Submission for SIP Section 5.3 Exception for Use of Copper to Control Aquatic Weeds in Lake Jennings Reservoir

Water Quality Order No. 2013-002-DWQ

Helix Water District
7811 University Avenue
La Mesa, CA 91942

June 22, 2015
Table of Contents

1. Description of Proposed Action ... 1
2. Schedule .. 1
3. Water Quality Monitoring Plan .. 1
4. CEQA Documentation .. 1
5. Contingency Plan .. 1
6. Identification of Alternative Water Supply ... 2
7. Residual Waste Disposal Plans ... 2

Attachments .. 3
1. Description of Proposed Action
The proposed project consists of the occasional application of copper-based algaecides at Lake Jennings Reservoir to control and prevent degradation of water quality resulting from algae blooms. The application of algaecide will occur periodically, as needed to address algae blooms, if Lake Jennings Reservoir is required to meet water supply needs. The application of algaecide may require temporary exceedance of the permitted levels of dissolved copper.

2. Schedule
The seasonal exemption would cover intermittent, periodic discharges that may occur throughout the year. These discharges generally would be a single treatment and will dissipate within approximately one week. The frequency of discharge, based on water supply needs and occurrence or algae blooms, is not expected to be more than 2 times annually.

3. Water Quality Monitoring Plan
Helix Water District will conduct water quality monitoring in accordance with our approved Aquatic Pesticide Application Plan and the requirements of the Statewide General National Pollutant Discharge Elimination System Permit for the Discharge of Aquatic Pesticides for Aquatic Weed Control in Water of the United States General Permit No. CAG990005 (Water Quality Order No. 2013-0002-DWQ (as amended by Order No. 2014-0078-DWQ)).

4. CEQA Documentation
The required CEQA documentation is contained in the attachments. The Mitigated Negative Declaration was publically noticed on the San Diego County Water Authority’s web site, within libraries in the surrounding community areas, and submitted to the Office of Planning and Research State Clearinghouse. The MND was approved by the Helix Water District Board on June 17, 2015 and the Notice of Determination was filed with the County Clerk on June 22, 2015.

5. Contingency Plan
Lake Jennings Reservoir is a water source for Helix Water District’s regional water treatment plant which supplies the greater portion of eastern San Diego County in the Helix service area and through neighboring water agency service areas. If an exception is not granted, Helix Water District’s ability to deliver a reliable water supply to its customers and the neighboring agencies in the region would be impacted. The presence of untreated algae blooms could result in significant taste and odor issues, impacting the potential use as a supply. In the event that an exemption is not granted, Helix would be required to rely on alternative supplies reducing reliability.
6. Identification of Alternative Water Supply
Helix Water District operates a regional treatment facility providing a safe and reliable water supply to its service area and neighboring agencies in the region. Helix Water District can receive water from multiple sources to supply the treatment facility. In the event of an algal bloom in Lake Jennings Reservoir, Helix Water District would switch to an alternative source to meet supply needs. Normally, Helix Water District would allow an algal bloom in Lake Jennings Reservoir to run its natural course without applying algaecide. In the event that alternative sources were not available to fully meet the demand, not having the ability to effectively manage water quality in Lake Jennings Reservoir could result in potential water supply shortage.

7. Residual Waste Disposal Plans
Helix Water District operations is not expected to result in a measurable amount of spill or residual waste. Any normal operational spill would only contain a small amount of algaecide which is not significant enough to impact the beneficial use of the reservoir and its surrounding watershed. In the event of a larger spill, Helix Water District would contain, cleanup and dispose of spilled algaecide following the District's Hazardous Materials Business Plan and MSDS protocols. Residual waste will be handled according to product label instructions and applicable regulations.
Attachments

Attachment 1 - Notice of Determination

Attachment 2 - Mitigated Negative Declaration and Initial Study/Environmental Checklist (with Appendix A2 only – Helix APAP)

Attachment 3 - Mitigation, Monitoring and Reporting Program

Attachment 4 - Lake Jennings Reservoir Aquatic Pesticide Application Plan dated June 18, 2015
Attachment 1

Notice of Determination
Notice of Determination

To:
Office of Planning and Research
U S Mail Street Address
P.O Box 3044 1400 Tenth St, Rm 113
Sacramento, CA 95812-3044 Sacramento, CA 95814

County Clerk
County of: San Diego
Address 1600 Pacific Highway, Suite 260
San Diego, CA 92101

From:
Public Agency Helix Water District
Address 7811 University Avenue La Mesa, CA 91942
Contact Carlos Lugo Phone 619-466-0585

County Clerk
County of: San Diego
Address 1600 Pacific Highway, Suite 260
San Diego, CA 92101

SUBJECT: Filing of Notice of Determination in compliance with Section 21108 or 21152 of the Public Resources Code.

State Clearinghouse Number (if submitted to State Clearinghouse): 2015031045
Project Title: Application of Copper-Based Algaecides at Five Reservoirs in San Diego County
Project Applicant: Helix Water District, et al
Project Location (include county): Five Reservoirs in San Diego County

Project Description.
The project consists of the occasional application of copper-based algaecides at 5 reservoirs to control and prevent degradation of water quality resulting from algae blooms. The subject reservoirs are Olivenhain Reservoir (San Diego County Water Authority), Lake Jennings (Helix Water District), Lake Poway (City of Poway), San Dieguito Reservoir (Santa Fe Irrigation District), and Sweetwater Reservoir (Sweetwater Authority). Helix Water District is the agency responsible for implementing the project at Lake Jennings. The algaecide application is authorized by the State Water Resources Control Board under a statewide General Permit, Water Quality Order No. 2013-0002-DWQ.

This is to advise that the Helix Water District has approved the above described project on June 17, 2015, and has made the following determinations regarding the above described project.

1 The project [☐ will ☒ will not] have a significant effect on the environment.
2 ☒ An Environmental Impact Report was prepared for this project pursuant to the provisions of CEQA. ☒ A Negative Declaration was prepared for this project pursuant to the provisions of CEQA.
3 Mitigation measures [☒ were ☐ were not] made a condition of the approval of the project.
4 A mitigation reporting or monitoring plan [☐ was ☒ was not] adopted for this project.
5 A statement of Overriding Considerations [☐ was ☒ was not] adopted for this project.
6 Findings [☐ were ☒ were not] made pursuant to the provisions of CEQA.

This is to certify that the final EIR with comments and responses and record of project approval, or the negative Declaration, is available to the General Public at: www.sdcwa.org

Signature (Public Agency): Title: General Manager
Date: June 18, 2015 Date Received for filing at OPR:

State of California—Natural Resources Agency

CALIFORNIA DEPARTMENT OF FISH AND WILDLIFE

2015 ENVIRONMENTAL FILING FEE CASH RECEIPT

SEE INSTRUCTIONS ON REVERSE. TYPE OR PRINT CLEARLY

<table>
<thead>
<tr>
<th>RECEIPT#</th>
<th>SD2015 0551</th>
</tr>
</thead>
<tbody>
<tr>
<td>STATE CLEARING HOUSE # (if applicable)</td>
<td>2015031045</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LEAD AGENCY</th>
<th>HELIX WATER DISTRICT</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATE</td>
<td>06/22/2015</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COUNTY/STATE AGENCY OF FILING</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAN DIEGO</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PROJECT TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPLICATION OF COPPER BASED ALGAECIDES AT FIVE RESERVOIRS IN SAN DIEGO COUNTY</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PROJECT APPLICANT NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>HELIX WATER DISTRICT ET AL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DOCUMENT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>20150090</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PHONE NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>619-466-0585</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PROJECT APPLICANT ADDRESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>7811 UNIVERSITY AVENUE</td>
</tr>
<tr>
<td>CITY</td>
</tr>
<tr>
<td>LA MESA</td>
</tr>
<tr>
<td>STATE</td>
</tr>
<tr>
<td>CA</td>
</tr>
<tr>
<td>ZIP CODE</td>
</tr>
<tr>
<td>91942</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PROJECT APPLICANT (Check appropriate box)</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐ Local Public Agency</td>
</tr>
<tr>
<td>☐ School District</td>
</tr>
<tr>
<td>☒ Other Special Distict</td>
</tr>
<tr>
<td>☐ State Agency</td>
</tr>
<tr>
<td>☐ Private Entity</td>
</tr>
</tbody>
</table>

CHECK APPLICABLE FEES:

| ☐ Environmental Impact Report (EIR) |
| ☒ Negative Declaration (ND)(MND) |
| ☐ Application Fee Water Diversion (State Water Resources Control Board Only) |
| ☐ Projects Subject to Certified Regulatory Programs (CRP) |
| ☒ County Administrative Fee |
| ☐ Project that is exempt from fees |
| ☐ Notice of Exemption |
| ☐ CDFW No Effect Determination (Form Attached) |
| ☐ Other |

$3,069.75	$	$2,210.00	$0.00
$850.00	$	$1,043.75	$
$50.00	$	$	$50.00

<table>
<thead>
<tr>
<th>PAYMENT METHOD:</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐ Cash</td>
</tr>
<tr>
<td>☐ Credit</td>
</tr>
<tr>
<td>☒ Check</td>
</tr>
<tr>
<td>☐ Other CHK</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TOTAL RECEIVED</th>
</tr>
</thead>
<tbody>
<tr>
<td>$50.00</td>
</tr>
</tbody>
</table>

SIGNATURE

X

TITLE

Deputy

REM: 05/29/2015
RCT: SD2015 0483
Attachment 2

Mitigated Negative Declaration and Initial Study/Environmental Checklist
(with Appendix A2 only)
FINAL MITIGATED NEGATIVE DECLARATION AND INITIAL STUDY ENVIRONMENTAL CHECKLIST

APPLICATION OF COPPER-BASED ALGAECIDES AT FIVE RESERVOIRS
SAN DIEGO COUNTY CALIFORNIA

SCH No. 2015031045

Prepared for:
San Diego County Water Authority
4677 Overland Avenue
San Diego, California 92123
Contact: Larry Purcell
Sweetwater Authority
505 Garrett Avenue
Chula Vista, California 91910
Contact: Scott McClelland
Helix Water District
7811 University Avenue
La Mesa, California 91942
Contact: Brian Olney
City of Poway, Public Works Department
13325 Civic Center Drive
Poway, California 92064
Contact: Tom Howard
Santa Fe Irrigation District
5920 Linea de Cielo
Rancho Santa Fe, California 92067
Contact: Tim Bailey

Prepared by:
AECOM
401 West A Street, Suite 1200
San Diego, California 92101
Phone: (619) 610-7600
Contact: Alex Hardy

May 2015
TABLE OF CONTENTS

Section Page

SECTION 1.0 – INTRODUCTION ... 1
 1.1 Project Background... 1
 1.2 Project Location and Environmental Setting 2
 1.2.1 Olivenhain Reservoir... 2
 1.2.2 Lake Jennings ... 4
 1.2.3 Lake Poway... 4
 1.2.4 San Dieguito Reservoir.. 7
 1.2.5 Sweetwater Reservoir.. 7
 1.3 Project Description .. 10
 1.3.1 Olivenhain Reservoir ... 12
 1.3.2 Lake Jennings ... 13
 1.3.3 Lake Poway... 13
 1.3.4 San Dieguito Reservoir .. 14
 1.3.5 Sweetwater Reservoir.. 15

SECTION 2.0 – INITIAL STUDY/ENVIRONMENTAL CHECKLIST FORM 17
 I. Aesthetics .. 19
 II. Agriculture and Forestry Resources .. 20
 III. Air Quality ... 21
 IV. Biological Resources .. 23
 V. Cultural Resources .. 43
 VI. Geology and Soils .. 44
 VII. Greenhouse Gas Emissions .. 46
 VIII. Hazards and Hazardous Materials .. 46
 IX. Hydrology and Water Quality ... 54
 X. Land Use and Planning .. 58
 XI. Mineral Resources ... 58
 XII. Noise ... 59
 XIII. Population and Housing ... 61
 XIV. Public Services ... 61
 XV. Recreation ... 62
 XVI. Transportation/Circulation ... 63
 XVII. Utilities and Service Systems .. 64
 XVIII. Mandatory Findings of Significance 66

SECTION 3.0 – DETERMINATION .. 69
 3.1 Olivenhain Reservoir Environmental Impacts and Mitigation 69
 3.1.1 Hazards and Hazardous Materials 69
 3.1.2 Hydrology and Water Quality .. 70
 3.2 Lake Jennings Environmental Impacts and Mitigation 70
 3.2.1 Hazards and Hazardous Materials 70
 3.3 Lake Poway Environmental Impacts and Mitigation 71
 3.3.1 Hazards and Hazardous Materials 71
 3.3.2 Hydrology and Water Quality .. 71
 3.4 San Dieguito Reservoir Environmental Impacts and Mitigation 72
 3.4.1 Hazards and Hazardous Materials 72
 3.4.2 Hydrology and Water Quality .. 72

Mitigated Negative Declaration and Initial Study/Environmental Checklist
San Diego Reservoirs Copper-Based Algaecide MND
SECTION 1.0
INTRODUCTION

1.1 PROJECT BACKGROUND

The San Diego County Water Authority (Water Authority) and four of its member agencies—Helix Water District (HWD), City of Poway (Poway), Santa Fe Irrigation District (SFID), and Sweetwater Authority (Sweetwater)—have identified the need to occasionally apply copper-based algaecides to their respective surface water reservoirs to control algae blooms. Algae blooms can lead to degradation of drinking water quality through presence of taste and odor compounds and production of algal toxins, and can clog filters in water treatment plants. The subject reservoirs are:

- Olivenhain Reservoir (Water Authority)
- Lake Jennings (HWD)
- Lake Poway (Poway)
- San Dieguito Reservoir (SFID)
- Sweetwater Reservoir (Sweetwater)

These five agencies plan to individually obtain permission from the State Water Resources Control Board (State Board) to apply copper-based algaecide at their reservoirs by qualifying for Water Quality Order No. 2013-0002-DWQ (as amended by Order No. 2014-0078-DWQ), Statewide General Permit for Residual Aquatic Pesticide Discharges to Waters of the U.S from Algae and Aquatic Weed Control (General Permit). All five of the referenced agencies have prepared an Aquatic Pesticide Application Plan (APAP) and submitted a Notice of Intent to the State Board to initiate the permit process. To date, the Water Authority, HWD, Poway, and Sweetwater have received a Notice of Applicability from the State Board approving their APAP; SFID has responded to comments from the State Board and resubmitted their APAP for review.

The General Permit identifies a maximum allowable concentration of certain aquatic pesticide constituents, including copper. Public water agencies may apply to the State Board to obtain a short-term or seasonal exception to the limitations on copper concentration established in the General Permit, pursuant to Section 5.3 of the Policy for Implementation of Toxics Standards for Inland Surface Waters, Enclosed Bays, and Estuaries in California (the State Implementation Plan, or SIP). Exceptions to the limitations are allowed if deemed necessary for drinking water sources to meet statutory requirements under the federal Safe Drinking Water Act or the California Health and Safety Code. Section 5.3 of the SIP states that to be considered for an exception, a water agency must provide the following information to the State Board:

1. A detailed description of the proposed action, including the proposed method of completing the action;
2. A time schedule;

1 A draft order further amending the General Permit was prepared in December 2014, and a public hearing for the order was held on March 3, 2015. The revision proposes to add calcium hypochlorite and sodium hypochlorite as active ingredients, add State Water Board delegation that allows the Executive Director to add (1) active ingredients to the General Permit and (2) agencies to the SIP exception list, add three agencies to the SIP exception list, and modify the SIP exception for the Department of Water Resources.
3. A discharge and receiving water quality monitoring plan (before project initiation, during the project, and after project completion, with the appropriate quality assurance and quality control procedures);
4. California Environmental Quality Act (CEQA) documentation,
5. Contingency plans;
6. Identification of alternate water supply (if needed); and
7. Residual waste disposal plans.

Upon completion of an application, the agency is required provide certification by a qualified biologist that the receiving water beneficial uses have been restored.

Under the current version of the General Permit, 28 agencies statewide are approved for the exception to the receiving water limitations established in the General Permit, as listed in Appendix G of the permit; the amendment proposed in December 2014 would increase that number to 31 agencies. As additional agencies are approved for the exception, the General Permit would be subsequently amended to add them to the list in Appendix G of the permit.

The five water agencies listed above have indicated the current limitation on dissolved copper levels in the General Permit and the resultant allowable amount of the copper-based algaecide they are able to apply has the potential to constrain the effectiveness of algae control at their facilities and lead to diminished drinking water quality that is delivered to consumers. Therefore, the agencies will be submitting the required documentation to the State Board to be considered for approval of the General Permit exemption. This Mitigated Negative Declaration (MND) has been prepared for purposes of the agencies obtaining CEQA documentation compliance, as listed above.

The CEQA “project” addressed in this MND is the application of copper-based algaecides at each of the five listed reservoirs, as implemented by the respective agencies, which may include periodic exceedances of the limitations stated in the General Permit. The Water Authority is the lead agency for CEQA administrative purposes, but does not have discretionary authority over project activities at the other reservoirs; the other four agencies’ decision-making bodies, as Responsible Agencies under CEQA, will separately consider adopting the MND and implementing the project and the mitigation program identified specific to their activities. Aside from this combined MND, each participating agency will be individually responsible for complying with the terms and conditions specified in Section 5.3 of the SIP and in the General Permit as they seek coverage under the General Permit and State Board approval of the SIP limitation exceptions for copper.

The State Board will be a responsible agency under CEQA for this MND, and will be using the document in its review process for considering the agencies’ respective exceptions to the receiving-water limitations stated in the General Permit.

1.2 PROJECT LOCATION AND ENVIRONMENTAL SETTING

The five subject reservoirs are located in the western portion of San Diego County, as shown in Figure 1. Specific discussions of the location of and environmental setting at each reservoir are provided below.

1.2.1 Olivenhain Reservoir

Olivenhain Reservoir is a surface water storage reservoir owned by the Water Authority and located in northern unincorporated San Diego County, near the southwestern boundary of the City of Escondido,
Figure 1
Regional Map
and the far northern reaches of the City of San Diego’s incorporated boundaries. The City of Encinitas is approximately 2 miles to the west. Elfin Forest Road provides access to the reservoir and its operations facilities, which are located on the reservoir’s southwestern end. Olivenhain Reservoir is approximately 1 mile west of the City of San Diego's Hodges Reservoir, also known as Lake Hodges, which is connected to Olivenhain Reservoir and provides some of the water stored in Olivenhain Reservoir. With storage of approximately 24,400 acre-feet, water in Olivenhain Reservoir is reserved for emergency use throughout the Water Authority’s service area (San Diego County Water Authority 2014a). Water stored in Olivenhain Reservoir must be treated before distribution to consumers. Olivenhain Reservoir and the surrounding area are depicted in Figure 2.

Olivenhain Reservoir is surrounded by undeveloped open space of the Elfin Forest Recreational Reserve (Reserve), a 784-acre open space park and recreational area developed by the Water Authority and Olivenhain Municipal Water District (OMWD) in partnership with the U.S. Department of the Interior, Bureau of Land Management, as an element of the Olivenhain Water Storage Project and the Water Authority’s Emergency Storage Project biological resources mitigation. The Reserve is owned by the Water Authority and managed by OMWD. A few rural residences are scattered southeast of the reservoir on Mount Israel, and additional residences are located farther east, on the western side of Lake Hodges. Denser residential development in the City of Escondido and unincorporated county begins at a radius of between 2 and 3 miles from the reservoir.

Olivenhain Reservoir is not open for recreational use (San Diego County Water Authority 2014b). However, the Reserve features public picnic areas and approximately 11 miles of trails for hiking, mountain biking, and equestrian use.

1.2.2 Lake Jennings

Lake Jennings is a surface water storage reservoir owned by HWD and located in the unincorporated community of Lakeside, in the central portion of San Diego County, east of the City of Santee. Regional access to the reservoir is provided by Lake Jennings Park Road from Interstate 8. Lake Jennings serves as a short-term storage reservoir for HWD’s R. M. Levy Water Treatment Plant, which is on the reservoir’s southwest corner. Lake Jennings holds roughly 9,790 acre-feet of water, of which approximately 95% is untreated imported water purchased from the Water Authority. The remaining water comes from ephemeral, unnamed drainages (Helix Water District 2014a). The San Diego River is located approximately 2,000 feet north of Lake Jennings. The reservoir and surrounding area are shown in Figure 3.

Lake Jennings is surrounded by a combination of open space and residential neighborhoods of varying densities, including the Lake Jennings Park Estates mobile home park located on the southern edge of the lake and other single-family residential developments in Lakeside on the west, north, south, and east of the reservoir. Open space is located directly adjacent to the reservoir on the north and east.

Lake Jennings is open to the public year-round for fishing and boating. Swimming and other body contact uses are not allowed. HWD stocks the reservoir with catfish between May and September, and with trout during varying periods depending on water temperature. Stocking schedules are typically every 2 or 3 weeks (Helix Water District 2014b).

1.2.3 Lake Poway

Lake Poway is a surface water storage reservoir owned by Poway and located in the northern portion of the incorporated area. Regional access to the reservoir is provided by Lake Poway Road. The facility is
San Diego Reservoirs Copper-Based Algaecide MND

Path: \usagf\601\sa\connect\data\projects\2013\634496_SDCWA_DB\000-CAD-GIS\20 GIS\022_Maps\Jennings_mxd, 2/24/2013, janssenn

Figure 3
Lake Jennings
maintained to hold approximately 3,150 acre-feet of water, with an approximately 60-acre surface area. The majority of the water stored in the reservoir is untreated imported water purchased from the Water Authority, although seasonal runoff can also enter the lake through the Boulder Bay stream within Warren Canyon, located east of the reservoir. Water from the reservoir is treated at the Lester J. Berglund Water Treatment Plant, which is located west of the reservoir (City of Poway 2014a). Lake Poway and the surrounding area are depicted in Figure 4.

The Blue Sky Ecological Reserve, a 700-acre open space preserve owned by Poway, is located north and east of Lake Poway. The reservoir directly adjoins to Lake Poway Recreational Area to the east. High-density residential is located to the east of Lake Poway, with lower density housing to the south. Poway High School is located approximately 1 mile southwest of Lake Poway.

Lake Poway is open year-round for fishing Wednesdays through Sundays, sunrise to sunset. Night fishing is available on select nights during the summer. The reservoir is stocked with rainbow trout weekly during the winter, and with channel catfish weekly during the summer. Public rental of rowboats, motorboats, sailboats, and paddle boats is available from a concessionaire, but private boats are not permitted. Swimming and other body contact is not allowed (City of Poway 2014b).

1.2.4 San Dieguito Reservoir

San Dieguito Reservoir is a surface water storage reservoir owned by SFID and located in the northern part of the unincorporated community of Rancho Santa Fe, in the northern part of San Diego County. Access is provided by El Camino del Norte, which runs along the northern side of the reservoir, and El Montevideo and Lago Lindo which runs along the south side of the reservoir. The City of Encinitas is located approximately 1 mile northwest of the reservoir. The facility is an 800-acre-foot terminal reservoir that receives its water from Lake Hodges via the Cielo Pump Station, which is located on Del Dios Highway approximately 2 miles east of the reservoir. San Dieguito Reservoir water is pumped to the R.E. Badger Filtration Plant, which is jointly owned by SFID and the San Dieguito Water District and provides drinking water to both districts (Santa Fe Irrigation District 2014a).

The surrounding areas are composed of rural residential development in the communities of Rancho Santa Fe and Fairbanks Ranch, many with associated agricultural uses. Figure 5 shows the reservoir and its surrounding area.

The reservoir is not open to the public (Santa Fe Irrigation District 2014b).

1.2.5 Sweetwater Reservoir

Sweetwater Reservoir is a surface water storage reservoir owned by Sweetwater and located along the Sweetwater River in southwestern San Diego County, near the unincorporated communities of La Presa to the north and Bonita to the west. The incorporated boundary of the City of Chula Vista is located to the south. The reservoir is directly east of the State Route 54 and State Route 125 interchange. Sweetwater Reservoir has a capacity of approximately 28,100 acre-feet and a maximum surface area of 1,027 acres (Sweetwater Authority 2013).

Sweetwater Summit Regional Park abuts the reservoir's southern bank, and the U.S. Fish and Wildlife Service's (USFWS) 11,152-acre San Diego National Wildlife Refuge is located immediately east of the reservoir. The Sweetwater Summit Regional Park offers trails, picnic areas, and a campground. Additional surrounding uses include single-family residential development to the north and west. The Bonita Golf Club's golf course and the County's Sweetwater Sports Complex are located southwest of the
San Diego Reservoirs Copper-Based Algaecide MND

Path: \nsandg1p001\ntwater\data\projects\2015\6034196_SDCEA_T020\006-CAD-GIS\2015GIS022_Maps\Poway.mxd, 2/26/2015, jainsenn
Figure 5
San Dieguito Reservoir

San Diego Reservoirs Copper-Based Algacide MND
reservoir, across State Route 125. The Sweetwater Dam, the Robert A. Perdue Water Treatment Plant (PWTP), and Sweetwater’s operations building are on the western side of the reservoir. The reservoir and surrounding area are shown in Figure 6.

Sweetwater Reservoir is open to the public 3 days a week year-round for shoreline fishing from a limited area on the reservoir’s southern end; no boats or body contact recreational activities are allowed. Sweetwater does not stock the reservoir with fish. A 5-mile riding and hiking trail is also located on the southern border of the lake for pedestrians, bikes, and horses (Sweetwater Authority 2014).

1.3 PROJECT DESCRIPTION

The project entails occasional application of copper-based algaecides at five surface water reservoirs in San Diego County to control and prevent degradation of water quality at those facilities resulting from algae blooms. The five reservoirs are Olivenhain Reservoir, Lake Jennings, Lake Poway, San Dieguito Reservoir, and Sweetwater Reservoir. Algae cause a multitude of water-quality concerns, including the potential to produce taste- and odor-causing compounds and toxins that are potent enough to poison animals and humans. Taste-and-odor compounds cause malodorous or unpalatable drinking water, resulting in increased treatment costs and consumer complaints. In addition, if great masses of algae enter the water treatment plant, the algae can cause operational problems by increasing the amount of suspended material that must be settled out of the water, and excessive algae can lead to water filter clogging. Filter clogging leads to shortened filter run times; this in turn leads to increased electricity and chemical use in the water treatment plant.

The algaecides would be applied at the subject reservoirs pursuant to methods stated in the respective agencies’ APAPs, which have been submitted to the State Board for approval of coverage under the General Permit. To date, the Water Authority, HWD, Poway, and Sweetwater have received a Notice of Applicability from the State Board approving their APAP; SFID has responded to comments from the State Board and resubmitted their APAP for review. Each of the five subject agencies has indicated that their periodic treatment of algae may require temporary exceedance of the permitted levels of dissolved copper stated in the General Permit, and the agencies are applying to the State Board for an exception from those copper levels.

The project-related APAPs are included in this MND as Appendix A1 through A5. The requirement to prepare APAPs is described in Section VIII.C of the General Permit, which identifies the following mandatory information:

1. Description of the water system to which algaecides and aquatic herbicides are being applied;
2. Description of the treatment area in the water system;
3. Description of types of weed(s) and algae that are being controlled and why;
4. Algaecide and aquatic herbicide products to be used, the method in which they are applied, and the adjuvants and surfactants used;
5. Discussion of the factors influencing the decision to select algaecide and aquatic herbicide applications for algae and weed control;
6. Description of the control structure to be used to control the extent of receiving waters potentially affected by algaecide and aquatic herbicide application and the inspection schedule of the control structure to ensure that it is not leaking (if applicable);
Figure 6

Sweetwater Reservoir
7. If the Discharger has been granted a short-term or seasonal exception under State Water Board Policy for Implementation of Toxics Standards for Inland Surface Waters, Enclosed Bays, * and Estuaries of California (Policy) section 5.3 from meeting acrolein and copper receiving water limitations, provide the beginning and ending dates of the exception period, and justification for the needed time for the exception. If algaecide and aquatic herbicide applications occur outside of the exception period, describe plans to ensure that receiving water criteria are not exceeded because the Dischargers must comply with the acrolein and copper receiving water limitations for all applications that occur outside of the exception period.

8. Description of a monitoring program demonstrating compliance with the receiving water limitations, discharge specifications, and other requirements in the General Permit;

9. Description of procedures used to prevent sample contamination from persons, equipment, and vehicles associated with algaecide and aquatic herbicide application;

10. Description of the best management practices (BMPs) to be implemented.

11. Examination of possible alternatives to algaecide and aquatic herbicide use to reduce the need for applying algaecides and herbicides.

The individual project descriptions for each subject reservoir provided below summarize the respective APAPs, augmented with additional information obtained from personal communications with representatives of the participating agencies, if needed.

1.3.1 Olivenhain Reservoir

The Water Authority’s APAP, provided as Appendix A1 in this MND, proposes application of copper sulfate if necessary to control nuisance algae blooms. Since the reservoir became operational in 2003, it has not experienced significant algal growth and the Water Authority has not needed to apply chemicals to the reservoir to control algae. However, reservoir staff has started to recognize increased algal growth in recent years, which originates from Lake Hodges water transfers, and the Water Authority is seeking General Permit coverage for algaecide application in case the need arises. If nuisance algae blooms occur at Olivenhain Reservoir, in-situ treatment would be required to ensure the Water Authority’s deliveries from the reservoir to its member agencies meet appropriate water quality specifications, primarily to prevent taste- and odor-causing compounds and algal toxins from reaching consumers. The Water Authority’s primary response to algae blooms at Olivenhain Reservoir is to select a lower withdrawal elevation on the reservoir’s outlet tower to avoid algae blooms that form on the surface. If that option is not available, then the secondary response would be isolating Olivenhain Reservoir from the Water Authority’s system and transferring water to its member agencies from another storage point. If regional demands or operational constraints do not allow for the termination of flow from Olivenhain Reservoir, then the Water Authority would consider applying copper-based algaecide.

Pursuant to their APAP, the Water Authority would apply a mixture of copper sulfate pentahydrate crystals and granular citric acid (for chelation purposes) at Olivenhain Reservoir from side hoppers attached to a powerboat. Applications are proposed to occur in the surface water on the reservoir’s southwestern side. Application would be performed in a manner consistent with product labeling and would be the minimum amount necessary to be effective; the APAP proposes a rate of approximately 2 pounds of copper sulfate and 1 pound of citric acid per surface acre of treated area. The Water Authority estimates up to 80 pounds of the solid crystalline product would be delivered for a single application.

Three monitoring locations are proposed in the Water Authority’s APAP. Prior to an application event (24 hours in advance), background monitoring would be conducted near the application area. Event monitoring samples would be collected immediately after the application from two locations outside of...
the treatment area—one near the reservoir’s outlet tower and another near the Lake Hodges inlet/outlet structure. Post-event monitoring samples would be collected inside the treatment area within a week after application. This post-treatment monitoring would also include visual inspection of the treatment area for evidence of fish kills. The Water Authority will post a notification on its website and/or notify impacted member agencies by email, as appropriate, at least 7 days prior to the first algaecide application every calendar year. The notification will conform to the procedures described in Section VIII.B of the General Permit.

1.3.2 Lake Jennings

HWD’s APAP, provided as Appendix A2 in this MND, covers treatment of Lake Jennings for algae with the copper-based algaecide Cutrine Plus, a liquid chelated copper product applied using a boat-mounted spray rig. Algaecide would be applied to the water in an area adjacent to Chet Harritt Dam and the intake tower to the water treatment plant.

HWD normally prevents and controls algae blooms in Lake Jennings by conventional methods, using a mechanical system that aerates and circulates water. The aeration system consists of an air compressor located on the dam, an air diffuser grid that is located on the lake bottom adjacent to the dam, and an air line that connects the air compressor & diffuser grid. HWD places the aeration system in operation at the beginning of the season when algae blooms commonly occur (typically the summer) and operates the system throughout the season. Algaecide was used infrequently at Lake Jennings in the years before HWD installed and activated the aeration system but has not been used in the past 20 years due to the effectiveness of treatment through aeration. Because Lake Jennings is a water source for HWD’s water treatment plant that produces potable water for its customers, HWD is seeking approval to use algaecide in case a severe algae bloom occurs that is beyond the capability of the aeration system to control. HWD would use algaecide consistent with the product label requirements and apply the minimum amount of product that is necessary to be effective—an estimated range of 2.75 to 11 gallons of the liquid product.

The HWD APAP establishes two monitoring locations—one at an anchored buoy located within the algaecide application area near the dam, and another at an anchored buoy located outside of the treatment area where prevailing winds tend to push surface water at the reservoir. HWD’s monitoring program includes background monitoring within 24 hours before an application event, event monitoring of samples just outside the treatment area immediately after the application event, and post-event monitoring of samples taken within the treatment area up to a week after the application. No public agencies need to be notified of algaecide application at Lake Jennings because HWD is both the discharger and the affected public agency.

1.3.3 Lake Poway

Poway’s APAP, provided as Appendix A3 in this MND, covers treatment of Lake Poway for algae blooms to prevent development of nuisance conditions. Poway has used copper sulfate for algae control since the 1970s, with the frequency depending on when algae blooms occur, typically once per year, between April 1 and October 30. The copper sulfate product is ordered by the pallet and then used as needed. Copper sulfate is applied as needed to Lake Poway in the form of large crystals, which are typically applied by boat as a surface application, at various locations as necessary to prevent blooms from spreading. Citric acid is used in the application as a chelating agent. The need for treatment is based

2 The HWD APAP also covers treatment of aquatic weeds such as tamarix, cattails, and tules by spraying herbicides along the edges of Lake Jennings. However, this MND covers only the application of algaecide, as that is the subject of the exception from the permit limitations that HWD is seeking along with the other participating agencies.
on physical inspections, water quality monitoring, and potential and existing impacts on drinking water quality. Poway uses algaecide consistent with the product label requirements and applies the minimum amount of product that is necessary to be effective. During a single application process roughly five pounds of pesticide per acre foot of water is used, which averages about 300 pounds of solid crystalline product for each application.

Poway does not implement any conventional, non-chemical algae treatment at Lake Poway; however, a Poway representative reported that nuisance algae blooms did not occur when they employed methods for controlling invasive quagga mussels and milfoil plants, which were treated by reducing the reservoir’s water level and drying out the shoreline for 30 to 40 days (City of Poway 2014b).

Because copper application within Lake Poway is not performed at any specific location within the reservoir, the copper-application monitoring locations will also vary depending on actual application sites. For each application, a treatment map will be developed showing the application area, treatment area, and adjacent untreated area (if applicable), which will be used throughout the monitoring period for each application. Post-application monitoring includes visual monitoring for fish kills. No agencies will be notified of Poway’s algaecide application because no other public agencies are expected to be affected.

1.3.4 San Dieguito Reservoir

SFID’s APAP, provided as Appendix A4 in this MND, covers treatment of San Dieguito Reservoir for algae blooms that originate at Lake Hodges and that are transferred into the reservoir along with water deliveries via the Cielo Pump Station. SFID implements a Lake Management Program to control algae at San Dieguito Reservoir, with preferred methods being non-chemical solutions such as aeration, water level manipulation, nutrient control, and selective withdrawals from Lake Hodges’s three outlets, pulling water from variable depths to minimize algae intake. These strategies are effective at minimizing algae blooms in the reservoir, but SFID often needs to apply algaecide to control major blooms and prevent adverse effects on water quality.

The Cielo Pump Station is equipped with a closed-feed injection system that can release algaecides directly into the water while being pumped from Lake Hodges to San Dieguito Reservoir as necessary. SFID applies a liquid non-chelated copper sulfate product through this method. The injection system allows for safe and effective application of precise amounts and minimizes the potential for worker exposure and spills. The rate of feed for any treatment event is limited to the recommendations on the product label to ensure effectiveness and minimize any unintended effects on non-targeted organisms. Chelated copper application is not necessary at San Dieguito Reservoir because SFID does not apply directly to the reservoir, so the product does not need to remain suspended in reservoir water in order to effectively treat the targeted algae. The volume of liquid algaecide used for an application would depend on the severity of the algal bloom. SFID estimates between 100 to 500 gallons are used per application. The product is ordered in quantities large enough for roughly one year of application events, and is stored on site until it is used. At the end of a treatment event, the system is flushed with water to eliminate any algaecides remaining in the system. This protects the feed system from corrosion and leaks. The liquid copper sulfate containers are stored within a spill catchment that can capture 100% of the chemical available for feed.

The SFID APAP establishes two representative monitoring locations within San Dieguito Reservoir. One location, at the receiving water pipeline on the reservoir’s eastern shore, is used for baseline monitoring, conducted within 24 hours before the treatment, and event monitoring, starting immediately after treatment begins. The second location is the San Dieguito Reservoir pump station inlet on the opposite side of the reservoir, which is used for post-event monitoring conducted within a week after treatment.
begins SFID does not notify other agencies of algaecide application at San Dieguito Reservoir because no other public agencies are expected to be affected by this activity.

1.3.5 Sweetwater Reservoir

Sweetwater’s APAP, provided as Appendix A5 in this MND, proposes application of copper sulfate when necessary to control nuisance algae blooms for control of taste and odor in their drinking water, and to prevent filter impairment at the PWTP. Sweetwater has been applying copper sulfate for algae control at least since 1986, averaging approximately one treatment per year during the summer, though the frequency and timing of application varies depending on the number of algae blooms per year, the length of the bloom, and the severity of the taste and odor problem that arises. The need for copper application at Sweetwater Reservoir has not arisen since 2009.

Sweetwater prefers to initially handle algae blooms without the use of an algaecide. Alternative methods employed at Sweetwater Reservoir include obtaining water from different levels of the reservoir that are not inhibited by an algae bloom, adding powdered activated carbon to the water treatment process at PWTP, increasing the duration of free chlorine contact with treated water at PWTP, blending treated water with imported water, and waiting for a bloom to die off naturally. The decision to apply copper to the reservoir is made when nuisance algae indicators increase significantly over a short period of time and when other preferred mitigation strategies have not been successful.

The Sweetwater APAP proposes application of a mixture of copper sulfate crystals and granular citric acid (for chelation purposes) at the reservoir from side hoppers attached to a powerboat. Applications are proposed to occur in an even manner throughout the surface of the western side of the reservoir, depending on the location of the bloom, though no more than one-half of the surface of the reservoir would be treated per application. If an additional treatment is necessary, a minimum of 2 weeks would elapse between applications. Application would be performed in a manner consistent with product labeling and would be the minimum amount necessary to be effective; the APAP proposes a rate of approximately 2 pounds of copper sulfate and 1 pound of citric acid per surface acre of treated area. In the past, the average amount of solid crystalline product used has been approximately 1,250 pounds per application.

Monitoring before, during, and after a copper application is proposed to occur at three numbered buoys in the reservoir, to ensure consistency. Buoy #1 is located at the west end of the reservoir, near the Sweetwater Dam and PWTP; Buoy #2 is located in the center of the reservoir’s minimum pool area, in the center of the potential application area; Buoy #7 is located near the opening to Gum Tree Cove on the reservoir’s northern shore. Prior to an application event (up to 24 hours in advance), background monitoring would be conducted at Buoy #1 and Buoy #2. Event monitoring samples would be collected at Buoy #7 immediately after the application. Post-event monitoring samples would be collected at Buoy #1 and Buoy #2 within a week after application. Post-treatment monitoring would also include visual inspection of the treatment area by a qualified biologist to ensure beneficial uses have not been impacted. Every calendar year, at least 15 days prior to the first algaecide application (if any), Sweetwater will post a notification on its website and/or provide on-site signage (as appropriate) at the fishing program area. The notification will conform to the procedures described in Section VIII.B of the General Permit. No other agencies have rights to the water in the reservoir, and therefore no public agencies need to be notified.
This page intentionally left blank.
SECTION 2.0
INITIAL STUDY/ENVIRONMENTAL CHECKLIST FORM

<table>
<thead>
<tr>
<th>1. Project Title:</th>
<th>Application of Copper-Based Algaecides at Five Reservoirs, San Diego County</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Lead Agency Name and Address:</td>
<td>San Diego County Water Authority 4677 Overland Avenue San Diego, CA 92123</td>
</tr>
<tr>
<td>3. Contact Person and Phone Number:</td>
<td>Larry Purcell Water Resources Manager (858) 522-6752</td>
</tr>
<tr>
<td>4. Project Location:</td>
<td>Olivenhain Reservoir, Lake Jennings, Lake Poway, San Dieguito Reservoir, Sweetwater Reservoir</td>
</tr>
</tbody>
</table>
| 5. Project Sponsor's Name and Address: | San Diego County Water Authority 4677 Overland Avenue San Diego, CA 92123
Sweetwater Authority 505 Garrett Avenue Chula Vista, California 91910
Helix Water District 7811 University Avenue La Mesa, California 91942
City of Poway, Public Works Department 13325 Civic Center Drive Poway, California 92064
Santa Fe Irrigation District 5920 Línea del Cielo Rancho Santa Fe, California 92067 |
| 6. General Plan Designation: | NA |
| 7. Zoning: | NA |
| 8. Description of Project: | Please refer to Section 1.3 for a detailed description of the proposed project at each of the subject reservoirs. |
| 9. Surrounding Land Uses and Setting: | Please refer to Section 1.2 for a detailed discussion of the project setting and surrounding land uses. |
ENVIRONMENTAL FACTORS POTENTIALLY AFFECTED:

The environmental factors checked below will be potentially affected by this project, involving at least one impact that is "Less Than Significant with Mitigation Incorporated" or a "Potentially Significant Impact" as indicated by the checklist on the following pages.

- Aesthetics
- Agriculture and Forestry Resources
- Air Quality
- Biological Resources
- Cultural Resources
- Geology and Soils
- Greenhouse Gas Emissions
- Hazards and Hazardous Materials
- Hydrology and Water Quality
- Land Use and Planning
- Mineral Resources
- Noise
- Population and Housing
- Public Services
- Recreation
- Transportation/Traffic
- Utilities and Service Systems
- Mandatory Findings of Significance

DETERMINATION:

On the basis of this initial evaluation:

- I find that the proposed project COULD NOT have a significant effect on the environment, and a Categorical Exemption (Class 2, Section 15302) is the appropriate CEQA documentation.
- I find that the proposed project COULD NOT have a significant effect on the environment, and a NEGATIVE DECLARATION will be prepared.
- I find that although the proposed project could have a significant effect on the environment, there WILL NOT be a significant effect in this case because revisions in the project have been made by or agreed to by the project proponent. A MITIGATED NEGATIVE DECLARATION will be prepared.
- I find that the proposed project MAY have a significant effect on the environment, and an ENVIRONMENTAL IMPACT REPORT is required.
- I find that the proposed project MAY have a “potentially significant impact” or “potentially significant unless mitigated impact” on the environment, but at least one effect 1) has been adequately analyzed in an earlier document pursuant to applicable legal standards, and 2) has been addressed by mitigation measures based on the earlier analysis as described on attached sheets. An ENVIRONMENTAL IMPACT REPORT is required, but it must analyze only the effects that remain to be addressed.
- I find that although the proposed project could have a significant effect on the environment, because all potentially significant effects (a) have been analyzed adequately in an earlier EIR or NEGATIVE DECLARATION pursuant to applicable standards, and (b) have been avoided or mitigated pursuant to that earlier EIR or NEGATIVE DECLARATION, including revisions or mitigation measures that are imposed upon the proposed project, nothing further is required.

