □</td>
<td>Absent □</td>
<td>Absent □</td>
</tr>
</tbody>
</table>

Weather conditions and other observations (fog, rain, wind, wind direction...):

Visual Observation Form (Post Event Monitoring)

<table>
<thead>
<tr>
<th>Monitoring Date:</th>
<th>Location:</th>
<th>Sampled by:</th>
</tr>
</thead>
</table>

Monitoring Area Description (pond, lake, waterway, channel,...):

Site Conditions/Appearance of Waterway

<table>
<thead>
<tr>
<th>Floating or suspended matter:</th>
<th>Discoloration:</th>
<th>Bottom deposits:</th>
<th>Aquatic life:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Present □</td>
<td>Present □</td>
<td>Present □</td>
<td>Present □</td>
</tr>
<tr>
<td>Absent □</td>
<td>Absent □</td>
<td>Absent □</td>
<td>Absent □</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Visible films, sheens or coatings:</th>
<th>Fungi, slimes, or objectionable growths:</th>
<th>Potential nuisance conditions:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Present □</td>
<td>Present □</td>
<td>Present □</td>
</tr>
<tr>
<td>Absent □</td>
<td>Absent □</td>
<td>Absent □</td>
</tr>
</tbody>
</table>

Weather conditions and other observations (fog, rain, wind, wind direction...):
AQUATIC WEED CONTROL
NPDES RECEIVING WATER MONITORING

Physical and Chemical Monitoring

Location:
Sampled by:
(Physical and chemical monitoring required for six (6) applications for each type of pesticide at each waterbody site. See General Permit)

<table>
<thead>
<tr>
<th>1. Background Monitoring Parameters</th>
<th>Date:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical Sample Type</td>
<td>Chemical Sample Type</td>
</tr>
<tr>
<td>(3 feet below water surface or mid depth)</td>
<td>(3 feet below water surface or mid depth)</td>
</tr>
<tr>
<td>Temperature (F)</td>
<td>Active Ingredient (µg/l)</td>
</tr>
<tr>
<td>Turbidity (NTU)</td>
<td>Nonylphenol (µg/l)</td>
</tr>
<tr>
<td>Electrical Conductivity (µMhos/cm)</td>
<td>pH</td>
</tr>
</tbody>
</table>

| **Dissolved Oxygen (mg/L)** | **Hardness (CaCO₃)** | **GPS latitude and longitude coordinates** |

<table>
<thead>
<tr>
<th>2. Event Monitoring Parameters</th>
<th>Date:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical Sample Type</td>
<td>Chemical Sample Type</td>
</tr>
<tr>
<td>(3 feet below water surface or mid depth)</td>
<td>(3 feet below water surface or mid depth)</td>
</tr>
<tr>
<td>Temperature (F)</td>
<td>Active Ingredient (µg/l)</td>
</tr>
<tr>
<td>Turbidity (NTU)</td>
<td>Nonylphenol (µg/l)</td>
</tr>
<tr>
<td>Electrical Conductivity (µMhos/cm)</td>
<td>pH</td>
</tr>
</tbody>
</table>

| **Dissolved Oxygen (mg/L)** | **Hardness (CaCO₃)** | **GPS latitude and longitude coordinates** |

<table>
<thead>
<tr>
<th>3. Post Event Monitoring Parameters</th>
<th>Date:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical Sample Type</td>
<td>Chemical Sample Type</td>
</tr>
<tr>
<td>(3 feet below water surface or mid depth)</td>
<td>(3 feet below water surface or mid depth)</td>
</tr>
<tr>
<td>Temperature (F)</td>
<td>Active Ingredient (µg/l)</td>
</tr>
<tr>
<td>Turbidity (NTU)</td>
<td>Nonylphenol (µg/l)</td>
</tr>
<tr>
<td>Electrical Conductivity (µMhos/cm)</td>
<td>pH</td>
</tr>
</tbody>
</table>

| **Dissolved Oxygen (mg/L)** | **Hardness (CaCO₃)** | **GPS latitude and longitude coordinates** |

1 Field Test; 2 Field or Laboratory Test; 3 Required when nonylphenol is used; 4 Required for copper applications.
Device Calibration and Maintenance: All monitoring instruments and devices that will be used by the discharger to fulfill the prescribed monitoring program will be properly maintained and calibrated as necessary to ensure their continued accuracy.