Ken Weinberg
Director of Water Resources
San Diego County Water Authority

March 10, 2015
Date
EVALUATION OF ENVIRONMENTAL IMPACTS:

I. Aesthetics

1. AESTHETICS. Would the project:

a) Have a substantial adverse effect on a scenic vista?

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation Incorporated</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Olivenhain Reservoir, Lake Jennings, Lake Poway, San Dieguito Reservoir, Sweetwater Reservoir

Visible components of the project include occasional operation of boats on existing reservoirs for infrequent algaecide application and monitoring. This activity would not have an aesthetic effect, and would not cause an impact at any scenic vistas that may exist at the subject reservoirs; therefore, no impact would occur.

b) Substantially damage scenic resources, including, but not limited to, trees, rock outcroppings, and historic buildings within a state scenic highway?

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation Incorporated</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Olivenhain Reservoir, Lake Jennings, Lake Poway, San Dieguito Reservoir, Sweetwater Reservoir

See the response to I.a) None of the reservoirs are visible from a scenic highway. No impact would result from this project.

c) Substantially degrade the existing visual character or quality of the site and its surroundings?

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation Incorporated</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Olivenhain Reservoir, Lake Jennings, Lake Poway, San Dieguito Reservoir, Sweetwater Reservoir

See the response to I.a) The use of boats for infrequent application and/or monitoring would not lead to a significant divergence from normal views at the reservoirs, especially for those that allow recreational boating, and the visible components of this project would have no impact. The application of the algaecides would result in the reduction or removal of algae blooms, which typically occur below the water surface, so their removal generally would not be visible to reservoir users Therefore, the project would have no impact.

d) Create a new source of substantial light or glare which would adversely affect day or nighttime views in the area?

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation Incorporated</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Olivenhain Reservoir, Lake Jennings, Lake Poway, San Dieguito Reservoir, Sweetwater Reservoir

The proposed project would not introduce any new source of light to the project area. Additionally, project activities would occur only during daylight hours and would not require any nighttime lighting in order to be carried out. Therefore, no impact would occur.
II. AGRICULTURE AND FORESTRY RESOURCES.

Would the project:

a) Convert Prime Farmland, Unique Farmland, or Farmland of Statewide Importance (Farmland), as shown on the maps prepared pursuant to the Farmland Mapping and Monitoring Program of the California Resources Agency, to non-agricultural use?

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation Incorporated</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Olivenhain Reservoir, Lake Jennings, Lake Poway, San Dieguito Reservoir, Sweetwater Reservoir

The proposed project activities would not convert or alter Prime Farmland, Unique Farmland, or Farmland of Statewide Importance. All activities would occur within the reservoir and have no impact on agricultural resources.

b) Conflict with existing zoning for agricultural use, or a Williamson Act contract?

| | | | X |

Olivenhain Reservoir, Lake Jennings, Lake Poway, San Dieguito Reservoir, Sweetwater Reservoir

No Williamson Act contract lands occur within the project area and no agricultural uses would be displaced as a result of the project. Therefore, no related impact would occur.

c) Conflict with existing zoning for, or cause rezoning of, forest land (as defined in Public Resources Code section 12220(g)), timberland (as defined by Public Resources Code section 4526), or timberland zoned Timberland Production (as defined by Government Code section 51104(g))?

| | | | X |

Olivenhain Reservoir, Lake Jennings, Lake Poway, San Dieguito Reservoir, Sweetwater Reservoir

No forest land, timberland, or Timberland Production lands occur within the project area. Therefore, no related impact would occur.

d) Result in the loss of forest land or conversion of forest land to non-forest use?

| | | | X |

Olivenhain Reservoir, Lake Jennings, Lake Poway, San Dieguito Reservoir, Sweetwater Reservoir

See II.c) above. Because no forest land exists in the project area, no related impact would occur.
Environmental Impact Evaluation

<table>
<thead>
<tr>
<th>Event Description</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation Incorporated</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>e) Involve other changes in the existing environment which, due to their location or nature, could result in conversion of Farmland, to non-agricultural use or conversion of forest land to non-forest use?</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Olivenhain Reservoir, Lake Jennings, Lake Poway, San Dieguito Reservoir, Sweetwater Reservoir

Application of algaecides to the reservoirs would not lead to changes in the environment that would convert Farmland to non-agricultural use or forest-land to non-forest use. The algaecides would be applied directly to the water and would affect only the algae in the water. Therefore, there is no impact.

III. AIR QUALITY.

III. Air Quality

Would the project:

a) Conflict with or obstruct implementation of the applicable air quality plan?

<table>
<thead>
<tr>
<th></th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation Incorporated</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Olivenhain Reservoir, Lake Jennings, Lake Poway, San Dieguito Reservoir, Sweetwater Reservoir

The proposed project would involve the infrequent use of delivery trucks for transportation of algaecides to the subject reservoirs and the use of boats for application and monitoring. Applications would entail a single delivery truck trip to the respective reservoir’s operations facility, and operation of a single boat to apply the product, except at San Dieguito Reservoir, where copper is applied through an in-line injection system, and operation of a single boat for pre- and post-application monitoring. The use of this equipment would be sporadic and last for a short duration of time. Any emissions release from the project equipment would be negligible. Therefore, project implementation would not conflict with or obstruct implementation of the applicable air quality plan. This impact is less than significant.

b) Violate any air quality standard or contribute substantially to an existing or projected air quality violation?

<table>
<thead>
<tr>
<th></th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation Incorporated</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Olivenhain Reservoir, Lake Jennings, Lake Poway, San Dieguito Reservoir, Sweetwater Reservoir

See III.a) above. Project activities would result in minimal vehicle emissions from trucks and boats for the transportation and application of the algaecide and monitoring in the reservoirs. Application events would not occur often, and would not result in long-term emissions. Therefore, this impact would be less than significant.
Environmental Impact Evaluation

<table>
<thead>
<tr>
<th>c) Result in a cumulatively considerable net increase of any criteria pollutant for which the project region is non-attainment under an applicable federal or state ambient air quality standard (including releasing emissions which exceed quantitative thresholds for ozone precursors)?</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation Incorporated</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Olivenhain Reservoir, Lake Jennings, Lake Poway, San Dieguito Reservoir, Sweetwater Reservoir

See III.a) and III.b) above. Project-related emissions would be negligible and would not contribute considerably to a net increase for any criteria pollutants in the San Diego region. This impact is less than significant.

d) Expose sensitive receptors to substantial pollutant concentrations?

<table>
<thead>
<tr>
<th>Olivenhain Reservoir, Lake Jennings, Lake Poway, San Dieguito Reservoir, Sweetwater Reservoir</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitive receptors include residences, schools, playgrounds, child care centers, athletic facilities, long-term health care facilities, rehabilitation centers, convalescent centers, and retirement homes. The nearest sensitive receptors to the proposed project are residential properties scattered around the reservoirs and park uses adjacent to certain reservoirs. The algaecides would be applied directly to the reservoirs in either a solid or liquid form, and would not contribute to air contaminants. Spray application at Lake Jennings are not conducted when winds exceed 10 miles per hour in order to ensure maximum control of the Cutrine Plus application and prevent any spray clouds from escaping the treatment zone. Minimal amounts of exhaust would be created by trucks and boats during the application and monitoring process at the reservoirs, but this would not create a substantial amount of pollutants in the area that would be received by these receptors. Therefore, no impact would occur.</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

e) Create objectionable odors affecting a substantial number of people?

<table>
<thead>
<tr>
<th>Olivenhain Reservoir, Lake Jennings, Lake Poway, San Dieguito Reservoir, Sweetwater Reservoir</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exhaust odors would be emitted by trucks and boats during algaecide application. However, the exhaust is highly diffusive and would be created only in minimal amounts in isolated incidents, so nearby receptors would not be significantly affected. Copper sulfate and citric acid are odorless substances. Furthermore, the algaecides are being applied to reduce or remove algae in the reservoirs, which would also reduce the objectionable odors created by nuisance algae. Therefore, no impact would occur.</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Environmental Impact Evaluation

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation Incorporated</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
</table>

IV. BIOLOGICAL RESOURCES. Would the project:

a) Have a substantial adverse effect, either directly or through habitat modifications, on any species identified as a candidate, sensitive, or special status species in local or regional plans, policies, or regulations, or by the California Department of Fish and Game or U.S. Fish and Wildlife Service?

| | | | X |

To assess the potential for the project to result in a significant impact on sensitive plant or wildlife species, AECOM first conducted a search of the California Department of Fish and Wildlife (CDFW) California Natural Diversity Database (CNDDB), generating a separate list for each subject reservoir and a surrounding 1-mile radius around the edge of respective reservoir. Sensitive species identified in the database include species listed as endangered or threatened pursuant to the federal Endangered Species Act or California Endangered Species Act, rare plant species identified by the California Native Plant Society, and species listed as State Species of Special Concern by CDFW. AECOM reviewed the search results and then considered the potential for each of the identified species to be present within or adjacent to the reservoir such that they would be likely to come into contact with reservoir water, based on a review of SANDAG regional vegetation mapping to characterize the actual habitats present on-site. For those species that were considered to have potential to occur at the reservoirs based on habitat presence, AECOM considered the potential for these species to be significantly affected by copper application activities, including the temporary increase in copper concentrations in reservoir water. The analysis focused on species that would have the potential to reside or forage in the reservoirs or in wetland habitat on the edges of the reservoirs, because those would be the species that would have the most potential to come into contact with elevated copper levels during and after application. Upland species that are not known to be active in these wetland habitats or to forage in open water were removed from consideration because they would be unlikely to come into contact with elevated copper levels. The analysis concluded that while several special-status species may occur at or adjacent to the reservoirs, the project’s impact would be less than significant because these species would not have the potential come into contact with harmful concentrations of copper. The results are summarized below for each subject reservoir.

Copper treatments at the subject reservoirs would result in short-term increases in dissolved copper in the reservoir water. Copper would not be applied directly to land or at the edges of reservoirs. As stated in the General Permit, the registration process for pesticides in California includes evaluation of a product’s chemical data by EPA and the California Department of Pesticide Regulation “to ensure that a product used according to label instructions will cause no harm or adverse impact on non-target organisms that cannot be reduced or mitigated with protective measures or use restrictions.” The copper-based products discussed in this MND are algacides with approved registration labels that explicitly allow direct application to water bodies.

According to the U.S. Environmental Protection Agency’s (EPA) “Copper Facts” sheet (EPA 2008), copper can be toxic in high concentrations, but it is also an important essential trace element for terrestrial animals, and many terrestrial animals have the ability to cope with some amount of excess copper exposure by storing it in the liver and bone marrow. The factsheet states that copper is highly toxic to most aquatic species, with the main cause of copper toxicity to fish and aquatic invertebrates being...
through rapid binding of copper to the gill membranes, which causes damage and interferes with osmoregulatory processes. However, the long-term biological impacts when copper is applied to reservoirs in the amounts needed to control algae are lessened, because the applied copper settles out of the water as it is taken up by the targeted algae and becomes bound to the bottom sediments, where it is biologically unavailable to organisms that are active within the reservoir water. Settlement rates for copper are dependent on several different factors, including water temperature, turbidity, pH, dissolved solids in the water, and oxidation reduction potential. The EPA states that copper strongly absorbs to organic matter, carbonates, and clay, thereby reducing the bioavailability of copper (EPA 2015). While copper has the ability to bioconcentrate in certain fish organs, the EPA considers this to have a low potential to occur in the quantities applied for algacide purposes. Bioavailability of copper in bottom sediments is highly variable, and appears to be correlated with sediment characteristics, including pH, sediment particle size, cation exchange capacity, and other factors (Willis 2012). The three participating agencies that allow fishing at their reservoirs for recreational purposes—HWD, Poway, and Sweetwater—have not observed fish kill incidents after copper application and have no records that such fish kills have occurred in the past (Helix Water District 2015; City of Poway 2015; Sweetwater Authority 2015).

Olivenhain Reservoir

The CNDDB search conducted for Olivenhain Reservoir identified eight special-status plant species and 12 special-status wildlife species based on the species’ regional distribution, as shown in Table 1.

Table 1: CNDDB Search Results at Olivenhain Reservoir

<table>
<thead>
<tr>
<th>Common Name</th>
<th>Scientific Name</th>
<th>Status</th>
<th>Habitat</th>
<th>Habitat is not Present in Project Area; Species Eliminated from Further Consideration</th>
<th>Habitat is Present in Project Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Encinitas baccharis</td>
<td>Baccharis vanessae</td>
<td>CNPS-1, SE, FT</td>
<td>Low-growing chaparral dominated by chamise, in Encinitas region, grows nearby Del Mar manzanita, Mojave yucca, and mission manzanita</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>felt-leaved monardella</td>
<td>Monardella hypoleuca ssp lanata</td>
<td>CNPS-1</td>
<td>Chaparral understory, beneath mature strands of Chamise in xeric conditions</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Orcutt’s brodiaea</td>
<td>Brodiaea occulta</td>
<td>CNPS-1</td>
<td>Vernally moist grasslands, mima mound topography, and periphery of vernal pools</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Common Name</td>
<td>Scientific Name</td>
<td>Status</td>
<td>Habitat</td>
<td>Habitat is not Present in Project Area; Species Eliminated from Further Consideration</td>
<td>Habitat is Present in Project Area</td>
</tr>
<tr>
<td>------------------------</td>
<td>--</td>
<td>----------</td>
<td>---</td>
<td>--</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>Robinson's pepper-grass</td>
<td>Lepidium virginicum var. robinsonii</td>
<td>CNPS-1</td>
<td>Openings in chaparral and sage scrub, away from coast in foothill elevations, typical sites are relatively dry and exposed</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>San Diego sagewort</td>
<td>Ariemmis palmeri</td>
<td>CNPS-4</td>
<td>Coastal sage scrub, riparian scrub or woodland communities, and chaparral below 1970 feet, also along drainages</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>sea dahlia</td>
<td>Leptosyne maritima</td>
<td>CNPS-2</td>
<td>coastal sage scrub, within coastal bluffs</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>summer holly</td>
<td>Comarestaphylis diversifolia ssp. diversifolia</td>
<td>CNPS-1</td>
<td>Southern mixed chaparral, on mesic north-facing slopes</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>wart-stemmed ceanothus</td>
<td>Ceanothis verrucosus</td>
<td>CNPS-1</td>
<td>Coastal chaparral with chamise and Mission Manzanita</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>REPTILES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>coast horned lizard</td>
<td>Phrynosoma blainville</td>
<td>CSSC</td>
<td>Lowlands along sandy washes with scattered low bushes</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>coast patch-nosed snake</td>
<td>Salvadora hexaleps virgulata</td>
<td>CSSC</td>
<td>Coastal slope with coastal sage scrub, chaparral, riparian, grasslands, and agricultural fields, but with open habitat with friable or sandy soils, but with some cover</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>coastal whiptail</td>
<td>Aspidoscelis tigris stoneyeri</td>
<td></td>
<td>Deserts and semiarid habitats from sea-level to 7000 feet, often associated with dense vegetation like chaparral and sage scrub around sandy washes and streambeds</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>orange-throated whiptail</td>
<td>Aspidoscelis hyperythra</td>
<td>CSSC</td>
<td>Coastal chaparral and thornsce, within washes, streams, terraces, and other sandy areas associated with some perennial plants</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>red-diamond rattlesnake</td>
<td>Crotalus ruber</td>
<td>CSSC</td>
<td>Chaparral, coastal sage scrub, along creek banks, and in granite rock outcrops or piles of debris</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
Of these species identified in the CNDDDB search, AECOM concluded that none of the plant species has the potential to exist in or adjacent to the reservoir because these species are found in sage scrub and chaparral habitat, which would not be affected by copper application at Olivenhain Reservoir. Therefore,
the project would not have a significant impact on any of the special-status plant species identified for Olivenhain Reservoir.

One of the 12 CNDDB wildlife species for Olivenhain Reservoir—the western mastiff bat (*Eumops perrotts californicus*)—was identified as having potential to use the reservoir as a drinking water source. Western mastiff bat is a CDFW State Species of Special Concern, though it is not a covered species under the Water Authority’s Natural Communities Conservation Plan/Habitat Conservation Plan (NCCP/HCP). This bat species typically inhabits areas featuring caves, rock crevices, or even abandoned buildings, but is also known to forage over 15 miles from its roost sites and drink from large water impoundments. Western mastiff bat’s preferred prey consists of terrestrial invertebrates, so this species is not likely to forage for food on Olivenhain Reservoir, but western mastiff bat has the potential to drink from Olivenhain Reservoir. However, this species is not likely to be affected by increased copper concentrations at Olivenhain Reservoir. If western mastiff bat drinks from the reservoir, it would do so from the reservoir’s immediate surface, which would only experience high concentrations of copper immediately following an application, before the chemical would start sinking and mixing with subsurface water. Since algaecide applications at Olivenhain Reservoir would be performed during the day, when western mastiff bat is inactive, the species would not be present to experience an extended exposure to high concentrations of the chemical. Therefore, the western mastiff bat is not likely to ingest large concentrations of copper, and the project would not have a significant impact on this species.

No other special-status species would have the potential to be affected by algaecide application at Olivenhain Reservoir. Therefore, the project would have a less than significant impact at Olivenhain Reservoir.

Lake Jennings

The CNDDB search conducted for Lake Jennings identified four special-status plant species and 16 special-status wildlife species based on the species’ regional distribution, as shown in Table 2.

<table>
<thead>
<tr>
<th>Common Name</th>
<th>Scientific Name</th>
<th>Status</th>
<th>Habitat</th>
<th>Habitat is not Present in Project Area; Species Eliminated from Further Consideration</th>
<th>Habitat is Present in Project Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abrams' spurge</td>
<td>Chamaesyce abramsiana</td>
<td>CNPS-2</td>
<td>Creosote Bush Scrub, sandy flats and open areas</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>decumbent goldenbush</td>
<td>Isocoma menziesii var. decumbens</td>
<td>CNPS-1</td>
<td>Coastal Sage Scrub, intermixed with grassland, wetland-riparian, more partial to clay soils</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Lake Jennings

The CNDDB search conducted for Lake Jennings identified four special-status plant species and 16 special-status wildlife species based on the species’ regional distribution, as shown in Table 2.
<table>
<thead>
<tr>
<th>Common Name</th>
<th>Scientific Name</th>
<th>Status</th>
<th>Habitat</th>
<th>Habitat is not Present in Project Area; Species Eliminated from Further Consideration</th>
<th>Habitat is Present in Project Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>delicate clarkia</td>
<td>Clarkia delticola</td>
<td>CNPS-1</td>
<td>Periphery of oak woodlands and cismontane Chaparral haunts, partially shaded by tree canopy or large shrubs, and typically mesic situations</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Ramona horkelia</td>
<td>Horkela truncata</td>
<td>CNPS-1</td>
<td>Chamise Chaparral, Foothill Woodland</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>REPTILES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>coast horned lizard</td>
<td>Phrynosoma blairvila</td>
<td>CSSC</td>
<td>Lowlands along sandy washes with scattered low bushes</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Coronado Island skink</td>
<td>Plestodon skiltonianus interpataetals</td>
<td>CSSC</td>
<td>Wide variety ranging from coastal sage, chaparral, oak woodlands, pion-jumper, riparian woodlands, and pine forests, restricted to more mesic micro-habitats</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>orange-throated whiptail</td>
<td>Aspidoscelis hyperythia belding</td>
<td>CSSC</td>
<td>Coastal chaparral and thornscrub, within washes, streams, terraces, and other sandy areas associated with some perennial plants</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>rosy boa</td>
<td>Charina trivirgata</td>
<td></td>
<td>Dry rocky brushlands and arid habitats, usually near intermittent streams, also needs vegetation or rock outcrops for shelter</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>silvery legless lizard</td>
<td>Annuella pulchra pulchra</td>
<td>CSSC</td>
<td>Veg communities include coastal dunes, chaparral, pine-oak woodland, and streamside growth of sycamores, cottonwoods, or oaks, with loose, moist, warm soil for burrowing, underneath leaf litter for cover</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>BIRDS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>coastal cactus wren</td>
<td>Campylorhynchus brunneicapillus sandeogenus</td>
<td>CSSC</td>
<td>Coastal sage scrub with extensive stands of prickly pear or cholla cacti</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>coastal California gnatcatcher</td>
<td>Polioptila californica californica</td>
<td>FT, CSSC</td>
<td>Diegan coastal sage scrub, dominated by California sagebrush and flat-top buckwheat</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
Of the four plant species identified in the CNDDB search, AECOM concluded that none of the species have the potential to exist in or adjacent to the reservoir because these species are found in creosote scrub, sage scrub, woodlands, and chaparral habitat, which would not be affected by copper application at Lake Jennings. Therefore, the project would not have a significant impact on any of the special-status plant species identified for Lake Jennings.

Of the 16 wildlife species identified in the CNDDB search for Lake Jennings, AECOM concluded that none of the species have potential to be present in or adjacent to the reservoir such that they could be exposed to elevated copper levels during or after algaecide application Two State Species of Special Concern bat species—big free-tailed bat (*Nyctinomops macrotis*) and pallid bat (*Antrozous pallidus*)—
were identified in the CNDDB search, but unlike the western mastiff bat mentioned above in the Olivenhain Reservoir discussion, these species do not have high potential to use Lake Jennings as a water source, and they are not likely to forage on the reservoir. Therefore, the project would not result in a significant impact on sensitive species.

No other special-status species would have the potential to be affected by algaecide application at Lake Jennings. Therefore, the project would have a less than significant impact at Lake Jennings.

Lake Poway

The CNDDB search conducted for Lake Poway identified three special-status plant species and three special-status wildlife species based on the species' regional distribution, as shown in Table 3.

Table 3: CNDDB Search Results at Lake Poway

<table>
<thead>
<tr>
<th>Common Name</th>
<th>Scientific Name</th>
<th>Status</th>
<th>Habitat</th>
<th>Habitat is not Present in Project Area; Species Eliminated from Further Consideration</th>
<th>Habitat is Present in Project Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLANTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>delicate clarkia</td>
<td>Clarkia delicata</td>
<td>CNPS-1</td>
<td>Periphery of oak woodlands and cismontane Chaparral haunts, partially shaded by tree canopy or large shrubs, and typically mesic situations</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Robinson's peppergrass</td>
<td>Lepidium virginicum var robisonii</td>
<td>CNPS-1</td>
<td>Openings in chaparral and sage scrub, away from coast in foothill elevations, typical sites are relatively dry and exposed</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>San Diego sagewort</td>
<td>Artemisia palmeri</td>
<td>CNPS-4</td>
<td>Coastal sage scrub, riparian scrub or woodland communities, and chaparral below 2000 feet, also along drainages</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>BIRDS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>coastal California gnatcatcher</td>
<td>Polioptila californica californica</td>
<td>FT, CSSC</td>
<td>Diegan coastal sage scrub, dominated by California sagebrush and flat-top buckwheat</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>southern California rufous-crowned sparrow</td>
<td>Amphipila ruficeps canescens</td>
<td>CSSC</td>
<td>Grassy or rocky slopes with open scrub at elevations from sea level to 2000 feet, most populations occur in coastal sage scrub</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>MAMMALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>San Diego desert woodrat</td>
<td>Neotoma lepida intermedia</td>
<td>CSSC</td>
<td>Habitats with patches of prickly pear or cholla, or with rock outcrops or low shrubs</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

FE = Federally Listed as Endangered

FT = Federally Listed as Threatened
Of these species identified in the CNDDB search, AECOM concluded that none of the plant species has the potential to exist in or adjacent to the reservoir because these species are found in sage scrub and chaparral habitat and at the edges of oak woodland habitat, none of which would be affected by copper application at Lake Poway. Therefore, the project would not have a significant impact on any of the special-status plant species identified for Lake Poway.

Similarly, none of the three wildlife species identified in the Lake Poway CNDDB search were considered to have potential to be present in or adjacent to the reservoir such that they could be exposed to elevated copper levels during or after algaecide application. Therefore, the project would not result in a significant impact on sensitive species.

No other special-status species would have the potential to be affected by algaecide application at Lake Poway. Therefore, the project would have a less than significant impact at Lake Poway.

San Dieguito Reservoir

The CNDDB search conducted for San Dieguito Reservoir identified 11 special-status plant species and three special-status wildlife species based on the species’ regional distribution, as shown in Table 4.

<table>
<thead>
<tr>
<th>Common Name</th>
<th>Scientific Name</th>
<th>Status</th>
<th>Habitat</th>
<th>Habitat is not Present in Project Area; Species Eliminated from Further Consideration</th>
<th>Habitat is Present in Project Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLANTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>California adolphia</td>
<td>Adolphia californica</td>
<td>CNPS-2</td>
<td>Within Diegan Sage scrub, also peripheral of chaparral habitats on hillsides near creeks</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Nuttall's scrub oak</td>
<td>Quercus dumosa</td>
<td>CNPS-1</td>
<td>Lowlands from sea level to 1000 feet in open chaparral and coastal sage scrub</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Orcutt's brodiaea</td>
<td>Brodiaea orcutii</td>
<td>CNPS-1</td>
<td>Varnally moist grasslands, mima mound topography, and periphery of vernal pools</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Common Name</td>
<td>Scientific Name</td>
<td>Status</td>
<td>Habitat</td>
<td>Habitat is not Present in Project Area; Species Eliminated from Further Consideration</td>
<td>Habitat is Present in Project Area</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-------------------------------</td>
<td>--------------</td>
<td>--</td>
<td>--</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>Orcutt's spineflower</td>
<td>Chorizanthe orcuttiana</td>
<td>CNPS-1, SE, FE</td>
<td>Coastal sage scrub and coastal chaparral openings and mesas in chamise, with loose sandy substrate</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Palmer's grapplinghook</td>
<td>Harpgonella palmeri</td>
<td>CNPS-4</td>
<td>clay soils and burns below 3260 feet as well as open grassy slopes or open Diegan Sage Scrub</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>San Diego goldenstar</td>
<td>Bloomeria clevelandi</td>
<td>CNPS-1</td>
<td>Valley grasslands coastal sage scrub, and chaparral, near Mima mound topography or vicinity of vernal pools</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>San Diego marshelder</td>
<td>Iva hayesiana</td>
<td>CNPS-2</td>
<td>Creeks or intermittent streambeds, open riparian canopy to allow sunlight, sandy alluvial embankments with cobbles</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>San Diego sagewort</td>
<td>Artemisia palmeri</td>
<td>CNPS-4</td>
<td>Coastal sage scrub, riparian scrub or woodland communities, and chaparral below 2000 feet, also along drainages</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>sticky dudleya</td>
<td>Dudleya viscosa</td>
<td>CNPS-1</td>
<td>Shallow soils and cracks on vertical rock faces, steep canyon slopes</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>summer holly</td>
<td>Comarostaphyls diversifolia ssp Diversifolia</td>
<td>CNPS-1</td>
<td>Southern mixed chaparral, on mesic north-facing slopes</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>wart-stemmed canneothus</td>
<td>Ceanothus verrucosus</td>
<td>CNPS-2</td>
<td>Coastal chaparral with chamise and Mission Manzanita</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

BIRDS

- Coastal cactus wren: *Campylorhynchus brunneicapillus sandiegensis* (CSSC)
 - Coastal sage scrub with extensive stands of prickly pear or cholla cacti | X
- Coastal California gnatcatcher: *Polioptila californica californica* (FT, CSSC)
 - Diegan coastal sage scrub, dominated by California sagebrush and flat-top buckwheat | X

MAMMALS

- Dulzura pocket mouse: *Chaetodipus californicus femoralis* (CSSC)
 - Coastal sage scrub, chaparral, woodlands, and grasslands, often at the scrub-grassland interface | X

FE = Federally Listed as Endangered
FT = Federally Listed as Threatened
SE = State Listed as Endangered
Of the 11 special-status plant species identified in the CNDDB search, AECOM concluded that two of the plant species—San Diego marsh-elder (*Iva hayesiana*) and San Diego sagewort (*Artemisia palmeri*)—have the potential to exist adjacent to the reservoir based on the presence of suitable wetland habitat, as mapped in the SANDAG regional vegetation data. San Diego marsh-elder is an evergreen herbaceous perennial shrub that occupies the margins of permanent alkaline streams and playas near the coast. San Diego sagewort is a perennial deciduous shrub that occupies drainages and riparian scrub from the foothills to the coast. Both of these plants are considered sensitive by the California Native Plant Society due to their limited distribution and threats from water channelization and coastal development. These plants are terrestrial species that may be found in or near drainages that lead into San Dieguito Reservoir. They are not found in open water, so they are unlikely to become inundated by copper-treated water that enters the reservoir after injection at the Cielo Pump Station. Furthermore, the EPA has determined that copper sulfate does not pose a risk to freshwater vascular plants or estuarine/marine plants (EPA 2008), so the potential exposure of these plants to copper as a result of the project would not create a significant impact.

None of the three wildlife species identified in the San Dieguito Reservoir CNDDB search were considered to have potential to be present in or adjacent to the reservoir such that they could be exposed to elevated copper levels during or after algaecide application. Therefore, the project would not result in a significant impact on sensitive species.

No other special-status species would have the potential to be affected by algaecide application at San Dieguito Reservoir. Therefore, the project would have a less than significant impact at San Dieguito Reservoir.

Sweetwater Reservoir

The CNDDB search conducted for Sweetwater Reservoir identified 23 special-status plant species and 28 special-status wildlife species based on the species' regional distribution, as shown in Table 5. In addition to the 28 wildlife species identified in the CNDDB search, AECOM considered two more species based on input from Sweetwater biologists regarding special-status species known to occur near the Sweetwater Reservoir.
Table 5: CNDDB Search Results at Sweetwater Reservoir

<table>
<thead>
<tr>
<th>Common Name</th>
<th>Scientific Name</th>
<th>Status</th>
<th>Habitat</th>
<th>Habitats not Present in Project Area; Species Eliminated from Further Consideration</th>
<th>Habitats Present in Project Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLANTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>California adolphia</td>
<td>Adolphia californica</td>
<td>CNPS-2</td>
<td>Within Diegan Sage scrub, also peripheral of chaparral habitats on hillsides near creeks</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>chaparral ragwort</td>
<td>Senecio aphanactis</td>
<td>CNPS-2</td>
<td>Coastal sage scrub, cismontane woodland and alkaline flats</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Dean's milk-vetch</td>
<td>Astragalus deanei</td>
<td>CNPS-1</td>
<td>Open coastal sage scrub, chaparral, or southern oak woodland on dry hillsides between 805 and 1126 feet</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>decumbent goldenbush</td>
<td>Isocoma menziesii var. decumbens</td>
<td>CNPS-1</td>
<td>Coastal Sage Scrub, intermixed with grassland, wetland-riparian, more partial to clay soils</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>desert bedstraw</td>
<td>Galium proliferum</td>
<td>CNPS-2</td>
<td>Creosote Bush Scrub, Joshua Tree Woodland</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>felt-leaved monardella</td>
<td>Monardella hypoleuca ssp. lanata</td>
<td>CNPS-1</td>
<td>Chaparral understory, beneath mature strands of Chamise in xeric conditions</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Laguna Mountains jewelflower</td>
<td>Streptanthus bernardinus</td>
<td>CNPS-4</td>
<td>Chaparral, Yellow Pine Forest</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>mud nama</td>
<td>Nama stenocarpum</td>
<td>CNPS-2</td>
<td>Muddy embankments of ponds, lakes, and rivers</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Munz's sage</td>
<td>Salvia munzii</td>
<td>CNPS-2</td>
<td>Coastal sage scrub below 1640 feet in elevation</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Otay manzanita</td>
<td>Arctostaphylos ootayensis</td>
<td>CNPS-1</td>
<td>Dry slopes in chaparral on metavolcanic peaks, shallow soils with exposed rock flake, endemic to Otay mountain sites</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Otay Mountain ceanothus</td>
<td>Ceanothus ootayensis</td>
<td>CNPS-1</td>
<td>Xeric chamise chaparral, restricted to metavolcanic and gabbroic peaks</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Otay tarplant</td>
<td>Deinandra conjugens</td>
<td>CNPS-1, SE, FT</td>
<td>Fractured clay soils in grasslands or lightly vegetated Diegan sage scrub</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Palmer's grapplinghook</td>
<td>Harpagonella palmeri</td>
<td>CNPS-4</td>
<td>Clay soils and bums below 3280 feet as well as open grassy slopes or open Diegan Sage Scrub</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Parry's tetracoccus</td>
<td>Tetracoccus dioicus</td>
<td>CNPS-1</td>
<td>Low-growing chamise chaparral, with moderately dense canopy cover</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Common Name</td>
<td>Scientific Name</td>
<td>Status</td>
<td>Habitat</td>
<td>Habitat is not Present in Project Area; Species Eliminated from Further Consideration</td>
<td>Habitat is Present in Project Area</td>
</tr>
<tr>
<td>-------------</td>
<td>-----------------</td>
<td>--------</td>
<td>---------</td>
<td>--</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>purple stemodia</td>
<td>Stemodia durantifolia</td>
<td>CNPS-2</td>
<td>Riparian habitats, on wet sand or rocks, drying streambeds lower than 1300 feet</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Robinson's pepper-grass</td>
<td>Lepidium virginicum var. robinsonii</td>
<td>CNPS-1</td>
<td>Openings in chaparral and sage scrub, away from coast in foothill elevations; typical sites are relatively dry and exposed</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>San Diego ambrosia</td>
<td>Ambrosia pumila</td>
<td>CNPS-1, FE</td>
<td>Valleys or disturbed areas below 470 feet, usually creek beds, seasonally dry drainages, and floodplains</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>San Diego barrel cactus</td>
<td>Ferocactus viridescens</td>
<td>CNPS-2</td>
<td>Diegan sage scrub hillsides; crest of slopes and growing in cobbles, periphery of vernal pools, slopes below 4922 feet</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>San Diego goldenstar</td>
<td>Bloomeria clevelandii</td>
<td>CNPS-1</td>
<td>Valley grasslands coastal sage scrub, and chaparral, near Mima mound topography or vicinity of vernal pools</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>San Diego marshelder</td>
<td>Iva hayesiana</td>
<td>CNPS-2</td>
<td>Creeks or intermittent streambeds, open riparian canopy to allow sunlight, sandy alluvial embankments with cobbles</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>San Diego thornmint</td>
<td>Acanthomintha ilicifolia</td>
<td>CNPS-1, SE, FT</td>
<td>Grassy openings in chaparral or sage scrub with friable or broken clay soils, in clay depressions on mesas</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>spreading navarretia</td>
<td>Navarretia fossalis</td>
<td>CNPS-1, FT</td>
<td>Vernal pools and vernal swales, ditches and other artificial depressions below 1475 feet</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>variegated dudleya</td>
<td>Dudleya variegata</td>
<td>CNPS-1</td>
<td>Openings in sage scrub and chaparral, isolated rocky substrates in open grasslands, proximity to vernal pools</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

INVERTEBRATE

<table>
<thead>
<tr>
<th>Common Name</th>
<th>Scientific Name</th>
<th>Habitat</th>
<th>Habitat is Present in Project Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hermes copper butterfly</td>
<td>Lycaena hermes</td>
<td>Chaparral or coastal sage scrub with redberry</td>
<td>X</td>
</tr>
<tr>
<td>San Diego fairy shrimp</td>
<td>Branchinecita sandiegonensis</td>
<td>Vernal pools on mesas and in roadsides ditches and tire ruts that are shallow</td>
<td>X</td>
</tr>
<tr>
<td>Thorne's hairstreak</td>
<td>Calliphrys thornei</td>
<td>Requires Tecate cypress (Cupressus forbesii) as a host plant for reproduction. Known remaining populations are within the BLM Otay Mountain Wilderness.</td>
<td>X</td>
</tr>
<tr>
<td>Common Name</td>
<td>Scientific Name</td>
<td>Status</td>
<td>Habitat</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-------------------------</td>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>Western beach tiger beetle</td>
<td>Cicindela latesignata</td>
<td></td>
<td>Coastal habitats consisting of salt flats associated with estuaries.</td>
</tr>
<tr>
<td>Western tidal-flat tiger beetle</td>
<td>Cicindela gabbii</td>
<td></td>
<td>Salty coastal habitats including salt marsh, tidal flats, and beaches.</td>
</tr>
</tbody>
</table>

AMPHIBIANS

Species	Scientific Name	Status	Habitat	Habitat is not Present in Project Area; Species Eliminated from Further Consideration	
arroyo toad	*Anaxyrus californicus*	FE, CSSC	Gravely or sandy washes, stream and river banks, and arroyos; adults burrow in upland habitat near washes and streams	X	
Western spadefoot toad	*Spea hammondii*	CSSC	Prefers sandy or gravelly soil in grasslands, open chaparral, and pine-oak woodlands; Breeds in vernal pools and ephemeral ponds.	X	

REPTILES

<p>	Species	Scientific Name	Status	Habitat	Habitat is not Present in Project Area; Species Eliminated from Further Consideration
coast horned lizard	Phrynosoma blainvillii	CSSC	Lowlands along sandy washes with scattered low bushes	X	
orange-throated whiptail	Aspidoscelis hyperyhra	CSSC	Coastal chaparral and thornscrub, within washes, streams, terraces, and other sandy areas associated with some perennial plants	X	
Coastal whiptail	Aspidoscelis tigris stejnegeri	CSSA	Occurs in a variety of habitats, including chaparral, mixed chaparral, desert scrub, alkali scrub, and annual grassland.	X	
red-diamond rattlesnake	Crotalus ruber	CSSC	Chaparral, coastal sage scrub, along creek banks, and in granite rock outcrops or piles of debris	X	
Rosy boa	Charina trivirgata	CSSA	Sparsely distributed in desert and chaparral habitats.	X	
San Diego ringnecked snake	Diadophis punctatus similis	CSSA	Most common in rocky areas within valley-foothill, mixed chaparral, and annual grassland habitats.	X	
Western pond turtle	Emys marmorata	CSSC	Slow moving rivers, streams, and ponds with emergent marsh vegetation without dense canopy, with protruding rocks, vegetation mats, or submerged logs for sunning	X	
<table>
<thead>
<tr>
<th>Common Name</th>
<th>Scientific Name</th>
<th>Status</th>
<th>Habitat</th>
<th>Habitat is not Present in Project Area; Species Eliminated from Further Consideration</th>
<th>Habitat is Present in Project Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>coastal cactus wren</td>
<td>Campylorhynchus brunneicapillus</td>
<td>CSSC</td>
<td>Coastal sage scrub with extensive stands of prickly pear or cholla cacti</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>coastal California gnatcatcher</td>
<td>Polioptila californica</td>
<td>FT, CSSC</td>
<td>Degan coastal sage scrub, dominated by California sagebrush and flat-top buckwheat</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Bell’s sage sparrow</td>
<td>Artemisospiza bellicollis</td>
<td>CSWL</td>
<td>Coastal sage scrub and open chaparral habitats</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>California horned lark</td>
<td>Eremophila alpestris</td>
<td>CSWL</td>
<td>Inhabits sandy ocean or bay shores, grasslands, and open scrublands and woodlands with low, sparse vegetation</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Cooper’s hawk</td>
<td>Accipiter cooperi</td>
<td>CSWL (nesting)</td>
<td>Uncommon migrant and winter visitor to woodlands, parks, and residential areas</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Double-crested cormorant</td>
<td>Phalacrocorax auritus</td>
<td>CSWL</td>
<td>Found near fresh and saltwater near coastline, inshore waters, beaches, inland rivers, and lakes</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Least Bell’s vireo</td>
<td>Vireo bellus pusillus</td>
<td>FE, SE, CSSC</td>
<td>Summer resident of low riparian growth in the vicinity of water or in dry river bottoms Nests are placed along the margins of bushes, usually Salix, Baccharis, or Prosopis</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Southern California rufous-crowned sparrow</td>
<td>Amophila ruficeps canescens</td>
<td>CSWL</td>
<td>Uncommon to fairly common localized resident of sage scrub on steep rocky slopes</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Southwestern willow flycatcher</td>
<td>Empidonax traillii extimus</td>
<td>FE, SE</td>
<td>Typically nests in riparian woodlands that are marshy or at water’s edge</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Swanson’s hawk</td>
<td>Buteo swansoni</td>
<td>ST</td>
<td>In southern California, now mostly limited to spring and fall transient Breeds and roosts in open stands of trees in juniper-sage flats, riparian areas, and in oak savannah Forages in adjacent grasslands or suitable agricultural fields, or livestock pastures</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Tricolored blackbird</td>
<td>Agelaius tricolor</td>
<td>SE, CSSC (nesting colony)</td>
<td>Localized resident, nests in large, dense colonies in freshwater marsh, forages in agricultural areas, lakeshores and damp lawns</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Common Name</td>
<td>Scientific Name</td>
<td>Status</td>
<td>Habitat</td>
<td>Habitat is not Present in Project Area; Species Eliminated from Further Consideration</td>
<td>Habitat is Present in Project Area</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-----------------------</td>
<td>----------------------</td>
<td>---</td>
<td>--</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>Yellow warbler</td>
<td>Setophaga petechia</td>
<td>CSSC (nesting)</td>
<td>Occupies marshes, swamps, streamside groves, willow and alder thickets, open woodlands with thickets, orchards, gardens, and open mangroves</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Yellow-breasted chat</td>
<td>Icteria virens</td>
<td>CSSC (nesting)</td>
<td>The breeding population is confined to riparian woodlands in the coastal lowlands</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>MAMMALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>American badger</td>
<td>Taxidea taxus</td>
<td>CSSC</td>
<td>Primarily uses drier, relatively open stages of scrub, forest, and herbaceous habitats that have friable soils</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Pocketed free-tailed bat</td>
<td>Nyctomops femorosaccus</td>
<td>CSSC</td>
<td>Rare in California, but where it is present, the species’ habitat preference includes pinyon-juniper woodlands, desert scrub, desert succulent shrub, desert riparian, desert wash, alkali desert scrub, Joshua tree, and palm oasis</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>San Diego black-tailed jackrabbit</td>
<td>Lepus californicus bennettii</td>
<td>CSSC</td>
<td>Habitats include coastal sage scrub, chaparral, and grasslands</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

FE = Federally Listed as Endangered
FT = Federally Listed as Threatened
SE = State Listed as Endangered
ST = State Listed as Threatened
CSSC = State Listed Species of Concern
CSWL = State Watch List
CSSA = State Special Animal

CNPS-1 = California Native Plant Society Listed Rare, Threatened, or Endangered in CA only
CNPS-2 = California Native Plant Society Listed Rare, Threatened, or Endangered
CNPS-4 = California Native Plant Society Listed as Limited Distribution

Of the 23 special-status plant species identified in the CNDDB search, AECOM concluded that three species are known to exist at the Sweetwater reservoir. These include San Diego marsh-elder (*Iva hayesiana*), decumbent goldenbush (*Isocoma menziesii* var. *decumbens*), and mud nana (*Nama stenocarpum*). One other species that appeared in the CNDDB search, San Diego ambrosia (*Ambrosia pumila*), has the potential to occur at the reservoir based on the presence of suitable wetland habitat, as mapped in the SANDAG regional vegetation data. San Diego marsh-elder is an evergreen herbaceous perennial shrub that occupies the margins of permanent alkaline streams and playas near the coast. Decumbent goldenbush is a low-growing perennial evergreen shrub that occupies chaparral and coastal...
scrub. Mud nama is a low-growing annual plant found in marshes, swamps, and lake margins. San Diego ambrosia is a low-growing evergreen rhizomatous perennial shrub that occurs most frequently on alluvial soils in valleys and floodplains that are seasonally dry. These plants are all terrestrial species that may be found in or near drainages that lead into Sweetwater Reservoir or, in the case of mud nama, on the reservoir’s muddy embankments. They do not grow in open water, so they are unlikely to become inundated by copper-treated water in the reservoir. Furthermore, the EPA has determined that copper sulfate does not pose a risk to freshwater vascular plants or estuarine/marine plants (EPA 2008), so the potential exposure of these plants to copper as a result of the project would not create a significant impact.