Reporting

All reports will be submitted to the appropriate State Water Resources Control Board, NPDES Wastewater Unit. All reports submitted in response to the Water Quality Order will comply with the provisions stated in the Standard Provisions (Attachment B) and Monitoring and Reporting Program (Attachment C), of the General Permit. The Annual reports will contain the following information:

- An executive summary discussing compliance or violation of the General Permit, and the effectiveness of the APAP to reduce or prevent the discharge of pollutants associated with algaecide and aquatic herbicide applications;
- A summary of monitoring data, including the identification of water quality improvements, or degradation as a result of the algaecide or aquatic pesticide application, if appropriate, and recommendations for improvements to the APAP (including proposed best management practices (BMPs) and monitoring program based on the monitoring results). All receiving water monitoring data will be compared to receiving water limitations and receiving water monitoring triggers;
- Identification of BMPs currently in use and a discussion of their effectiveness in meeting the requirements in this General Permit;
- A discussion of BMP modifications addressing violations of this General Permit;
- A map showing the location of each treatment area;
- Types and amounts of aquatic pesticides used at each application event;
- Information on surface area and/or volume of treatment areas and any other information used to calculate dosage, concentration, and quantity of each algaecide and aquatic herbicide used;
- Sampling results will indicate the name of the sampling agency or organization, detailed sampling location information (including latitude and longitude or township/range/section if available), detailed map or description of each sampling area (address, cross roads, etc.), collection date, name of constituent/parameter and the concentration detected, minimum levels, method detection limits for each constituent analysis, name or description of water body sampled, and a comparison with applicable water quality standards, and a description of the analytical QA/quality control plan. Sampling results will be tabulated so that they are readily discernible; and
- A summary of the aquatic pesticide application logs.

24 Hour Report and Five Day Reporting: The discharger and or applicator will orally report any non-compliance. This includes any unexpected or unintended effect of the use of an algaecide or aquatic herbicide that may danger health or the environment. This information will be provided orally within 24 hours from the time the discharger or applicator becomes aware of the circumstances. A written report of the non-compliance will be provided within five (5) days of the time the discharger and or applicator becomes aware of the noncompliance. The 24 hour report as well as the 5 day written report will follow the format in Attachment C.

Data Storage: All data will be recorded on supplied forms. At the end of each day, all data forms will be double copied. The original will stay in specified notebooks. The first copy will be stored in a file cabinet. The second copy will be stored and shipped with the samples.

Quality Assurance Audits and Personnel: The discharger will provide a Quality Assurance Officer and the Certified Laboratory will provide one Quality Assurance Officer. In addition, the Water Quality Control Board is welcome to provide third party validation of the sampling procedures.
Methods for Determination of Other Water Quality Parameters: Water quality parameters such as pH, dissolved oxygen, and temperature will be measured by appropriate instrumentation within the manufacturer’s tolerances. These parameters will be measured at the same sites where water samples for aquatic pesticides are retrieved. These parameters will be measured at the same depths from which the water samples for aquatic pesticides are retrieved, within +/- 0.5 meters. Data and deviations will be recorded on specified forms and/or lab notebooks.

Methods for Data Summarization, Analysis, Review, and Reporting: All data will be included in the final report. The final report will also contain narrative and numerical summaries as appropriate. Final data reports will also be reviewed by a Quality Assurance Officer.

Training on Sampling Techniques: All personnel performing water sampling will have been trained before water sampling is scheduled to begin, a training session will be held reviewing sampling technique; equipment and instrument calibration, maintenance, and operation; sample storage and delivery; the proper use of COC and other forms; and other records and deviations.