Fifteen of the 30 wildlife species identified in the Sweetwater Reservoir CNDDB search and identified by Sweetwater biologists were considered to have potential to be present in habitat immediately adjacent to the reservoir. Seven of these species are reptiles, including the following: coast horned lizard (Phrynosoma blainvilli), orange-throated whiptail (Aspidoscelis hyperythra), red-diamond rattlesnake (Crotalus ruber), and western pond turtle (Emys marmorata) (all CDFW State Species of Special Concern), as well as coastal whiptail (Aspidoscelis tigris stenegeri), rosy boa (Charina trivirgata), and San Diego ringnecked snake (Diadophis punctatus similis) (CDFW State Special Animals). With the exception of the western pond turtle and red-diamond rattlesnake, they are primarily terrestrial species that would typically not enter the reservoir water, and their target prey base consists of terrestrial invertebrates and rodents, so they are not likely to have any exposure to copper-treated water as a result of the project. While the western pond turtle would be expected to occasionally enter the reservoir, it spends the majority of the time in streams, secluded ponded areas, or in basking habitat along the edge of streams and is unlikely to occur in the open water areas that are treated with copper. The red-diamond rattlesnake has been documented swimming in open water, but this behavior is not a regular or common occurrence. The potential for this species to be swimming in the application area on the reservoir’s western side is very limited, and it is unlikely this species would come into contact with copper-treated water.

Additionally, the rosy boa and the coast horned lizard have also been documented in the upper riparian zone at Sweetwater Reservoir, but this habitat is distant from the areas of copper-based algaecide application and the potential for these species to come into contact with copper-treated water is very limited. Therefore, the project’s impact on these special-status reptile species is less than significant.

Two amphibian species with potential to occur in aquatic habitats adjacent to the reservoir are arroyo toad (Bufo californicus) and the western spadefoot toad (Spea hammondii). The arroyo toad is a species listed by USFWS as endangered pursuant to the federal Endangered Species Act, and is listed as a CDFW State Species of Special Concern. Outside of the arroyo toad’s springtime breeding season, which is from March 1 through June 30, this species inhabits uplands areas with moist soils, typically in the interface between upland and riparian areas near streams. During the breeding season, arroyo toads enter slow-moving streams with adjacent sandbars, where quiet backwaters are available for egg laying. The species does not enter open water. Formerly occupied arroyo toad habitat is located upstream of the Sweetwater Reservoir along the Sweetwater River. The habitat is largely over-grown and arroyo toad has not been detected for many years. The western spadefoot toad is a CDFW State Species of Special Concern. This species occupies moist upland burrows for the majority of the year, only entering shallow rain-filled pools and ponds during the breeding season. Western spadefoot toad would not be expected to occur within the open water of the reservoir. Copper application at Sweetwater Reservoir would occur in open water, and high concentrations of copper would not migrate to formerly occupied arroyo toad or western spadefoot
toad habitat upstream of the reservoir. Therefore, the project would not result in a significant impact on arroyo toad or western spadefoot toad.

Thirteen special-status bird species are known to occur in the vicinity of the Sweetwater Reservoir, all of which have affinities for the various upland and/or wetland vegetation communities within the study area (Table 5, “BIRDS”). Six of those 13 bird species are terrestrial species that would not enter the reservoir water, and their target prey base consists of terrestrial invertebrates and rodents, so they are not likely to have any exposure to copper-treated water as a result of the project. These six birds are coastal cactus wren (*Campylorhynchus brunneicapillus sandiegensis*) (State Species of Concern), coastal California gnatcatcher (*Polioptila californica californica*) (Federally-listed threatened, and a State Species of Concern), Bell’s sage sparrow (*Artemisia piza belli belli*) (State Watch List), California horned lark (*Eremophila alpestris acta*) (State Watch List), southern California rufous-crowned sparrow (*Ammodramus ruficeps canescens*) (State Watch List), and Swainson’s hawk (*Buteo swainsoni*) (State-listed threatened). Therefore, the project’s impact on these special-status reptile species is less than significant.

The other seven bird species are also terrestrial but are strongly associated with riparian and wetland vegetation communities associated with the Sweetwater reservoir. These are double-crested cormorant (*Phalacrocorax auritus*) (State Watch List), least Bell’s vireo (*Vireo bellii pusillus*) (Federally and State-listed endangered, and a State Species of Concern), southwestern willow flycatcher (*Empidonax traillii extimus*) (Federally and State-listed endangered) tricolored blackbird (*Agelaius tricolor*) (State-listed endangered, and State Species of Concern), Cooper’s hawk (*Accipiter cooperi*) (State Watch List), yellow warbler (*Setophaga petechia*) (State Species of Concern), and yellow-breasted chat (*Icteria virens*) (State Species of Concern). With the exception of the double-crested cormorant, these bird species would not be expected to swim, wade, or forage in the reservoir. In the case of the double-crested cormorant, the proposed application locations would be located away from potential rookery sites. Rookeries are colonial nests, and the double-crested cormorant builds their nests from twigs and branches, on cliff ledges, in trees, or occasionally on the ground; as such, rookeries would typically be near but not on water. Additionally, the activities associated with the application of algaecide would be expected to flush the cormorant away from the treated area. Once applied, copper sulfate quickly hydrolyzes and moves down the water column, and the likelihood of direct contact with avian species would be minimized. Terrestrial wildlife species have mechanisms for sequestering and/or eliminating some excess copper levels (EPA 2008). In order to minimize ecological risk and to avoid exposing terrestrial wildlife to high concentrations of copper that could have adverse effects, the EPA requires strict labeling and application guidelines associated with copper pesticides and algaecides, including weather restrictions and steps to minimize spray drift (EPA 2008), which will be strictly adhered to by Sweetwater pursuant to their APAP. Therefore, the project would have a less than significant impact on avian species at Sweetwater Reservoir.

Of the three special-status mammal species documented in the CNDDB query, only the pocketed freetailed bat (*Nyctinomops femorosaccus*) would be expected to utilize the aquatic habitat of the Sweetwater Reservoir. The species is a State Species of Concern, and would be expected to fly over the reservoir during nighttime foraging, to skim the surface while drinking water. Since the application of algaecide would occur during daytime hours, the pocketed free-tailed bat would not be present when copper sulfate is being dispersed, or when the compound is at the surface of the reservoir. The other two mammal species identified in the CNDDB query are the American badger (*Taxidea taxus*) and San Diego black-
tailed jackrabbit (*Lepus californicus bennettii*), which are both terrestrial species that would not be expected to enter the reservoir. Therefore, the application of copper sulfate is not expected to result in significant impacts to mammal species at the Sweetwater Reservoir site.

<table>
<thead>
<tr>
<th>Environmental Impact Evaluation</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation Incorporated</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>b) Have a substantial adverse effect on any riparian habitat or other sensitive natural community identified in local or regional plans, policies, regulations or by the California Department of Fish and Game or U.S. Fish and Wildlife Service?</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Olivenhain Reservoir, Lake Jennings, Lake Poway, San Dieguito Reservoir, Sweetwater Reservoir

The project does not entail vegetation clearing or other activities that could have an adverse effect on riparian habitats or other sensitive natural communities. Project-related application of algaecide would occur in open water at surface water reservoirs or, in the case of San Dieguito Reservoir, through direct injection at the Cielo Pump Station, which then pumps water into a surface water reservoir. Applied copper settles out of water as it is taken up by the targeted algae and becomes bound to bottom sediments. Therefore, significant amounts of copper would not migrate into wetland habitat that exists at the fringes of the subject reservoirs. Furthermore, the EPA has determined that copper sulfate does not pose a risk to freshwater vascular plants or estuarine/marine plants (EPA 2008), so the potential copper exposure to plants that form these wetland communities would not create a significant impact.

Provision IX.4.b of the General Permit requires public entities who obtain an exception to the receiving water limitations on copper concentration to provide certification by a qualified biologist that beneficial uses of receiving waters have been restored upon completion of an algaecide application. This observation and certification process would be incorporated into the monitoring and reporting protocol for all five agencies addressed in this MND. If unforeseen situations arise in which the beneficial uses of receiving waters are adversely affected following an application, then provision IX.5.b of the General Permit requires the agency to implement corrective action by revising its application process and control measures to ensure that the situation is eliminated and will not be repeated in the future.

c) Have a substantial adverse effect on federally protected wetlands as defined by Section 404 of the Clean Water Act (including, but not limited to, marsh, vernal pool, coastal, etc.) through direct removal, filling, hydrological interruption, or other means?

<table>
<thead>
<tr>
<th>Olivenhain Reservoir, Lake Jennings, Lake Poway, San Dieguito Reservoir, Sweetwater Reservoir</th>
</tr>
</thead>
<tbody>
<tr>
<td>The project does not propose direct removal, filling, hydrological interruption, or other disturbance of wetlands or jurisdictional waters. Therefore, no impact would occur.</td>
</tr>
</tbody>
</table>

Mitigated Negative Declaration and Initial Study/Environmental Checklist

San Diego Reservoirs Copper-Based Algaecide MND

Page 41
Environmental Impact Evaluation

<table>
<thead>
<tr>
<th>d) Interfere substantially with the movement of any native resident or migratory fish or wildlife species or with established native resident or migratory wildlife corridors, or impede the use of native wildlife nursery sites?</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant Impact with Mitigation Incorporated</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Olivenhain Reservoir, Lake Jennings, Lake Poway, San Dieguito Reservoir, Sweetwater Reservoir

The project does not entail new construction or modification of existing features that could affect wildlife movement. Therefore, no impact would occur.

<table>
<thead>
<tr>
<th>e) Conflict with any local policies or ordinances protecting biological resources, such as a tree preservation policy or ordinance?</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant Impact with Mitigation Incorporated</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Olivenhain Reservoir, Lake Jennings, Lake Poway, San Dieguito Reservoir, Sweetwater Reservoir

There are no local policies or ordinances pertaining to biological resources that would apply to algae treatment activity at the subject reservoirs. Therefore, no impact would occur.

<table>
<thead>
<tr>
<th>f) Conflict with the provisions of an adopted Habitat Conservation Plan, Natural Community Conservation Plan, or other approved local, regional, or state habitat conservation plan?</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant Impact with Mitigation Incorporated</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Olivenhain Reservoir

The Water Authority conducts capital improvement projects and operations and maintenance (O&M) work within its system pursuant to the Water Authority NCCP/HCP, which was adopted in December 2010 (San Diego County Water Authority 2010). The Water Authority NCCP/HCP is a comprehensive program designed in conjunction with CDFW and USFWS to (1) facilitate conservation and management of plan-specified covered species and habitats associated with Water Authority activities, and (2) contribute to ongoing regional conservation efforts. Section 5.2.14 of the Water Authority NCCP/HCP identifies pest control, including pesticide application, as a covered activity, but does not specify aquatic pest control at Olivenhain Reservoir as part of this activity (nor does it preclude such activity). The project is limited to occasional O&M work at the reservoir that would not have any direct impact on habitat, nor would it result in take of any covered species. Therefore, the project would not rely on the permits for habitat impacts or species impacts obtained by the Water Authority as part of the NCCP/HCP process, and NCCP/HCP reporting is not required for project-related activities at Olivenhain Reservoir. The project would not conflict with provisions of the Water Authority NCCP/HCP, and there would be no impact.
Lake Jennings and Sweetwater Reservoir

HWD and Sweetwater, along with Padre Dam Municipal Water District, formed the Joint Water Agencies (JWA) to prepare a combined NCCP and HCP for land management and conservation of natural habitats and species specific to the projects and O&M work related to these agencies’ systems. However, preparation of the JWA NCCP was terminated in 2012. Therefore, no current habitat conservation plans pertain to activity at Lake Jennings and Sweetwater Reservoir, and there would be no impact.

Lake Poway

Poway adopted its HCP/NCCP in April 1996 (City of Poway 1996). The Poway HCP/NCCP identifies Lake Poway and immediately surrounding lands with the land use designation Open Space-Recreation as active recreation areas, with the lake allowing boating and fishing and the developed park space supporting picnic areas, ball fields, and land areas featuring active recreation that is generally not compatible with open space preservation. The Poway HCP/NCCP does not explicitly allow or prohibit pesticide application at Lake Poway. The project is limited to occasional O&M work at the reservoir that would not have any direct impact on habitat, nor would it result in take of any species covered by Poway’s plan. Therefore, the project would not rely on the permits for habitat impacts or species impacts obtained by the Water Authority as part of the NCCP/HCP process, and NCCP/HCP reporting is not required for project-related activities at Lake Poway. The project would not conflict with provisions of the Water Authority NCCP/HCP, and there would be no impact.

San Dieguito Reservoir

SFID is preparing a subarea plan to the MSCP that will include San Dieguito Reservoir and its surrounding lands, but the plan is in draft form and has not yet been finalized, nor have permits been issued pursuant to the plan (Santa Fe Irrigation District 2012). Therefore, no current habitat conservation plans pertain to activity at San Dieguito Reservoir, and there would be no impact.

V. CULTURAL RESOURCES. Would the project:

| a) Cause a substantial adverse change in the significance of a historical resource as defined in §15064.5? | X |

| b) Cause a substantial adverse change in the significance of an archaeological resource pursuant to §15064.5? | X |
Environmental Impact Evaluation

Olivenhain Reservoir, Lake Jennings, Lake Poway, San Dieguito Reservoir, Sweetwater Reservoir

See V.a) above. No project activities would disturb or adversely affect the significance of an archaeological resource. There would be no impact.

c) Directly or indirectly destroy a unique paleontological resource or site or unique geologic feature?

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation Incorporated</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Olivenhain Reservoir, Lake Jennings, Lake Poway, San Dieguito Reservoir, Sweetwater Reservoir

See V.a) above. No project activities would affect a unique paleontological resource or geologic feature. Project activities would be contained to the open water and therefore would have no impact.

d) Disturb any human remains, including those interred outside of formal cemeteries?

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation Incorporated</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

VI. GEOLOGY AND SOILS.

Would the project:

VI. Geology and Soils

a) Expose people or structures to potential substantial adverse effects, including the risk of loss, injury, or death involving:

i) Rupture of a known earthquake fault, as delineated on the most recent Alquist-Priolo Earthquake Fault Zoning Map issued by the State Geologist for the area or based on other substantial evidence of known fault? Refer to Division of Mines and Geology Special Publication 42.

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation Incorporated</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Olivenhain Reservoir, Lake Jennings, Lake Poway, San Dieguito Reservoir, Sweetwater Reservoir

Project activities are limited to algaecide transportation, application, and water quality monitoring at the subject reservoirs. The project would not develop new structures or expose people to any risk of geologic hazards. There would be no impact.

ii) Strong seismic ground shaking?

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation Incorporated</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Olivenhain Reservoir, Lake Jennings, Lake Poway, San Dieguito Reservoir, Sweetwater Reservoir

See VI.a.- i) above. The project would not expose people or structures to seismic shaking and would not produce an increased risk of loss or injury due to ground shaking. There would be no impact.
Environmental Impact Evaluation

<table>
<thead>
<tr>
<th>Environmental Impact Evaluation</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation Incorporated</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>iii) Seismic-related ground failure, including liquefaction?</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Olivenhain Reservoir, Lake Jennings, Lake Poway, San Dieguito Reservoir, Sweetwater Reservoir

See VI.a.- i) above. Project activities would occur only on the waters of the reservoirs and would not expose people or structures to ground failure. There would be no impact.

| iv) Landslides? | | | | X |

Olivenhain Reservoir, Lake Jennings, Lake Poway, San Dieguito Reservoir, Sweetwater Reservoir

See VI.a.- i) above. The project would not involve any ground-disturbing activities and would not expose people or structures to related hazards. There would be no impact.

| b) Result in substantial soil erosion or loss of topsoil? | | | | X |

Olivenhain Reservoir, Lake Jennings, Lake Poway, San Dieguito Reservoir, Sweetwater Reservoir

The project does not entail ground disturbance and would not create conditions that could contribute to soil erosion and loss of topsoil. There would be no impact.

| c) Be located on a geologic unit or soil that is unstable, or that would become unstable as a result of the project, and potentially result in on or off-site landslide, lateral spreading, subsidence, liquefaction or collapse? | | | | X |

Olivenhain Reservoir, Lake Jennings, Lake Poway, San Dieguito Reservoir, Sweetwater Reservoir

No project elements would be located on unstable geologic or soil units, and would not lead to a related hazard. Therefore, no impact would occur.

| d) Be located on expansive soil, as defined in Table 18-1-B of the Uniform Building Code (1994), creating substantial risks to life or property? | | | | X |

Olivenhain Reservoir, Lake Jennings, Lake Poway, San Dieguito Reservoir, Sweetwater Reservoir

See VI.c) above. No new structures would be built as a result of this project. No project activities would occur on expansive soil, so no impact would occur.
Environmental Impact Evaluation

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation Incorporated</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>e) Have soils incapable of adequately supporting the use of septic tanks or alternative waste water disposal systems where sewers are not available for the disposal of waste water?</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Olivenhain Reservoir, Lake Jennings, Lake Poway, San Dieguito Reservoir, Sweetwater Reservoir

The proposed project involves the direct application of algaecide into reservoirs and would not involve the use of septic tanks or alternative waste water disposal systems. Therefore, no related impacts would occur.

VII. GREENHOUSE GAS EMISSIONS. Would the project:

VII. Greenhouse Gas Emissions

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Generate greenhouse gas emissions, either directly or indirectly, that may have a significant impact on the environment?</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Olivenhain Reservoir, Lake Jennings, Lake Poway, San Dieguito Reservoir, Sweetwater Reservoir

See Section III.a) above. A minimal amount of greenhouse gas (GHG) emissions would be generated by trucks during the transportation of the algaecides to the reservoirs, and by the boats used to apply the algaecides and to conduct water quality monitoring. These activities would occur minimally on an as-needed basis and would last for a short duration. These emissions would not elevate GHG emissions significantly above existing conditions. This impact is less than significant.

| b) Conflict with an applicable plan, policy or regulation adopted for the purpose of reducing the emission of greenhouse gases? | X | | |

Olivenhain Reservoir, Lake Jennings, Lake Poway, San Dieguito Reservoir, Sweetwater Reservoir

See VII.a) above. The GHG emissions created by project activities would be negligible. Therefore, the project would not conflict with an applicable plan, policy, or regulation in the San Diego region. This impact is less than significant.

VIII. HAZARDS AND HAZARDOUS MATERIALS. Would the project

VIII. Hazards and Hazardous Materials

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Create a significant hazard to the public or the environment through the routine transport, use, or disposal of hazardous materials?</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Algaecide application at the subject reservoirs would entail transporting, handling, and using copper, which is a regulated hazardous material, but one that is commonly used in applications such as is proposed as part of the project. The EPA “Copper Facts” factsheet discusses the human health risks and
environmental hazards related to copper-based pesticides and algaecides. According to the EPA’s fact sheet, “There are no human health risks of concern for dietary (food and drinking water) exposures to the pesticidal uses of copper. However, some of the various copper compounds and formulations may cause some dermal or eye irritation.” Exposure or ingestion at very high levels can be harmful to human health, and the EPA regulates labeling of copper-based pesticide and algaecide products to prevent injury resulting from improper handling and application. The factsheet also indicates that copper is highly toxic to most aquatic species but is less of a concern for terrestrial species. In response to potential hazards of these materials, EPA publishes standards for application of copper-based algaecides that are incorporated into product labels.

The potential for project-related impacts related to transport and handling of copper would be the result of spills or improper application, which could lead to worker or environmental exposure at toxic levels. Section VIII.C of the General Permit requires a discharger to incorporate into their APAP the BMPs that will be employed in association with algaecide application so as to reduce the risk of worker or environmental exposure at hazardous levels, including measures to prevent spills and to ensure application at rates consistent with the product label, a plan for staff education on proper use of the products, and measures to prevent fish kills. Section V.B.1 of the General Permit states that dischargers pursuant to the permit must be licensed by the Department of Pesticide Regulation for applicable products; however, copper-based algaecide applications do not require such a license because copper is not a federal restricted use pesticide (RUP) or a California restricted material.

The impact discussion below assesses the potential hazards of copper application at each of the subject reservoirs and identifies the best management practices stated in the agencies’ APAPs, which will be incorporated as mitigation measures to ensure the project’s impact related to hazardous materials would be reduced to less-than-significant levels.

Olivenhain Reservoir

Algaecide application at Olivenhain Reservoir entails transporting and handling copper sulfate pentahydrate, which is a regulated hazardous material. The Water Authority estimates up to 80 pounds of the solid crystalline product would be delivered for a single application. The product would be purchased at the time of each application, and would not be stored at the Water Authority’s facility. The Water Authority’s APAP encloses a Material Safety Data Sheet (MSDS) describing copper sulfate’s potential hazards and handling precautions. The MSDS describes copper sulfate pentahydrate as a blue crystalline or powdered, odorless solid that is harmful or potentially fatal if swallowed. The material may cause irritation to the eyes, respiratory system, and skin, and exposing the material to flames may produce irritating, corrosive, and/or toxic fumes. The Water Authority’s algaecide application at Olivenhain Reservoir also entails transporting and handling citric acid in solid form, which is less of a concern than copper sulfate, but is identified in the MSDS provided in the Water Authority’s APAP as a potential irritant to eyes and skin (San Diego County Water Authority 2014a). All empty containers will be disposed of in accordance with all manufacturer and regulatory requirements.

Transport, handling, and use of copper sulfate and citric acid at Olivenhain Reservoir would create the potential for spills that could affect worker safety and the environment. The Water Authority operates with an Emergency Response Guide and Hazardous Materials Business Plan that would be followed in
the event of a spill. The Water Authority’s APAP incorporates measures to prevent hazards related to a potential spill from occurring. With the implementation of these mitigation measures, the project’s hazardous materials impact at Olivenhain Reservoir would be reduced to a less-than-significant level.

OLIVENHAIN-HAZ-1: The Water Authority will require training in copper sulfate and citric acid safety for all Water Authority employees participating in the application and handling of these chemicals. Response and containment procedures provided in the Water Authority’s Emergency Response Guide, Hazardous Materials Business Plan and the product MSDS will be followed in the event of a spill. These procedures include isolation and containment of the spill while wearing the appropriate personal protective equipment.

OLIVENHAIN-HAZ-2: The Water Authority will avoid over-application by ensuring that employees involved with chemical application follow the specific product labels for the algaecides used in the program. Algaecide quantities required for each treatment will be precalculated and only sufficient material to carry out the treatment is transported for an application event. All label directions and California Department of Pesticide Regulation guidelines will be followed as to acceptable application methods as well as weather limitations for application.

OLIVENHAIN-HAZ-3: Water Authority staff members that may come into contact with the algaecide will be trained on its use and hazards by the safety department. Review of all applicable MSDSs will be included in the training to ensure that employees are up to date on the hazards associated with the chemical(s) used. Personal protective equipment is supplied to any employee that will be working with the chemical(s). Goggles, face shield, chemically impervious gloves, and protective clothing to prevent skin contact are provided and used any time work is to be done with the algaecide.

OLIVENHAIN-HAZ-4: The Water Authority will ensure that application of algaecides is targeted at nuisance algae growths and that algaecides are applied in accordance with label instructions to minimize the application quantity and maximize efficacy. This includes avoiding uneven distribution and applying during favorable weather conditions, when feasible. Because nuisance algal growth affects the beneficial uses within the project area, application of algaecides will be proactive, which will minimize the quantity of decaying algae that results and may threaten oxygen levels.

Lake Jennings

Algaecide application at Lake Jennings entails transporting and handling Cutrine Plus, a liquid copper-based product that is a regulated hazardous material. HWD estimates using 2.75 to 11 gallons of liquid Cutrine Plus per application, and would order the specific amount at the time application is needed. HWD’s APAP encloses an MSDS describing Cutrine Plus’s potential hazards and handling precautions. The MSDS describes Cutrine Plus as a liquid product that can cause irritation to the eyes, respiratory system, and skin, and that is slightly toxic if swallowed (Helix Water District 2014a). Exposing the material to flames may produce irritating, corrosive, and/or toxic fumes. All empty containers would be disposed of pursuant to the instructions on the product label and applicable regulations.
Transport, handling, and use of Cutrine Plus at Lake Jennings would create the potential for spills that could affect worker safety and the environment. HWD’s APAP incorporates measures to prevent these hazards from occurring. With the implementation of these mitigation measures, the project’s hazardous materials impact at Lake Jennings would be reduced to a less-than-significant level.

JENNINGS-HAZ-1: HWD will ensure that algaecide use rates will be per the U.S. Environmental Protection Agency (EPA) label and will be limited to ensure compliance with receiving water limitations. Treatments will be performed when no water is being discharged from the lake system.

JENNINGS-HAZ-2: HWD will ensure that application personnel follow the storage, transport, and spill control procedures per EPA and California Department of Pesticide Regulation rules, regulations, and label instructions.

JENNINGS-HAZ-3: HWD will ensure that algaecide quantities required for each treatment will be precalculated and only sufficient material to carry out the treatment will be transported for an application event. Application equipment will be routinely cleaned and maintained, and all label directions and Department of Pesticide Regulations guidelines will be followed as to acceptable application methods, including limitations due to weather conditions. Surface applications will not be made in winds above 10 miles per hour.

Lake Poway

Algaecide application at Lake Poway entails transporting and handling copper sulfate, which is a regulated hazardous material. Poway applies the solid copper sulfate at a rate of 5 pounds per acre foot of water, and estimates an average use of roughly 300 pounds per application. Copper sulfate is an odorless solid that is harmful or potentially fatal if swallowed. The material may cause irritation to the eyes, respiratory system, and skin, and exposing the material to flames may produce irritating, corrosive, and/or toxic fumes (San Diego County Water Authority 2014a). Copper sulfate is ordered by Poway by the pallet, and is used as needed. Post-application, the empty copper sulfate bags are disposed of by Poway. Transport, handling, and use of copper sulfate at Lake Poway would create the potential for spills that could affect worker safety and the environment. Poway’s APAP incorporates measures to prevent these hazards from occurring. With the implementation of these mitigation measures, the project’s hazardous materials impact at Lake Poway would be reduced to a less-than-significant level.

POWAY-HAZ-1: Poway will ensure that algaecide use rates will be per the EPA label and will be limited to ensure compliance with receiving water limitations. Treatments will be performed when no water is being discharged from the lake system.

POWAY-HAZ-2: Poway will ensure that application personnel follow the storage, transport, and spill control procedures per EPA and California Department of Pesticide Regulation rules, regulations, and label instructions.

POWAY-HAZ-3: Poway will ensure that algaecide quantities required for each treatment will be precalculated and only sufficient material to carry out the treatment will be transported for an
application event. Application equipment will be routinely cleaned and maintained, and all label
directions and Department of Pesticide Regulation guidelines will be followed as to acceptable
application methods, including limitations due to weather conditions. Surface applications will
not be made in winds above 10 miles per hour.

San Dieguito Reservoir

Algaecide application at San Dieguito Reservoir entails transporting and handling a liquid form of copper
sulfate pentahydrate, which is a regulated hazardous material. SFID’s APAP encloses an MSDS
describing copper sulfate’s potential hazards and handling precautions. The MSDS describes copper
sulfate pentahydrate as a clear blue, corrosive liquid with minimal odor. The substance is harmful if
swallowed and may cause irritation to the eyes, respiratory system, and skin (Santa Fe Irrigation District
2014a). Exposing the material to flames may produce irritating, corrosive, and/or toxic fumes.

Application of algaecides at San Dieguito Reservoir is conducted via a feed system in the Cielo Pump
Station, as opposed to application on the reservoir from a boat, which allows for safe and effective
application and minimizes exposure to workers and unintended targets. SFID estimates using 100 to 500
gallons of the liquid copper sulfate pentahydrate per application. Because applications at San Dieguito
Reservoir are from a fixed feed system, the rate of application can be tightly controlled from the chemical
metering portion of the system. Each feed system is contained within a spill catchment that is sized to
capture 100% of the chemical available for feed.

Transport, handling, and use of copper sulfate at San Dieguito Reservoir would create the potential for
spills that could affect worker safety and the environment. SFID generally orders a year’s supply of the
product, and stores it on site to use as needed. After application the containers are triple rinsed and
disposed of by SFID. SFID’s APAP incorporates measures to prevent hazardous spills and exposure from
occurring during and after application of copper sulfate. With the implementation of these mitigation
measures, the project’s hazardous materials impact at San Dieguito Reservoir would be reduced to a less-
than-significant level.

SAN DIEGUITO-HAZ-1: SFID will ensure the algaecide treatment system within the Cielo
Pump Station is flushed with water at the end of each treatment event to eliminate having any
copper sulfate remaining in the system, which will protect the feed system from corrosion and
leaks and minimize the potential for worker exposure.

SAN DIEGUITO-HAZ-2: SFID will ensure that a break in the algaecide application feed line,
tanks, or pumps will be captured and treated as hazardous waste. SFID’s safety department will
employ a hazardous waste disposal company that will properly dispose of any material that has
been contaminated by a spill.

SAN DIEGUITO-HAZ-3: SFID staff will calculate maximum dosage rates and program them
into the feed system to ensure correct concentration of the feed. The rate of feed for any treatment
event will be limited to the recommendations on the product label and the MSDS to ensure
effectiveness and minimize any unintended effects on nontargeted organisms.
SAN DIEGUITO-HAZ-4: SFID will ensure that any staff members that may come into contact with copper sulfate are trained on its use and hazards by the SFID safety department. SFID will periodically review the product’s MSDS to ensure employees are up to date on the hazards associated with the chemical. SFID will ensure personal protective equipment is supplied to any employee that will be working with copper sulfate. Goggles, face shield, chemically impervious gloves, and protective clothing to prevent skin contact will be provided by SFID and used any time work is to be done with the algaecide.

Sweetwater Reservoir

Algaecide application at Sweetwater Reservoir entails transporting and handling copper sulfate pentahydrate, which is a regulated hazardous material. Sweetwater generally stores enough copper sulfate product on site for two treatment applications. On average, an application at the Sweetwater Reservoir has required 1,250 pounds of solid copper sulfate crystals. This number varies based on water level and how much of the lake’s surface area is being treated. The application rate of copper sulfate is approximately 2 pounds per surface acre. Sweetwater’s APAP encloses an MSDS describing copper sulfate’s potential hazards and handling precautions. The MSDS describes copper sulfate pentahydrate as a blue crystalline or powdered, odorless solid that is harmful or potentially fatal if swallowed. The material may cause irritation to the eyes, respiratory system, and skin, and exposing the material to flames may produce irritating, corrosive, and/or toxic fumes. Sweetwater’s algaecide application at Sweetwater Reservoir also entails transporting and handling citric acid in solid form, which is less of a concern than copper sulfate but is identified in the MSDS provided in Sweetwater’s APAP as a potential irritant to eyes and skin (Sweetwater Authority 2013). After application, the empty 50 pound bags of copper sulfate are disposed of by Sweetwater in a sanitary landfill, as per the product label instructions.

Transport, handling, and use of copper sulfate and citric acid at Sweetwater Reservoir would create the potential for spills that could affect worker safety and the environment. Sweetwater operates with a Chemical Hygiene Plan and Hazardous Response Plan that would be followed in the event of a spill. Sweetwater’s APAP incorporates measures to prevent spill-related hazards from occurring. With the implementation of these mitigation measures, the project’s hazardous materials impact at Sweetwater Reservoir would be reduced to a less-than-significant level.

SWEETWATER-HAZ-1: Sweetwater will apply copper sulfate and citric acid in accordance with the product label and shall comply with the recommendations provided on the MSDS applicable to the specific copper sulfate product to be used. Copper sulfate will be applied in an even, consistent manner over the surface area to be treated, thus minimizing the potential for higher than intended localized concentrations.

SWEETWATER-HAZ-2: Sweetwater will require training in copper sulfate and citric acid safety for all Sweetwater employees participating in the application and handling of copper sulfate. Sweetwater shall conduct additional refresher training, as deemed necessary, prior to each treatment event.
Environmental Impact Evaluation

<table>
<thead>
<tr>
<th>Environmental Impact Evaluation</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation Incorporated</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
</table>

SWEETWATER-HAZ-3: Sweetwater will follow all response and containment procedures provided in their Chemical Hygiene Plan, Hazardous Response Plan, and the product MSDS in the event of a spill. These procedures include isolation and containment of the spill while wearing the appropriate personal protective equipment.

SWEETWATER-HAZ-4: Sweetwater will require its employees participating in the application or handling of copper sulfate and citric acid to wear appropriate personal protective equipment recommended on the MSDS, including protective safety glasses with side shields (or goggles) per Occupational Safety and Health Administration (OSHA) 29 CFR 1910.133. Chemically impervious gloves made of any waterproof material, boots, and protective clothing will be worn to avoid skin contact (refer to OSHA 29 CFR 1910.138), as well as a respirator that meets OSHA 29 CFR 1910.134 requirements.

| b) Create a significant hazard to the public or the environment through reasonably foreseeable upset and accident conditions involving the release of hazardous materials into the environment? | X | | |

Olivenhain Reservoir, Lake Jennings, Lake Poway, San Dieguito Reservoir, Sweetwater Reservoir

See VIII.a) above. Implementation of the mitigation measures identified above will reduce this impact to a less-than-significant level at all of the subject reservoirs.

| c) Emit hazardous emissions or handle hazardous or acutely hazardous materials, substances, or waste within one-quarter mile of an existing or proposed school? | X |

Olivenhain Reservoir, Lake Jennings, Lake Poway, San Dieguito Reservoir, Sweetwater Reservoir

There are no schools within ¼ mile of any of the subject reservoirs. Therefore, no impact would occur.

| d) Be located on a site which is included on a list of hazardous materials sites compiled pursuant to Government Code Section 65962.5 and, as a result, would it create a significant hazard to the public or the environment? | X |

Olivenhain Reservoir, Lake Jennings, Lake Poway, San Dieguito Reservoir, Sweetwater Reservoir

The project does not entail any new development, earth disturbance, or other activities that could be affected by prior hazardous materials listing at any of the subject reservoirs. Therefore, no impact would occur.
<table>
<thead>
<tr>
<th>Environmental Impact Evaluation</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant Impact with Mitigation Incorporated</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>e) For a project located within an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project result in a safety hazard for people residing or working in the project area?</td>
<td>[]</td>
<td>[]</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Olivenhain Reservoir, Lake Jennings, Lake Poway, San Dieguito Reservoir, Sweetwater Reservoir

The project does not entail any new development or activities that could be affected by air traffic. Therefore, no impact would occur.

| f) For a project within the vicinity of a private airstrip, would the project result in a safety hazard for people residing or working in the project area? | [] | X | |

Olivenhain Reservoir, Lake Jennings, Lake Poway, San Dieguito Reservoir, Sweetwater Reservoir

The project does not entail any new development or activities that could be affected by air traffic. Therefore, no impact would occur.

| g) Impair implementation of or physically interfere with an adopted emergency response plan or emergency evacuation plan? | X | |

Olivenhain Reservoir, Lake Jennings, Lake Poway, San Dieguito Reservoir, Sweetwater Reservoir

The project does not entail any new development or construction activities that could interfere with emergency response. Therefore, no impact would occur.

| h) Expose people or structures to a significant risk of loss, injury or death involving wildland fires, including where wildlands are adjacent to urbanized areas or where residences are intermixed with wildlands? | X | |

Olivenhain Reservoir, Lake Jennings, Lake Poway, San Dieguito Reservoir, Sweetwater Reservoir

The project does not entail any new development or construction activities that could cause or be affected by wildland fire. Therefore, no impact would occur.
Environmental Impact Evaluation

IX. HYDROLOGY AND WATER QUALITY. Would the project:

<table>
<thead>
<tr>
<th>IX. Hydrology and Water Quality</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation Incorporated</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Violate any water quality standards or waste discharge requirements?</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

As discussed in Section 1.1, the application of copper-based products for treatment of algae is permitted under the State Board’s Water Quality Order No. 2013-0002-DWQ, *Statewide General Permit for Residual Aquatic Pesticide Discharges to Waters of the U.S. from Algae and Aquatic Weed Control* (General Permit), which regulates use of aquatic pesticides for the purpose of maintaining water quality statewide. The General Permit identifies a limitation on copper concentration in waters that receive permitted pesticide application, which is specified in Table 3 of the permit. The copper limitation is based on the California Toxics Rule (CTR) and varies depending on water hardness. Copper is more toxic to aquatic species when water is softer, as a lower concentration of minerals means a lower concentration of materials with which copper can bond, leading to a greater accumulation of copper in the water.

However, the State Board’s permitting process acknowledges that public water agencies and mutual water companies may need to periodically exceed this copper limitation when required to otherwise control water quality in their facilities that serve the public. Section 5.3 of the State Implementation Plan provides a Categorical Exemption to the toxics standards where the discharge is necessary to meet statutory requirements under the federal Safe Drinking Water Act or the California Health and Safety Code. The potential application of this Categorical Exception to the receiving-water copper limitation is identified in Table 3 of the General Permit, which points to Attachment G of the permit, a list of water agencies and mutual water companies that have been granted exemptions. The Categorical Exception is intended as a short-term or seasonal exception, not a permanent pass on meeting the limitations. As stated in the General Permit’s Fact Sheet, Attachment D to the permit, “there is no discrete definition for short-term; but the intent is to allow the exception to apply during the treatment period. It is up to the Discharger to make this demonstration.” The timeframe of when an agency expects they may exceed the receiving water limitations is identified in the agency’s Notice of Intent. If the agency is granted the exception, the agency’s APAP is revised to identify the approved seasonal exception. For these agencies that are granted the exception, the General Permit or SIP does not state additional limits on copper concentrations for those agencies who have been granted an exception. Instead, water quality monitoring is conducted before, during, and after an application event, and this information is reported to the State Board so they can observe application-related conditions and ensure there are no causes for water quality concern at the respective receiving water.

As described above in Section 1.3, the purpose of algaecide application at the five subject reservoirs is to control serious algae blooms that could affect water quality at the subject reservoirs. This periodic treatment is necessary so the agencies can meet taste and odor standards in the drinking water they deliver to their respective consumers. Therefore, such discharges would qualify for the Categorical Exception to the CTR standards that are incorporated into the General Permit’s receiving water limitations. The five subject water agencies plan to apply for coverage under the General Permit for use of copper sulfate and, as part of that application, seek the Categorical Exception to the receiving water limitations in case they identify the need to apply increased concentrations of copper during serious algae blooms.
The agencies’ use of copper sulfate to control algae blooms would temporarily elevate copper concentrations in the subject reservoirs. If high concentrations of copper are needed or soft water conditions in the treated reservoirs elevate the copper toxicity, then these applications could result in excess of the thresholds set forth in the CTR and translated to the General Permit. Exceeding the thresholds in this instance would itself be necessary to prevent water quality impacts at the five reservoirs, but exceeding the thresholds would still be considered a significant impact. By seeking an exemption from the thresholds pursuant to the State Board’s permit process, this potentially significant impact would be reduced to a less-than-significant level. Mitigation measures are stated below for each subject agency.

Olivenhain Reservoir

OLIVENHAIN-WQ-1: The Water Authority will apply for coverage under the State Board’s NPDES Permit for Discharges of Aquatic Pesticides and, as part of that application, seek a Categorical Exception pursuant to Section 5.3 of the State Board’s Policy for Implementation of Toxics Standards for Inland Surface Waters, Enclosed Bays, and Estuaries of California.

OLIVENHAIN-WQ-2: The Water Authority will continue to monitor and report copper levels in Olivenhain Reservoir in accordance with State Board requirements.

Lake Jennings

JENNINGS-WQ-1: HWD will apply for coverage under the State Board’s NPDES Permit for Discharges of Aquatic Pesticides and, as part of that application, seek a Categorical Exception pursuant to Section 5.3 of the State Board’s Policy for Implementation of Toxics Standards for Inland Surface Waters, Enclosed Bays, and Estuaries of California.

JENNINGS-WQ-2: HWD will continue to monitor and report copper levels in Lake Jennings in accordance with State Board requirements.

Lake Poway

POWAY-WQ-1: Poway will apply for coverage under the State Board’s NPDES Permit for Discharges of Aquatic Pesticides and, as part of that application, seek a Categorical Exception pursuant to Section 5.3 of the State Board’s Policy for Implementation of Toxics Standards for Inland Surface Waters, Enclosed Bays, and Estuaries of California.

POWAY-WQ-2: Poway will continue to monitor and report copper levels in Lake Poway in accordance with State Board requirements.