DESCRIPTION OF PROCEDURES TO PREVENT SAMPLE CONTAMINATION

Measures will be taken to prevent sample collection contamination from persons, equipment and vehicles associated with algaecide application, as follows:

- Background monitoring sample collection will be carried out prior to application equipment or algaecides being loaded into a boat. Background monitoring sampling, as well as post event monitoring sampling (within one week), if appropriate, sampling may be carried out from shore at a dock within the sampling areas to eliminate the potential for contamination. Sampling equipment, with particular emphasis on cooler and sample bottles, will be transported separately from algaecides and application equipment on the day of the
application event. Background monitoring will take place immediately prior to the application event.

- For event monitoring, sampling will be carried out after application equipment and all application related equipment and devices including personal protection equipment (PPE) used during the application has been removed from the boat, if no other boats are available to support sampling efforts. If there are multiple personnel supporting applications, one will be designated the sample collector while the other will be responsible for boat operation. Hands will be washed with soap and clean potable water before handling sampling equipment, cooler and sample bottle. During sample bottle handling and sample collection, disposable rubber gloves will be used to collect a water sample. The pre labeled sample bottle will be completed with time and date of sample collection immediately after removing from the sample cooler and replaced in the cooler immediately after sample collection. Once sampling has been completed, water samples will be delivered immediately to the laboratory, if possible. If background and event samples cannot be delivered the same day, sample bottles will be stored in a clean refrigerator at the office until samples can be delivered the next business day.

DESCRIPTION OF BEST MANAGEMENT PRACTICES (BMPs) TO BE IMPLEMENTED:

A variety of approaches will be utilized to minimize the impacts of aquatic pesticides used while still achieving their goals.

- Techniques that help reduce pesticide impacts include:
 - Non-pesticide control methods as outlined below (Alternatives) have been attempted or considered.
 - Pre Treatment surveys and water quality analysis are carried out to identify treatment timing
 - Adjustments will be made to treatment protocols based upon survey results
 - Choice of pesticides based on toxicity
Treatments will occur when no water is being discharged from the lake system. Aquatic pesticide use rates will be per the EPA label and will be limited to ensure compliance with Receiving Water Limitations. Partial waterbody treatments or split treatments may be utilized to minimize impacts that might otherwise occur.

- In order to avoid inadvertent or accidental soil or water contamination with aquatic pesticides, application personnel follow the storage, transport, and spill control procedures per USEPA and DPR rules, regulations and label instructions.
- Over application is avoided by following the specific product labels for the aquatic pesticides used in the program. Aquatic pesticide quantities required for each treatment are calculated at the office and only sufficient material to carry out the treatment is transported for the day’s application. Application equipment is routinely cleaned and maintained, and all label directions and DPR guidelines are followed as to acceptable application methods as well as weather conditions. Surface applications are not made in winds above 10 miles per hour.
- The various BMP’s being implemented ensures that the Aquatic Plant and Algae Control Program will meet the requirements of the general NPDES Permit for the use of aquatic pesticides.
- Licensing: All crew leaders and biologists that apply or supervise the application of aquatic pesticides are certified and or licensed by DPR.
- Notification: As detailed elsewhere in this document, whenever pesticides are used potentially affected users in the area are informed of the treatments so that means can be taken to avoid using the treated water.
- Site Evaluations: As has been detailed in this section and elsewhere, both preliminary and secondary site evaluations are a major aspect of the program, as represented by the extensive surveying carried out by the field crews.
- Alternative Treatments: Staff considers a number of potential alternative control strategies in every situation, and will make use of non-herbicide options when conditions are suitable or appropriate.
- Treatment Conditions: Every application will be made according to label directions and other requirements as directed by DPR or the agricultural commissioner, which not only specify the amounts and situations where pesticides may be applied, but the atmospheric and environmental conditions under which they may be applied. If there are conditions where it is determined that the treatment would be ineffective, application staff wait for other conditions or use a different treatment method.