San Dieguito Reservoir

SAN DIEGUITO-WQ-1: SFID will apply for coverage under the State Board’s NPDES Permit for Discharges of Aquatic Pesticides and, as part of that application, seek a Categorical Exception pursuant to Section 5.3 of the State Board’s Policy for Implementation of Toxics Standards for Inland Surface Waters, Enclosed Bays, and Estuaries of California.
Environmental Impact Evaluation

SAN DIEGUITO-WQ-2: SFID will continue to monitor and report copper levels in San Dieguito Reservoir in accordance with State Board requirements.

Sweetwater Reservoir

SWEETWATER-WQ-1: Sweetwater will apply for coverage under the State Board’s NPDES Permit for Discharges of Aquatic Pesticides and, as part of that application, seek a Categorical Exception pursuant to Section 5.3 of the State Board’s Policy for Implementation of Toxics Standards for Inland Surface Waters, Enclosed Bays, and Estuaries of California.

SWEETWATER-WQ-2: Sweetwater will continue to monitor and report copper levels in Sweetwater Reservoir in accordance with State Board requirements.

<table>
<thead>
<tr>
<th>Environmental Impact Evaluation</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation Incorporated</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>b) Substantially deplete groundwater supplies or interfere substantially with groundwater recharge such that there would be a net deficit in aquifer volume or a lowering of the local groundwater table level (e.g., the production rate of pre-existing nearby wells would drop to a level which would not support existing land uses or planned uses for which permits have been granted)?</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Olivenhain Reservoir, Lake Jennings, Lake Poway, San Dieguito Reservoir, Sweetwater Reservoir

The proposed project would not entail the use of groundwater and, thus, would not deplete groundwater supplies or interfere with groundwater recharge. Therefore, no related impacts would occur.

c) Substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river, in a manner which would result in substantial erosion or siltation on- or off-site?

<table>
<thead>
<tr>
<th>Environmental Impact Evaluation</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation Incorporated</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>c) Substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river, in a manner which would result in substantial erosion or siltation on- or off-site?</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Olivenhain Reservoir, Lake Jennings, Lake Poway, San Dieguito Reservoir, Sweetwater Reservoir

The proposed project would not affect drainage patterns. Therefore, no impact would occur.

d) Substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river, or substantially increase the rate or amount of surface runoff in a manner which would result in flooding on or off site?

<table>
<thead>
<tr>
<th>Environmental Impact Evaluation</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation Incorporated</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>d) Substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river, or substantially increase the rate or amount of surface runoff in a manner which would result in flooding on or off site?</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Olivenhain Reservoir, Lake Jennings, Lake Poway, San Dieguito Reservoir, Sweetwater Reservoir

See IX.c) above. No impact would occur.
Environmental Impact Evaluation

<table>
<thead>
<tr>
<th>Environmental Impact Evaluation</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation Incorporated</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>e) Create or contribute runoff water which would exceed the capacity of existing or planned stormwater drainage systems or provide substantial additional sources of polluted runoff?</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Olivenhain Reservoir, Lake Jennings, Lake Poway, San Dieguito Reservoir, Sweetwater Reservoir

See IX.c) above. The project would not create or contribute runoff water. No impact would occur.

| f) Otherwise substantially degrade water quality? | | | | X |

Olivenhain Reservoir, Lake Jennings, Lake Poway, San Dieguito Reservoir, Sweetwater Reservoir

See IX.a) above. All of the respective reservoirs are surface water impoundments within potable water systems, and none of them release considerable amounts of water to downstream water bodies. Therefore, temporarily increased copper levels at the reservoirs after application would have no impact outside the subject reservoirs. There are no other project components that would affect water quality that are not already discussed in IX.a). With the implementation of the mitigation measures stated above in IX.a), this impact would be reduced to a less than-significant level.

| g) Place housing within a 100-year flood hazard area as mapped on a federal Flood Hazard Boundary or Flood Insurance Rate Map or other flood hazard delineation map? | | | | X |

Olivenhain Reservoir, Lake Jennings, Lake Poway, San Dieguito Reservoir, Sweetwater Reservoir

The proposed project would not place housing in floodplains. No related impacts would occur.

| h) Place structures within a 100-year flood hazard area which would impede or redirect flood flows? | | | | X |

Olivenhain Reservoir, Lake Jennings, Lake Poway, San Dieguito Reservoir, Sweetwater Reservoir

The project would not place structures in flood hazard areas. No related impacts would occur.

| i) Expose people or structures to a significant risk of loss, injury or death involving flooding, including flooding as a result of the failure of a levee or dam? | | | | X |

Olivenhain Reservoir, Lake Jennings, Lake Poway, San Dieguito Reservoir, Sweetwater Reservoir

The project would not expose people or structures to potential flooding. Therefore, no related impacts would occur.
Environmental Impact Evaluation

<table>
<thead>
<tr>
<th>Environmental Impact Evaluation</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation Incorporated</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>j) Inundation by seiche, tsunami, or mudflow?</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Olivenhain Reservoir, Lake Jennings, Lake Poway, San Dieguito Reservoir, Sweetwater Reservoir

The project does not propose development or other uses that could be affected by seiche, tsunami, or mudflow. Therefore, no impact would occur.

X. LAND USE AND PLANNING. Would the project:

X. Land Use and Planning

a) Physically divide an established community? X

Olivenhain Reservoir, Lake Jennings, Lake Poway, San Dieguito Reservoir, Sweetwater Reservoir

The proposed project would be implemented within existing reservoirs and does not entail building any new structures. Thus, the project would not physically divide an established community and no related impacts would occur.

b) Conflict with any applicable land use plan, policy, or regulation of an agency with jurisdiction over the project (including, but not limited to the general plan, specific plan, local coastal program, or zoning ordinance) adopted for the purpose of avoiding or mitigating an environmental effect? X

Olivenhain Reservoir, Lake Jennings, Lake Poway, San Dieguito Reservoir, Sweetwater Reservoir

The project would not result in a change in land use, or create any new land uses, so it would not conflict with any applicable land use plan, policy, or regulation. Therefore, no related impacts would occur.

c) Conflict with any applicable habitat conservation plan or natural community conservation plan? X

Olivenhain Reservoir, Lake Jennings, Lake Poway, San Dieguito Reservoir, Sweetwater Reservoir

See IV.f) above. The project would not conflict with any applicable habitat conservation or natural community conservation plans. Therefore, no impact would occur.

XI. MINERAL RESOURCES. Would the project:

XI. Mineral Resources

a) Result in the loss of availability of a known mineral resource that would be of future value to the region and the residents of the state? X
Environmental Impact Evaluation

Activities of the proposed project are limited to the application of algaecides into existing reservoirs in the San Diego region. No development or ground-disturbing activities would occur, and there would be no loss of availability of mineral resources. Therefore, no impacts to mineral resources would occur.

<table>
<thead>
<tr>
<th>b) Result in the loss of availability of a locally important mineral resource recovery site delineated on a local general plan, specific plan or other land use plan?</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation Incorporated</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Olivenhain Reservoir, Lake Jennings, Lake Poway, San Dieguito Reservoir, Sweetwater Reservoir

See XI.a) above. The project activities would not result in the loss of availability of a mineral resource recovery site. There would be no impact.

XII. NOISE.

Would the project result in:

<table>
<thead>
<tr>
<th>a) Exposure of persons to or generation of noise levels in excess of standards established in the local general plan or noise ordinance, or applicable standards of other agencies?</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation Incorporated</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Olivenhain Reservoir, Lake Jennings, Lake Poway, San Dieguito Reservoir, Sweetwater Reservoir

Algaecide application involves limited use of delivery trucks and boats on the subject reservoirs. Trucks would be licensed for use on existing roadways, and any noise produced would not exceed thresholds. On the reservoirs that allow boating, noise from the boat motor would not create significant adverse conditions. On the reservoirs that restrict boating access, other uses are restricted as well, so no people in the surrounding area would be significantly affected by the noise of the motor. Additionally, noise from one power boat engine would not be enough to exceed the thresholds of a general plan or other applicable standards. Noise generation would be short in duration and occur sporadically, on an as-needed basis. There would be no impact.

<table>
<thead>
<tr>
<th>b) Exposure of persons to or generation of excessive groundborne vibration or groundborne noise levels?</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation Incorporated</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Olivenhain Reservoir, Lake Jennings, Lake Poway, San Dieguito Reservoir, Sweetwater Reservoir

See XII.a) above. Any groundborne vibration from delivery trucks would be inconsequential due to the short duration and minimal use of the equipment. There would be no impact.
Environmental Impact Evaluation

<table>
<thead>
<tr>
<th>c) A substantial permanent increase in ambient noise levels in the project vicinity above levels existing without the project?</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation Incorporated</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Olivenhain Reservoir, Lake Jennings, Lake Poway, San Dieguito Reservoir, Sweetwater Reservoir

The project does not entail installation or operation of new permanent sources of stationary noise. Therefore, no impact would occur.

d) A substantial temporary or periodic increase in ambient noise levels in the project vicinity above levels existing without the project?

Olivenhain Reservoir, Lake Jennings, Lake Poway, San Dieguito Reservoir, Sweetwater Reservoir

See XII.a) above. Trucks and boats would generate noise at the project area, but this would not be a substantial increase in noise, especially for the reservoirs that allow use of the lake for recreational activities. For the reservoirs that do not allow public access, the project activity would not last long enough or create enough of a noise disturbance to be considered substantial. This is a less than significant impact.

e) For a project located within an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project expose people residing or working in the project area to excessive noise levels?

Olivenhain Reservoir, Lake Jennings, Lake Poway, San Dieguito Reservoir, Sweetwater Reservoir

None of the subject reservoirs are located within an airport use plan or within 2 miles of a public airport. Therefore, no related impacts would occur.

f) For a project within the vicinity of a private airstrip, would the project expose people residing or working in the project area to excessive noise levels?

Olivenhain Reservoir, Lake Jennings, Lake Poway, San Dieguito Reservoir, Sweetwater Reservoir

None of the subject reservoirs are in the vicinity of a private airstrip. Therefore, no impact would occur.
Environmental Impact Evaluation

XIII. POPULATION AND HOUSING. Would the project:

<table>
<thead>
<tr>
<th>Environmental Impact Evaluation</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant Impact with Mitigation Incorporated</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Induce substantial population growth in an area either directly (for example, by proposing new homes and businesses) or indirectly (for example, through extension of roads or other infrastructure)?</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Olivenhain Reservoir, Lake Jennings, Lake Poway, San Dieguito Reservoir, Sweetwater Reservoir

The proposed project does not entail construction of homes, businesses, or new infrastructure. Therefore, no impact would occur.

b) Displace substantial numbers of existing housing, necessitating the construction of replacement housing elsewhere?

Olivenhain Reservoir, Lake Jennings, Lake Poway, San Dieguito Reservoir, Sweetwater Reservoir

The proposed project occurs within the boundaries of existing reservoirs, and would not impact or displace existing housing or necessitate construction of replacement housing in the area. Therefore, no related impacts would occur.

c) Displace substantial numbers of people, necessitating the construction of replacement housing elsewhere?

Olivenhain Reservoir, Lake Jennings, Lake Poway, San Dieguito Reservoir, Sweetwater Reservoir

See XIII.b) above. There would be no impact.

XIV. PUBLIC SERVICES.

XIV. Public Services

Would the project result in substantial adverse physical impacts associated with the provision of new or physically altered governmental facilities, need for new or physically altered governmental facilities, the construction of which could cause significant environmental impacts, in order to maintain acceptable service ratios, response times or other performance objectives for any of the public services:

<table>
<thead>
<tr>
<th>Public Services</th>
<th>Fire protection?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Olivenhain Reservoir, Lake Jennings, Lake Poway, San Dieguito Reservoir, Sweetwater Reservoir

The proposed project involves the application of algaecides into the waters of existing reservoirs. There would be no development or construction of new structures, and no alteration of existing government facilities or new government facilities would be necessary. According to the MSDS included in the project-related APAPs, the algaecide products that would be used pursuant to this project are not flammable; therefore, on-site storage and use in compliance with applicable requirements would not
create a fire hazard. However, the products may decompose if exposed to the heat of a fire and produce corrosive and/or toxic fumes. The storage and use of hazardous materials for algaecide application could require the hazmat response services of local fire agencies in the event of an unforeseen accident. The potential for this to occur is limited and would be alleviated by proper storage and use of the products. Therefore, the project would not result in a significant impact on response times or service standards and the project’s impact on fire protection services is less than significant.

<table>
<thead>
<tr>
<th>Environmental Impact Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potentially Significant Impact</td>
</tr>
<tr>
<td>b) Police protection?</td>
</tr>
</tbody>
</table>

Olivenhain Reservoir, Lake Jennings, Lake Poway, San Dieguito Reservoir, Sweetwater Reservoir

See XIV.a) above. There would be no impact to police protection.

c) Schools?

Olivenhain Reservoir, Lake Jennings, Lake Poway, San Dieguito Reservoir, Sweetwater Reservoir

See XIV.a) above. There would be no impact to school facilities.

d) Parks?

Olivenhain Reservoir, Lake Jennings, Lake Poway, San Dieguito Reservoir, Sweetwater Reservoir

See XIV.a) above. There would be no impact to parks.

e) Other public services?

Olivenhain Reservoir, Lake Jennings, Lake Poway, San Dieguito Reservoir, Sweetwater Reservoir

See XIV.a) above. There would be no impact to other public services.

XV. RECREATION.

a) Would the project increase the use of existing neighborhood and regional parks or other recreational facilities such that substantial physical deterioration of the facility would occur or be accelerated?

Olivenhain Reservoir, Lake Jennings, Lake Poway, San Dieguito Reservoir, Sweetwater Reservoir

Application of algaecides at the subject reservoirs would not increase the use of existing recreational facilities. No impact would occur.

In addition, the potential for impacts on existing water-based recreational uses at the subject reservoirs has been considered. There are no in-water recreational uses allowed at Olivenhain Reservoir, San
Environmental Impact Evaluation

Dieguito Reservoir, or Sweetwater Reservoir. HWD, Poway, and Sweetwater do not restrict recreational use of the reservoir following a copper application (Helix Water District 2015; City of Poway 2015; Sweetwater 2015).

<table>
<thead>
<tr>
<th>b) Does the project include recreational facilities or require the construction or expansion of recreational facilities which might have an adverse physical effect on the environment?</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation Incorporated</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Olivenhain Reservoir, Lake Jennings, Lake Poway, San Dieguito Reservoir, Sweetwater Reservoir

See XV.a) above. The proposed project would not include recreational facilities or require the construction or expansion of recreational facilities. Therefore, no impact would occur.

XVI. TRANSPORTATION/CIRCULATION.

XVI. Transportation/Circulation

Would the project:

<table>
<thead>
<tr>
<th>a) Conflict with an applicable plan, ordinance or policy establishing measures of effectiveness for the performance of the circulation system, taking into account all modes of transportation including mass transit and non-motorized travel and relevant components of the circulation system, including but not limited to intersections, streets, highways and freeways, pedestrian and bicycle paths, and mass transit?</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation Incorporated</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Olivenhain Reservoir, Lake Jennings, Lake Poway, San Dieguito Reservoir, Sweetwater Reservoir

The proposed project involves the use of light- to medium-duty trucks periodically for the delivery of the algaeicide to the reservoir, and would not cause a substantial increase in traffic above existing conditions. Deliveries of the algaeicide would occur infrequently and would not require an extensive number of trips to and from the project site. The use of boats for algaeicide application would not have an impact on transportation at the project site or surrounding areas. There would be no impact.

<table>
<thead>
<tr>
<th>b) Conflict with an applicable congestion management program, including, but not limited to level of service standards and travel demand measures, or other standards established by the county congestion management agency for designated roads or highways?</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation Incorporated</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Olivenhain Reservoir, Lake Jennings, Lake Poway, San Dieguito Reservoir, Sweetwater Reservoir

See XVI.a) above. There would be no impact.
Environmental Impact Evaluation

<table>
<thead>
<tr>
<th>c) Result in a change in air traffic patterns, including either an increase in traffic levels or a change in location that results in substantial safety risks?</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation Incorporated</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Olivenhain Reservoir, Lake Jennings, Lake Poway, San Dieguito Reservoir, Sweetwater Reservoir

The proposed project would have no effect on air traffic. Therefore, no related impacts would occur.

<table>
<thead>
<tr>
<th>d) Substantially increase hazards due to a design feature (e.g., sharp curves or dangerous intersections) or incompatible uses (e.g., farm equipment)?</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation Incorporated</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Olivenhain Reservoir, Lake Jennings, Lake Poway, San Dieguito Reservoir, Sweetwater Reservoir

The proposed project activities would be limited to the waters of existing reservoirs and existing roadways. No changes to roadways or increases in hazards due to equipment would occur. Therefore, no impact would occur.

<table>
<thead>
<tr>
<th>e) Result in inadequate emergency access?</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation Incorporated</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Olivenhain Reservoir, Lake Jennings, Lake Poway, San Dieguito Reservoir, Sweetwater Reservoir

The proposed project would not restrict emergency access to the reservoirs. There would be no impact.

<table>
<thead>
<tr>
<th>f) Conflict with adopted policies, plans, or programs regarding public transit, bicycle, or pedestrian facilities, or otherwise decrease the performance or safety of such facilities?</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation Incorporated</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Olivenhain Reservoir, Lake Jennings, Lake Poway, San Dieguito Reservoir, Sweetwater Reservoir

See XVI.d and e) above. The proposed project would not result in effects on existing bus stops, bike lanes, or pedestrian facilities in the vicinity. Thus, the project would not result in conflicts with adopted policies, plans, or programs supporting alternative transportation. There would be no impact.

XVII. UTILITIES AND SERVICE SYSTEMS. Would the project:

XVII. Utilities and Service Systems

<table>
<thead>
<tr>
<th>a) Exceed wastewater treatment requirements of the applicable Regional Water Quality Control Board?</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation Incorporated</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Olivenhain Reservoir, Lake Jennings, Lake Poway, San Dieguito Reservoir, Sweetwater Reservoir

The proposed project would be limited to the application of algaecides in existing bodies of water and would not generate any wastewater. No wastewater treatment requirements would be exceeded; therefore, no related impacts would occur.
Environmental Impact Evaluation

<table>
<thead>
<tr>
<th>Environmental Impact Evaluation</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation Incorporated</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>b) Require or result in the construction of new water or wastewater treatment facilities or expansion of existing facilities, the construction of which could cause significant environmental effects?</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Olivenhain Reservoir, Lake Jennings, Lake Poway, San Dieguito Reservoir, Sweetwater Reservoir

The proposed project would not generate any wastewater. No new or expanded water or wastewater treatment facilities would result or be required. Therefore, no related impacts would occur.

<table>
<thead>
<tr>
<th>Environmental Impact Evaluation</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation Incorporated</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>c) Require or result in construction of new storm water drainage facilities or expansion of existing facilities, the construction of which could cause significant environmental effects?</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Olivenhain Reservoir, Lake Jennings, Lake Poway, San Dieguito Reservoir, Sweetwater Reservoir

The proposed project would not require or include construction of new or expanded storm water facilities. Additionally, no new areas of impervious surface would be created that could increase the volume of storm water runoff associated with the project alignment. Therefore, no related impacts would occur.

<table>
<thead>
<tr>
<th>Environmental Impact Evaluation</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation Incorporated</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>d) Have sufficient water supplies available to serve the project from existing entitlements and resources, or are new or expanded entitlements needed?</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Olivenhain Reservoir, Lake Jennings, Lake Poway, San Dieguito Reservoir, Sweetwater Reservoir

The proposed project would not require additional water supplies. No new or expanded facilities would be needed. Therefore, no related impacts would occur.

<table>
<thead>
<tr>
<th>Environmental Impact Evaluation</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation Incorporated</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>e) Result in a determination by the wastewater treatment provider which serves or may serve the project that it has adequate capacity to serve the project’s projected demand in addition to the provider’s existing commitments?</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Olivenhain Reservoir, Lake Jennings, Lake Poway, San Dieguito Reservoir, Sweetwater Reservoir

The proposed project would not result in an increased demand on wastewater services. Therefore, no related impacts would occur.
Environmental Impact Evaluation

<table>
<thead>
<tr>
<th>Environmental Impact Evaluation</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation Incorporated</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>f) Be served by a landfill with sufficient permitted capacity to accommodate the project’s solid waste disposal needs?</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Olivenhain Reservoir, Lake Jennings, Lake Poway, San Dieguito Reservoir, Sweetwater Reservoir

No solid waste would be generated by the application of algaecides into the reservoirs aside from the bags and containers used to store the algaecides. This solid waste generation would be minimal, and no landfill would be needed for this project, and therefore no impact would occur.

g) Comply with federal, state, and local statutes and regulations related to solid waste?

| g) Comply with federal, state, and local statutes and regulations related to solid waste? | X |

Olivenhain Reservoir, Lake Jennings, Lake Poway, San Dieguito Reservoir, Sweetwater Reservoir

See XVII.f) above. There would be no impact.

XVIII. MANDATORY FINDINGS OF SIGNIFICANCE.

XVIII. Mandatory Findings of Significance

a) Does the project have the potential to degrade the quality of the environment, substantially reduce the habitat of a fish or wildlife species, cause a fish or wildlife population to drop below self-sustaining levels, threaten to eliminate a plant or animal community, reduce the number or restrict the range of a rare or endangered plant or animal, or eliminate important examples of the major periods of California history or prehistory?

| a) Does the project have the potential to degrade the quality of the environment, substantially reduce the habitat of a fish or wildlife species, cause a fish or wildlife population to drop below self-sustaining levels, threaten to eliminate a plant or animal community, reduce the number or restrict the range of a rare or endangered plant or animal, or eliminate important examples of the major periods of California history or prehistory? | X |

These topics have been addressed above, including issues of biological resources in Section IV and cultural resources in Section V. Section IV concluded that there would be no significant impact on biological resources. Section V concluded there would be no impacts on cultural resources, so the project would not eliminate examples of the major periods of California history or prehistory.

b) Does the project have impacts that are individually limited, but cumulatively considerable? ("Cumulatively considerable" means that the incremental effects of a project are considerable when viewed in connection with the effects of past projects, the effects of other current projects, and the effects of probable future projects.)

| b) Does the project have impacts that are individually limited, but cumulatively considerable? ("Cumulatively considerable" means that the incremental effects of a project are considerable when viewed in connection with the effects of past projects, the effects of other current projects, and the effects of probable future projects.) | X |
Environmental Impact Evaluation

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation Incorporated</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
</table>

Olivenhain Reservoir, Lake Jennings, Lake Poway, San Dieguito Reservoir, Sweetwater Reservoir

The project entails a very minimal amount of worker activity on an ongoing basis at each of the subject reservoirs, with work being confined to the reservoirs and their adjacent operations facilities. The subject reservoirs are contained by dams that do not release substantial amounts of water downstream, and there is no direct hydrologic connection between any of the reservoirs involved in the project. Therefore, algaecide-treated water in one reservoir would never drain into another reservoir. Application of aquatic pesticides at one reservoir could not lead to increased impacts at any of the others, as the pesticides could not travel between reservoirs and lead to a compounded level of copper. Accordingly, there would be no potential for a cumulative increase in copper levels at any of the reservoirs due to application at any of the other reservoirs. This means that no potential for cumulative water quality impacts would occur at any of the subject reservoirs as a result of this project. This also means there is no potential for a combined accumulation of copper levels at any of the reservoirs that would affect biological resources. This limited amount of activity and lack of connectivity between the reservoirs would not have the potential to substantially contribute to any cumulative impacts that may occur in the project areas. Therefore, no impact would occur.

c) Does the project have environmental effects which will cause substantial adverse effects on human beings, either directly or indirectly?

The project’s potential to result in impacts on human health have been addressed above, including air quality (Section III), hazards and hazardous materials (Section VIII), and noise (Section XII). As discussed in Sections III and XII, the project would not have air quality or noise effects that would cause substantial direct or indirect adverse effects on human beings. Section VIII identified potential health risks of exposure to copper-based products used in the proposed activity, and identified mitigation measures each of the subject agencies would employ to limit these risks and ensure impacts would be reduced to less-than-significant levels.
This page intentionally left blank.
SECTION 3.0
DETERMINATION

In conformance with the State CEQA Guidelines, the Water Authority, as lead agency, prepared an Initial Study (IS) and completed an Environmental Checklist Form (see Section 2.0) for the proposed project. During the analysis of the project’s environmental impacts, the Water Authority determined that, unless certain mitigation was implemented, the proposed project could have a significant impact on the following environmental factors: hazards and hazardous materials, and hydrology and water quality. The significant impacts warranting mitigation were presented in the IS Checklist and are detailed below in Section 3.1 through 3.5. The project has been revised to include the specific measures listed below in Section 3.2, which would mitigate these impacts to below a level of significance. Analysis of all environmental issues is presented in the evaluation portion of the IS Checklist, provided in Section 2.0.

3.1 OLIVENHAIN RESERVOIR ENVIRONMENTAL IMPACTS AND MITIGATION

3.1.1 Hazards and Hazardous Materials

Algaecide application at Olivenhain Reservoir entails transporting, handling, and using copper-based products that are regulated hazardous materials and, if handled or applied improperly, could be hazardous to human health and the environment. The following mitigation measures will be incorporated into the project to reduce this impact to a less-than-significant level:

OLIVENHAIN-HAZ-1: The Water Authority will require training in copper sulfate and citric acid safety for all Water Authority employees participating in the application and handling of these chemicals. Response and containment procedures provided in the Water Authority’s Emergency Response Guide, Hazardous Materials Business Plan and the product MSDS will be followed in the event of a spill. These procedures include isolation and containment of the spill while wearing the appropriate personal protective equipment.

OLIVENHAIN-HAZ-2: The Water Authority will avoid over-application by ensuring that employees involved with chemical application follow the specific product labels for the algaecides used in the program. Algaecides quantities required for each treatment will be precalculated and only sufficient material to carry out the treatment is transported for an application event. All label directions and California Department of Pesticide Regulation guidelines will be followed as to acceptable application methods as well as weather limitations for application.

OLIVENHAIN-HAZ-3: Water Authority staff members that may come into contact with the algaecide will be trained on its use and hazards by the safety department. Review of all applicable MSDSs will be included in the training to ensure that employees are up to date on the hazards associated with the chemical(s) used. Personal protective equipment is supplied to any employee that will be working with the chemical(s). Goggles, face shield, chemically impervious gloves, and protective clothing to prevent skin contact are provided and used any time work is to be done with the algaecide.

OLIVENHAIN-HAZ-4: The Water Authority will ensure that application of algaecides is targeted at nuisance algae growths and that algaecides are applied in accordance with label instructions to minimize the application quantity and maximize efficacy. This includes avoiding uneven distribution and applying during favorable weather conditions, when feasible. Because
nuisance algal growth affects the beneficial uses within the project area, application of algaecides will be proactive, which will minimize the quantity of decaying algae that results and may threaten oxygen levels.

3.1.2 Hydrology and Water Quality

The Water Authority’s use of copper to control algae blooms at Olivenhain Reservoir may result in excess of receiving-water limitations established in the General Permit. Exceeding the thresholds would itself be necessary to prevent algae-related water quality impacts at Olivenhain Reservoir, but this would be considered a significant impact unless the Water Authority obtains an exception from the limitations by the State Water Resources Control Board. The following mitigation measures will be incorporated into the project to reduce this impact to a less-than-significant level:

OLIVENHAIN-WQ-1: The Water Authority will apply for coverage under the State Board’s NPDES Permit for Discharges of Aquatic Pesticides and, as part of that application, seek a Categorical Exception pursuant to Section 5.3 of the State Board’s Policy for Implementation of Toxics Standards for Inland Surface Waters, Enclosed Bays, and Estuaries of California.

OLIVENHAIN-WQ-2: The Water Authority will continue to monitor and report copper levels in Olivenhain Reservoir in accordance with State Board requirements.

3.2 LAKE JENNINGS ENVIRONMENTAL IMPACTS AND MITIGATION

3.2.1 Hazards and Hazardous Materials

Algaecide application at Lake Jennings entails transporting, handling, and using copper-based products that are regulated hazardous materials and, if handled or applied improperly, could be hazardous to human health and the environment. The following mitigation measures will be incorporated into the project to reduce this impact to a less-than-significant level:

JENNINGS-HAZ-1: HWD will ensure that algaecide use rates will be per the U.S. Environmental Protection Agency (EPA) label and will be limited to ensure compliance with receiving water limitations. Treatments will be performed when no water is being discharged from the lake system.

JENNINGS-HAZ-2: HWD will ensure that application personnel follow the storage, transport, and spill control procedures per EPA and California Department of Pesticide Regulation rules, regulations, and label instructions.

JENNINGS-HAZ-3: HWD will ensure that algaecide quantities required for each treatment will be precalculated and only sufficient material to carry out the treatment will be transported for an application event. Application equipment will be routinely cleaned and maintained, and all label directions and Department of Pesticide Regulations guidelines will be followed as to acceptable application methods, including limitations due to weather conditions. Surface applications will not be made in winds above 10 miles per hour.

3.2.2 Hydrology and Water Quality

HWD’s use of copper to control algae blooms at Lake Jennings may result in excess of receiving-water limitations established in the General Permit. Exceeding the thresholds would itself be necessary to prevent algae-related water quality impacts at Lake Jennings, but this would be considered a significant
impact unless HWD obtains an exception from the limitations by the State Water Resources Control Board. The following mitigation measures will be incorporated into the project to reduce this impact to a less-than-significant level:

JENNINGS-WQ-1: HWD will apply for coverage under the State Board’s NPDES Permit for Discharges of Aquatic Pesticides and, as part of that application, seek a Categorical Exception pursuant to Section 5.3 of the State Board’s Policy for Implementation of Toxics Standards for Inland Surface Waters, Enclosed Bays, and Estuaries of California.

JENNINGS-WQ-2: HWD will continue to monitor and report copper levels in Lake Jennings in accordance with State Board requirements.

3.3 LAKE POWAY ENVIRONMENTAL IMPACTS AND MITIGATION

3.3.1 Hazards and Hazardous Materials

Algaecide application at Lake Poway entails transporting, handling, and using copper-based products that are regulated hazardous materials and, if handled or applied improperly, could be hazardous to human health and the environment. The following mitigation measures will be incorporated into the project to reduce this impact to a less-than-significant level:

POWAY-HAZ-1: Poway will ensure that aquatic algaecide use rates will be per the EPA label and will be limited to ensure compliance with receiving water limitations. Treatments will be performed when no water is being discharged from the lake system.

POWAY-HAZ-2: Poway will ensure that application personnel follow the storage, transport, and spill control procedures per EPA and California Department of Pesticide Regulation rules, regulations, and label instructions.

POWAY-HAZ-3: Poway will ensure that algaecide quantities required for each treatment will be precalculated and only sufficient material to carry out the treatment will be transported for an application event. Application equipment will be routinely cleaned and maintained, and all label directions and Department of Pesticide Regulation guidelines will be followed as to acceptable application methods, including limitations due to weather conditions. Surface applications will not be made in winds above 10 miles per hour.

3.3.2 Hydrology and Water Quality

Poway’s use of copper to control algae blooms at Lake Poway may result in excess of receiving-water limitations established in the General Permit. Exceeding the thresholds would itself be necessary to prevent algae-related water quality impacts at Lake Poway, but this would be considered a significant impact unless Poway obtains an exception from the limitations by the State Water Resources Control Board. The following mitigation measures will be incorporated into the project to reduce this impact to a less-than-significant level:

POWAY-WQ-1: Poway will apply for coverage under the State Board’s NPDES Permit for Discharges of Aquatic Pesticides and, as part of that application, seek a Categorical Exception pursuant to Section 5.3 of the State Board’s Policy for Implementation of Toxics Standards for Inland Surface Waters, Enclosed Bays, and Estuaries of California.
POWAY-WQ-2: Poway will continue to monitor and report copper levels in Lake Poway in accordance with State Board requirements.

3.4 SAN DIEGUITO RESERVOIR ENVIRONMENTAL IMPACTS AND MITIGATION

3.4.1 Hazards and Hazardous Materials

Algaecide application at San Dieguito Reservoir entails transporting, handling, and using copper-based products that are regulated hazardous materials and, if handled or applied improperly, could be hazardous to human health and the environment. The following mitigation measures will be incorporated into the project to reduce this impact to a less-than-significant level:

SAN DIEGUITO-HAZ-1: SFID will ensure the algaecide treatment system within the Cielo Pump Station is flushed with water at the end of each treatment event to eliminate having any copper sulfate remaining in the system, which will protect the feed system from corrosion and leaks and minimize the potential for worker exposure.

SAN DIEGUITO-HAZ-2: SFID will ensure that a break in the algaecide application feed line, tanks, or pumps will be captured and treated as hazardous waste. SFID’s safety department will employ a hazardous waste disposal company that will properly dispose of any material that has been contaminated by a spill.

SAN DIEGUITO-HAZ-3: SFID staff will calculate maximum dosage rates and program them into the feed system to ensure correct concentration of the feed. The rate of feed for any treatment event will be limited to the recommendations on the product label and the MSDS to ensure effectiveness and minimize any unintended effects on nontargeted organisms.

SAN DIEGUITO-HAZ-4: SFID will ensure that any staff members that may come into contact with copper sulfate are trained on its use and hazards by the SFID safety department. SFID will periodically review the product’s MSDS to ensure employees are up to date on the hazards associated with the chemical. SFID will ensure personal protective equipment is supplied to any employee that will be working with copper sulfate. Goggles, face shield, chemically impervious gloves, and protective clothing to prevent skin contact will be provided by SFID and used any time work is to be done with the algaecide.

3.4.2 Hydrology and Water Quality

SFID’s use of copper to control algae blooms at San Dieguito Reservoir may result in excess of receiving-water limitations established in the General Permit. Exceeding the thresholds would itself be necessary to prevent algae-related water quality impacts at San Dieguito Reservoir, but this would be considered a significant impact unless SFID obtains an exception from the limitations by the State Water Resources Control Board. The following mitigation measures will be incorporated into the project to reduce this impact to a less-than-significant level:

SAN DIEGUITO-WQ-1: SFID will apply for coverage under the State Board’s NPDES Permit for Discharges of Aquatic Pesticides and, as part of that application, seek a Categorical Exception pursuant to Section 5.3 of the State Board’s Policy for Implementation of Toxics Standards for Inland Surface Waters, Enclosed Bays, and Estuaries of California.

SAN DIEGUITO-WQ-2: SFID will continue to monitor and report copper levels in San Dieguito Reservoir in accordance with State Board requirements.
3.5 SWEETWATER RESERVOIR ENVIRONMENTAL IMPACTS AND MITIGATION

3.5.1 Hazards and Hazardous Materials

Algaecide application at Sweetwater Reservoir entails transporting, handling, and using copper-based products that are regulated hazardous materials and, if handled or applied improperly, could be hazardous to human health and the environment. The following mitigation measures will be incorporated into the project to reduce this impact to a less-than-significant level:

SWEETWATER-HAZ-1: Sweetwater will apply copper sulfate and citric acid in accordance with the product label and shall comply with the recommendations provided on the MSDS applicable to the specific copper sulfate product to be used. Copper sulfate will be applied in an even, consistent manner over the surface area to be treated, thus minimizing the potential for higher than intended localized concentrations.

SWEETWATER-HAZ-2: Sweetwater will require training in copper sulfate and citric acid safety for all Sweetwater employees participating in the application and handling of copper sulfate. Sweetwater shall conduct additional refresher training, as deemed necessary, prior to each treatment event.

SWEETWATER-HAZ-3: Sweetwater will follow all response and containment procedures provided in their Chemical Hygiene Plan, Hazardous Response Plan, and the product MSDS in the event of a spill. These procedures include isolation and containment of the spill while wearing the appropriate personal protective equipment.

SWEETWATER-HAZ-4: Sweetwater will require its employees participating in the application or handling of copper sulfate and citric acid to wear appropriate personal protective equipment recommended on the MSDS, including protective safety glasses with side shields (or goggles) per Occupational Safety and Health Administration (OSHA) 29 CFR 1910.133. Chemically impervious gloves made of any waterproof material, boots, and protective clothing will be worn to avoid skin contact (refer to OSHA 29 CFR 1910.138), as well as a respirator that meets OSHA 29 CFR 1910.134 requirements.

3.5.2 Hydrology and Water Quality

Sweetwater’s use of copper to control algae blooms at the Sweetwater Reservoir may result in excess of receiving-water limitations established in the General Permit. Exceeding the thresholds would itself be necessary to prevent algae-related water quality impacts at Sweetwater Reservoir, but this would be considered a significant impact unless Sweetwater obtains an exception from the limitations by the State Water Resources Control Board. The following mitigation measures will be incorporated into the project to reduce this impact to a less-than-significant level:

SWEETWATER-WQ-1: Sweetwater will apply for coverage under the State Board’s NPDES Permit for Discharges of Aquatic Pesticides and, as part of that application, seek a Categorical Exception pursuant to Section 5.3 of the State Board’s Policy for Implementation of Toxics Standards for Inland Surface Waters, Enclosed Bays, and Estuaries of California.

SWEETWATER-WQ-2: Sweetwater will continue to monitor and report copper levels in Sweetwater Reservoir in accordance with State Board requirements.
3.6 AUTHORITY TO PREPARE A MITIGATED NEGATIVE DECLARATION

As provided in the State CEQA Guidelines Section 15070 (Title 14 - California Code of Regulations), an MND may be prepared for a project subject to CEQA when an IS has identified potentially significant effects on the environment, but revisions to the project have been made so that clearly no significant effect on the environment will result from project implementation. The Water Authority is the lead agency for preparation of this MND. Based on the findings of the IS/Environmental Checklist Form prepared for this project (Section 2.0 of this document), the Water Authority has determined that preparation of an MND is the appropriate method to present environmental review of the proposed project in compliance with CEQA. HWD, City of Poway, SFID, and Sweetwater have reviewed this IS and MND; their respective decision-making bodies will also consider adopting the MND before implementing any mitigation program identified specific to their activities.

3.7 PREPARERS OF THE MITIGATED NEGATIVE DECLARATION

This MND was prepared by AECOM, 401 West A Street, Suite 1200, San Diego, CA 92101. The following AECOM professionals contributed to its preparation.

Bill Graham – Principal in Charge
Alex Hardy – Senior Project Manager
Jessica Fernandes – Environmental Planner
Meghan Haggblade – Environmental Planner
Lyndon Quon – Senior Biologist
Keoni Calantas – Project Biologist
Nick Janssen – Geographic Information Systems Specialist
Therese Tempereau – Technical Editor
Marisa Fabrigas – Word Processor

3.8 RESULTS OF PUBLIC REVIEW (TO BE COMPLETED WITH FINAL MND)

() No comments were received during the public input period.

() Comments were received during the public input period, but they did not address the Draft Mitigated Negative Declaration findings or the accuracy or completeness of the Initial Study. No response is necessary. The letters are attached.

(x) Comments addressing the findings of the Draft Mitigated Negative Declaration and/or accuracy or completeness of the Initial Study were received during the public input period.

Signature
Ken Weinberg
Director of Water Resources
San Diego County Water Authority

Date of Draft MND
March 10, 2015

Date of Final MND
May 13, 2015
REFERENCES

City of Poway. 2014b. Personal communication; project questionnaire and emailed information provided to Alex Hardy, AECOM, by Kevin O’Reilly, Water Treatment Plant Supervisor. November–December.

City of Poway. 2015. Personal communication; emailed information provided to Alex Hardy, AECOM, by Kevin O’Reilly, Water Treatment Plant Supervisor. January.

Helix Water District. 2014b. Personal communication; project questionnaire and emailed information provided to Alex Hardy, AECOM, by Brian Olney. November–December.

Helix Water District. 2015. Personal communication; emailed information provided to Alex Hardy, AECOM, by Brian Olney. January.

San Diego County Water Authority. 2014b. Personal communication; project questionnaire and emailed information provided to Alex Hardy, AECOM, by Jim Fisher, O&M Manager. November–December.

Santa Fe Irrigation District. 2014b. Personal communication; project questionnaire and emailed information provided to Alex Hardy, AECOM, by Tim Bailey. November–December.

Sweetwater Authority. 2014. Personal communication; project questionnaire and emailed information provided to Alex Hardy, AECOM, by Mark Hatcher, Water Quality Laboratory Supervisor. November–December.

Sweetwater Authority. 2015. Personal communication; emailed information provided to Alex Hardy, AECOM, by Mark Hatcher, Water Quality Laboratory Supervisor. January.

SECTION 5.0
RESPONSE TO COMMENTS ON THE DRAFT MND

The Draft MND for the project was circulated for a 30-day public review beginning March 12, 2015. A Notice of Intent (NOI) to Adopt an MND was published in the *U-T San Diego* newspaper on March 12, 2015, and was mailed to a list of potentially interested agencies and organizations compiled by the Water Authority and the four other agencies participating in preparation of the MND. Copies of the Draft MND and the supporting technical appendices were made available for review at the Water Authority and at the following libraries near the reservoirs and/or the participating agencies’ service area: Bonita-Sunnyside Branch Library, Escondido Main Library, Lakeside Branch Library, National City Public Library, Poway Branch Library, Rancho San Diego Branch Library, Rancho Santa Fe Branch Library, and Spring Valley Branch Library. An electronic version of the Draft MND and appendices were made available for review and download from the Water Authority’s webpage, http://www.sdcwa.org. A public hearing to take testimony on the adequacy of the Draft MND was held at the Water Authority’s Board of Directors meeting on March 26, 2015.

One comment letter was received in response to issuance of the Draft MND, from the California Department of Fish and Wildlife. No speakers offered testimony on the MND during the March 26, 2015, hearing.

This Final MND has been prepared in accordance with the requirements of the California Environmental Quality Act (California Public Resources Code Section 21000, et seq., [revised December 1998] herein, CEQA) and the State of California CEQA Guidelines, as amended February 1999 (California Administrative Code, Title 14, Section 15000, et seq.). The purpose of the Final MND is to provide the decision-making body, in this case the San Diego County Water Authority, responsible agencies, and the public with environmental impact information relative to the proposed project. The Water Authority must consider the information contained in this Final MND, including comments received during the public review period, prior to approving the proposed project.

The Final MND includes copies of the comment letter received regarding the Draft MND and the Water Authority’s responses to the comments provided in the letter. The Final MND also includes the revised Draft MND and the appendices. Each issue raised in the comment letters has been assigned a number, as indicated with brackets in the margin of the comment letter page, and each response is numbered accordingly. The comment letter has been reproduced on the pages preceding the responses.