- Post-treatment: Surveys or water quality analysis is also carried out for post-treatment assessment of treatment efficacy and non-target impacts. Survey crews are instructed to look for possible non-target impacts that can be seen with the naked eye, such as dead fish or damage to plants on the shoreline.

- The applicator follows all pesticide label instructions and any Use Permits issued by a CAC;
- The discharger’s applicator will be licensed by DPR, or work with or under the supervision of someone who is licensed;
- The discharger’s applicator will comply with effluent limitations
- The discharger’s applicator will follow this Aquatic Pesticide Application Plan (APAP);
- The discharger’s applicator will comply with applicable receiving water limitations; and
- The discharger’s applicator will comply with the monitoring and reporting requirements outlined in this APAP.

Aquatic Pesticide Use Requirements:

- **License Requirements.** Discharger’s applicators will be licensed by DPR if such licensing is required for the aquatic pesticide application project.

- **Application Requirements.** The pesticide will be consistent with FIFRA pesticide label instructions and any Use Permits issued by CACs.

- **Application Schedule.** When requested, the discharger will provide a phone number to persons who request the discharger’s application schedule.

AQUATIC PESTICIDE APPLICATION PLAN (APAP)
County of Los Angeles, Department of Parks and Recreation
Page 37 of 46
discharger shall provide the requester with the most current application schedule and inform the requester if the schedule is subject to change. Information may be made available by electronic means.

- **Public Notice Requirements.** Every calendar year, at least 15 days prior to the first application of aquatic pesticides, the Discharger will notify potentially affected public or governmental agencies, if any exist. The Discharger will post the notification on its website if available. The notification will include the following information:

 1. A statement of the discharger’s intent to apply algaecide or aquatic herbicide(s);
 2. Name of algaecide and or aquatic herbicide to be used;
 3. Purpose of use;
 4. General time period and locations of expected use;
 5. Any water use restrictions or precautions during treatment; and
 6. A phone number that interested persons may call to obtain additional information from the Discharger.

EXAMINATION OF AQUATIC VEGETATION CONTROL ALTERNATIVES

All appropriate aquatic plant management technologies within the context of the identified beneficial uses and impacted areas of the lake have been evaluated, and include all available cultural, biological, mechanical, and aquatic herbicide/algaecide formulations.

Aquatic weed and algae control options can be divided into four basic categories that include:

- Watershed Management
- Biological Control
- Physical and Mechanical Control
- Aquatic Herbicides and Algaecides

A discussion on each of the alternatives as well as their limitations follows:
Watershed Management and the Runoff Impacts: Watershed management is one of the most important control parameters as it deals with limiting nutrients and runoff into the lake system from the watershed. It entails implementing practices in the watershed that will support the reduction of nutrient and other pollutant runoff into the lake system. Residential and commercial development, with its increasing areas of concrete, asphalt and buildings, leaves more of the urban environment impermeable to rainwater (see table). This leads to an increasing volume of runoff water and a reduced ability for water to naturally infiltrate back into the soil. In natural areas, 10% is runoff and 50 to 60% is direct infiltration. In urban areas, roughly 50 to 60% (at times up to 90%) of all water that falls as rain runs off in urban areas; only 10 to 15% will actually infiltrate into the ground (Runoff Coefficients for the Rational Method of Estimating Rainfall (McCuen, 1989)).

- **Runoff Impacts**
 - Non-point source pollution poses the most serious threat to the water quality of urban lakes.
 - Non-point pollution in runoff includes: sediments, oil, anti-freeze, road salt, pesticides, yard wastes and pet and waterfowl droppings.
 - Urban runoff often contains excessive quantities of nutrients that accelerate eutrophication.

- **Nutrient Effects**
 - Increase in algae blooms
 - Odor problems
 - Oxygen supply depletion
 - Fish kills
 - Decrease in water clarity
 - Increase in the amount of rooted aquatic plants growing in the shallow near shore waters of a lake
- Reduction in the recreational value of the lake
- Hinders swimming, boating, fishing
- Reduces overall aesthetics of the lake

Eutrophication Process and Impacts:

![Diagram of eutrophication process]

- Impacts of Eutrophication
 - Fish kills due to low oxygen or high metals
 - Taste and odor problems, resulting in an increase in water treatment costs
 - Floating algae mats, decaying vegetation
 - Increased littoral vegetation in shallow areas
 - Mobilization of sediment bound metals and ions during anoxic conditions (e.g., copper, ammonia, iron, sulfur, phosphorus)
 - Increased temperature
 - Reduced water clarity
- Nuisance algal blooms
- Reduced dissolved oxygen in hypolimnion
- Earlier onset and/or longer duration of periods of anoxia in hypolimnion

- Bacterial Contaminants: Wildlife can contribute significant amounts of fecal matter to a natural system. Estimates of microbial flora in animal feces have been summarized by Rheinheimer, (1991). Fecal Coliform (FC) and streptococci (FS) estimates for duck, mice, rabbits, and chipmunks were estimated as follows:
 - Ducks: FC = 33,000,000 FS = 54,000,000
 - Mice: FC = 330,000 FS = 7,700,000
 - Rabbits: FC = 20 FS = 47,000
 - Chipmunks: FC = 148,000 FS = 6,000,000

- Categories of management practices and remedial alternatives to protect urban lakes (http://mnlakes.org/main_dev/news/uniquechallenge.cfm)
 - Administrative alternatives: Local governmental units have jurisdiction over land use around urban lakes and can therefore play a major role in the prevention of lake degradation. Several tools are available to control the use and misuse of this land including:
 - Comprehensive Plans to guide long-term growth;
 - Zoning Ordinances to regulate land use of private lands;
 - Storm water and Surface Water Management Planning that considers data collection, land use, system site considerations, and design criteria for structures in setting goals for watershed runoff; and
 - Rules for Lake Uses such as where, when and how a lake can be used recreationally to control shoreline erosion, nutrient recirculation and overuse.
Other administrative alternatives may include the development of fertilizer, yard waste, shoreline erosion and sedimentation control management programs. Education is still probably the best way to combat urban water quality issues.

- Non-structural alternatives: Seasonal street cleaning, to capture sediments before they are conveyed through storm sewer systems to lakes, and urban best management practices, such as buffer strips around water bodies to filter out sediments and reduce nutrients, are examples of non-structural alternatives. Chemical inactivation/precipitation of in-lake phosphorus, chemical control of algae, dredging of accumulated sediments, and mechanical harvesting of aquatic vegetation are additional examples.

- Structural alternatives: Storm water detention basins and wetland treatment systems are structural alternatives that detain runoff to control peak flow rates and control downstream flooding. They also allow pollutants to settle out of the water before reaching the lake. Diversions routing storm water away from the lake and in-lake aeration systems to oxygenate the water are other structural alternatives.

Summary: Much of the problem with rural lakes in farming communities is with sediment, nutrient, and organic loading. Rural lakes can sometimes be described as having an excessive growth of weeds and algae, and watershed management techniques, or implementation of removal/inactivation methods are required to address the problem.
• Biological Control

 o The Triploid Grass Carp is a biological control agent for aquatic plants, and is considered an attractive long-term method. The Grass Carp has been used successfully for the control of Hydrilla in the Imperial Irrigation District’s water delivery system for the past twenty plus years. One of the surrounding issues is the Grass Carps impact on native fisheries, as well as the plant species that it prefers to eat. The California Department of Fish and Wildlife have started issuing permits for the introduction of the Grass Carp for use in some lakes and ponds in California, but its effects on systems like the County lakes and the impacts on the current fishery has not yet been documented in the State. Current rules, however, do not allow stocking of Grass Carp with the 100 year flood plain. The Grass Carp is not effective against cyanobacteria.