The Final MND includes revisions to clarify and correct the Draft MND, where necessary. Those revisions are shown in strike-out/underline format, with strikeout text (text) signifying deletions and underline text (text) signifying additions. No new significant information is presented in the Final MND that would require recirculation of the Draft MND pursuant to Section 15073.5(a) of the CEQA Guidelines.

DRAFT MND COMMENT LETTERS

State Agencies
California Department of Fish and Wildlife, dated April 13, 2015 (comment letter #1)
April 13, 2014

Mr. Larry Purcell
San Diego County Water Authority
4677 Overland Avenue
San Diego, California 92123
LPurcell@sdcwa.org

Subject: Comments on the draft Mitigated Negative Declaration for the Application of Copper-based Algaecides at Five Reservoirs Project San Diego County (SCH# 2015031045)

Dear Mr. Purcell,

The California Department of Fish and Wildlife (Department) has reviewed the above-referenced draft Mitigated Negative Declaration (MND) for the Application of Copper-based Algaecides at Five Reservoirs, San Diego County. The following statements and comments have been prepared pursuant to the Department's authority as Trustee Agency with jurisdiction over natural resources affected by the project (California Environmental Quality Act, CEQA Guidelines § 15386) and pursuant to our authority as a Responsible Agency under CEQA Guidelines section 15381 over those aspects of the proposed project that come under the purview of the California Endangered Species Act (Fish and Game Code § 2050 et seq.) and Fish and Game Code section 1600 et seq. The Department also administers the Natural Community Conservation Planning (NCCP) program.

The project consists of the occasional application of copper sulfate pentahydrate or copper-based algaecides at five reservoirs in the western portion of San Diego County to control and prevent degradation of water quality resulting from algal and cyanobacterial blooms. The subject reservoirs and the member agencies that own and operate them are Olivenhain Reservoir (San Diego County Water Authority, SDCWA), Lake Jennings (Helix Water District), Lake Poway (City of Poway), San Diego Reservoir (Santa Fe Irrigation District), and Sweetwater Reservoir (Sweetwater Authority). Copper-based algaecide application is authorized by the State Water Resources Control Board (SWQCB) under a Statewide General Permit, Water Quality Order Number 2013-0002-DWQ (as amended by Order No. 2014-0078-DWQ). Each agency will apply to the SWQCB to obtain permission to use copper-based algaecide at their respective reservoirs. Additionally, the MND discusses periodic exceedances of the copper limit stated in the General Permit.

The Department offers the following comments and recommendations to assist the SDCWA in avoiding or minimizing potential project impacts on biological resources.

Algaecide Chelation and Toxicity

The Department is aware that the form of copper and water characteristics (e.g., pH and hardness) affects the toxicity response of algae and cyanobacteria to an algaecide exposure. Chelated copper formulations are used because they typically remain in the water column longer than non-chelated formulations and display a higher margin of safety for non-target species.

Conserving California's Wildlife Since 1870
species (e.g., fish). Increased residence time of copper in the water also increases the duration of algaecide exposure. However, the non-chelated algaecides, (e.g., copper sulfate pentahydrate) generally tend to have a shorter residence time and may be more toxic to non-target species than chelated formulations of algaecide (e.g., Cutrine®-Plus). Therefore the Department recommends the use of chelated algaecides whenever it is appropriate.

Algaecide Selection
The draft MND (Page 13) discusses the use of specific types of algaecides. However, there is no mention of how the algaecides were selected. The Department is not clear if studies were conducted to determine the appropriate form and concentration of copper that should be used to control the algae and cyanobacteria. Additionally, the Aquatic Pesticide Application Plans do not contain any information regarding how algaecides were selected. Therefore, the Department recommends that the final MND contain a section which explains the algaecide selection process.

Algaecide Applications
Page 2 of the MND states "the application of copper-based algaecides at each of the five listed reservoirs, as implemented by the respective agencies, which may include periodic exceedances of the limitations stated in the General Permit." Higher concentrations of algaecide may cause increased toxicity to aquatic organisms.

The Department recommends using multiple (2 or more) algaecide applications (if possible) to control algal growth and/or using field trials (or laboratory bioassay) to determine the most efficient and effective chelated algaecide formulation before the five water agencies resort to increasing copper concentrations to control problematic algae and cyanobacteria.

We appreciate the opportunity to comment on the referenced MND. Questions regarding this letter and further coordination on these issues should be directed to Bryand Duke at (858) 637-5511 or Bryand.Duke@wildlife.ca.gov.

Sincerely,

Gail K. Sevrens
Environmental Program Manager
South Coast Region

ec: Lauren Kershek (U.S. Fish and Wildlife Service; lauren_kershek@fws.gov) Scott Morgan (State Clearinghouse)
References

American Society for Testing and Materials (ASTM) 1993b Standard guide for conducting acute toxicity tests with fishes, macroinvertebrates, and amphibians

Applied Biochemists 1997 Material safety data sheet, Laporte Water Technologies

Masin, B J, and J H Rodgers, Jr 2000 Toxicity and bioavailability of copper herbicides (Cleargate, Cutrine®-Plus and Copper Sulfate) to freshwater animals Arch Environ Contam Toxicol 39 445-451

Masuda K and C E Boyd 1993 Comparative evaluation of the solubility and algal toxicity of copper sulfate and chelated copper Aquaculture 117 287-302

Murray-Gulde, C L, J E Heatley, A L Schwartzman and J H Rodgers, Jr 2002 Algicidal effectiveness of Cleargate®, Cutrine®-Plus, and Copper Sulfate and margins of safety associated with their use Archives of Environmental Contamination and Toxicology 43 19–27
RESPONSE TO COMMENT LETTER #1

California Department of Fish and Wildlife

1 Four of the five agencies whose algaecide application programs are discussed in the MND propose to use either pre-chelated copper algaecide products or citric acid as a chelating agent, when copper-based algaecide is applied to their respective reservoirs. The Water Authority, Sweetwater Authority, and Poway use and/or propose to use citric acid as a chelating agent for their copper applications. HWD currently uses and proposes to continue using Cutrine Plus, a pre-chelated copper product.

SFID uses and proposes to continue using a non-chelated copper algaecide product at San Dieguito Reservoir because it is more appropriate to SFID's method of application, which is a direct injection and mixing in the pipeline that delivers water to their reservoir. The algaecide application point for water transferred from Lake Hodges to San Dieguito Reservoir is in a pipeline approximately 1 mile from the reservoir, so the algaecide acts while water is in transit to the reservoir rather than while water is in the reservoir. Because SFID's water is treated in line, the product does not need to remain suspended in reservoir water in order to treat the targeted algae; therefore, the non-chelated product is the most effective and efficient means of algae control at San Dieguito Reservoir.

Sections 1.3.2, 1.3.3, and 1.3.4 have been revised in the Final MND to clarify the products that each of the agencies proposes to use in their algae control programs.

2 As a requirement of APAP preparation, each agency addressed in this MND performed an examination of alternative, non-chemical treatment methods of algae control, and has described the alternate methods they considered and those they already employ in their respective APAPs. Based on this review of alternative treatment options, application of the respective copper products proposed at each subject reservoir has been determined to be the most practical and effective method to control nuisance algae blooms, while minimizing potential environmental impacts. Copper-based algaecides have a long history of effective treatment of algae blooms at reservoirs in the United States and around the world. This historic use has provided extensive field data that inform manufacturers' chemical formulation and recommended concentration specifications as listed on the products' EPA-regulated labels. With the exception of the Water Authority, which has not had to use algaecide at Olivenhain Reservoir in the past, the water agencies addressed in this MND have their own histories with copper-based algaecide application at their respective reservoirs, and as a result have extensive field data on application at their own reservoirs. This past experience and the monitoring required pursuant to the General Permit has enabled each agency to develop and optimize an efficient algae-control program that minimizes potential toxicity to non-target species. The Water Authority has relied on an ample amount of information available on various copper-based algaecides to select their product, and will follow all label requirements and industry-standard practices whenever they need to commence algaecide application at Olivenhain. All of the agency practices addressed in this MND will continue to conform to requirements stated in the General Permit, including pre- and post-application monitoring and reporting to the State Board to demonstrate permit compliance.

3. Application of algaecides at each of the reservoirs addressed in this MND will continue to be conducted in conformance with algaecide label instructions, including specifications governing product formulation, concentration, and application frequency. Large blooms of algae are most effectively controlled by repeated low dosage algaecide applications in conformance with label directions (and as recommended in this comment), rather than by merely increasing the amount of copper used in a single application. However, the infrequent exceedance of copper limitations allowed by the General Permit exception provisions may occur even though the agencies conform to label requirements and treat algal blooms with multiple low concentrations rather than a single higher concentration of algaecide product.
APPENDIX A2
Lake Jennings APAP
Aquatic Pesticide Application Plan (APAP)

Helix Water District

This Aquatic Pesticides Application Plan has been prepared in accordance with Water Quality Order No. 2013-0002-DWQ, General Permit No CAG990005 of the State Water Resources Control Board.
Introduction

Helix Water District (HWD) in accordance with Water Quality Order No. 2013-0002-DWQ, General Permit No CAG990005 of the California State Water Resources Control Board (SWRCB), has prepared this Aquatic Pesticides Application Plan (APAP). This General Permit shall become effective on December 1, 2013 and shall expire on November 30, 2018. This APAP contains the following elements:

1. Description of the water system to which algaecides and aquatic herbicides are being applied;
2. Description of the treatment area in the water system;
3. Description of types of weed(s) and algae that are being controlled and why;
4. Algaecide and aquatic herbicide products to be used, the method in which they are applied, and the adjuvants and surfactants used;
5. Discussion of the factors influencing the decision to select algaecide and aquatic herbicide applications for algae and weed control;
6. Description of the control structure to be used to control the extent of receiving waters potentially affected by algaecide and aquatic herbicide application and the inspection schedule of the control structure to ensure that it is not leaking;
7. Description of the monitoring program;
8. Description of procedures used to prevent sample contamination from persons, equipment, and vehicles associated with algaecide and aquatic herbicide application;
9. Description of the BMP’s to be implemented.
10. Examination of possible alternatives to algaecide and aquatic herbicide use to reduce the need for applying algaecides and herbicides.
11. Algaecide and Aquatic Herbicide Application Log information elements
12. Attachments. MSDS and product information sheets for algaecide and herbicides used by HWD are attached in the following order: Cutrine Plus, Garlon 3A, and Glyphosate Pro 4.

1. Description of the water system to which algaecides and aquatic herbicides are being applied.

Helix Water District (HWD) operates as a public agency under Irrigation District Laws of the State of California. HWD’s service area covers nearly 50 square miles in San Diego County and provides water to approximately 250,000 people. Less than 20% of HWD’s water source is local runoff. The rest of the water source is a blend of water from the Colorado River and Northern California. This imported water is purchased from the San Diego County Water Authority, who in turn purchases its water from the Metropolitan Water District of Southern California.

HWD owns Lake Jennings, a 9,790 acre-foot reservoir (See Figure 1.) Lake Jennings is located within the boundaries of Regional Water Board 9, San Diego. Approximately 95 percent of Lake Jennings’ volume is water imported from Northern California and the Colorado River via aqueducts. A small amount of inflow is from ephemeral, unnamed tributaries. Lake Jennings was created by impounding water behind Chet Harritt Dam, constructed in 1962. Lake Jennings serves as a short-term emergency...
storage reservoir for HWD's R. M. Levy Water Treatment Plant. The surface elevation of Lake Jennings is lowered when HWD uses water from the lake to produce potable water.

Figure 1. Lake Jennings

2. Description of the treatment area in the water system.

Lake Jennings will be treated for aquatic weeds and nuisance algae. Herbicide will never be applied to open water; aquatic weeds will be treated with herbicide on ground below the ordinary high water mark when the lake is level is down. Weeds submerged in water will not be treated and herbicide will not be applied to the water. Algaecide will be applied to the water in an area adjacent to Chet Harritt Dam and the intake tower to the water treatment plant; these points are in close proximity to each other.

3. Description of types of weeds and algae that are being controlled and why.

- Algae

Algae are a very large and diverse group of simple, typically autotrophic organisms. Freshwater harmful algal blooms (HABs) can occur anytime water use is impaired due to excessive accumulations of algae. In freshwater, the majority of HABs are caused by cyanobacteria (also called blue-green algae). Cyanobacteria cause a multitude of water-quality concerns, including the potential to produce taste-and-odor causing compounds and toxins that are potent enough
Cyanobacterial toxins (cyanotoxins) have been implicated in human and animal illness and death in over fifty countries worldwide, including at least 35 U.S. States. Human toxicoses associated with cyanotoxins have most commonly occurred after exposure through drinking water or recreational activities. Taste-and-odor compounds and toxins are of particular concern in lakes and reservoirs that are used for drinking water supplies, such as Lake Jennings. Taste-and-odor compounds cause malodorous or unpalatable drinking water, resulting in increased treatment costs. In addition, if great masses of algae are permitted to enter the water treatment plant, the algae can cause operational problems by increasing the amount of suspended material that must be settled out of the water, and excessive algae can lead to water filter clogging. Filter clogging leads to shortened filter run times. Increases in the amount of material that must be settled in the water treatment process and shortened filter run times lead to increased electricity and chemical use in the water treatment plant. It is prudent to reduce the amount of algae in the water source, before it enters the drinking water treatment plant. Lake Jennings primary use is as a drinking water reservoir; therefore, HWD must control algae blooms in the lake to comply with drinking water regulations set forth in Title 22, California Code of Regulations. HWD normally prevents and controls algae blooms by oxygenating and mixing Lake Jennings with a conventional aeration system, which is described in more detail in section 10(a)(iii). In the event that aeration system is not able to prevent or control an algae bloom, Helix Water District must be able to control the algae bloom through the use of algaecide.

- **Tamarix spp.**

Four species of invasive *Tamarix* have been identified in California: *T. ramosissima*, *T. chinensis*, *T. gallica*, and *T. parviflora*. All four are many-branched shrubs or trees less than twenty-six feet tall with small scale-like leaves, from which comes the name saltcedar. Leaves have salt glands, and salt crystals can often be seen on leaves.

Soil salinities increase as a result of inputs of salt from glands on saltcedar leaves. The dome-shaped glands consist of at least two cells embedded in the epidermal pits (Decker 1961). Increased salinity inhibits growth and germination of native riparian species (Anderson 1996). Leaf litter from drought-deciduous saltcedar increases the frequency of fire. Saltcedar is capable of re-sprouting vigorously following fire and, coupled with changes in soil salinity, ultimately dominates riparian plant communities (Busch 1995).

Invasive *Tamarix* will be controlled to prohibit disruption to the structure and stability of the native plant community and degradation of the native wildlife habitat at Lake Jennings.
• *Typha spp*

Commonly known as cattails, these native plants have long, slender, grass-like stalks that can grow up to 10 feet in height. Cattails can spread via seeds or root rhizomes. Through rhizomes, plants can form large, interconnected stands that can quickly grow to cover an area of lake bottom. Cattails can be beneficial by providing food and shelter to animals. Conversely, in shallow areas of the lake, they can dominate plant communities, reducing plant diversity and habitat for other organisms. Lake Jennings primary use is as a drinking water reservoir; overgrowth of cattails and consequent plant decomposition must be controlled to prevent eutrophication of the lake. Cattails must be controlled in areas where their growth would threaten the integrity of the earthen portion of Chet Harritt Dam. Cattails can also provide food and shelter to muskrats; muskrat burrowing activity is a threat to dam integrity. Cattails must also be controlled in areas which lead to the dam spillway.

• *Schoenoplectus spp.*

Commonly called tules or bulrushes, two species of *Schoenoplectus* (synonym: *Scirpus*) are present at Lake Jennings.

 The California Bulrush, or California Tule, *Schoenoplectus californicus* has long, curved triangular stems from 5 to 8 feet in height. This plant can grow in water up to 36 inches or more. Plants tend to grow in a continuous colony parallel to the shore and colonies grow in somewhat circular stands. These plants have clonal growth, with stout rootstocks and long, thick, brown rhizomes.

 The Hardstem Bulrush, or Western Common Tule, *Schoenoplectus acutus* var. *occidentalis* has tall stems that are round in cross-section. The leaves are slender, v-shaped blades that are sheathed around the long stem. Bulrushes have clonal growth, with stout rootstocks and long, thick, brown rhizomes. Hardstem bulrushes grow best on sites with saturated soil or standing water for most of the year, but they are drought tolerant and can persist through several years of dry conditions.

 Lake Jennings primary use is as a drinking water reservoir; overgrowth of tules and consequent plant decomposition must be controlled to prevent eutrophication of the lake. Tules must be controlled in areas where their growth would threaten the integrity of the earthen portion of Chet Harritt Dam. Tules can also provide food and shelter to muskrats; muskrat burrowing activity is a threat to dam integrity. Tules must also be controlled in areas that lead to the dam spillway.
4. Algaecide and Aquatic herbicide products to be used, the method in which they are applied, and the adjuvants and surfactants used.

- **Cutrine Plus**
 The algaecide Cutrine Plus will be used if algae control by chemical means is necessary. Cutrine Plus is a liquid product. The active chemical in Cutrine Plus is chelated elemental copper. Cutrine Plus will be applied, in accordance with label directions, to the water using a spray rig from a boat.

- **Garlon 3A**
 The water-based herbicide Garlon 3A will be used for the control of *Tamarix* spp. Garlon 3A will be applied to *Tamarix* stumps using the cut surface method described on the product Specimen Label using a handheld sprayer. Garlon 3A will only be applied to *Tamarix* stumps that have been exposed to air and cut after the water level of Lake Jennings has been lowered. **Under no circumstances will Garlon 3A be applied to the water of Lake Jennings or to *Tamarix* that is emergent from the water.** After application of Garlon 3A, the water level of Lake Jennings will not be raised for a minimum of two weeks, so that treated stumps are left exposed to air. HWD does not normally raise the water level of Lake Jennings for about three months after the application of herbicide. No adjuvants or surfactants will be used to apply Garlon 3A.

- **Glyphosate Pro 4**
 The herbicide Glyphosate Pro 4 will be used when control of *Typha* spp. and *Schoenoplectus* spp. by chemical means is necessary. Glyphosate Pro 4 will be applied to the target plants with a handheld sprayer in accordance with product label directions. Glyphosate Pro 4 will only be applied to the target plants when the bases of the plants have been exposed to air after the water level of Lake Jennings has been lowered. **Under no circumstances will Glyphosate Pro 4 be applied to the water of Lake Jennings or to target plants that are emergent from the water.** After application of Glyphosate Pro 4, the water level of Lake Jennings will not be raised for a minimum of two weeks, so that treated stumps are left exposed to air. HWD does not normally raise the water level of Lake Jennings for about three months after the application of herbicide. The adjuvant Magnify will be used to apply Glyphosate Pro 4. Glyphosate Pro 4 and Magnify will be tank-mixed in accordance with product label directions.

5. Discussion of the factors influencing the decision to select algaecide and aquatic herbicide applications for algae and weed control

- **Algaecide**
The normal method of algae bloom prevention and control in Lake Jennings is conventional aeration. Conventional aeration is extremely successful at preventing and controlling algae blooms in Lake Jennings. Algaecide was applied infrequently in the years before the aeration system was installed and activated and algaecide use has not been necessary since HWD began to operate the aeration system. However, Lake Jennings is a water source for Helix Water District’s water treatment plant to produce potable water; therefore, in the event that the aeration system is not able to control an algae bloom, HWD must possess the means to control an algae bloom that algaecide provides.

- **Herbicides**

 In the case of invasive *Tamarix* control, it is sometimes difficult to physically remove the stumps and root systems of the trees without jeopardizing the safety of maintenance personnel. This can be due to size of the established root system and/or the location of the stump and root system. It is also essential that the integrity of the earthen portion of Chet Harritt Dam is not threatened by tree stump and removal operations.

 In the case of *Typha* and *Schoenoplectus* control, it is often difficult to physically unearth the extensive rhizomes systems of these plants. Use of herbicide allows control of overspreading of these plants and complete, effective control of the plants in areas leading the dam spillway. In addition, use of herbicide allows control of these plants with minimal disturbance to the earthen portions of Chet Harritt Dam.

6. **Description of the control structure to be used to control the extent of receiving waters potentially affected by algaecide and aquatic herbicide application and the inspection schedule of the control structure to ensure that it is not leaking.**

 - Chet Harritt Dam is the control structure that will be used to control the extent of receiving waters potentially affected by algaecide application, specifically.
 - Chet Harritt Dam is inspected for leaks and structural integrity every Tuesday of the week.

7. **Description of the monitoring program**

 The General Permit requires that dischargers comply with the Monitoring and Reporting Program (MRP) outlined in the General Permit. The General Permit encourages Dischargers to form Coalitions with other Dischargers doing similar applications within the same watershed. However, Helix Water District is the only discharger within the Lake Jennings watershed. Therefore, HWD has
prepared and implemented its own, individual MRP (HWD MRP). The MRP is designed to answer two key questions:

Question No. 1: Does the residual algaecides and aquatic herbicides discharge cause an exceedance or receiving water limitations?

Question No. 2: Does the discharge of residual algaecides and aquatic herbicides, including active ingredients, inert ingredients, and degradation byproducts, in any combination cause or contribute to an exceedance of the “no toxics in toxic amount” narrative toxicity objective?

The HWD MRP has been written in accordance with the provisions set forth under General Monitoring Provisions contained in Attachment C of the General Permit.

HWD has established the monitoring locations identified in this APAP to demonstrate compliance with the receiving water limitations, discharge specifications, and other requirements in the General Permit. The number and location of samples have been selected to answer the two key questions. The established monitoring locations are shown in Figure 2. **Point 1** is an anchored buoy located at GPS coordinates 32.856565, -116.891122, which is within the algaecide application area, which bounded to the west by Chet Harrit Dam, which is labeled Dam in Figure 2. **Point 2** is an anchored buoy located outside of the treatment area, at GPS coordinates 32.858751, -116.88141. Prevailing winds tend to push water at the surface Lake Jennings from the direction of Chet Harritt Dam towards the buoy at Point 1 and on to the buoy at Point 2.

![Figure 2.](image-url)
Three types of monitoring will be performed for each sampling, as specified in the General Permit:

1. **Background Monitoring.** Background monitoring samples shall be collected in the application area just prior to (up to 24 hours in advance of) the application event.

2. **Event Monitoring.** Event monitoring samples shall be collected immediately outside of the treatment area, immediately after the application event, but after sufficient time has elapsed such that treated water would have exited the treatment area.

3. **Post-Event Monitoring.** Post-event monitoring samples shall be collected within the treatment area within one week after the application.

Records of monitoring information shall include the following:

1. The date, exact place, and time of sampling or measurements;
2. The individuals who performed the sampling or measurements;
3. The dates analysis were performed;
4. The individuals who performed the analyses;
5. The analytical techniques or methods used; and
6. Results of analyses.
The monitoring at each sample point will consist of the sample types listed in the following table, *Monitoring Requirements*, from Attachment C of the General Permit:

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Constituent/Parameter</th>
<th>Units</th>
<th>Sample Method</th>
<th>Minimum Sampling Frequency</th>
<th>Sample Type Requirement</th>
<th>Required Analytical Test Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visual</td>
<td>1 Monitoring area description (pond, lake, open waterway, channel, etc)</td>
<td>Not applicable</td>
<td>Visual Observation</td>
<td>1</td>
<td>Background, Event and Post-event Monitoring</td>
<td>Not applicable</td>
</tr>
<tr>
<td></td>
<td>2 Appearance of waterway (sheen, color, clary, etc)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 Weather conditions (fog, rain, wind, etc)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical</td>
<td>1 Temperature</td>
<td>°F</td>
<td>Grab</td>
<td>5</td>
<td>Background, Event and Post-event Monitoring</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>2 pH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 Turbidity</td>
<td>NTU</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 Electric Conductivity @ 25°C</td>
<td>μmhos/cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemical</td>
<td>1 Active Ingredient</td>
<td>μg/L</td>
<td>Grab</td>
<td>5</td>
<td>Background, Event and Post-event Monitoring</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>2 Nonylphenols</td>
<td>μg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 Hardness (if copper is monitored)</td>
<td>mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 Dissolved Oxygen</td>
<td>mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 All applications at all sites
2 Field testing
3 Field or laboratory testing
4 Samples shall be collected at three feet below the surface of the water body or at mid water column depth if the depth is less than three feet
5 Collect samples from a minimum of six application events for each active ingredient in each environmental setting (flowing water and non-flowing water) per year, except for glyphosate. If there are less than six application events in a year, collect samples during each application event for each active ingredient in each environmental setting (flowing water and non-flowing water). If the results from six consecutive sampling events show concentrations that are less than the receiving water limitation/trigger for an active ingredient in an environmental setting, sampling shall be reduced to one application event per year for that active ingredient in that environmental setting. If the yearly sampling event shows exceedance of the receiving water limitation/trigger for an active ingredient in an environmental setting, then sampling shall return to six application events for that active ingredient in each environmental setting. For glyphosate, collect samples from one application event from each environmental setting (flowing water and non-flowing water) per year
6 Pollutants shall be analyzed using the analytical methods described in 40 C F R part 136
7 2,4-D, acrolein, dissolved copper, diquat, endothall, fluridone, glyphosate, imazamox, imazapyr, penoxsulam, and triclopyr
8 It is required only when a surfactant is used
8. Description of procedures used to prevent sample contamination from persons, equipment, and vehicles associated with algaecide and aquatic herbicide application

Measures will be taken to prevent sample collection contamination from persons, equipment and vehicles associated with algaecide and aquatic herbicides application, as follows:

- Background monitoring sample collection will be carried out prior to application equipment or algaecides being loaded into a boat. Sampling equipment, with particular emphasis on cooler and sample bottles, will be transported separately from algaecides or aquatic herbicides and application equipment on the day of the application event. Background monitoring will take place immediately prior to the application event.

- For event monitoring, sampling will be carried out after application equipment and all application related equipment and devices including personal protection equipment (PPE) used during the application has been removed from the boat, if no other boats are available to support sampling efforts. Hands will be washed with soap and clean potable water before handling sampling equipment, cooler and sample bottle. During sample bottle handling and sample collection, disposable rubber gloves will be used to collect a water sample. The pre-labeled sample bottle will be completed with time and date of sample collection immediately after removing from the sample cooler and replaced in the cooler immediately after sample collection. Once sampling has been completed, water samples will be delivered immediately to the laboratory, if possible. If background and event samples cannot be delivered the same days, sample bottles will be stored in a laboratory refrigerator until the samples can be delivered the next business day.

9. Description of the BMP’s to be implemented:

- Techniques that help reduce pesticide impacts include:
 - Non-algaecide/herbicide control methods as outlined below (section 10) have been attempted or considered.
 - Pre Treatment surveys are carried out to identify potential treatment areas and timing of pesticide application
 - Adjustments will be made to treatment protocols based upon survey results
 - Pesticide treatments will be performed when no water is being discharged from the lake system
 - Aquatic Pesticide use rates will be per the EPA label and will be limited to ensure compliance with Receiving Water Limitations
 - Partial waterbody treatments or split treatments will be utilized to minimize impacts that might otherwise occur

- From the aquatic herbicides available, the most effective and safest options have been selected for use in this program.

- In order to avoid inadvertent or accidental soil or water contamination with aquatic pesticides, application personnel follow the storage, transport, and spill control procedures per USEPA and DPR (Department of Pesticide Regulations) rules, regulations and label instructions
Over application is avoided by following the specific product labels for the aquatic pesticides used in the program. Algaecide and aquatic herbicide quantities required for each treatment are pre-calculated and only sufficient material to carry out the treatment is transported for an application event. Application equipment is routinely cleaned and maintained, and all label directions and Department of Pesticide Regulations guidelines are followed as to acceptable application methods as well as weather conditions. Surface applications are not made in winds above 10 miles per hour.

The various BMP's being implemented ensures that the APAP will meet the requirements of the general NPDES Permit for the use of aquatic pesticides.

Licensing: Individuals who supervise the application of aquatic pesticides are certified and/or licensed by the Department of Pesticide Regulations.

Site Evaluations: As has been detailed in this section and elsewhere, both preliminary and secondary site evaluations are a major aspect of the program, as represented by the extensive surveying carried out by the field crews.

Alternative Treatments: Staff considers a number of potential alternative control strategies in every situation, and will make use of non-herbicide options when conditions are suitable.

Treatment Conditions: Every application is made according to label directions, which not only specify the amounts and situations where pesticides may be applied, but the atmospheric and environmental conditions under which they may be applied. If there are conditions where it is determined that the treatment would be ineffective, application staff wait for other conditions.

Post-treatment: Surveys are also carried out for post-treatment assessment of treatment efficacy and non-target impacts. Survey crews are instructed to look for possible non-target impacts that can be seen with the naked eye, such as dead fish or damage to plants on the shoreline.

The applicator follows all pesticide label instructions and any Use Permits issued by a CAC (County Agricultural Commissioner);

The discharger's applicators are licensed by DPR, or work with or under the supervision of someone who is licensed;

The discharger's applicators comply with effluent limitations

The discharger's applicators will follow this Aquatic Pesticide Application Plan (APAP);

The discharger's applicators comply with applicable receiving water limitations; and

The discharger's applicator will comply with the monitoring and reporting requirements outlined in this APAP.

Aquatic Pesticide Use Requirements:

License Requirements Discharger's applicators will be licensed by Department of Pesticide Regulations if such licensing is required for the aquatic pesticide application project

Application Requirements. The pesticide will be consistent with FIFRA pesticide label instructions and any Use Permits issued by the County Agricultural Commissioner.
• Application Schedule. When requested, the discharger will provide a phone number to persons who request the discharger's application schedule. The discharger shall provide the requester with the most current application schedule and inform the requester if the schedule is subject to change. Information may be made available by electronic means.

• Public Notice Requirements. The Discharger and the affected public agency are one in the same, Helix Water District. Therefore, there is no need to notify other public agencies.

10. Examination of possible alternatives to algaecide and aquatic herbicide use to reduce the need for applying algaecides and herbicides.

a. Algae

 Evaluation of alternative management options:

 i. No action

 With no action taken, algae blooms would be allowed to exist in Lake Jennings. If a taste or odor causing algae bloom is allowed to exist in Lake Jennings, Helix Water District cannot use water from Lake Jennings to produce potable water.

 ii. Prevention

 HWD’s normal algae management strategy is to prevent algae blooms by use of a conventional aeration system, which is described in more detail under the following section, iii. Mechanical or physical methods.

 Lake Jennings is fed with raw surface water, which contains algae cells. Prevention of raw water inflow is not feasible.

 iii. Mechanical or physical methods

 HWD’s normal algae management strategy is to prevent algae blooms by use of a conventional aeration system. The aeration system consists of an air compressor located on Chet Harritt Dam, an air diffuser grid that is located on the lake bottom adjacent to the dam, and an air line that connects the air compressor & diffuser grid. The aeration system introduces air bubbles at the bottom of lake. The rising air bubbles push oxygen-poor water up to the surface, where it is reaerated through an exchange with atmospheric oxygen at the water’s surface. Prevailing winds tend to push water that has been brought to the surface by the aerator towards the opposite end of Lake Jennings. This aeration system is powerful enough to turn over and oxygenate the entire lake. HWD places the aeration system in operation at the beginning of the season when algae blooms commonly occur and operates the system throughout the
season. Algae blooms are extremely rare in Lake Jennings due to use of the aeration system.

The primary use of Lake Jennings is as source water for a potable water treatment plant; in the event that the aeration system is not able to prevent or control an algae bloom, Helix Water District must be able to control unpalatable and/or malodorous algae blooms by other means.

iv. Cultural methods

Helix Water District strives to minimize potential nutrient sources for algae blooms by limiting overgrowth of cattails and tules, and removing fallen trees from the lake water whenever possible. In the event that minimizing nutrient sources does not control algae blooms, Helix Water District must be able to control algae blooms by other means.

v. Biological control agents

Lake Jennings contains a population of fish and zooplankton. Zooplankton and some fish consume algae, but it is unlikely that animal feeding activity would be able to control a rapidly growing algae bloom.

vi. Algaecides

Helix Water District will use the minimum amount of algaecide that is necessary to have an effective algae control program and is consistent with the algaecide product label requirements in the event that algaecide use is necessary.

b) **Tamarix spp.**

Evaluation of alternative management options:

i. No action

Invasive Tamarix would be allowed to proliferate. Tamarix would disrupt the structure and stability of the native plant community and degrade the native wildlife habitat at Lake Jennings.

ii. Prevention

Tamarix seeds can be spread by water. Lake Jennings is filled with water transported from Northern California and the Colorado River. The banks of the Colorado River are infested with Tamarix. It would be difficult to prevent...
Tamarix from entering Lake Jennings without stopping the inflow of water from the Colorado River.

iii. Mechanical or physical methods

Mechanical controls include mowing, cutting, and root plowing. These methods rarely kill the plant and often stimulate shrubby regrowth. However, HWD will make the effort to remove roots through physical means before resorting to herbicide use.

iv. Cultural methods

Tamarix spreads aggressively, outcompeting native plant species, and often forms monoculture stands when growth is left unchecked. HWD will continually review literature for updated information regarding native plant species that have been found to compete against Tamarix.

v. Biological control agents

Diorhabda elongata, the Mediterranean tamarisk beetle (MTB), is a non-native, Old World species of beetle that has been successfully used to suppress Tamarix. Release of the MTB is Southern California, the location of Lake Jennings, has been delayed until concerns can be resolved regarding safety of Tamarix biological control to nesting habitats of the federally endangered southwestern willow flycatcher, Empidonax traillii. HWD will continue to seek information on other possible biological control agents, and if release of the MTB becomes permitted in Southern California.

vi. Aquatic herbicides

Helix Water District will use the minimum amount of herbicide that is necessary to have an effective control program and is consistent with the herbicide product label requirements in the event that herbicide use is necessary.

c. Schoenoplectus spp. & Typha spp.

Evaluation of alternative management options:

i. No action

Schoenoplectus spp. and Typha spp. would likely form monocultures, with dense, impenetrable stands in shallow areas of Lake Jennings. Naturally decaying plant material could lead to eutrophication of the lake and supply a nutrient source to taste and odor causing algae blooms.

ii. Prevention
Schoenoplectus spp. and Typha spp. proliferate in the local environment. Their seeds can be spread by air and water from plants both at Lake Jennings and the surrounding local environment. Therefore, it would be difficult to prevent Schoenoplectus and Typha from growing at Lake Jennings. HWD’s goal is to maintain a controlled population of Schoenoplectus and Typha at Lake Jennings, not to completely eradicate these species.

iii Mechanical or physical methods

Mechanical or physical control methods are HWD’s primary control methods of choice. Plants can be cut down to the base, so that leaves are not able to mature so that they can transport food to their root systems. In addition, plants with roots cut down to below the water level can drown. Another physical method is to completely pull the roots out of the ground; this is more difficult, since the roots of these plants tend to form interwoven mats under ground.

iv. Cultural methods

There do not seem to be any plants that compete with Schoenoplectus and Typha. Each species only seems to compete with the other.

v. Biological control agents

Grass carp (white amur) fish have been mentioned as a potential biological control method, but success with using grass carp as a control method appears to be unproven. HWD does not wish to introduce this fish species to Lake Jennings.

vii. Aquatic herbicides

HWD will use the minimum amount of aquatic herbicide that is necessary to have an effective control program and is consistent with the herbicide product label requirements in the event that herbicide use is necessary.

11. Algaecide and Aquatic Herbicide Application Log information elements

1. Date of application;
2. Location of the application, both stated and illustrated on diagram of Lake Jennings;
3. Name of the applicator;
4. Type and amount of algaecide or aquatic herbicide used;
5. Application details, such as level of Lake Jennings, time application started and stopped, algaecide and aquatic herbicide application rate and concentration;
6. Visual monitoring assessment; and
7. Certification that applicator(s) followed this APAP.
12. Attachments. MSDS and product information sheets for algaecide and herbicides used by HWD are attached in the following order: Cutrine Plus, Garlon 3A, and Glyphosate Pro 4
PRODUCT NAME: AB CUTRINE-PLUS

1. PRODUCT AND COMPANY IDENTIFICATION

Supplier
Applied Biochemists (WI)
W175 N11163 Stonewood Drive,
Suite 234
Germantown, WI, 53022
United States

Manufacturer
Advantis Technologies
1400 Bluegrass Lakes Parkway
Alpharetta, GA 30004
United States of America

REVISION DATE: 09/14/2011
SUPERCEDES: 02/19/2010

MSDS Number: 000000012518
SYNONYMS: None
CHEMICAL FAMILY: None
DESCRIPTION / USE FORMULA: None established

2. HAZARDS IDENTIFICATION

<table>
<thead>
<tr>
<th>OSHA Hazard Classification:</th>
<th>Slight Eye Irritant</th>
</tr>
</thead>
</table>

Routes of Entry: Eyes Skin Ingestion
Chemical Interactions: None known.
Medical Conditions Aggravated: None known.
Human Threshold Response Data

Odor Threshold: Not established for product.

Irritation Threshold: Not established for product.

Hazardous Materials Identification System / National Fire Protection Association Classifications

<table>
<thead>
<tr>
<th>Hazard Ratings</th>
<th>Health</th>
<th>Flammability</th>
<th>Physical / Instability</th>
<th>PPI / Special hazard</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMIS</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>NFPA</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Immediate (Acute) Health Effects

Inhalation Toxicity: Not expected to be an inhalation hazard at ambient conditions. Inhalation of mist or vapor may cause irritation to the mucous membranes of the respiratory tract.

Skin Toxicity: Not expected to be irritating to the skin. Not expected to be toxic from dermal contact.

Eye Toxicity: Contact would be expected to cause minor irritation, consisting of transient redness and swelling. No corneal involvement or visual impairment is expected.

Ingestion Toxicity: Slightly toxic if swallowed. Ingestion may cause gastrointestinal irritation, nausea, vomiting and diarrhoea.

Acute Target Organ Toxicity: May cause mild eye irritation. Ingestion may cause mild gastrointestinal discomfort. Inhalation of mist or vapor may cause irritation to the mucous membranes of the respiratory tract.

Prolonged (Chronic) Health Effects

Carcinogenicity: This product is not known or reported to be carcinogenic by any reference source including IARC, OSHA, NTP or EPA.

Reproductive and Developmental Toxicity:

Inhalation: There are no known or reported effects from chronic exposure except for effects similar to those experienced from acute exposure.

Skin Contact: There are no known or reported effects from chronic exposure.

Skin Absorption: There are no known or reported effects from chronic exposure.

Ingestion: There are no known or reported effects from chronic ingestion except for effects similar to those experienced from single exposure.

Sensitization: This material is not known or reported to be a skin or respiratory sensitizer.
Chronic Target Organ Toxicity: There are no known or reported effects to humans from repeated exposure to this product.

Supplemental Health Hazard Information: No additional health information available.

3. COMPOSITION / INFORMATION ON INGREDIENTS

<table>
<thead>
<tr>
<th>CAS OR CHEMICAL NAME</th>
<th>CAS #</th>
<th>% RANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triethanolamine</td>
<td>102-71-6</td>
<td></td>
</tr>
<tr>
<td>Ethanolamine</td>
<td>141-43-5</td>
<td></td>
</tr>
<tr>
<td>BASIC COPPER CARBONATE</td>
<td>12069-69-1</td>
<td></td>
</tr>
</tbody>
</table>

4. FIRST AID MEASURES

General Advice: Call a poison control center or doctor for treatment advice. For 24-hour emergency medical assistance, call Arch Chemical Emergency Action Network at 1-800-654-6911. Have the product container or label with you when calling a poison control center or doctor, or going for treatment.

Inhalation: IF INHALED: Move person to fresh air. If person is not breathing, call 911 or an ambulance, then give artificial respiration, preferably mouth-to-mouth if possible. Call a poison control center or doctor for further treatment advice.

Skin Contact: IF ON SKIN OR CLOTHING: Take off contaminated clothing. Rinse skin immediately with plenty of water for 15-20 minutes. Call a poison control center or doctor for treatment advice.

Eye Contact: IF IN EYES: Hold eye open and rinse slowly and gently with water for 15-20 minutes. Remove contact lenses, if present, after the first 5 minutes, then continue rinsing eye. Call a poison control center or doctor for treatment advice.

Ingestion: IF SWALLOWED: Call a poison control center or doctor immediately for treatment advice. Have person sip a glass of water if able to swallow. Do not induce vomiting unless told to do so by a poison control center or doctor. Do not give anything by mouth to an unconscious person.
5. FIRE FIGHTING MEASURES

Flammability Summary (OSHA): The product is not flammable, Not combustible., Not explosive, The substance or mixture is not classified as pyrophoric.

Flammable Properties

Fire / Explosion Hazards: Will not burn
Extinguishing Media: Carbon dioxide (CO2) Dry chemical Foam
Fire Fighting Instructions: Use water spray to cool unopened containers. In case of fire, use normal fire-fighting equipment and the personal protective equipment recommended in Section 8 to include a NIOSH approved self-contained breathing apparatus.

Hazardous Combustion Products: During a fire, irritating and highly toxic gases may be generated by thermal decomposition or combustion.

6. ACCIDENTAL RELEASE MEASURES

Personal Protection for Emergency Situations: Use the personal protective equipment recommended in Section 8 and a NIOSH approved self-contained breathing apparatus.

Spill Mitigation Procedures

Air Release: Keep people away from and upwind of spill/leak.
Water Release: If the product contaminates rivers and lakes or drains inform respective authorities.
Land Release: Contain spillage, soak up with non-combustible absorbent material, (e.g. sand, earth, diatomaceous earth, vermiculite) and transfer to a container for disposal according to local / national regulations (see section 13). The product should not be allowed to enter drains, water courses or the soil.

Additional Spill Information: Prevent further leakage or spillage if safe to do so. Evacuate personnel to safe areas. Use personal protective equipment as required.

7. HANDLING AND STORAGE

Handling: Do not take internally. Avoid contact with skin, eyes and clothing. Upon contact with skin or eyes, wash off with water. Avoid breathing mist or vapor.

Storage: Store in a cool, dry and well ventilated place. Isolate from incompatible materials.
Incompatible Materials for Storage: Refer to Section 10, "Incompatible Materials."

8. EXPOSURE CONTROLS / PERSONAL PROTECTION

Ventilation: Local exhaust ventilation or other engineering controls are normally required when handling or using this product to keep airborne exposures below the TLV, PEL or other recommended exposure limit.

Protective Equipment for Routine Use of Product

Respiratory Protection: Wear a NIOSH approved respirator if levels above the exposure limits are possible., A NIOSH approved air purifying respirator with organic vapor cartridge and N95 particulate filter. Air purifying respirators should not be used in oxygen deficient or IDLH atmospheres or if exposure concentrations exceed ten (10) times the published limit.