• Cultural/Physical

 o Aeration & Water Quality Alteration: Aeration/circulation systems can be installed to circulate water, increase dissolved oxygen levels, and prevent anoxic conditions from forming. In stratified lake systems, or areas where organic matter accumulates, lake bottom waters become anoxic during the summer months. Properly designed aeration systems will promote nutrient reductions by supporting aerobic bacteria in bottom waters and oxidize nutrients to the hydrosol. The County has aeration systems operating in some park lakes.
Shading/Light Attenuation: A basic environmental manipulation method for aquatic plant control is light reduction or attenuation. Shading has been achieved in lakes by the application of natural and synthetic dyes. This action effectively inhibits photosynthesis in young, bottom plant growth. Aquashade, or generics such as Cygnet Select are primarily effective at depths of 2 feet or greater. Inhibition of planktonic algae blooms has also been proven. Aquashade is non-corrosive and will not stain bathing suits, fountain surfaces or other water features at use dilution rates. Aquashade and or a generic lake dye is an option for smaller waterbodies.

Hand harvesting of aquatic vegetation by pulling and raking has been implemented in the past for the control of emergent vegetation at times from the shoreline of some lakes on a limited basis, but is not practical for the control of submerged vegetation offshore due to the large quantities of material and weight involved.

Sediment Removal: Dredging is usually not performed solely for aquatic plant management, but to restore lakes that have been filled in with sediments, have excess nutrients, have inadequate hypolimnetic zones, need deepening, or require removal of toxic substances (Peterson 1982). This method is effective in that dredging can form areas of the lake too deep for plants to grow. By opening more diverse habitats and creating
depth gradients, dredging may also create more diversity in the plant community (Nichols 1984).

- **Mechanical Harvesting** utilizes specialized equipment that cuts and removes aquatic vegetation to a depth of approximately five (5) foot below the water level. Aquatic Plant Harvesting systems have been used since the 1990’s to support the aquatic vegetation control program. The efficiency of the harvesting system diminishes considerably where shore based unloading sites are not available close by, and where docks and other obstructions disrupt access. Efficiency levels are primarily related to the amount of travel time required for the harvester to move between the actual harvesting areas to the shore based unloading area, and the time spent maneuvering around obstructions. The disadvantages to mechanical harvesting are that the process is expensive, time consuming, and the harvested materials should be dried prior to hauling for final disposal. The County owns and operates an aquatic plant harvester.
A matrix that presents the control methods that have been reviewed for implementation at the County lakes as follows:

Matrix of Control Options

<table>
<thead>
<tr>
<th>OPTION</th>
<th>METHOD</th>
<th>PRACTICAL</th>
<th>RANK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Watershed Management</td>
<td>Structural</td>
<td>Very</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Non Structural</td>
<td>Very</td>
<td>10</td>
</tr>
<tr>
<td>Biological Control</td>
<td>Grass Carp</td>
<td>No</td>
<td>1</td>
</tr>
<tr>
<td>Cultural Control</td>
<td>Aeration</td>
<td>Implemented</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Light Limitation</td>
<td>Practical</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Benthic Barriers</td>
<td>Not Practical</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Draw Down</td>
<td>Not Practical</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Hand Harvesting</td>
<td>Implemented</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Sediment Removal</td>
<td>Not Practical</td>
<td>2</td>
</tr>
<tr>
<td>Mechanical Control</td>
<td>Diver Dredging</td>
<td>Not Practical</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Harvesting</td>
<td>Implemented</td>
<td>6</td>
</tr>
<tr>
<td>Herbicides/Algacides</td>
<td>Various</td>
<td>Implemented</td>
<td>8</td>
</tr>
</tbody>
</table>

APAP UPDATES: This APAP will be updated as the General Permit conditions change, any new algacides or aquatic herbicides are needed for the aquatic vegetation management program, or as new control technologies are developed and become available.

END OF APAP

References

- Water Quality Order No. 2013-0002-DWQ, General Permit No. CAG990005, Statewide General National Pollutant Discharge Elimination System Permit for Residual Aquatic Pesticide Discharges to Waters of the United States from Algae and Aquatic Weed Control Applications.
 http://www.swrcc.ca.gov/losangeles/water_issues/programs/basin_plan/basin_plan_documentation.shtml