Skin Protection: Avoid contact with skin. Impervious gloves

Eye Protection: Safety glasses with side-shields

General Protective Measures: Impervious clothing.

Emergency eyewash should be provided in the immediate work area.

Exposure Limit Data

<table>
<thead>
<tr>
<th>CHEMICAL NAME</th>
<th>CAS #</th>
<th>Name of Limit</th>
<th>Exposure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triethanolamine</td>
<td>102-71-6</td>
<td>ACGIH</td>
<td>5 mg/m3 TWA</td>
</tr>
<tr>
<td>Ethanolamine</td>
<td>141-43-5</td>
<td>ACGIH</td>
<td>3 ppm TWA</td>
</tr>
<tr>
<td>Ethanolamine</td>
<td>141-43-5</td>
<td>ACGIH</td>
<td>6 ppm STEL</td>
</tr>
<tr>
<td>Ethanolamine</td>
<td>141-43-5</td>
<td>OSHA Z1</td>
<td>3 ppm TWA</td>
</tr>
<tr>
<td>Ethanolamine</td>
<td>141-43-5</td>
<td>NIOSH-IDLH</td>
<td>6 mg/m3 TWA</td>
</tr>
<tr>
<td>Ethanolamine</td>
<td>141-43-5</td>
<td>NIOSH-IDLH</td>
<td>30 ppm</td>
</tr>
<tr>
<td>BASIC COPPER CARBONATE</td>
<td>12069-69-1</td>
<td>ACGIH</td>
<td>1 mg/m3 TWA</td>
</tr>
<tr>
<td>BASIC COPPER CARBONATE</td>
<td>12069-69-1</td>
<td>OSHA Z1</td>
<td>1 mg/m3 TWA</td>
</tr>
<tr>
<td>BASIC COPPER CARBONATE</td>
<td>12069-69-1</td>
<td>NIOSH-IDLH</td>
<td>100 mg/m3</td>
</tr>
</tbody>
</table>
9. PHYSICAL AND CHEMICAL PROPERTIES

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical State</td>
<td>liquid</td>
</tr>
<tr>
<td>Form</td>
<td>No data.</td>
</tr>
<tr>
<td>Color</td>
<td>No data.</td>
</tr>
<tr>
<td>Odor</td>
<td>No data.</td>
</tr>
<tr>
<td>Molecular Weight</td>
<td>None established</td>
</tr>
<tr>
<td>Specific Gravity</td>
<td>1.220 - 1.230</td>
</tr>
<tr>
<td>at 24 °C</td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>10.3 - 10.5</td>
</tr>
<tr>
<td>Boiling Point</td>
<td>no data available</td>
</tr>
<tr>
<td>Freezing Point</td>
<td>not applicable</td>
</tr>
<tr>
<td>Melting Point</td>
<td>not applicable</td>
</tr>
<tr>
<td>Density</td>
<td>not applicable</td>
</tr>
<tr>
<td>Bulk Density</td>
<td>no data available</td>
</tr>
<tr>
<td>Vapor Pressure</td>
<td>no data available</td>
</tr>
<tr>
<td>Vapor Density</td>
<td>> 1 (Air = 1.0)</td>
</tr>
<tr>
<td>Viscosity</td>
<td>no data available</td>
</tr>
<tr>
<td>Solubility in Water</td>
<td>completely miscible</td>
</tr>
<tr>
<td>Partition coefficient n-octanol/water</td>
<td>not applicable</td>
</tr>
<tr>
<td>Evaporation Rate</td>
<td>no data available</td>
</tr>
<tr>
<td>Oxidizing</td>
<td>None established</td>
</tr>
<tr>
<td>Volatiles, % by vol.</td>
<td>no data available</td>
</tr>
<tr>
<td>VOC Content</td>
<td>no data available</td>
</tr>
<tr>
<td>HAP Content</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>

10. STABILITY AND REACTIVITY

- **Stability and Reactivity Summary:** Stable under normal conditions.
- **Conditions to Avoid:** High temperatures
- **Chemical Incompatibility:** Strong acids, Nitrates
- **Hazardous Decomposition Products:** Carbon oxides, nitrogen oxides (NOx)
- **Decomposition Temperature:** No data

11. TOXICOLOGICAL INFORMATION
Component Animal Toxicology

Oral LD50 value:
- Triethanolamine: LD50 = 7,390 mg/kg Rat
- Ethanolamine: LD50 = 1,700 mg/kg Rat
- BASIC COPPER CARBONATE: LD50 = 1,350 mg/kg Rat

Dermal LD50 value:
- Triethanolamine: LD50 > 2,000 mg/kg Rabbit
- Ethanolamine: LD50 Approximately 1,000 mg/kg rabbit
- BASIC COPPER CARBONATE: no data available

Inhalation LC50 value:
- A saturated vapor concentration for 8 hours (rats) did not produce any deaths.
- Triethanolamine: LC50 1 h > 4.8 MG/L mouse
- Ethanolamine: LC50 4 h > 970 ppm mouse
- BASIC COPPER CARBONATE: no data available

Product Animal Toxicity

Oral LD50 value: LD50 Believed to be approximately 3,790 mg/kg rat
Dermal LD50 value: LD50 Believed to be > 2,000 mg/kg rabbit
Inhalation LC50 value: no data available

Skin Irritation: Not expected to be irritating to the skin.
Eye Irritation: slight irritation
Skin Sensitization: This material is not known or reported to be a skin or respiratory sensitizer.

Acute Toxicity: May cause mild eye irritation. Ingestion may cause mild gastrointestinal discomfort. Inhalation of mist or vapor may cause irritation to the mucous membranes of the respiratory tract.

Subchronic / Chronic Toxicity: Not known or reported to cause subchronic or chronic toxicity.

Reproductive and Developmental Toxicity: Not known or reported to cause reproductive or developmental toxicity.

Triethanolamine: This product has been tested and was shown not to produce any adverse effects on reproductive function or
fetal development when administered to laboratory animals.

Ethanolamine

This chemical has been tested in laboratory animals and no evidence of teratogenicity, embryotoxicity or fetotoxicity was seen.

Mutagenicity:

- **Triethanolamine**: Not known or reported to be mutagenic.
- **Ethanolamine**: This chemical has been shown to be non-mutagenic based on a battery of assays.

Carcinogenicity:

- **Triethanolamine**: The International Agency for Research on Cancer (IARC) has classified this product or a component of this product as a Group 3 substance, Unclassifiable as to Its Carcinogenicity to Humans.
- **Ethanolamine**: This product is not known or reported to be carcinogenic by any reference source including IARC, OSHA, NTP or EPA. Chemicals of similar structure have been shown not to cause cancer in laboratory animals.

12. ECOLOGICAL INFORMATION

Overview: Toxic to fish and other aquatic organisms.

Ecological Toxicity Values for: Triethanolamine

- Fathead minnow (Pimephales promelas), (measured, flow-through) 96 h LC50 = 11,800 mg/l
- Daphnia magna, (nominal, static). 24 h EC50= 1,850 mg/l
- Common shrimp (Crangon crangon) (nominal, renewal). 48 h LC50 > 100 mg/l
- Green algae (Scenedesmus subspicatus) (nominal, static). 48 h EC50 = 750 mg/l

Ecological Toxicity Values for: Ethanolamine

- Rainbow trout (Oncorhynchus mykiss) (nominal, static). 96 h LC50 = 150 mg/l
- Mosquito fish (nominal, static). 96 h LC50 = 337.5 mg/l
Bluegill
Fathead minnow (Pimephales promelas),
Goldfish
Daphnia magna (Water flea)
Crangon crangon (shrimp)
Brine shrimp
Daphnia magna (Water flea)

- (nominal, static). 96 h LC50 = 329.16 mg/l
- (measured, flow-through) 96 h LC50 = 2,070 mg/l
- (measured, static) 96 h LC50 = 170 mg/l
- (nominal, static). 24 h LC50= 140 mg/l
- (nominal, renewal). 48 h LC50> 100 mg/l
- 48 h LC50= 7,100 mg/l
- 48 h EC50= 65 mg/l

13. DISPOSAL CONSIDERATIONS

CARE MUST BE TAKEN TO PREVENT ENVIRONMENTAL CONTAMINATION FROM THE USE OF THE MATERIAL. THE USER OF THE MATERIAL HAS THE RESPONSIBILITY TO DISPOSE OF UNUSED MATERIAL, RESIDUES AND CONTAINERS IN COMPLIANCE WITH ALL RELEVANT LOCAL, STATE AND FEDERAL LAWS AND REGULATIONS REGARDING TREATMENT, STORAGE AND DISPOSAL FOR HAZARDOUS AND NONHAZARDOUS WASTES.

Waste Disposal Summary: If this product becomes a waste, it DOES NOT meet the criteria of a hazardous waste as defined under 40 CFR 261, in that it does not exhibit the characteristics of hazardous waste of Subpart C, nor is it listed as a hazardous waste under Subpart D.

Disposal Methods: As a nonhazardous liquid waste, it should be disposed of in accordance with local, state and federal regulations.

14. TRANSPORT INFORMATION

Land (US DOT): Not Regulated
Water (IMDG): NOT REGULATED AS A DOT HAZARDOUS MATERIAL
Air (IATA): NOT REGULATED AS A HAZARDOUS MATERIAL,
Emergency Response Guide Number: Not applicable
15. REGULATORY INFORMATION

UNITED STATES:

Toxic Substances Control Act (TSCA): This product is regulated under the Federal Insecticide, Fungicide and Rodenticide Act. It must be used for purposes consistent with its labeling.

EPA Pesticide Registration Number: None established

FIFRA Listing of Pesticide Chemicals (40 CFR 180): This product is regulated under the Federal Insecticide, Fungicide and Rodenticide Act. It must be used for purposes consistent with its labeling.

Superfund Amendments and Reauthorization Act (SARA) Title III:

Hazard Categories Sections 311 / 312 (40 CFR 370.2):
- Health: Immediate (Acute) Health Hazard
- Physical: None

Extremely Hazardous Substance Section 302 - Threshold Planning Quantity:
- ZUS_SAR302 TPQ (threshold planning quantity): None established

Reportable Quantity (49 CFR 172.101, Appendix):
- ZUS_CERCLA Reportable quantity: Diethanolamine Value: 100lbs
- ZUS_SAR302 Reportable quantity: None established

Supplier Notification Requirements (40 CFR 372.45), 313 Reportable Components

- ZUS_SAR313 De minimis concentration: Diethanolamine Value: < 1% by weight

Clean Air Act Toxic ARP Section 112r:

CAA 112R: None established

Clean Air Act Socmi:

HON SOC

US. EPA Hazardous Organic NESHAP (HON) Synthetic Organic Chemicals (40 CFR 63.100-.106, Table AB CUTRINE-PLUS

REVISION DATE: 09/14/2011 Page 10 of 13
DIETHANOLAMINE (2,2'-IMINODIETHANOL)

US. EPA Hazardous Organic NESHAP (HON) Synthetic Organic Chemicals (40 CFR 63.100-.106, Table 1)
07 1999
Group I
ETHANOLAMINE

US. EPA Hazardous Organic NESHAP (HON) Synthetic Organic Chemicals (40 CFR 63.100-.106, Table 1)
07 1999
Group I
TRIETHANOLAMINE

Clean Air Act VOC Section 111:
CAA 111

US. EPA Clean Air Act (CAA) Section 111 SOCMI Intermediate or Final Volatile Organic Compounds (40 CFR 60.489)
01 1996
ETHANOLAMINE

Clean Air Act Haz. Air Pollutants Section 112:
ZUS_CAAHAP None established

ZUS_CAAHRP None established

CAA AP

US. EPA Hazardous Organic NESHAP (HON) Hazardous Air Pollutants (40 CFR 63.100-.106, Table 2)
04 1999
DIETHANOLAMINE (2,2'-IMINODIETHANOL)

State Right-to-Know Regulations Status of Ingredients

<table>
<thead>
<tr>
<th>Pennsylvania:</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAS #</td>
</tr>
<tr>
<td>141-43-5</td>
</tr>
<tr>
<td>102-71-6</td>
</tr>
<tr>
<td>ZUSPA_RTK</td>
</tr>
</tbody>
</table>

Pennsylvania: Hazardous substance list
1989-08-11
ETHANOL, 2-AMINO-

Pennsylvania: Hazardous substance list
1989-08-11
ETHANOL, 2,2',2"-NITRILOTRIS-

New Jersey:

<table>
<thead>
<tr>
<th>CAS #</th>
<th>COMPONENT NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>141-43-5</td>
<td>Ethanolamine</td>
</tr>
<tr>
<td>102-71-6</td>
<td>Triethanolamine</td>
</tr>
</tbody>
</table>

ZUSNJ_RTK

New Jersey Right to Know Hazardous Substance List (RTK-HSL)
2007-03-01
ETHANOLAMINE MONOETHANOLAMINE ETHANOL, 2-AMINO-
Special Health Hazard - Corrosive

New Jersey Right to Know Hazardous Substance List (RTK-HSL)
2007-03-01
TRIETHANOLAMINE ETHANOL, 2,2',2"-NITRILOTRIS-

Massachusetts:

<table>
<thead>
<tr>
<th>CAS #</th>
<th>COMPONENT NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>141-43-5</td>
<td>Ethanolamine</td>
</tr>
<tr>
<td>102-71-6</td>
<td>Triethanolamine</td>
</tr>
</tbody>
</table>

ZUSMA_RTK

Massachusetts Right to Know List of Chemicals and Hazard Classifications
1993-04-24
ETHANOLAMINE 2-AMINOETHANOL

Massachusetts Right to Know List of Chemicals and Hazard Classifications
1993-04-24
TRIETHANOLAMINE

California Proposition 65:

<table>
<thead>
<tr>
<th>CAS #</th>
<th>COMPONENT NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB CUTRINE-PLUS</td>
<td></td>
</tr>
</tbody>
</table>

REVISION DATE : 09/14/2011 Page 12 of 13
ZUSCA_P65

None established

WHMIS Hazard Classification:

Ingredient Disclosure List (WHMIS)
2007-08-24
Threshold limits: 1 Weight percent
1170
Monoethanolamine

Ingredient Disclosure List (WHMIS)
2007-08-24
Threshold limits: 1 Weight percent
1663
Triethanolamine

Ingredient Disclosure List (WHMIS)
2007-08-24
Threshold limits: 1 Weight percent
985
Copper(II) carbonate hydroxide

16. OTHER INFORMATION

MSDS REVISION STATUS:
SECTIONS REVISED: First formulated version in SAP.
Major References: Available upon request.

THIS MATERIAL SAFETY DATA SHEET (MSDS) HAS BEEN PREPARED IN COMPLIANCE WITH THE FEDERAL OSHA
HAZARD COMMUNICATION STANDARD, 29 CFR 1910.1200. THE INFORMATION IN THIS MSDS SHOULD BE PROVIDED TO
ALL WHO WILL USE, HANDLE, STORE, TRANSPORT, OR OTHERWISE BE EXPOSED TO THIS PRODUCT. THIS
INFORMATION HAS BEEN PREPARED FOR THE GUIDANCE OF PLANT ENGINEERING, OPERATIONS AND MANAGEMENT
AND FOR PERSONS WORKING WITH OR HANDLING THIS PRODUCT. ARCH CHEMICALS BELIEVES THIS INFORMATION
TO BE RELIABLE AND UP TO DATE AS OF THE DATE OF PUBLICATION BUT, MAKES NO WARRANTY THAT IT IS.
ADDITIONALLY, IF THIS MSDS IS MORE THAN THREE YEARS OLD, YOU SHOULD CONTACT ARCH CHEMICALS MSDS
CONTROL AT THE PHONE NUMBER ON THE FRONT PAGE TO MAKE CERTAIN THAT THIS DOCUMENT IS CURRENT.
Dow AgroSciences LLC encourages and expects you to read and understand the entire (M)SDS, as there is important information throughout the document. We expect you to follow the precautions identified in this document unless your use conditions would necessitate other appropriate methods or actions.

1. Product and Company Identification

Product Name: GARLON* 3A Herbicide

COMPANY IDENTIFICATION
Dow AgroSciences LLC
A Subsidiary of The Dow Chemical Company
9330 Zionsville Road
Indianapolis, IN 46268-1189
USA

Customer Information Number: 800-992-5994
SDSQuestion@dow.com

24-Hour Emergency Contact: 800-992-5994
Local Emergency Contact: 352-323-3500

2. Hazards Identification

Emergency Overview
Color: Pink
Physical State: Liquid
Odor: Ammoniacal

Hazardous of product:

DANGER! Combustible liquid and vapor Causes severe eye burns May cause allergic skin reaction May cause skin irritation May be harmful if swallowed Vapor explosion hazard Evacuate area Keep upwind of spill Stay out of low areas Eliminate ignition sources Toxic fumes may be released in fire situations

OSHA Hazard Communication Standard
This product is a "Hazardous Chemical" as defined by the OSHA Hazard Communication Standard, 29 CFR 1910.1200

Potential Health Effects
Eye Contact: May cause severe irritation with corneal injury which may result in permanent impairment of vision, even blindness Chemical burns may occur Vapor of amines may cause
swelling of the cornea resulting in visual disturbances such as blurred or hazy vision. Bright lights may appear to be surrounded by halos. Effects may be delayed and typically disappear spontaneously.

Skin Contact: Brief contact is essentially nonirritating to skin. Prolonged contact may cause slight skin irritation with local redness. Repeated contact may cause skin burns. Symptoms may include pain, severe local redness, swelling, and tissue damage.

Skin Absorption: Prolonged skin contact is unlikely to result in absorption of harmful amounts.

Skin Sensitization: Has caused allergic skin reactions when tested in guinea pigs. With the dilute mix, no allergic skin reaction is expected.

Inhalation: Brief exposure (minutes) is not likely to cause adverse effects. Prolonged excessive exposure to mist may cause adverse effects.

Ingestion: Low toxicity if swallowed. Small amounts swallowed incidentally as a result of normal handling operations are not likely to cause injury; however, swallowing larger amounts may cause injury.

Aspiration hazard: Based on available information, aspiration hazard could not be determined.

Effects of Repeated Exposure: For the active ingredient(s): In animals, effects have been reported on the following organs: Liver. Kidney. For the minor component(s): Ethanol. In humans, effects have been reported on the following organs: Central nervous system. Liver. Signs and symptoms of excessive exposure may include: Central nervous system depression. May cause dizziness and drowsiness. Headache.

Cancer Information: Ethanol when not consumed in an alcoholic beverage is not classifiable as a human carcinogen.

Birth Defects/Developmental Effects: For the active ingredient(s): Has been toxic to the fetus in laboratory animals at doses toxic to the mother.

Reproductive Effects: For similar active ingredient(s): Triclopyr. In laboratory animal studies, effects on reproduction have been seen only at doses that produced significant toxicity to the parent animals.

3. Composition Information

<table>
<thead>
<tr>
<th>Component</th>
<th>CAS #</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triclopyr Triethylamine Salt</td>
<td>57213-69-1</td>
<td>44.4%</td>
</tr>
<tr>
<td>Triethylamine</td>
<td>121-44-8</td>
<td>3.0%</td>
</tr>
<tr>
<td>Ethylenediamine tetraacetic acid</td>
<td>60-00-4</td>
<td>2.3%</td>
</tr>
<tr>
<td>Ethanol</td>
<td>64-17-5</td>
<td>2.1%</td>
</tr>
<tr>
<td>Balance</td>
<td>Not available</td>
<td>48.2%</td>
</tr>
</tbody>
</table>

4. First-aid measures

Description of first aid measures

General advice: First Aid responders should pay attention to self-protection and use the recommended protective clothing (chemical resistant gloves, splash protection). If potential for exposure exists refer to Section 8 for specific personal protective equipment.

Inhalation: Move person to fresh air. If person is not breathing, call an emergency responder or ambulance, then give artificial respiration; if by mouth to mouth use rescuer protection (pocket mask etc). Call a poison control center or doctor for treatment advice.

Skin Contact: Take off contaminated clothing. Wash skin with soap and plenty of water for 15-20 minutes. Call a poison control center or doctor for treatment advice. Wash clothing before reuse. Shoes and other leather items which cannot be decontaminated should be disposed of properly.

Eye Contact: Wash immediately and continuously with flowing water for at least 30 minutes. Remove contact lenses after the first 5 minutes and continue washing. Obtain prompt medical consultation, preferably from an ophthalmologist. Suitable emergency eye wash facility should be immediately available.

Ingestion: Call a poison control center or doctor immediately for treatment advice. Have person sip a glass of water if able to swallow. Do not induce vomiting unless told to do so by the poison control center or doctor. Never give anything by mouth to an unconscious person.

Most important symptoms and effects, both acute and delayed
Aside from the information found under Description of first aid measures (above) and Indication of immediate medical attention and special treatment needed (below), no additional symptoms and effects are anticipated.

Indication of immediate medical attention and special treatment needed

Chemical eye burns may require extended irrigation. Obtain prompt consultation, preferably from an ophthalmologist. If burn is present, treat as any thermal burn, after decontamination. Exposure to amine vapors may cause minor transient edema of the corneal epithelium (glaucoma) with blurred vision, blue haze and halos around bright objects. Effects disappear in a few hours and temporarily reduce ability to drive vehicles. No specific antidote. Treatment of exposure should be directed at the control of symptoms and the clinical condition of the patient. Have the Safety Data Sheet, and if available, the product container or label with you when calling a poison control center or doctor, or going for treatment.

5. **Fire Fighting Measures**

Suitable extinguishing media

To extinguish combustible residues of this product use water fog, carbon dioxide, dry chemical or foam. Dry chemical fire extinguishers. Carbon dioxide fire extinguishers. Foam. General purpose synthetic foams (including AFFF type) or protein foams are preferred if available. Alcohol resistant foams (ATC type) may function.

Special hazards arising from the substance or mixture

Hazardous Combustion Products: Under fire conditions some components of this product may decompose. The smoke may contain unidentified toxic and/or irritating compounds. Combustion products may include and are not limited to: Nitrogen oxides, Hydrogen chloride, Carbon monoxide, Carbon dioxide.

Unusual Fire and Explosion Hazards: This material will not burn until the water has evaporated. Residue can burn. May produce flash fire. Vapors are heavier than air and may travel a long distance and accumulate in low lying areas. Ignition and/or flash back may occur. If exposed to fire from another source and water is evaporated, exposure to high temperatures may cause toxic fumes.

Advice for firefighters

Fire Fighting Procedures: Keep people away. Isolate fire and deny unnecessary entry. Stay upwind. Keep out of low areas where gases (fumes) can accumulate. Eliminate ignition sources. To extinguish combustible residues of this product use water fog, carbon dioxide, dry chemical or foam. Contain fire water run-off if possible. Fire water run-off, if not contained, may cause environmental damage. Review the "Accidental Release Measures" and the "Ecological Information" sections of this (M)SDS.

Special Protective Equipment for Firefighters: Wear positive-pressure self-contained breathing apparatus (SCBA) and protective fire fighting clothing (includes fire fighting helmet, coat, trousers, boots, and gloves). Avoid contact with this material during fire fighting operations. If contact is likely, change to full chemical resistant fire fighting clothing with self-contained breathing apparatus. If this is not available, wear full chemical resistant clothing with self-contained breathing apparatus and fight fire from a remote location. For protective equipment in post-fire or non-fire clean-up situations, refer to the relevant sections.

6. **Accidental Release Measures**

Personal precautions, protective equipment and emergency procedures: Evacuate area. Refer to Section 7, Handling, for additional precautionary measures. Keep unnecessary and unprotected personnel from entering the area. Only trained and properly protected personnel must be involved in clean-up operations. Keep personnel out of low areas. Keep upwind of spill. Ventilate area of leak or spill. Eliminate all sources of ignition in vicinity of spill or released vapor to avoid fire or explosion. Vapor explosion hazard. Keep out of sewers. Use appropriate safety equipment. For additional information, refer to Section 8, Exposure Controls and Personal Protection.

Environmental precautions: Prevent from entering into soil, ditches, sewers, waterways and/or groundwater. See Section 12, Ecological Information.
Methods and materials for containment and cleaning up: Pump with explosion-proof equipment. If available, use foam to smother or suppress. Contain spilled material if possible. Small spills. Absorb with materials such as clay, dirt, sand. Sweep up. Collect in suitable and properly labeled containers. Large spills. Contact Dow AgroSciences for clean-up assistance. See Section 13, Disposal Considerations, for additional information.

7. Handling and Storage

Handling
General Handling: Keep out of reach of children. Keep away from heat, sparks and flame. No smoking, open flames or sources of ignition in handling and storage area. Electrically ground and bond all equipment. Use of non-sparking or explosion-proof equipment may be necessary, depending upon the type of operation. Containers, even those that have been emptied, can contain vapors. Do not cut, drill, grind, weld, or perform similar operations on or near empty containers. Vapors are heavier than air and may travel a long distance and accumulate in low lying areas. Ignition and/or flash back may occur. Do not get in eyes. Avoid contact with skin and clothing. Avoid prolonged or repeated contact with skin. Do not swallow. Avoid breathing vapor. Wash thoroughly after handling. Keep container closed. Use with adequate ventilation. See Section 8, EXPOSURE CONTROLS AND PERSONAL PROTECTION.

Storage
Minimize sources of ignition, such as static build-up, heat, spark or flame. Store in a dry place. Store in original container. Keep container tightly closed. Do not store near food, foodstuffs, drugs or potable water supplies.

8. Exposure Controls / Personal Protection

Exposure Limits

<table>
<thead>
<tr>
<th>Component</th>
<th>List</th>
<th>Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triclopyr Triethylamine</td>
<td>Dow IHG</td>
<td>TWA</td>
<td>2 mg/m3</td>
</tr>
<tr>
<td>Triethylamine</td>
<td>ACGIH</td>
<td>TWA</td>
<td>1 ppm</td>
</tr>
<tr>
<td></td>
<td>ACGIH</td>
<td>STEL</td>
<td>3 ppm</td>
</tr>
<tr>
<td></td>
<td>OSHA Table</td>
<td>PEL</td>
<td>100 mg/m3</td>
</tr>
<tr>
<td>Ethanol</td>
<td>OSHA Table</td>
<td>PEL</td>
<td>1,900 mg/m3</td>
</tr>
<tr>
<td></td>
<td>Z-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ACGIH</td>
<td>STEL</td>
<td>1,000 ppm</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS IN THIS SECTION ARE FOR MANUFACTURING, COMMERCIAL BLENDING AND PACKAGING WORKERS. APPLICATORS AND HANDLERS SHOULD SEE THE PRODUCT LABEL FOR PROPER PERSONAL PROTECTIVE EQUIPMENT AND CLOTHING.

A "skin" notation following the inhalation exposure guideline refers to the potential for dermal absorption of the material including mucous membranes and the eyes either by contact with vapors or by direct skin contact. It is intended to alert the reader that inhalation may not be the only route of exposure and that measures to minimize dermal exposures should be considered.

A D-SEN notation following the exposure guideline refers to the potential to produce dermal sensitization, as confirmed by human or animal data.

Personal Protection
Eye/Face Protection: Use chemical goggles. If exposure causes eye discomfort, use a full-face respirator.
Skin Protection: Use protective clothing chemically resistant to this material. Selection of specific items such as face shield, boots, apron, or full body suit will depend on the task.

Hand protection: Use gloves chemically resistant to this material. Examples of preferred glove barrier materials include: Butyl rubber. Natural rubber ("latex"). Neoprene. Nitrile/butadiene rubber ("nitrile" or "NBR"). Polyethylene. Ethyl vinyl alcohol laminate ("EVAL"). Polyvinyl chloride ("PVC" or "vinyl"). NOTICE. The selection of a specific glove for a particular application and duration of use in a workplace should also take into account all relevant workplace factors such as, but not limited to: Other chemicals which may be handled, physical requirements (cut/puncture protection, dexterity, thermal protection), potential body reactions to glove materials, as well as the instructions/specifications provided by the glove supplier.

Respiratory Protection: Respiratory protection should be worn when there is a potential to exceed the exposure limit requirements or guidelines. If there are no applicable exposure limit requirements or guidelines, wear respiratory protection when adverse effects, such as respiratory irritation or discomfort have been experienced, or where indicated by your risk assessment process. In misty atmospheres, use an approved particulate respirator. The following should be effective types of air-purifying respirators: Organic vapor cartridge with a particulate pre-filter. Ingestion: Use good personal hygiene. Do not consume or store food in the work area. Wash hands before smoking or eating.

Engineering Controls
Ventilation: Use engineering controls to maintain airborne level below exposure limit requirements or guidelines. If there are no applicable exposure limit requirements or guidelines, use only with adequate ventilation. Local exhaust ventilation may be necessary for some operations.

9. Physical and Chemical Properties

<table>
<thead>
<tr>
<th>Appearance</th>
<th>Physical State</th>
<th>Liquid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Color</td>
<td>Pink</td>
<td></td>
</tr>
<tr>
<td>Odor</td>
<td>Ammoniacal</td>
<td></td>
</tr>
<tr>
<td>Odor Threshold</td>
<td>No test data available</td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>9.5 (@ 10 %) pH Electrode</td>
<td></td>
</tr>
<tr>
<td>Melting Point</td>
<td>Not applicable</td>
<td></td>
</tr>
<tr>
<td>Freezing Point</td>
<td>No test data available</td>
<td></td>
</tr>
<tr>
<td>Boiling Point (760 mmHg)</td>
<td>No test data available</td>
<td></td>
</tr>
<tr>
<td>Flash Point - Closed Cup</td>
<td>43 °C (109 °F) Setaflash Closed Cup ASTM D3828</td>
<td></td>
</tr>
<tr>
<td>Evaporation Rate (Butyl Acetate = 1)</td>
<td>No test data available</td>
<td></td>
</tr>
<tr>
<td>Flammable Limits in Air</td>
<td>Lower. No test data available</td>
<td></td>
</tr>
<tr>
<td>Vapor Pressure</td>
<td>Not applicable</td>
<td></td>
</tr>
<tr>
<td>Vapor Density (air = 1)</td>
<td>Not applicable</td>
<td></td>
</tr>
<tr>
<td>Specific Gravity (H2O = 1)</td>
<td>1.1385 Digital Density Meter (Oscillating Coil)</td>
<td></td>
</tr>
<tr>
<td>Solubility in water (by weight)</td>
<td>Soluble</td>
<td></td>
</tr>
<tr>
<td>Autoignition Temperature</td>
<td>No test data available</td>
<td></td>
</tr>
<tr>
<td>Decomposition</td>
<td>No test data available</td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dynamic Viscosity</td>
<td>12.5 mPa s @ 25 °C</td>
<td></td>
</tr>
<tr>
<td>Kinematic Viscosity</td>
<td>No test data available</td>
<td></td>
</tr>
<tr>
<td>Explosive properties</td>
<td>No Thermal No Mechanical Impact @ 8 inches No Mechanical Impact @ 15 inches No Mechanical Impact @ 20.25 inches</td>
<td></td>
</tr>
<tr>
<td>Oxidizing properties</td>
<td>No EPA OPPTS 850.6314 (Oxidizing or Reducing Action)</td>
<td></td>
</tr>
<tr>
<td>Liquid Density</td>
<td>1.1385 g/cm3 @ 20 °C Digital density meter</td>
<td></td>
</tr>
</tbody>
</table>

10. Stability and Reactivity
Reactivity
No dangerous reaction known under conditions of normal use

Chemical stability
Thermally stable at recommended temperatures and pressures

Possibility of hazardous reactions
Polymerization will not occur

Conditions to Avoid: Active ingredient decomposes at elevated temperatures

Incompatible Materials: Avoid contact with Oxidizers

Hazardous decomposition products
Decomposition products depend upon temperature, air supply and the presence of other materials
Decomposition products can include and are not limited to Hydrogen chloride Nitrogen oxides

11. Toxicological Information

Acute Toxicity
Ingestion
As product LD50, Rat 1,847 mg/kg
Dermal
As product. LD50, Rabbit > 5,000 mg/kg
Inhalation
LC50, 4 h, Aerosol, Rat > 2 6 mg/l
Maximum attainable concentration No deaths occurred at this concentration

Eye damage/eye irritation
May cause severe irritation with corneal injury which may result in permanent impairment of vision, even blindness Chemical burns may occur Vapor of amines may cause swelling of the cornea resulting in visual disturbances such as blurred or hazy vision Bright lights may appear to be surrounded by halos Effects may be delayed and typically disappear spontaneously

Skin corrosion/irritation
Brief contact is essentially nonirritating to skin Prolonged contact may cause slight skin irritation with local redness Repeated contact may cause skin burns Symptoms may include pain, severe local redness, swelling, and tissue damage

Sensitization
Skin
Has caused allergic skin reactions when tested in guinea pigs With the dilute mix, no allergic skin reaction is expected

Respiratory
No relevant data found

Repeated Dose Toxicity
For the active ingredient(s). In animals, effects have been reported on the following organs Liver Kidney For the minor component(s). Ethanol In humans, effects have been reported on the following organs. Central nervous system Liver Signs and symptoms of excessive exposure may include Central nervous system depression May cause dizziness and drowsiness Headache

Chronic Toxicity and Carcinogenicity
Ethanol when not consumed in an alcoholic beverage is not classifiable as a human carcinogen For similar active ingredient(s) Triclopyr Did not cause cancer in laboratory animals

Developmental Toxicity
For the active ingredient(s) Has been toxic to the fetus in laboratory animals at doses toxic to the mother For the active ingredient(s) Did not cause birth defects in laboratory animals

Reproductive Toxicity
For similar active ingredient(s) Triclopyr In laboratory animal studies, effects on reproduction have been seen only at doses that produced significant toxicity to the parent animals

Genetic Toxicology
For the active ingredient(s): In vitro genetic toxicity studies were negative For the minor component(s). Ethanol Animal genetic toxicity studies were negative in some cases and positive in other cases
12. Ecological Information

Toxicity
Material is slightly toxic to aquatic organisms on an acute basis (LC50/EC50 between 10 and 100 mg/L in the most sensitive species tested)

Fish Acute & Prolonged Toxicity
LC50, rainbow trout (Oncorhynchus mykiss), 96 h 400 mg/l
Aquatic Invertebrate Acute Toxicity
EC50, eastern oyster (Crassostrea virginica), static, 48 h, shell growth inhibition 56 - 87 mg/l
LC50, water flea Daphnia magna, static, 48 h, immobilization. > 1,000 mg/l

Persistence and Degradability

Data for Component Triclopyr Triethylamine Salt
Chemical degradation (hydrolysis) is expected in the environment. Biodegradation under aerobic static laboratory conditions is high (BOD20 or BOD28/ThOD > 40%)
Chemical degradation (hydrolysis) is expected in the environment

Data for Component Triethylamine
Material is readily biodegradable. Passes OECD test(s) for ready biodegradability. Material is inherently biodegradable (reaches > 20% biodegradation in OECD test(s) for inherent biodegradability)

OECD Biodegradation Tests:

<table>
<thead>
<tr>
<th>Biodegradation</th>
<th>Exposure Time</th>
<th>Method</th>
<th>10 Day Window</th>
</tr>
</thead>
<tbody>
<tr>
<td>96 %</td>
<td>21 d</td>
<td>OECD 301A Test</td>
<td>pass</td>
</tr>
<tr>
<td>25 - 34 %</td>
<td>28 d</td>
<td>OECD 302C Test</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>

Indirect Photodegradation with OH Radicals

<table>
<thead>
<tr>
<th>Rate Constant</th>
<th>Atmospheric Half-life</th>
<th>Method</th>
<th>10 Day Window</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.26E-11 cm^3/s</td>
<td>0.116 d</td>
<td>Estimated</td>
<td></td>
</tr>
</tbody>
</table>

Theoretical Oxygen Demand: 3.49 mg/mg

Data for Component Ethylenediamine tetraacetic acid
Material is inherently biodegradable (reaches > 20% biodegradation in OECD test(s) for inherent biodegradability)

OECD Biodegradation Tests:

<table>
<thead>
<tr>
<th>Biodegradation</th>
<th>Exposure Time</th>
<th>Method</th>
<th>10 Day Window</th>
</tr>
</thead>
<tbody>
<tr>
<td>37 %</td>
<td>14 d</td>
<td>OECD 302B Test</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>

Theoretical Oxygen Demand: 1.37 mg/mg

Data for Component Ethanol
Material is readily biodegradable. Passes OECD test(s) for ready biodegradability

OECD Biodegradation Tests:

<table>
<thead>
<tr>
<th>Biodegradation</th>
<th>Exposure Time</th>
<th>Method</th>
<th>10 Day Window</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 70 %</td>
<td>5 d</td>
<td>OECD 301D Test</td>
<td>pass</td>
</tr>
</tbody>
</table>

Indirect Photodegradation with OH Radicals

<table>
<thead>
<tr>
<th>Rate Constant</th>
<th>Atmospheric Half-life</th>
<th>Method</th>
<th>10 Day Window</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.58E-12 cm^3/s</td>
<td>2.99 d</td>
<td>Estimated</td>
<td></td>
</tr>
</tbody>
</table>

Theoretical Oxygen Demand: 2.08 mg/mg

Bioaccumulative potential

Data for Component Triclopyr Triethylamine Salt
Bioaccumulation: Bioconcentration potential is low (BCF < 100 or Log Pow < 3)
Partition coefficient, n-octanol/water (log Pow): 0.196 - 0.309. Shake flask (OECD 107 Test)
Bioconcentration Factor (BCF): 1, invertebrate, Measured

Data for Component Triethylamine
Bioaccumulation: Bioconcentration potential is low (BCF < 100 or Log Pow < 3)
Partition coefficient, n-octanol/water (log Pow): 1.45 Measured
Bioconcentration Factor (BCF): < 4.9, common carp (Cyprinus carpio), Measured

Data for Component: Ethylenediamine tetraacetic acid
Bioaccumulation: Bioconcentration potential is low (BCF < 100 or Log Pow < 3)
Partition coefficient, n-octanol/water (log Pow): -5.005 Estimated
Bioconcentration Factor (BCF): 1.1; fish, Measured

Data for Component: Ethanol
Bioaccumulation: Bioconcentration potential is low (BCF < 100 or Log Pow < 3)
Partition coefficient, n-octanol/water (log Pow): -0.31 Measured

Mobility in soil

Data for Component: Triclopyr Triethylamine Salt
Partition coefficient, soil organic carbon/water (Koc): 4.523 Estimated
Henry's Law Constant (H): 3.724E-14 atm*m^3/mole, 25 °C Estimated

Data for Component: Triethylamine
Mobility in soil: Potential for mobility in soil is very high (Koc between 0 and 50)
Partition coefficient, soil organic carbon/water (Koc): 11.146 Estimated
Henry's Law Constant (H): 1.49E-04 - 1.86E-03 atm*m^3/mole, 25 °C Measured

Data for Component: Ethylenediamine tetraacetic acid
Mobility in soil: Potential for mobility in soil is high (Koc between 50 and 150)
Partition coefficient, soil organic carbon/water (Koc): 98 Henry's Law Constant (H): 7.7E-16 atm*m^3/mole Estimated

Data for Component: Ethanol
Mobility in soil: Potential for mobility in soil is very high (Koc between 0 and 50)
Partition coefficient, soil organic carbon/water (Koc): 1.0 Estimated
Henry's Law Constant (H): 5.00E-06 atm*m^3/mole, 25 °C Measured

13. Disposal Considerations

If wastes and/or containers cannot be disposed of according to the product label directions, disposal of this material must be in accordance with your local or area regulatory authorities. This information presented below only applies to the material as supplied. The identification based on characteristic(s) or listing may not apply if the material has been used or otherwise contaminated. It is the responsibility of the waste generator to determine the toxicity and physical properties of the material generated to determine the proper waste identification and disposal methods in compliance with applicable regulations. If the material as supplied becomes a waste, follow all applicable regional, national and local laws.

14. Transport Information

DOT Non-Bulk
NOT REGULATED

DOT Bulk
Proper Shipping Name: COMBUSTIBLE LIQUID, N O S
Technical Name: TRIETHYLAMINE, ETHANOL
Hazard Class: COMBUSTIBLE LIQUID ID Number: NA1993 Packing Group: PG III

IMDG
Proper Shipping Name: FLAMMABLE LIQUID, N O S
Technical Name: TRIETHYLAMINE, ETHANOL
Hazard Class: 3 ID Number: UN1993 Packing Group: PG III
EMS Number: f-e,s-e
ICAO/IATA
Proper Shipping Name: FLAMMABLE LIQUID, N O S
Technical Name: TRIETHYLAMINE, ETHANOL
Hazard Class: 3 ID Number: UN1993 Packing Group: PG III
Cargo Packing Instruction: 366
Passenger Packing Instruction: 355

This information is not intended to convey all specific regulatory or operational requirements/information relating to this product. Additional transportation system information can be obtained through an authorized sales or customer service representative. It is the responsibility of the transporting organization to follow all applicable laws, regulations and rules relating to the transportation of the material.

15. Regulatory Information

OSHA Hazard Communication Standard
This product is a "Hazardous Chemical" as defined by the OSHA Hazard Communication Standard, 29 CFR 1910.1200.

Superfund Amendments and Reauthorization Act of 1986 Title III (Emergency Planning and Community Right-to-Know Act of 1986) Sections 311 and 312
Immediate (Acute) Health Hazard Yes
Delayed (Chronic) Health Hazard Yes
Fire Hazard Yes
Reactive Hazard No
Sudden Release of Pressure Hazard No

Superfund Amendments and Reauthorization Act of 1986 Title III (Emergency Planning and Community Right-to-Know Act of 1986) Section 313
This product contains the following substances which are subject to the reporting requirements of Section 313 of Title III of the Superfund Amendments and Reauthorization Act of 1986 and which are listed in 40 CFR 372

<table>
<thead>
<tr>
<th>Component</th>
<th>CAS #</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triethylamine</td>
<td>121-44-8</td>
<td>3.0%</td>
</tr>
</tbody>
</table>

Pennsylvania (Worker and Community Right-To-Know Act): Pennsylvania Hazardous Substances List and/or Pennsylvania Environmental Hazardous Substance List:
The following product components are cited in the Pennsylvania Hazardous Substance List and/or the Pennsylvania Environmental Substance List, and are present at levels which require reporting

<table>
<thead>
<tr>
<th>Component</th>
<th>CAS #</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triethylamine</td>
<td>121-44-8</td>
<td>3.0%</td>
</tr>
<tr>
<td>Ethylenediamine tetraacetic acid</td>
<td>60-00-4</td>
<td>2.3%</td>
</tr>
<tr>
<td>Ethanol</td>
<td>64-17-5</td>
<td>2.1%</td>
</tr>
</tbody>
</table>

Pennsylvania (Worker and Community Right-To-Know Act): Pennsylvania Special Hazardous Substances List:
To the best of our knowledge, this product does not contain chemicals at levels which require reporting under this statute

Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) Section 103
This product contains the following substances which are subject to CERCLA Section 103 reporting requirements and which are listed in 40 CFR 302.4

<table>
<thead>
<tr>
<th>Component</th>
<th>CAS #</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triethylamine</td>
<td>121-44-8</td>
<td>3.0%</td>
</tr>
<tr>
<td>Ethylenediamine tetraacetic acid</td>
<td>60-00-4</td>
<td>2.3%</td>
</tr>
<tr>
<td>Ethanol</td>
<td>64-17-5</td>
<td>2.1%</td>
</tr>
</tbody>
</table>

California Proposition 65 (Safe Drinking Water and Toxic Enforcement Act of 1986)
WARNING This product contains a chemical(s) known to the State of California to cause cancer
California Proposition 65 (Safe Drinking Water and Toxic Enforcement Act of 1986)
WARNING This product contains a chemical(s) known to the State of California to cause birth defects
or other reproductive harm

Toxic Substances Control Act (TSCA)
All components of this product are on the TSCA Inventory or are exempt from TSCA Inventory
requirements under 40 CFR 720 30

16. Other Information

Hazard Rating System

<table>
<thead>
<tr>
<th>NFPA</th>
<th>Health</th>
<th>Fire</th>
<th>Reactivity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

Revision
Identification Number 50634 / 1016 / Issue Date 05/25/2011 / Version 6.4
DAS Code XRM-3724
Most recent revision(s) are noted by the bold, double bars in left-hand margin throughout this
document

Legend

N/A	Not available
W/W	Weight/Weight
OEL	Occupational Exposure Limit
STEL	Short Term Exposure Limit
TWA	Time Weighted Average
ACGIH	American Conference of Governmental Industrial Hygienists, Inc
DOW IHG	Dow Industrial Hygiene Guideline
WEEL	Workplace Environmental Exposure Level
HAZ DES	Hazard Designation
Action Level	A value set by OSHA that is lower than the PEL which will trigger the need for activities such as exposure monitoring and medical surveillance if exceeded

Dow AgroSciences LLC urges each customer or recipient of this (M)SDS to study it carefully and consult appropriate expertise, as necessary or appropriate, to become aware of and understand the data contained in this (M)SDS and any hazards associated with the product. The information herein is provided in good faith and believed to be accurate as of the effective date shown above. However, no warranty, express or implied, is given. Regulatory requirements are subject to change and may differ between various locations. It is the buyer/user's responsibility to ensure that his activities comply with all federal, state, provincial or local laws. The information presented here pertains only to the product as shipped. Since conditions for use of the product are not under the control of the manufacturer, it is the buyer/user's duty to determine the conditions necessary for the safe use of this product. Due to the proliferation of sources for information such as manufacturer-specific (M)SDSS, we are not and cannot be responsible for (M)SDSs obtained from any source other than ourselves. If you have obtained an (M)SDS from another source or if you are not sure that the (M)SDS you have is current, please contact us for the most current version.
GLYPHOSATE PRO™ 4

MATERIAL SAFETY DATA SHEET

1. PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME: Glyphosate Pro™ 4
Active Ingredient: Glyphosate (in the form of its isopropylamine salt)
Chemical Formula: C_{5}H_{17}N_{2}O_{5}P

COMPANY IDENTIFICATION:
PROKoZ, Inc.
100 North Point Center E.
Suite 330
Alpharetta, GA 30022

2. COMPOSITION/INFORMATION ON INGREDIENTS

Glyphosate CAS No. 38641-94-0 41.0%
Isopropylamine Salt

3. HAZARD IDENTIFICATION

EMERGENCY OVERVIEW
Causes moderate eye irritation. Avoid contact with eyes or clothing.

POTENTIAL HEALTH EFFECTS:
EYE: Moderate eye irritant.

POTENTIAL PHYSICAL HAZARDS: May react with metals such as galvanized or mild steel to produce hydrogen gas, potentially forming a highly combustible gas mixture.

4. FIRST AID

IF IN EYES: Hold eye open and rinse slowly and gently with water for 15-20 minutes. Remove contact lenses, if present, after the first 5 minutes, then continue rinsing eye. Call a poison control center or doctor for treatment advice.

Have the product container or label with you when calling a poison control center or doctor, or going for treatment. You may also contact 1-800-424-9300 for emergency medical treatment information.

5. FIRE-FIGHTING MEASURES

Flash point: Will not flash
Flammable Limits (LFL-UFL): N/A

Fire and Explosion Hazards: During a fire, product may generate irritating or toxic gasses through thermal decomposition.

Means of Extinction: Use water spray, foam or dry chemical.

Fire Fighting Instructions: Evacuate area and fight fire from a safe distance. Approach from upwind to avoid hazardous vapors and decomposition products. A foam or dry chemical fire extinguishing system is preferred to prevent environmental damage from excessive water run off. If water is used, avoid heavy hose streams. If possible, dike and collect water used to fight fire to prevent/minimize run off.

Fire Fighting Equipment: Self-contained breathing apparatus with full face piece. Wear full firefighting turn-out gear (Bunker gear).

Hazardous Combustion Products: Carbon monoxide, nitrogen oxides, phosphorous oxides.

6. ACCIDENTAL RELEASE MEASURES

Clean up spills immediately. Isolate and post spill area. Wear protective clothing and personal protective equipment as prescribed in Section 8 “Exposure Controls/Personal Protection”. Keep unprotected persons and animals out of area.

Small Spill: Absorb spill with inert material such as dry sand, vermiculite or fuller's earth, then place in a chemical waste container.

Large Spill: Dike large spills using absorbent or impervious material such as clay or sand. Recover and contain as much free liquid as possible for reuse. Allow absorbed material to solidify and scrape up for disposal. After removal, scrub the area with detergent and water and neutralize with dilute alkaline solutions of soda ash or lime.

Manufactured for:
PROKoZ, Inc.
100 North Point Center E.
Suite 330
Alpharetta, GA 30022

Emergency Phone: Chemtrec 800-424-9300
Effective Date:
EPA Reg. No. 72112-4
7. HANDLING AND STORAGE

Keep out of reach of children and animals. Do not contam­inate other pesticides, fertilizers, water, food or feed by storage or disposal. Wash thoroughly after handling this product. Store above 10°F (-12°C) to keep product from crystalizing.

8. EXPOSURE CONTROLS/PERSONAL PROTECTION

ENGINEERING CONTROLS: To keep exposure to airborne contaminants below exposure limits, proper ventilation is required when handling or using this product. Local mechanical exhaust ventilation may be required. Facilities storing or using this material should be equipped with an eyewash facility and a safety shower.

Eyewear: Safety goggles are recommended when mixing, loading or cleaning equipment.

Clothing: All pesticide handlers must wear a long-sleeved shirt and long pants and shoes plus socks.

Gloves: Waterproof gloves are recommended when mixing, loading or cleaning equipment.

NOTE: Remove clothing immediately if pesticide gets inside. Then wash thoroughly and put on clean clothing.

9. PHYSICAL AND CHEMICAL PROPERTIES

Appearance: Clear yellow to amber liquid
Odor: Slight amine odor
pH: 4.4
Flashpoint (PMA-4): N/A
Specific Gravity: 1.17 g/ml
Solubility in Water: Emulsifies

10. STABILITY AND REACTIVITY

CONDITIONS TO AVOID: Avoid temperatures above 115°F (46°C) and below 25°F (-5°C)
CHEMICAL STABILITY: Product is normally stable. However, product may decompose if heated.
HAZARDOUS DECOMPOSITION PRODUCTS: Heat and fire may result in thermal decomposition and the release of nitrogen oxides, phosphorous oxides and carbon monoxide.
INCOMPATIBILITY WITH OTHER MATERIALS: Strong oxidizers and bases, mild and galvanized steel.
POLYMERIZATION: Will not occur.

11. TOXICOLOGICAL INFORMATION

ACUTE ORAL TOXICITY
Oral LD₅₀ (rat): >5,000 mg/kg

ACUTE DERMAL TOXICITY
Dermal LD₅₀ (rat, male): >5,000 mg/kg

ACUTE INHALATION TOXICITY
Inhalation LC₅₀ (rat): >2.5 mg/L

EYE IRRITANT
Rabbit – Moderate

SKIN IRRITATION
Rabbit – Mild

DERMAL SENSITIZATION
Guinea pig – Non-Sensitizer

MEDICAL CONDITIONS AGGRAVATED BY EXPOSURE:
None known.

CARCINOGENICITY:
ACGIH: Not listed
IARC: Not listed
NTP: Not listed
OSHA: Not listed

MUTAGENIC DATA: No evidence of mutagenic effects during in vivo and in vitro assays.

ADDITIONAL DATA: None.

12. ECOLOGICAL INFORMATION

ENVIRONMENTAL DATA: Do not apply directly to water, to areas where surface water is present or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment washwaters.

MAMMILIAN TOXICITY: This product is considered to be relatively nontoxic to dogs and other domestic animals; however, ingestion of this product or large amounts of freshly sprayed vegetation may result in temporary gastrointestinal irritation (vomiting, diarrhea, colic, etc.). If such symptoms are observed, provide the animal with plenty of fluids to prevent dehydration. Call a veterinarian if symptoms persist for more than 24 hours.

FISH TOXICITY
96 hour LC₅₀, Rainbow trout – 8.2 µg/L (technical)
96 hour LC₅₀, Bluegill – 5.8 µg/L (technical)

AVIAN TOXICITY
Oral LD₅₀, Bobwhite quail – > 3,800 mg/kg (technical)

BEE TOXICITY: Non-toxic.

13. DISPOSAL CONSIDERATIONS

PESTICIDE DISPOSAL: Wastes resulting from the use of this product that cannot be used or chemically reprocessed should be disposed of in a landfill approved for pesticide disposal or in accordance with applicable Federal, state or local procedures. Emptied container retains vapor and product residue. Observe all labeled safeguards until container is cleaned, reconditioned, or destroyed.

CONTAINER DISPOSAL: For plastic containers, triple rinse (or equivalent). Then offer for recycling or reconditioning, or puncture and dispose of in a sanitary landfill, or incineration, or, if allowed by state and local authorities, by burning. If burned, stay out of smoke.

For refillable containers, do not reuse the container except for refill in accordance with a valid PROKoZ Repackaging or Toll Repackaging Agreement. If not refilled or returned to the authorized repackaging facility, triple rinse container, then puncture and dispose of in a sanitary landfill, or by incineration or, if allowed by state and local authorities, by burning. If burned, stay out of smoke.

For bulk containers, triple rinse (or equivalent) and wash with appropriate cleaners before reusing.
14. TRANSPORT INFORMATION
DOT PROPER SHIPPING NAME: Not regulated by DOT.
DOT HAZARD CLASS OR DIVISION: N/A
DOT UN/NA NUMBER: N/A
DOT PACKING GROUP: N/A
REPORTABLE QUANTITY: None
MARINE POLLUTANT: Not Listed
DOT EMERGENCY RESPONSE GUIDE: N/A

15. REGULATORY INFORMATION
FIFRA –
All pesticides are governed under the Federal Insecticide, Fungicide, and Rodenticide Act. The regulatory information presented below is pertinent only when this product is handled outside of the normal use and application as a pesticide.

OSHA HAZARD COMMUNICATION STANDARD STATUS: Not Regulated

SARA Title III – Section 302 Extremely Hazardous Substances
Not listed

SARA Title III – Section 311/312 Hazard Categories
Immediate

SARA Title III – Section 312 Threshold Planning Quantity
The threshold planning quantity (TPQ) for this product treated as a mixture is 10,000 lbs. This product contains no ingredients with a TPQ of less than 10,000 lbs.

SARA Title III – Section 313 Reportable Ingredients
None

CERCLA – None

CALIFORNIA PROP 65 STATUS – Not listed

16. OTHER INFORMATION
This product has been classified in accordance with the hazard criteria of the Controlled Products Regulations (CPR) and the MSDS contains all of the information required by CPR.

DISCLAIMER:
PROKoZ, INC. believes the information and recommendations provided above to be accurate. NO WARRANTY OF FITNESS FOR ANY PARTICULAR PURPOSE, WARRANTY OF MERCHANTABILITY, OR ANY OTHER WARRANTY, EXPRESS OR IMPLIED, IS MADE CONCERNING THE INFORMATION PROVIDED HEREIN. The information provided above relates only to the specific product designated and may not be applicable where such product is used in combination with any other materials or in any process. Use of this product is regulated by the U.S. Environmental Protection Agency (EPA). It is a violation of Federal law to use this product in a manner inconsistent with its labeling. Additionally, as the conditions and methods of use are beyond the control of PROKoZ, INC., PROKoZ expressly disclaims any and all liability as to any results obtained or arising from any use of the product or reliance on such information.
Attachment 3

Mitigation, Monitoring and Reporting Program
MITIGATION MONITORING AND REPORTING PROGRAM

APLICATION OF COPPER-BASED ALGAECIDES
AT FIVE RESERVOIRS
SAN DIEGO COUNTY CALIFORNIA

Prepared for:
San Diego County Water Authority
4677 Overland Avenue
San Diego, California 92123
Contact: Larry Purcell

Sweetwater Authority
505 Garrett Avenue
Chula Vista, California 91910
Contact: Scott McClelland

City of Poway, Public Works Department
13325 Civic Center Drive
Poway, California 92064
Contact: Tom Howard

Helix Water District
7811 University Avenue
La Mesa, California 91942
Contact: Brian Olney

Santa Fe Irrigation District
5920 Linea del Cielo
Rancho Santa Fe, California 92067
Contact: Tim Bailey

Prepared by:
AECOM
401 West A Street, Suite 1200
San Diego, California 92101

May 2015
INTRODUCTION

The California Environmental Quality Act (CEQA) requires that public agencies adopting a Mitigated Negative Declaration (MND) take affirmative steps to determine that approved mitigation measures and project design features are implemented subsequent to project approval. The lead or responsible agency must adopt a monitoring and reporting program for the mitigation measures incorporated into a project or included as conditions of approval. The program must be designed to ensure compliance with the MND during project implementation (Public Resources Code, Section 20181.6; CEQA Guidelines, Section 15074(d)).

This Mitigation Monitoring and Reporting Program (MMRP) will be used by the San Diego County Water Authority (Water Authority) and four of its member agencies—Helix Water District (HWD), City of Poway (Poway), Santa Fe Irrigation District (SFID), and Sweetwater Authority (Sweetwater)—to ensure compliance with adopted mitigation measures associated with the application of copper-based algaecides to their respective surface water reservoirs to control algal blooms. This MMRP is divided into five sections that identify the project mitigation measures for each agency and its reservoir. The Water Authority is the lead agency on this project for CEQA administrative purposes, but only has discretionary authority over activities at Olivenhain Reservoir and does not have discretionary authority over project activities at the other agencies’ reservoirs. The Water Authority, as CEQA lead agency, has determined that all the measures stated in this MMRP are appropriate to mitigate impacts identified in the MND, but the Water Authority only has the authority to implement the measures listed for Olivenhain Reservoir. The Water Authority has determined that the measures listed for HWD, Poway, SFID, and Sweetwater can and should be implemented at the agencies’ respective reservoirs. The other four agencies’ decision-making bodies, as Responsible Agencies under CEQA, will separately consider adopting this MMRP and will be responsible for implementing the mitigation measures identified specific to activities at their respective reservoirs.

This MMRP contains the following sections, which correspond to the measures to be implemented by the agencies addressed in the MND:

Section 1: San Diego County Water Authority
Section 2: Helix Water District
Section 3: City of Poway
Section 4: Santa Fe Irrigation District
Section 5: Sweetwater Authority
SECTION 1. MITIGATION MEASURES FOR IMPLEMENTATION BY SAN DIEGO COUNTY WATER AUTHORITY

Section 1 consists of a checklist (Table 1) that lists the project mitigation measures to be carried out by the Water Authority, organized by environmental impact category discussed in the MND. The table identifies the mitigation monitoring and reporting requirements, including the timing of implementation (prior to, during, or after application) and the party responsible for implementing the measure. Space is provided for sign-off following completion/implementation of the mitigation measure. The Water Authority, as lead agency pursuant to CEQA and the agency responsible for activity at Olivenhain Reservoir, will ensure that all mitigation measures identified for the project at Olivenhain Reservoir are carried out in accordance with this section of the adopted MMRP.
Table 1. Mitigation Monitoring and Reporting Program: San Diego County Water Authority
Application of Copper-Based Algaeicides at Olivenhain Reservoir

<table>
<thead>
<tr>
<th>Mitigation No.</th>
<th>Mitigation Measure</th>
<th>Timing of Verification (application phase)</th>
<th>Responsible Party</th>
<th>Completed</th>
<th>Resp.</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Pre App</td>
<td>During App</td>
<td>Post App</td>
<td>Initials</td>
<td>Date</td>
</tr>
<tr>
<td>HAZARDS AND HAZARDOUS MATERIALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OLIVENHAIN-HAZ-1</td>
<td>The Water Authority will require training in copper sulfate and citric acid safety for all Water Authority employees participating in the application and handling of these chemicals. Response and containment procedures provided in the Water Authority's Emergency Response Guide, Hazardous Materials Business Plan, and the product material safety data sheet will be followed in the event of a spill. These procedures include isolation and containment of the spill while wearing the appropriate personal protective equipment.</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OLIVENHAIN-HAZ-2</td>
<td>The Water Authority will avoid over-application by ensuring that employees involved with chemical application follow the specific product labels for the algaeicides used in the program. Algaecide quantities required for each treatment will be precalculated and only sufficient material to carry out the treatment is transported for an application event. All label directions and California Department of Pesticide Regulation guidelines will be followed as to acceptable application methods as well as weather limitations for application.</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OLIVENHAIN-HAZ-3</td>
<td>Water Authority staff members that may come into contact with the algaecide will be trained on its use and hazards by the safety department. Review of all applicable MSDSs will be included in the training to ensure that employees are up to date on the hazards associated with the chemical(s) used. Personal protective equipment is supplied to any employee that will be working with the chemical(s). Goggles, face shield, chemically impervious gloves, and protective clothing to prevent skin contact are provided and used any time work is to be done with the algaeicide.</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OLIVENHAIN-HAZ-4</td>
<td>The Water Authority will ensure that application of algaeicides is targeted at nuisance algae growths and that algaeicides are applied in accordance with label instructions to minimize the application quantity and maximize efficacy. This includes avoiding uneven distribution and applying during favorable weather conditions, when feasible. Because nuisance algal growth affects the beneficial uses within the project area, application of algaeicides will be proactive, which will minimize the quantity of decaying algae that results and may threaten oxygen levels.</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Application of Copper-Based Algaeicides at Five Reservoirs
San Diego County California – MMRP

May 2015
<table>
<thead>
<tr>
<th>Mitigation No.</th>
<th>Mitigation Measure</th>
<th>Timing of Verification (application phase)</th>
<th>Completed</th>
<th>Resp. Team Member</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>OLIVENHAIN-WQ-1</td>
<td>The Water Authority will apply for coverage under the State Board’s National Pollutant Discharge Elimination System Permit for Discharges of Aquatic Pesticides and, as part of that application, seek a Categorical Exception pursuant to Section 5.3 of the State Board’s Policy for Implementation of Toxics Standards for Inland Surface Waters, Enclosed Bays, and Estuaries of California.</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OLIVENHAIN-WQ-2</td>
<td>The Water Authority will continue to monitor and report copper levels in Olivenhain Reservoir in accordance with State Board requirements.</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HYDROLOGY AND WATER QUALITY
SECTION 2. MITIGATION MEASURES FOR IMPLEMENTATION BY HELIX WATER DISTRICT

Section 2 consists of a checklist (Table 2) that lists the project mitigation measures to be carried out by HWD, organized by environmental impact category discussed in the MND. The table identifies the mitigation monitoring and reporting requirements, including the timing of implementation (prior to, during, or after application) and the party responsible for implementing the measure. Space is provided for sign-off following completion/implementation of the mitigation measure. HWD, as a Responsible Agency pursuant to CEQA, will ensure that all mitigation measures identified for the project at Lake Jennings are carried out in accordance with this section of the adopted MMRP.
Table 2. Mitigation Monitoring and Reporting Program: Helix Water District
Application of Copper-Based Algaecides at Lake Jennings

<table>
<thead>
<tr>
<th>Mitigation No.</th>
<th>Mitigation Measure</th>
<th>Timing of Verification (application phase)</th>
<th>Responsible Party</th>
<th>Completed</th>
<th>Resp. Team Member</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAZARDS AND HAZARDOUS MATERIALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JENNINGS-HAZ-1</td>
<td>HWD will ensure that algaecide use rates will be per the U.S. Environmental Protection Agency (EPA) label and will be limited to ensure compliance with receiving water limitations. Treatments will be performed when no water is being discharged from the lake system.</td>
<td>X</td>
<td>HWD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JENNINGS-HAZ-2</td>
<td>HWD will ensure that application personnel follow the storage, transport, and spill control procedures per EPA and California Department of Pesticide Regulation rules, regulations, and label instructions.</td>
<td>X X</td>
<td>HWD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JENNINGS-HAZ-3</td>
<td>HWD will ensure that algaecide quantities required for each treatment will be precalculated and only sufficient material to carry out the treatment will be transported for an application event. Application equipment will be routinely cleaned and maintained, and all label directions and Department of Pesticide Regulations guidelines will be followed as to acceptable application methods, including limitations due to weather conditions. Surface applications will not be made in winds above 10 miles per hour.</td>
<td>X X</td>
<td>HWD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HYDROLOGY AND WATER QUALITY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JENNINGS-WQ-1</td>
<td>HWD will apply for coverage under the State Board’s National Pollutant Discharge Elimination System Permit for Discharges of Aquatic Pesticides and, as part of that application, seek a Categorical Exception pursuant to Section 5.3 of the State Board’s Policy for Implementation of Toxics Standards for Inland Surface Waters, Enclosed Bays, and Estuaries of California.</td>
<td>X</td>
<td>HWD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JENNINGS-WQ-2</td>
<td>HWD will continue to monitor and report copper levels in Lake Jennings in accordance with State Board requirements.</td>
<td>X</td>
<td>HWD</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SECTION 3. MITIGATION MEASURES FOR IMPLEMENTATION BY CITY OF POWAY

Section 3 consists of a checklist (Table 3) that lists the project mitigation measures to be carried out by Poway, organized by environmental impact category discussed in the MND. The table identifies the mitigation monitoring and reporting requirements, including the timing of implementation (prior to, during, or after application) and the party responsible for implementing the measure. Space is provided for sign-off following completion/implementation of the mitigation measure. Poway, as a Responsible Agency pursuant to CEQA, will ensure that all mitigation measures identified for the project at Lake Poway are carried out in accordance with this section of the adopted MMRP.
Table 3. Mitigation Monitoring and Reporting Program: City of Poway
Application of Copper-Based Algaecides at Lake Poway

<table>
<thead>
<tr>
<th>Mitigation No.</th>
<th>Mitigation Measure</th>
<th>Timing of Verification (application phase)</th>
<th>Responsible Party</th>
<th>Completed</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Pre App</td>
<td>During App</td>
<td>Post App</td>
<td>Team</td>
</tr>
<tr>
<td>POWAY-HAZ-1</td>
<td>Poway will ensure that aquatic algaecide use rates will be per the U.S. Environmental Protection Agency (EPA) label and will be limited to ensure compliance with receiving water limitations. Treatments will be performed when no water is being discharged from the lake system.</td>
<td>X</td>
<td></td>
<td></td>
<td>Poway</td>
</tr>
<tr>
<td>POWAY-HAZ-2</td>
<td>Poway will ensure that application personnel follow the storage, transport, and spill control procedures per EPA and California Department of Pesticide Regulation rules, regulations, and label instructions.</td>
<td>X</td>
<td>X</td>
<td></td>
<td>Poway</td>
</tr>
<tr>
<td>POWAY-HAZ-3</td>
<td>Poway will ensure that algaecide quantities required for each treatment will be precalculated and only sufficient material to carry out the treatment will be transported for an application event. Application equipment will be routinely cleaned and maintained, and all label directions and Department of Pesticide Regulation guidelines will be followed as to acceptable application methods, including limitations due to weather conditions. Surface applications will not be made in winds above 10 miles per hour.</td>
<td>X</td>
<td>X</td>
<td></td>
<td>Poway</td>
</tr>
<tr>
<td>POWAY-WQ-1</td>
<td>Poway will apply for coverage under the State Board’s National Pollutant Discharge Elimination System Permit for Discharges of Aquatic Pesticides and, as part of that application, seek a Categorical Exception pursuant to Section 5.3 of the State Board’s Policy for Implementation of Toxics Standards for Inland Surface Waters, Enclosed Bays, and Estuaries of California.</td>
<td>X</td>
<td></td>
<td></td>
<td>Poway</td>
</tr>
<tr>
<td>POWAY-WQ-2</td>
<td>Poway will continue to monitor and report copper levels in Lake Poway in accordance with State Board requirements.</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
SECTION 4. MITIGATION MEASURES FOR IMPLEMENTATION BY SANTA FE IRRIGATION DISTRICT

Section 4 consists of a checklist (Table 4) that lists the project mitigation measures to be carried out by SFID, organized by environmental impact category discussed in the MND. The table identifies the mitigation monitoring and reporting requirements, including the timing of implementation (prior to, during, or after application) and the party responsible for implementing the measure. Space is provided for sign-off following completion/implementation of the mitigation measure. SFID, as a Responsible Agency pursuant to CEQA, will ensure that all mitigation measures identified for the project at San Dieguito Reservoir are carried out in accordance with this section of the adopted MMRP.
Table 4. Mitigation Monitoring and Reporting Program: Santa Fe Irrigation District
Application of Copper-Based Algaecides at San Dieguito Reservoir

<table>
<thead>
<tr>
<th>Mitigation No.</th>
<th>Mitigation Measure</th>
<th>Timing of Verification (application phase)</th>
<th>Responsible Party</th>
<th>Completed</th>
<th>Resp. Team Member</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAZARDS AND HAZARDOUS MATERIALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAN DIEGUITO-HAZ-1</td>
<td>SFID will ensure the algaecide treatment system within the Cielo Pump Station is flushed with water at the end of each treatment event to eliminate having any copper sulfate remaining in the system, which will protect the feed system from corrosion and leaks and minimize the potential for worker exposure.</td>
<td>Pre App</td>
<td>During App</td>
<td>Post App</td>
<td>SFID</td>
<td></td>
</tr>
<tr>
<td>SAN DIEGUITO-HAZ-2</td>
<td>SFID will ensure that a break in the algaecide application feed line, tanks, or pumps will be captured and treated as hazardous waste. SFID’s safety department will employ a hazardous waste disposal company that will properly dispose of any material that has been contaminated by a spill.</td>
<td></td>
<td>X</td>
<td>X</td>
<td>SFID</td>
<td></td>
</tr>
<tr>
<td>SAN DIEGUITO-HAZ-3</td>
<td>SFID staff will calculate maximum dosage rates and program them into the feed system to ensure correct concentration of the feed. The rate of feed for any treatment event will be limited to the recommendations on the product label and the material safety data sheet (MSDS) to ensure effectiveness and minimize any unintended effects on nontargeted organisms.</td>
<td>X</td>
<td>X</td>
<td>SFID</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAN DIEGUITO-HAZ-4</td>
<td>SFID will ensure that any staff members that may come into contact with copper sulfate are trained on its use and hazards by the SFID safety department. SFID will periodically review the product’s MSDS to ensure employees are up to date on the hazards associated with the chemical. SFID will ensure personal protective equipment is supplied to any employee that will be working with copper sulfate. Goggles, face shield, chemically impervious gloves, and protective clothing to prevent skin contact will be provided by SFID and used any time work is to be done with the algaecide.</td>
<td>X</td>
<td>X</td>
<td>SFID</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HYDROLOGY AND WATER QUALITY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAN DIEGUITO-WQ-1</td>
<td>SFID will apply for coverage under the State Board’s National Pollutant Discharge Elimination System Permit for Discharges of Aquatic Pesticides and, as part of that application, seek a Categorical Exception pursuant to Section 5.3 of the State Board’s Policy for Implementation of Toxics Standards for Inland Surface Waters, Enclosed Bays, and Estuaries of California.</td>
<td>X</td>
<td>SFID</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAN DIEGUITO-WQ-2</td>
<td>SFID will continue to monitor and report copper levels in San Dieguito Reservoir in accordance with State Board requirements.</td>
<td>X</td>
<td>SFID</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SECTION 5. MITIGATION MEASURES FOR IMPLEMENTATION BY SWEETWATER AUTHORITY

Section 5 consists of a checklist (Table 5) that lists the project mitigation measures to be carried out by Sweetwater, organized by environmental impact category discussed in the MND. The table identifies the mitigation monitoring and reporting requirements, including the timing of implementation (prior to, during, or after application) and the party responsible for implementing the measure. Space is provided for sign-off following completion/implementation of the mitigation measure. Sweetwater, as a Responsible Agency pursuant to CEQA, will ensure that all mitigation measures identified for the project at Sweetwater Reservoir are carried out in accordance with this section of the adopted MMRP.
Table 5. Mitigation Monitoring and Reporting Program: Sweetwater Authority
Application of Copper-Based Algaecides at Sweetwater Reservoir

<table>
<thead>
<tr>
<th>Mitigation No.</th>
<th>Mitigation Measure</th>
<th>Timing of Verification (application phase)</th>
<th>Responsible Party</th>
<th>Completed</th>
<th>Resp. Team</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Pre App</td>
<td>During App</td>
<td>Post App</td>
<td>Initials</td>
<td>Date</td>
</tr>
<tr>
<td>SWEETWATER-HAZ-1</td>
<td>Sweetwater will apply copper sulfate and citric acid in accordance with the product label and shall comply with the recommendations provided on the material safety data sheet (MSDS) applicable to the specific copper sulfate product to be used. Copper sulfate will be applied in an even, consistent manner over the surface area to be treated, thus minimizing the potential for higher than intended localized concentrations.</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SWEETWATER-HAZ-2</td>
<td>Sweetwater will require training in copper sulfate and citric acid safety for all Sweetwater employees participating in the application and handling of copper sulfate. Sweetwater shall conduct additional refresher training, as deemed necessary, prior to each treatment event.</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SWEETWATER-HAZ-3</td>
<td>Sweetwater will follow all response and containment procedures provided in their Chemical Hygiene Plan, Hazardous Response Plan, and the product MSDS in the event of a spill. These procedures include isolation and containment of the spill while wearing the appropriate personal protective equipment.</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SWEETWATER-HAZ-4</td>
<td>Sweetwater will require its employees participating in the application or handling of copper sulfate and citric acid to wear appropriate personal protective equipment recommended on the MSDS, including protective safety glasses with side shields (or goggles) per Occupational Safety and Health Administration (OSHA) 29 Code of Federal Regulations (CFR) 1910.133. Chemically impervious gloves made of any waterproof material, boots, and protective clothing will be worn to avoid skin contact (refer to OSHA 29 CFR 1910.138), as well as a respirator that meets OSHA 29 CFR 1910.134 requirements.</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SWEETWATER-WQ-1</td>
<td>Sweetwater will apply for coverage under the State Board’s National Pollutant Discharge Elimination System Permit for Discharges of Aquatic Pesticides and, as part of that application, seek a Categorical Exception pursuant to Section 5.3 of the State Board’s Policy for Implementation of Toxics Standards for Inland Surface Waters, Enclosed Bays, and Estuaries of California.</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SWEETWATER-WQ-2</td>
<td>Sweetwater will continue to monitor and report copper levels in Sweetwater Reservoir in accordance with State Board requirements.</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Attachment 4

Lake Jennings Reservoir Aquatic Pesticide Application Plan
dated June 18, 2015
Aquatic Pesticide Application Plan (APAP)

Helix Water District

June 18, 2015

This Aquatic Pesticides Application Plan has been prepared in accordance with Water Quality Order No. 2013-0002-DWQ, General Permit No CAG990005 of the State Water Resources Control Board.
Table of Contents

Introduction .. 1
1. Description of Water System to which algaecides and aquatic herbicides are applied 1
2. Description of treatment area in water system .. 3
3. Description of types of weeds and algae controlled .. 3
4. Algaecide and Aquatic herbicides used and application methods ... 5
5. Discussion of the factors influencing algaecide and herbicide application 6
6. Description of control structure used to prevent leakage ... 7
7. Exception Period ... 7
8. Description of Monitoring Program .. 7
9. Description of procedures to prevent sample contamination ... 11
10. Description of Best Management Practices ... 11
11. Examination of possible alternatives to algaecide and herbicide application 13
12. Algaecide and Aquatic Herbicide Application Log information elements 16

Figures

Figure 1 Map of Lake Jennings
Figure 2 Map of Monitoring Locations
Figure 3 Sampling/Monitoring Matrix

Attachments

Attachment A - Cutrine Plus MSDS
Attachment B – Garlon 3A MSDS
Attachment C – Glyphosphate Pro 4 MSDS
Introduction

Helix Water District (HWD) in accordance with Water Quality Order No. 2013-0002-DWQ, General Permit No CAG990005 of the California State Water Resources Control Board (SWRCB), has prepared this Aquatic Pesticides Application Plan (APAP). This General Permit shall become effective on December 1, 2013 and shall expire on November 30, 2018. This APAP contains the following elements:

1. Description of the water system to which algaecides and aquatic herbicides are being applied;
2. Description of the treatment area in the water system;
3. Description of types of weed(s) and algae that are being controlled and why;
4. Algaecide and aquatic herbicide products to be used, the method in which they are applied, and the adjuvants and surfactants used;
5. Discussion of the factors influencing the decision to select algaecide and aquatic herbicide applications for algae and weed control;
6. Description of the control structure to be used to control the extent of receiving waters potentially affected by algaecide and aquatic herbicide application and the inspection schedule of the control structure to ensure that it is not leaking;
7. Description of the monitoring program;
8. Description of procedures used to prevent sample contamination from persons, equipment, and vehicles associated with algaecide and aquatic herbicide application;
9. Description of the BMP’s to be implemented.
10. Examination of possible alternatives to algaecide and aquatic herbicide use to reduce the need for applying algaecides and herbicides.
11. Algaecide and Aquatic Herbicide Application Log information elements
12. Attachments. MSDS and product information sheets for algaecide and herbicides used by HWD are attached in the following order: Cutrine Plus, Garlon 3A, and Glyphosate Pro 4.

1. Description of the water system to which algaecides and aquatic herbicides are being applied.

Helix Water District (HWD) operates as a public agency under Irrigation District Laws of the State of California. HWD’s service area covers nearly 50 square miles in San Diego County and provides water to approximately 250,000 people. Less than 20% of HWD’s water source is local runoff. The rest of the water source is a blend of water from the Colorado River and Northern California. This imported water is purchased from the San Diego County Water Authority, who in turn purchases its water from the Metropolitan Water District of Southern California.

HWD owns Lake Jennings, a 9,790 acre-foot reservoir (See Figure 1.) Lake Jennings is located within the boundaries of Regional Water Board 9, San Diego. Approximately 95 percent of Lake Jennings’ volume is water imported from Northern California and the Colorado River via aqueducts. A small amount of inflow is from ephemeral, unnamed tributaries. Lake Jennings was created by impounding water behind Chet Harritt Dam, constructed in 1962. Lake Jennings serves as a short-term emergency
storage reservoir for HWD’s R. M. Levy Water Treatment Plant. The surface elevation of Lake Jennings is lowered when HWD uses water from the lake to produce potable water.

Figure 1. Lake Jennings

2. Description of the treatment area in the water system.

Lake Jennings will be treated for aquatic weeds and nuisance algae. Herbicide will never be applied to open water; aquatic weeds will be treated with herbicide on ground below the ordinary high water mark when the lake is level is down. Weeds submerged in water will not be treated and herbicide will not be applied to the water. Algaecide will be applied to the water in an area adjacent to Chet Harritt Dam and the intake tower to the water treatment plant; these points are in close proximity to each other.

3. Description of types of weeds and algae that are being controlled and why.

- Algae

Algae are a very large and diverse group of simple, typically autotrophic organisms. Freshwater harmful algal blooms (HABs) can occur anytime water use is impaired due to excessive accumulations of algae. In freshwater, the majority of HABs are caused by cyanobacteria (also called blue-green algae). Cyanobacteria cause a multitude of water-quality concerns, including the potential to produce taste-and-odor causing compounds and toxins that are potent enough to poison animals and humans. Cyanobacterial toxins (cyanotoxins) have been implicated in
human and animal illness and death in over fifty countries worldwide, including at least 35 U.S. States. Human toxicoses associated with cyanotoxins have most commonly occurred after exposure through drinking water or recreational activities. Taste-and-odor compounds and toxins are of particular concern in lakes and reservoirs that are used for drinking water supplies, such as Lake Jennings. Taste-and-odor compounds cause malodorous or unpalatable drinking water, resulting in increased treatment costs. In addition, if great masses of algae are permitted to enter the water treatment plant, the algae can cause operational problems by increasing the amount of suspended material that must be settled out of the water, and excessive algae can lead to water filter clogging. Filter clogging leads to shortened filter run times. Increases in the amount of material that must be settled in the water treatment process and shortened filter run times lead to increased electricity and chemical use in the water treatment plant. It is prudent to reduce the amount of algae in the water source, before it enters the drinking water treatment plant. Lake Jennings primary use is as a drinking water reservoir; therefore, HWD must control algae blooms in the lake to comply with drinking water regulations set forth in Title 22, California Code of Regulations. HWD normally prevents and controls algae blooms by oxygenating and mixing Lake Jennings with a conventional aeration system, which is described in more detail in section 10(a)(iii). In the event that aeration system is not able to prevent or control an algae bloom, Helix Water District must be able to control the algae bloom through the use of algaecide.

- **Tamarix spp.**

Four species of invasive *Tamarix* have been identified in California: *T. ramosissima, T. chinensis, T. gallica,* and *T. parviflora.* All four are many-branched shrubs or trees less than twenty-six feet tall with small scale-like leaves, from which comes the name saltcedar. Leaves have salt glands, and salt crystals can often be seen on leaves.

Soil salinities increase as a result of inputs of salt from glands on saltcedar leaves. The dome-shaped glands consist of at least two cells embedded in the epidermal pits (Decker 1961). Increased salinity inhibits growth and germination of native riparian species (Anderson 1996). Leaf litter from drought-deciduous saltcedar increases the frequency of fire. Saltcedar is capable of re-sprouting vigorously following fire and, coupled with changes in soil salinity, ultimately dominates riparian plant communities (Busch 1995).

Invasive *Tamarix* will be controlled to prohibit disruption to the structure and stability of the native plant community and degradation of the native wildlife habitat at Lake Jennings.

- **Typha spp.**

Commonly known as cattails, these native plants have long, slender, grass-like stalks that can grow up to 10 feet in height. Cattails can spread via seeds or root rhizomes. Through rhizomes, plants can form large, interconnected stands that can quickly grow to cover an area of lake bottom. Cattails can be beneficial by providing food and shelter to animals. Conversely, in shallow areas of the lake, they can dominate plant communities, reducing plant diversity and
habitat for other organisms. Lake Jennings primary use is as a drinking water reservoir; overgrowth of cattails and consequent plant decomposition must be controlled to prevent eutrophication of the lake. Cattails must be controlled in areas where their growth would threaten the integrity of the earthen portion of Chet Harritt Dam. Cattails can also provide food and shelter to muskrats; muskrat burrowing activity is a threat to dam integrity. Cattails must also be controlled in areas which lead to the dam spillway.

- **Schoenoplectus spp.**

Commonly called tules or bulrushes, two species of Schoenoplectus (synonym: Scirpus) are present at Lake Jennings.

The California Bulrush, or California Tule, *Schoenoplectus californicus* has long, curved triangular stems from 5 to 8 feet in height. This plant can grow in water up to 36 inches or more. Plants tend to grow in a continuous colony parallel to the shore and colonies grow in somewhat circular stands. These plants have clonal growth, with stout rootstocks and long, thick, brown rhizomes.

The Hardstem Bulrush, or Western Common Tule, *Schoenoplectus acutus var. occidentalis* has tall stems that are round in cross-section. The leaves are slender, v-shaped blades that are sheathed around the long stem. Bulrushes have clonal growth, with stout rootstocks and long, thick, brown rhizomes. Hardstem bulrushes grow best on sites with saturated soil or standing water for most of the year, but they are drought tolerant and can persist through several years of dry conditions.

Lake Jennings primary use is as a drinking water reservoir; overgrowth of tules and consequent plant decomposition must be controlled to prevent eutrophication of the lake. Tules must be controlled in areas where their growth would threaten the integrity of the earthen portion of Chet Harritt Dam. Tules can also provide food and shelter to muskrats; muskrat burrowing activity is a threat to dam integrity. Tules must also be controlled in areas which lead to the dam spillway.

4. **Algaecide and Aquatic herbicide products to be used, the method in which they are applied, and the adjuvants and surfactants used.**

- **Cutrine Plus**

 The algaecide Cutrine Plus will be used if algae control by chemical means is necessary. Cutrine Plus is a liquid product. The active chemical in Cutrine Plus is chelated elemental copper. Cutrine Plus will be applied, in accordance with label directions, to the water using a spray rig from a boat.

- **Garlon 3A**

 The water-based herbicide Garlon 3A will be used for the control of *Tamarix spp.* Garlon 3A will be applied to *Tamarix* stumps using the cut surface method described on the product Specimen
Label using a handheld sprayer. Garlon 3A will only be applied to Tamarix stumps that have been exposed to air and cut after the water level of Lake Jennings has been lowered. **Under no circumstances will Garlon 3A be applied to the water of Lake Jennings or to Tamarix that is emergent from the water.** After application of Garlon 3A, the water level of Lake Jennings will not be raised for a minimum of two weeks, so that treated stumps are left exposed to air. HWD does not normally raise the water level of Lake Jennings for about three months after the application of herbicide. No adjuvants or surfactants will be used to apply Garlon 3A.

- **Glyphosate Pro 4**

 The herbicide Glyphosate Pro 4 will be used when control of *Typha spp.* and *Schoenoplectus spp.* by chemical means is necessary. Glyphosate Pro 4 will be applied to the target plants with a handheld sprayer in accordance with product label directions. Glyphosate Pro 4 will only be applied to the target plants when the bases of the plants have been exposed to air after the water level of Lake Jennings has been lowered. **Under no circumstances will Glyphosate Pro 4 be applied to the water of Lake Jennings or to target plants that are emergent from the water.** After application of Glyphosate Pro 4, the water level of Lake Jennings will not be raised for a minimum of two weeks, so that treated stumps are left exposed to air. HWD does not normally raise the water level of Lake Jennings for about three months after the application of herbicide. The adjuvant Magnify will be used to apply Glyphosate Pro 4. Glyphosate Pro 4 and Magnify will be tank-mixed in accordance with product label directions.

5. **Discussion of the factors influencing the decision to select algaecide and aquatic herbicide applications for algae and weed control.**

- **Algaecide**

 The normal method of algae bloom prevention and control in Lake Jennings is conventional aeration. Conventional aeration is extremely successful at preventing and controlling algae blooms in Lake Jennings. Algaecide was applied infrequently in the years before the aeration system was installed and activated and algaecide use has not been necessary since HWD began to operate the aeration system. However, Lake Jennings is a water source for Helix Water District’s water treatment plant to produce potable water; therefore, in the event that the aeration system is not able to control an algae bloom, HWD must possess the means to control an algae bloom that algaecide provides.

- **Herbicides**

 In the case of invasive Tamarix control, it is sometimes difficult to physically remove the stumps and root systems of the trees without jeopardizing the safety of maintenance personnel. This can be due to size of the established root system and/or the location of the stump and root system. It is also essential that the integrity of the earthen portion of Chet Harritt Dam is not threatened by tree stump and removal operations.
In the case of *Typha* and *Schoenoplectus* control, it is often difficult to physically unearth the extensive rhizomes systems of these plants. Use of herbicide allows control of overspreading of these plants and complete, effective control of the plants in areas leading the dam spillway. In addition, use of herbicide allows control of these plants with minimal disturbance to the earthen portions of Chet Harritt Dam.

6. **Description of the control structure to be used to control the extent of receiving waters potentially affected by algaecide and aquatic herbicide application and the inspection schedule of the control structure to ensure that it is not leaking.**

 - Chet Harritt Dam is the control structure that will be used to control the extent of receiving waters potentially affected by algaecide application, specifically.
 - Chet Harritt Dam is inspected for leaks and structural integrity every Tuesday of the week.

7. **Exception Period**

 Helix Water District has been granted short-term, seasonal exception under Section 5.3 of the State Water Board’s *Policy for Implementation of Toxics Standards for Inland Surface Waters, Enclosed Bays, and Estuaries* (SIP) for applying copper sulfate to control taste and odor causing algae and cyanobacteria. The seasonal exception would cover intermittent, periodic discharges that may occur throughout the year. These discharges generally would be a single treatment and will dissipate within approximately one week. The frequency of discharge, based on water supply needs and occurrence or algae blooms, is not expected to be more than two times annually.

8. **Description of the monitoring program**

 The General Permit requires that dischargers comply with the Monitoring and Reporting Program (MRP) outlined in the General Permit. The General Permit encourages Dischargers to form Coalitions with other Dischargers doing similar applications within the same watershed. However, Helix Water District is the only discharger within the Lake Jennings watershed. Therefore, HWD has prepared and implemented its own, individual MRP (HWD MRP). The MRP is designed to answer two key questions:

 Question No. 1: Does the residual algaecides and aquatic herbicides discharge cause an exceedance or receiving water limitations?

 Question No. 2: Does the discharge of residual algaecides and aquatic herbicides, including active ingredients, inert ingredients, and degradation byproducts, in any combination cause or contribute to an exceedance of the “no toxics in toxic amount” narrative toxicity objective?

 The HWD MRP has been written in accordance with the provisions set forth under General Monitoring Provisions contained in Attachment C of the General Permit.

 HWD has established the monitoring locations identified in this APAP to demonstrate compliance with the receiving water limitations, discharge specifications, and other requirements in the General
Permit. The number and location of samples have been selected to answer the two key questions. The established monitoring locations are shown in Figure 2.

Point 1 is an anchored buoy located at GPS coordinates 32.856565, -116.891122, which is within the algaecide application area, which bounded to the west by Chet Harrit Dam, which is labeled Dam in Figure 2.

Point 2 is an anchored buoy located outside of the treatment area, at GPS coordinates 32.858751, -116.88141. Prevailing winds tend to push water at the surface Lake Jennings from the direction of Chet Harritt Dam towards the buoy at Point 1 and on to the buoy at Point 2.
Three types of monitoring will be performed for each sampling, as specified in the General Permit:

1. **Background Monitoring.** Background monitoring samples shall be collected in the application area just prior to (up to 24 hours in advance of) the application event.

2. **Event Monitoring.** Event monitoring samples shall be collected immediately outside of the treatment area, immediately after the application event, but after sufficient time has elapsed such that treated water would have exited the treatment area.

3. **Post-Event Monitoring.** Post-event monitoring samples shall be collected within the treatment area within one week after the application.

Upon completion of each application event, a qualified biologist will certify that the receiving water beneficial uses have been restored.

Records of monitoring information shall include the following:

1. The date, exact place, and time of sampling or measurements;
2. The individuals who performed the sampling or measurements;
3. The dates analysis were performed;
4. The individuals who performed the analyses;
5. The analytical techniques or methods used; and
6. Results of analyses.
The monitoring at each sample point will consist of the sample types listed in the following table,
Monitoring Requirements, from Attachment C of the General Permit:

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Constituent/Parameter</th>
<th>Units</th>
<th>Sample Method</th>
<th>Minimum Sampling Frequency</th>
<th>Sample Type Requirement</th>
<th>Required Analytical Test Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visual</td>
<td>1 Monitoring area description (pond, lake, open waterway, channel, etc)</td>
<td>Not applicable</td>
<td>Visual Observation</td>
<td>1</td>
<td>Background, Event and Post-event Monitoring</td>
<td>Not applicable</td>
</tr>
<tr>
<td></td>
<td>2 Appearance of waterway (sheen, color, clarity, etc)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 Weather conditions (fog, rain, wind, etc)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical</td>
<td>1 Temperature</td>
<td>°F</td>
<td>Grab</td>
<td>5</td>
<td>Background, Event and Post-event Monitoring</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>2 pH</td>
<td>Number</td>
<td>Grab</td>
<td>5</td>
<td>Background, Event and Post-event Monitoring</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>3 Turbidity</td>
<td>NTU</td>
<td>Grab</td>
<td>5</td>
<td>Background, Event and Post-event Monitoring</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>4 Electric Conductivity</td>
<td>@ 25°C</td>
<td>µhos/cm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemical</td>
<td>1 Active Ingredient</td>
<td>µg/L</td>
<td>Grab</td>
<td>5</td>
<td>Background, Event and Post-event Monitoring</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>2 Nonylphenol</td>
<td>µg/L</td>
<td>Grab</td>
<td>5</td>
<td>Background, Event and Post-event Monitoring</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>3 Hardness (if copper is monitored)</td>
<td>mg/L</td>
<td>Grab</td>
<td>5</td>
<td>Background, Event and Post-event Monitoring</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>4 Dissolved Oxygen</td>
<td>mg/L</td>
<td>Grab</td>
<td>5</td>
<td>Background, Event and Post-event Monitoring</td>
<td>6</td>
</tr>
</tbody>
</table>

1 All applications at all sites
2 Field testing
3 Field or laboratory testing
4 Samples shall be collected at three feet below the surface of the water body or at mid water column depth if the depth is less than three feet
5 Collect samples from a minimum of six application events for each active ingredient in each environmental setting (flowing water and non-flowing water) per year, except for glyphosate. If there are less than six application events in a year, collect samples during each application event for each active ingredient in each environmental setting (flowing water and non-flowing water). If the results from six consecutive sampling events show concentrations that are less than the receiving water limitation/trigger for an active ingredient in an environmental setting, sampling shall be reduced to one application event per year for that active ingredient in that environmental setting. If the yearly sampling event shows exceedance of the receiving water limitation/trigger for an active ingredient in an environmental setting, then sampling shall return to six application events for that active ingredient in each environmental setting. For glyphosate, collect samples from one application event from each environmental setting (flowing water and non-flowing water) per year
6 Pollutants shall be analyzed using the analytical methods described in 40 C.F.R. part 136
7 2,4-D, acrolein, dissolved copper, diquat, endothall, fluridone, glyphosate, imazamox, imazapyr, pendosulam, and triclopyr
8 It is required only when a surfactant is used.

Figure 3
9. **Description of procedures used to prevent sample contamination from persons, equipment, and vehicles associated with algaecide and aquatic herbicide application**

Measures will be taken to prevent sample collection contamination from persons, equipment and vehicles associated with algaecide and aquatic herbicides application, as follows:

- Background monitoring sample collection will be carried out prior to application equipment or algaecides being loaded into a boat. Sampling equipment, with particular emphasis on cooler and sample bottles, will be transported separately from algaecides or aquatic herbicides and application equipment on the day of the application event. Background monitoring will take place immediately prior to the application event.

- For event monitoring, sampling will be carried out after application equipment and all application related equipment and devices including personal protection equipment (PPE) used during the application has been removed from the boat, if no other boats are available to support sampling efforts. Hands will be washed with soap and clean potable water before handling sampling equipment, cooler and sample bottle. During sample bottle handling and sample collection, disposable rubber gloves will be used to collect a water sample. The pre-labeled sample bottle will be completed with time and date of sample collection immediately after removing from the sample cooler and replaced in the cooler immediately after sample collection. Once sampling has been completed, water samples will be delivered immediately to the laboratory, if possible. If background and event samples cannot be delivered the same days, sample bottles will be stored in a laboratory refrigerator until the samples can be delivered the next business day.

10. **Description of the BMP’s to be implemented:**

- Techniques that help reduce pesticide impacts include:
 - Non-algaecide/herbicide control methods as outlined below (section 10) have been attempted or considered.
 - Pre Treatment surveys are carried out to identify potential treatment areas and timing of pesticide application.
 - Adjustments will be made to treatment protocols based upon survey results.
 - Pesticide treatments will be performed when no water is being discharged from the lake system.
 - Aquatic Pesticide use rates will be per the EPA label and will be limited to ensure compliance with Receiving Water Limitations.
 - Partial waterbody treatments or split treatments will be utilized to minimize impacts that might otherwise occur.

- From the aquatic herbicides available, the most effective and safest options have been selected for use in this program.

- In order to avoid inadvertent or accidental soil or water contamination with aquatic pesticides, application personnel follow the storage, transport, and spill control procedures per USEPA and DPR (Department of Pesticide Regulations) rules, regulations and label instructions.
• Over application is avoided by following the specific product labels for the aquatic pesticides used in the program. Algaecide and aquatic herbicide quantities required for each treatment are pre-calculated and only sufficient material to carry out the treatment is transported for an application event. Application equipment is routinely cleaned and maintained, and all label directions and Department of Pesticide Regulations guidelines are followed as to acceptable application methods as well as weather conditions. Surface applications are not made in winds above 10 miles per hour.
• The various BMP's being implemented ensures that the APAP will meet the requirements of the general NPDES Permit for the use of aquatic pesticides.
• Licensing: Individuals who supervise the application of aquatic pesticides are certified and/or licensed by the Department of Pesticide Regulations.
• Site Evaluations: As has been detailed in this section and elsewhere, both preliminary and secondary site evaluations are a major aspect of the program, as represented by the extensive surveying carried out by the field crews.
• Alternative Treatments: Staff considers a number of potential alternative control strategies in every situation, and will make use of non-herbicide options when conditions are suitable.
• Treatment Conditions: Every application is made according to label directions, which not only specify the amounts and situations where pesticides may be applied, but the atmospheric and environmental conditions under which they may be applied. If there are conditions where it is determined that the treatment would be ineffective, application staff wait for other conditions.
• Post-treatment: Surveys are also carried out for post-treatment assessment of treatment efficacy and non-target impacts. Survey crews are instructed to look for possible non-target impacts that can be seen with the naked eye, such as dead fish or damage to plants on the shoreline.
• The applicator follows all pesticide label instructions and any Use Permits issued by a CAC (County Agricultural Commissioner);
• The discharger's applicators are licensed by DPR, or work with or under the supervision of someone who is licensed;
• The discharger's applicators comply with effluent limitations
• The discharger's applicators will follow this Aquatic Pesticide Application Plan (APAP);
• The discharger's applicators comply with applicable receiving water limitations; and
• The discharger's applicator will comply with the monitoring and reporting requirements outlined in this APAP.

Aquatic Pesticide Use Requirements:
• License Requirements. Discharger’s applicators will be licensed by Department of Pesticide Regulations if such licensing is required for the aquatic pesticide application project
• Application Requirements. The pesticide will be consistent with FIFRA pesticide label instructions and any Use Permits issued by the County Agricultural Commissioner.
• Application Schedule. When requested, the discharger will provide a phone number to persons who request the discharger's application schedule. The discharger shall provide
the requester with the most current application schedule and inform the requester if the schedule is subject to change. Information may be made available by electronic means.

- Public Notice Requirements. The Discharger and the affected public agency are one in the same, Helix Water District. Therefore, there is no need to notify other public agencies.

11. Examination of possible alternatives to algaecide and aquatic herbicide use to reduce the need for applying algaecides and herbicides.

a. Algae

Evaluation of alternative management options:

i. **No action**

With no action taken, algae blooms would be allowed to exist in Lake Jennings. If a taste or odor causing algae bloom is allowed to exist in Lake Jennings, Helix Water District cannot use water from Lake Jennings to produce potable water.

ii. **Prevention**

HWD’s normal algae management strategy is to prevent algae blooms by use of a conventional aeration system, which is described in more detail under the following section, i. Mechanical or physical methods.

Lake Jennings is fed with raw surface water, which contains algae cells. Prevention of raw water inflow is not feasible.

iii. **Mechanical or physical methods**

HWD’s normal algae management strategy is to prevent algae blooms by use of a conventional aeration system. The aeration system consists of an air compressor located on Chet Harritt Dam, an air diffuser grid that is located on the lake bottom adjacent to the dam, and an air line that connects the air compressor & diffuser grid. The aeration system introduces air bubbles at the bottom of lake. The rising air bubbles push oxygen-poor water up to the surface, where it is reaerated through an exchange with atmospheric oxygen at the water’s surface. Prevailing winds tend to push water that has been brought to the surface by the aerator towards the opposite end of Lake Jennings. This aeration system is powerful enough to turn over and oxygenate the entire lake. HWD places the aeration system in operation at the beginning of the season when algae blooms commonly occur and operates the system throughout the season. Algae blooms are extremely rare in Lake Jennings due to use of the aeration system.

The primary use of Lake Jennings is as source water for a potable water treatment plant; in the event that the aeration system is not able to prevent or
control an algae bloom, Helix Water District must be able to control unpalatable and/or malodorous algae blooms by other means.

iv. Cultural methods

Helix Water District strives to minimize potential nutrient sources for algae blooms by limiting overgrowth of cattails and tules, and removing fallen trees from the lake water whenever possible. In the event that minimizing nutrient sources does not control algae blooms, Helix Water District must be able to control algae blooms by other means.

v. Biological control agents

Lake Jennings contains a population of fish and zooplankton. Zooplankton and some fish consume algae, but it is unlikely that animal feeding activity would be able to control a rapidly growing algae bloom.

vi. Algaecides

Helix Water District will use the minimum amount of algaecide that is necessary to have an effective algae control program and is consistent with the algaecide product label requirements in the event that algaecide use is necessary.

b. *Tamarix spp.*

Evaluation of alternative management options:

i. No action

Invasive *Tamarix* would be allowed to proliferate. *Tamarix* would disrupt the structure and stability of the native plant community and degrade the native wildlife habitat at Lake Jennings.

ii. Prevention

Tamarix seeds can be spread by water. Lake Jennings is filled with water transported from Northern California and the Colorado River. The banks of the Colorado River are infested with *Tamarix*. It would be difficult to prevent *Tamarix* from entering Lake Jennings without stopping the inflow of water from the Colorado River.

iii. Mechanical or physical methods

Mechanical controls include mowing, cutting, and root plowing. These methods rarely kill the plant and often stimulate shrubby regrowth. However, HWD will make the effort to remove roots through physical means before resorting to herbicide use.
iv. Cultural methods

Tamarix spreads aggressively, outcompeting native plant species, and often forms monoculture stands when growth is left unchecked. HWD will continually review literature for updated information regarding native plant species that have been found to compete against *Tamarix*.

v. Biological control agents

Diorhabda elongata, the Mediterranean tamarisk beetle (MTB), is a non-native, Old World species of beetle that has been successfully used to suppress *Tamarix*. Release of the MTB is Southern California, the location of Lake Jennings, has been delayed until concerns can be resolved regarding safety of *Tamarix* biological control to nesting habitats of the federally endangered southwestern willow flycatcher, *Empidonax traillii*. HWD will continue to seek information on other possible biological control agents, and if release of the MTB becomes permitted in Southern California.

vi. Aquatic herbicides

Helix Water District will use the minimum amount of herbicide that is necessary to have an effective control program and is consistent with the herbicide product label requirements in the event that herbicide use is necessary.

Evaluation of alternative management options:

i. No action

Schoenoplectus spp. and *Typha* spp. would likely form monocultures, with dense, impenetrable stands in shallow areas of Lake Jennings. Naturally decaying plant material could lead to eutrophication of the lake and supply a nutrient source to taste and odor causing algae blooms.

ii. Prevention

Schoenoplectus spp. and *Typha* spp. proliferate in the local environment. Their seeds can be spread by air and water from plants both at Lake Jennings and the surrounding local environment. Therefore, it would be difficult to prevent *Schoenoplectus* and *Typha* from growing at Lake Jennings. HWD’s goal is to maintain a controlled population of *Schoenoplectus* and *Typha* at Lake Jennings, not to completely eradicate these species.

iii. Mechanical or physical methods

Mechanical or physical control methods are HWD’s primary control methods of choice. Plants can be cut down to the base, so that leaves are not able to mature so that they can transport food to their root systems. In addition, plants with roots cut down to below the water level can drown. Another physical
method is to completely pull the roots out of the ground; this is more difficult, since the roots of these plants tend to form interwoven mats underground.

iv. Cultural methods
There do not seem to be any plants that compete with *Schoenoplectus* and *Typha*. Each species only seems to compete with the other.

v. Biological control agents
Grass carp (white amur) fish have been mentioned as a potential biological control method, but success with using grass carp as a control method appears to be unproven. HWD does not wish to introduce this fish species to Lake Jennings.

vii. Aquatic herbicides
HWD will use the minimum amount of aquatic herbicide that is necessary to have an effective control program and is consistent with the herbicide product label requirements in the event that herbicide use is necessary.

12. Algaecide and Aquatic Herbicide Application Log information elements
1. Date of application;
2. Location of the application, both stated and illustrated on diagram of Lake Jennings;
3. Name of the applicator;
4. Type and amount of algaecide or aquatic herbicide used;
5. Application details, such as level of Lake Jennings, time application started and stopped, algaecide and aquatic herbicide application rate and concentration;
6. Visual monitoring assessment; and
7. Certification that applicator(s) followed this APAP.

Attachments. MSDS and product information sheets for algaecide and herbicides used by HWD are attached in the following order: *Cutrine Plus, Garlon 3A*, and *Glyphosate Pro 4*.
Attachment A – Cutrine Plus MSDS
PRODUCT NAME: **AB CUTRINE-PLUS**

1. PRODUCT AND COMPANY IDENTIFICATION

<table>
<thead>
<tr>
<th>Supplier</th>
<th>Applied Biochemists (WI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>W175 N1163 Stonewood Drive, Suite 234</td>
<td></td>
</tr>
<tr>
<td>Germantown, WI, 53022</td>
<td></td>
</tr>
<tr>
<td>United States</td>
<td></td>
</tr>
<tr>
<td>Telephone: +12622554449</td>
<td></td>
</tr>
<tr>
<td>Telefax: +12622554268</td>
<td></td>
</tr>
<tr>
<td>Web: www.appliedbiochemists.com</td>
<td></td>
</tr>
</tbody>
</table>

| REVISION DATE: | 09/14/2011 |
| SUPERCEDES: | 02/19/2010 |

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Advantis Technologies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1400 Bluegrass Lakes Parkway</td>
<td></td>
</tr>
<tr>
<td>Alpharetta, GA 30004</td>
<td></td>
</tr>
<tr>
<td>United States of America</td>
<td></td>
</tr>
</tbody>
</table>

MSDS Number:	000000012518
SYNONYMS:	None
CHEMICAL FAMILY:	None
DESCRIPTION / USE	None established
FORMULA:	None established

2. HAZARDS IDENTIFICATION

<table>
<thead>
<tr>
<th>OSHA Hazard Classification:</th>
<th>Slight Eye Irritant</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Routes of Entry:</th>
<th>Eyes Skin Ingestion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical Interactions:</td>
<td>None known.</td>
</tr>
<tr>
<td>Medical Conditions Aggravated:</td>
<td>None known.</td>
</tr>
</tbody>
</table>

AB CUTRINE-PLUS

REVISION DATE: 09/14/2011

Page 1 of 13
Human Threshold Response Data

Odor Threshold: Not established for product
Irritation Threshold: Not established for product

Hazardous Materials Identification System / National Fire Protection Association Classifications

<table>
<thead>
<tr>
<th>Hazard Ratings</th>
<th>Health</th>
<th>Flammability</th>
<th>Physical / Instability</th>
<th>PPI / Special hazard</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMIS</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>NFPA</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Immediate (Acute) Health Effects

Inhalation Toxicity: Not expected to be an inhalation hazard at ambient conditions. Inhalation of mist or vapor may cause irritation to the mucous membranes of the respiratory tract.

Skin Toxicity: Not expected to be irritating to the skin. Not expected to be toxic from dermal contact.

Eye Toxicity: Contact would be expected to cause minor irritation, consisting of transient redness and swelling. No corneal involvement or visual impairment is expected.

Ingestion Toxicity: Slightly toxic if swallowed. Ingestion may cause gastrointestinal irritation, nausea, vomiting and diarrhoea.

Acute Target Organ Toxicity: May cause mild eye irritation. Ingestion may cause mild gastrointestinal discomfort. Inhalation of mist or vapor may cause irritation to the mucous membranes of the respiratory tract.

Prolonged (Chronic) Health Effects

Carcinogenicity: This product is not known or reported to be carcinogenic by any reference source including IARC, OSHA, NTP or EPA.

Reproductive and Developmental Toxicity

Inhalation: There are no known or reported effects from chronic exposure except for effects similar to those experienced from acute exposure.

Skin Contact: There are no known or reported effects from chronic exposure.

Skin Absorption: There are no known or reported effects from chronic exposure.

Ingestion: There are no known or reported effects from chronic ingestion except for effects similar to those experienced from single exposure.

Sensitization: This material is not known or reported to be a skin or respiratory sensitizer.
Chronic Target Organ Toxicity
There are no known or reported effects to humans from repeated exposure to this product
Supplemental Health Hazard Information
No additional health information available

3. COMPOSITION / INFORMATION ON INGREDIENTS

<table>
<thead>
<tr>
<th>CAS OR CHEMICAL NAME</th>
<th>CAS #</th>
<th>% RANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triethanolamine</td>
<td>102-71-6</td>
<td></td>
</tr>
<tr>
<td>Ethanolamine</td>
<td>141-43-5</td>
<td></td>
</tr>
<tr>
<td>BASIC COPPER CARBONATE</td>
<td>12069-69-1</td>
<td></td>
</tr>
</tbody>
</table>

4. FIRST AID MEASURES

General Advice
Call a poison control center or doctor for treatment advice. For 24-hour emergency medical assistance, call Arch Chemical Emergency Action Network at 1-800-654-6911. Have the product container or label with you when calling a poison control center or doctor, or going for treatment

Inhalation
IF INHALED. Move person to fresh air. If person is not breathing, call 911 or an ambulance, then give artificial respiration, preferably mouth-to-mouth if possible. Call a poison control center or doctor for further treatment advice.

Skin Contact
IF ON SKIN OR CLOTHING. Take off contaminated clothing. Rinse skin immediately with plenty of water for 15-20 minutes. Call a poison control center or doctor for treatment advice.

Eye Contact
IF IN EYES. Hold eye open and rinse slowly and gently with water for 15-20 minutes. Remove contact lenses, if present, after the first 5 minutes, then continue rinsing eye. Call a poison control center or doctor for treatment advice.

Ingestion
IF SWALLOWED. Call a poison control center or doctor immediately for treatment advice. Have person sip a glass of water if able to swallow. Do not induce vomiting unless told to do so by a poison control center or doctor. Do not give anything by mouth to an unconscious person.
5. FIRE FIGHTING MEASURES

Flammability Summary (OSHA): The product is not flammable., Not combustible., Not explosive, The substance or mixture is not classified as pyrophoric.

Flammable Properties

Fire / Explosion Hazards: Will not burn
Extinguishing Media: Carbon dioxide (CO2) Dry chemical Foam
Fire Fighting Instructions: Use water spray to cool unopened containers. In case of fire, use normal fire-fighting equipment and the personal protective equipment recommended in Section 8 to include a NIOSH approved self-contained breathing apparatus.

Hazardous Combustion Products: During a fire, irritating and highly toxic gases may be generated by thermal decomposition or combustion.

6. ACCIDENTAL RELEASE MEASURES

Personal Protection for Emergency Situations: Use the personal protective equipment recommended in Section 8 and a NIOSH approved self-contained breathing apparatus.

Spill Mitigation Procedures

Air Release: Keep people away from and upwind of spill/leak.
Water Release: If the product contaminates rivers and lakes or drains inform respective authorities.
Land Release: Contain spillage, soak up with non-combustible absorbent material, (e.g. sand, earth, diatomaceous earth, vermiculite) and transfer to a container for disposal according to local / national regulations (see section 13). The product should not be allowed to enter drains, water courses or the soil.

Additional Spill Information: Prevent further leakage or spillage if safe to do so. Evacuate personnel to safe areas. Use personal protective equipment as required.

7. HANDLING AND STORAGE

Handling: Do not take internally. Avoid contact with skin, eyes and clothing.
Upon contact with skin or eyes, wash off with water. Avoid breathing mist or vapor.

Storage: Store in a cool, dry and well ventilated place. Isolate from incompatible materials.
8. EXPOSURE CONTROLS / PERSONAL PROTECTION

Ventilation: Local exhaust ventilation or other engineering controls are normally required when handling or using this product to keep airborne exposures below the TLV, PEL or other recommended exposure limit.

Protective Equipment for Routine Use of Product

Respiratory Protection: Wear a NIOSH approved respirator if levels above the exposure limits are possible. A NIOSH approved air purifying respirator with organic vapor cartridge and N95 particulate filter. Air purifying respirators should not be used in oxygen deficient or IDLH atmospheres or if exposure concentrations exceed ten (10) times the published limit.

Skin Protection: Avoid contact with skin. Impervious gloves

Eye Protection: Safety glasses with side-shields

General Protective Measures:

Emergency eyewash should be provided in the immediate work area.

Exposure Limit Data

<table>
<thead>
<tr>
<th>CHEMICAL NAME</th>
<th>CAS #</th>
<th>Name of Limit</th>
<th>Exposure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triethanolamine</td>
<td>102-71-6</td>
<td>ACGIH</td>
<td>5 mg/m³ TWA</td>
</tr>
<tr>
<td>Ethanolamine</td>
<td>141-43-5</td>
<td>ACGIH</td>
<td>3 ppm TWA</td>
</tr>
<tr>
<td>Ethanolamine</td>
<td>141-43-5</td>
<td>ACGIH</td>
<td>6 ppm STEL</td>
</tr>
<tr>
<td>Ethanolamine</td>
<td>141-43-5</td>
<td>OSHA Z1</td>
<td>3 ppm TWA</td>
</tr>
<tr>
<td>Ethanolamine</td>
<td>141-43-5</td>
<td>NIOSH-IDLH</td>
<td>6 mg/m³ TWA</td>
</tr>
<tr>
<td>Ethanolamine</td>
<td>141-43-5</td>
<td>NIOSH-IDLH</td>
<td>30 ppm</td>
</tr>
<tr>
<td>BASIC COPPER CARBONATE</td>
<td>12069-69-1</td>
<td>ACGIH</td>
<td>1 mg/m³ Calculated as Cu TWA dusts and mists</td>
</tr>
<tr>
<td>BASIC COPPER CARBONATE</td>
<td>12069-69-1</td>
<td>OSHA Z1</td>
<td>1 mg/m³ TWA dusts and mists</td>
</tr>
<tr>
<td>BASIC COPPER CARBONATE</td>
<td>12069-69-1</td>
<td>NIOSH-IDLH</td>
<td>100 mg/m³</td>
</tr>
</tbody>
</table>
9. PHYSICAL AND CHEMICAL PROPERTIES

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical State</td>
<td>liquid</td>
</tr>
<tr>
<td>Form</td>
<td>No data</td>
</tr>
<tr>
<td>Color</td>
<td>No data</td>
</tr>
<tr>
<td>Odor</td>
<td>No data</td>
</tr>
<tr>
<td>Molecular Weight</td>
<td>None established</td>
</tr>
<tr>
<td>Specific Gravity</td>
<td>1.220 - 1.230</td>
</tr>
<tr>
<td>pH</td>
<td>10.3 - 10.5</td>
</tr>
<tr>
<td>Boiling Point</td>
<td>no data available</td>
</tr>
<tr>
<td>Freezing Point</td>
<td>not applicable</td>
</tr>
<tr>
<td>Melting Point</td>
<td>not applicable</td>
</tr>
<tr>
<td>Density</td>
<td>not applicable</td>
</tr>
<tr>
<td>Bulk Density</td>
<td>no data available</td>
</tr>
<tr>
<td>Vapor Pressure</td>
<td>no data available</td>
</tr>
<tr>
<td>Vapor Density</td>
<td>> 1 (Air = 1.0)</td>
</tr>
<tr>
<td>Viscosity</td>
<td>no data available no data available</td>
</tr>
<tr>
<td>Solubility in Water</td>
<td>completely miscible</td>
</tr>
<tr>
<td>Partition coefficient n-octanol/water</td>
<td>not applicable</td>
</tr>
<tr>
<td>Evaporation Rate</td>
<td>no data available</td>
</tr>
<tr>
<td>Oxidizing</td>
<td>None established</td>
</tr>
<tr>
<td>Volatiles, % by vol</td>
<td>no data available</td>
</tr>
<tr>
<td>VOC Content</td>
<td>no data available</td>
</tr>
<tr>
<td>HAP Content</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>

10. STABILITY AND REACTIVITY

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stability and Reactivity Summary</td>
<td>Stable under normal conditions</td>
</tr>
<tr>
<td>Conditions to Avoid</td>
<td>High temperatures</td>
</tr>
<tr>
<td>Chemical Incompatibility</td>
<td>Strong acids, Nitrates</td>
</tr>
<tr>
<td>Hazardous Decomposition Products</td>
<td>Carbon oxides, nitrogen oxides (NOx)</td>
</tr>
<tr>
<td>Decomposition Temperature</td>
<td>No data</td>
</tr>
</tbody>
</table>

11. TOXICOLOGICAL INFORMATION
Component Animal Toxicology
Oral LD50 value:
- Tnethanolamine: LD50 = 7,390 mg/kg Rat
- Ethanolamine: LD50 = 1,700 mg/kg rat
- BASIC COPPER CARBONATE

Component Animal Toxicology
Dermal LD50 value:
- Tnethanolamine: LD50 > 2,000 mg/kg Rabbit
- Ethanolamine: LD50 Approximately 1,000 mg/kg rabbit
- no data available

Component Animal Toxicology
Inhalation LC50 value
- Tnethanolamine: A saturated vapor concentration for 8 hours (rats) did not produce any deaths
- Ethanolamine: LC50 1 h > 4.8 MG/L mouse
- Ethanolamine: LC50 4 h > 970 ppm mouse
- no data available

Product Animal Toxicity
Oral LD50 value: LD50 Believed to be approximately 3,790 mg/kg rat
Dermal LD50 value: LD50 Believed to be > 2,000 mg/kg rabbit
Inhalation LC50 value: no data available

Skin Irritation: Not expected to be irritating to the skin
Eye Irritation: slight irritation
Skin Sensitization: This material is not known or reported to be a skin or respiratory sensitizer

Acute Toxicity: May cause mild eye irritation Ingestion may cause mild gastrointestinal discomfort Inhalation of mist or vapor may cause irritation to the mucous membranes of the respiratory tract
Subchronic / Chronic Toxicity: Not known or reported to cause subchronic or chronic toxicity
Reproductive and Developmental Toxicity: Not known or reported to cause reproductive or developmental toxicity

This product has been tested and was shown not to produce any adverse effects on reproductive function or...
fetal development when administered to laboratory animals

Ethanolamine

This chemical has been tested in laboratory animals and no evidence of teratogenicity, embryotoxicity or fetotoxicity was seen

Mutagenicity

- Triethanolamine
- Ethanolamine

Not known or reported to be mutagenic

This chemical has been shown to be non-mutagenic based on a battery of assays
This chemical has been tested in a battery of mutagenicity/genotoxicity assays and the results were negative

Carcinogenicity

- Triethanolamine
- Ethanolamine

This product is not known or reported to be carcinogenic by any reference source including IARC, OSHA, NTP or EPA
The International Agency for Research on Cancer (IARC) has classified this product or a component of this product as a Group 3 substance, Unclassifiable as to Its Carcinogenicity to Humans
This product is not known or reported to be carcinogenic by any reference source including IARC, OSHA, NTP or EPA. Chemicals of similar structure have been shown not to cause cancer in laboratory animals

12. ECOLOGICAL INFORMATION

Overview
Toxic to fish and other aquatic organisms

Ecological Toxicity Values for Triethanolamine

- Fathead minnow (Pimephales promelas), (measured, flow-through) 96 h LC50 = 11,800 mg/l
- Daphnia magna, (nominal, static) 24 h EC50 = 1,850 mg/l
- Common shrimp (Crangon crangon), (nominal, renewal) 48 h LC50 > 100 mg/l
- Green algae (Scenedesmus subspicatus), (nominal, static) 48 h EC50 = 750 mg/l

Ecological Toxicity Values for Ethanolamine

- Rainbow trout (Oncorhynchus mykiss), (nominal, static) 96 h LC50 = 150 mg/l
- Mosquito fish, (nominal, static) 96 h LC50 = 337.5 mg/l
13. DISPOSAL CONSIDERATIONS

CARE MUST BE TAKEN TO PREVENT ENVIRONMENTAL CONTAMINATION FROM THE USE OF THE MATERIAL. THE USER OF THE MATERIAL HAS THE RESPONSIBILITY TO DISPOSE OF UNUSED MATERIAL, RESIDUES AND CONTAINERS IN COMPLIANCE WITH ALL RELEVANT LOCAL, STATE AND FEDERAL LAWS AND REGULATIONS REGARDING TREATMENT, STORAGE AND DISPOSAL FOR HAZARDOUS AND NONHAZARDOUS WASTES.

Waste Disposal Summary: If this product becomes a waste, it DOES NOT meet the criteria of a hazardous waste as defined under 40 CFR 261, in that it does not exhibit the characteristics of hazardous waste of Subpart C, nor is it listed as a hazardous waste under Subpart D.

Disposal Methods: As a nonhazardous liquid waste, it should be disposed of in accordance with local, state and federal regulations.

14. TRANSPORT INFORMATION

Land (US DOT): Not Regulated
Water (IMDG): NOT REGULATED AS A DOT HAZARDOUS MATERIAL
Air (IATA): NOT REGULATED AS A HAZARDOUS MATERIAL,
Emergency Response Guide Number: Not applicable
15. REGULATORY INFORMATION

UNITED STATES:
Toxic Substances Control Act (TSCA):
This product is regulated under the Federal Insecticide, Fungicide and Rodenticide Act. It must be used for purposes consistent with its labeling.

EPA Pesticide Registration Number:
None established

FIFRA Listing of Pesticide Chemicals (40 CFR 180):
This product is regulated under the Federal Insecticide, Fungicide and Rodenticide Act. It must be used for purposes consistent with its labeling.

Superfund Amendments and Reauthorization Act (SARA) Title III:

Hazard Categories Sections 311 / 312 (40 CFR 370.2):
Health: Immediate (Acute) Health Hazard
Physical: None

Extremely Hazardous Substance Section 302 - Threshold Planning Quantity:
ZUS_SAR302 TPQ (threshold planning quantity) None established

Reportable Quantity (49 CFR 172.101, Appendix):
ZUS_CERCLA Reportable quantity Diethanolamine Value: 100lbs
ZUS_SAR302 Reportable quantity None established

Supplier Notification Requirements (40 CFR 372.45), 313 Reportable Components:
ZUS_SAR313 De minimis concentration Diethanolamine Value: < 1% by weight

Clean Air Act Toxic ARP Section 112r:
CAA 112R None established

Clean Air Act Socmi:
HON SOC

US. EPA Hazardous Organic NESHAP (HON) Synthetic Organic Chemicals (40 CFR 63.100-.106, Table
DIETHANOLAMINE (2,2'-IMINODIETHANOL)

US. EPA Hazardous Organic NESHAP (HON) Synthetic Organic Chemicals (40 CFR 63.100-.106, Table 1)
07 1999
Group I
ETHANOLAMINE

US. EPA Hazardous Organic NESHAP (HON) Synthetic Organic Chemicals (40 CFR 63.100-.106, Table 1)
07 1999
Group I
TRIETHANOLAMINE

Clean Air Act VOC Section 111:
CAA 111

US. EPA Clean Air Act (CAA) Section 111 SOCMI Intermediate or Final Volatile Organic Compounds (40 CFR 60.489)
01 1996
ETHANOLAMINE

Clean Air Act Haz. Air Pollutants Section 112:
ZUS_CAAHAP None established
ZUS_CAAHRP None established

CAA AP

US. EPA Hazardous Organic NESHAP (HON) Hazardous Air Pollutants (40 CFR 63.100-.106, Table 2)
04 1999
DIETHANOLAMINE (2,2'-IMINODIETHANOL)

State Right-to-Know Regulations Status of Ingredients

Pennsylvania:

<table>
<thead>
<tr>
<th>CAS #</th>
<th>COMPONENT NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>141-43-5</td>
<td>Ethanolamine</td>
</tr>
<tr>
<td>102-71-6</td>
<td>Triethanolamine</td>
</tr>
</tbody>
</table>

Pennsylvania: Hazardous substance list

AB CUTRINE-PLUS
1989-08-11
ETHANOL, 2-AMINO-

Pennsylvania: Hazardous substance list
1989-08-11
ETHANOL, 2,2',2"-NITRILOTRIS-

New Jersey:

<table>
<thead>
<tr>
<th>CAS #</th>
<th>COMPONENT NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>141-43-5</td>
<td>Ethanolamine</td>
</tr>
<tr>
<td>102-71-6</td>
<td>Triethanolamine</td>
</tr>
</tbody>
</table>

ZUSNJ_RTK

New Jersey Right to Know Hazardous Substance List (RTK-HSL)
2007-03-01
ETHANOLAMINE MONOETHANOLAMINE ETHANOL, 2-AMINO-
Special Health Hazard - Corrosive

New Jersey Right to Know Hazardous Substance List (RTK-HSL)
2007-03-01
TRIETHANOLAMINE ETHANOL, 2,2’,2"-NITRILOTRIS-

Massachusetts:

<table>
<thead>
<tr>
<th>CAS #</th>
<th>COMPONENT NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>141-43-5</td>
<td>Ethanolamine</td>
</tr>
<tr>
<td>102-71-6</td>
<td>Triethanolamine</td>
</tr>
</tbody>
</table>

ZUSMA_RTK

Massachusetts Right to Know List of Chemicals and Hazard Classifications
1993-04-24
ETHANOLAMINE 2-AMINOETHANOL

Massachusetts Right to Know List of Chemicals and Hazard Classifications
1993-04-24
TRIETHANOLAMINE

California Proposition 65:

AB CUTRINE-PLUS
REVISION DATE: 09/14/2011
ZUSCA_P65

None established

WHMIS Hazard Classification:

Ingredient Disclosure List (WHMIS)
2007-08-24
Threshold limits: 1 Weight percent
1170
Monoethanolamine

Ingredient Disclosure List (WHMIS)
2007-08-24
Threshold limits: 1 Weight percent
1663
Triethanolamine

Ingredient Disclosure List (WHMIS)
2007-08-24
Threshold limits: 1 Weight percent
985
Copper(II) carbonate hydroxide

16. OTHER INFORMATION

MSDS REVISION STATUS :
SECTIONS REVISED: First formulated version in SAP.
Major References : Available upon request.

THIS MATERIAL SAFETY DATA SHEET (MSDS) HAS BEEN PREPARED IN COMPLIANCE WITH THE FEDERAL OSHA HAZARD COMMUNICATION STANDARD, 29 CFR 1910.1200. THE INFORMATION IN THIS MSDS SHOULD BE PROVIDED TO ALL WHO WILL USE, HANDLE, STORE, TRANSPORT, OR OTHERWISE BE EXPOSED TO THIS PRODUCT. THIS INFORMATION HAS BEEN PREPARED FOR THE GUIDANCE OF PLANT ENGINEERING, OPERATIONS AND MANAGEMENT AND FOR PERSONS WORKING WITH OR HANDLING THIS PRODUCT. ARCH CHEMICALS BELIEVES THIS INFORMATION TO BE RELIABLE AND UP TO DATE AS OF THE DATE OF PUBLICATION BUT, MAKES NO WARRANTY THAT IT IS. ADDITIONALLY, IF THIS MSDS IS MORE THAN THREE YEARS OLD, YOU SHOULD CONTACT ARCH CHEMICALS MSDS CONTROL AT THE PHONE NUMBER ON THE FRONT PAGE TO MAKE CERTAIN THAT THIS DOCUMENT IS CURRENT.
Attachment B – Garlon 3A MSDS
Dow AgroSciences LLC encourages and expects you to read and understand the entire (M)SDS, as there is important information throughout the document. We expect you to follow the precautions identified in this document unless your use conditions would necessitate other appropriate methods or actions.

1. Product and Company Identification

Product Name
GARLON* 3A Herbicide

COMPANY IDENTIFICATION
Dow AgroSciences LLC
A Subsidiary of The Dow Chemical Company
9330 Zionsville Road
Indianapolis, IN 46268-1189
USA

Customer Information Number. 800-992-5994
SDSQuestion@dow.com

EMERGENCY TELEPHONE NUMBER
24-Hour Emergency Contact: 800-992-5994
Local Emergency Contact: 352-323-3500

2. Hazards Identification

Emergency Overview
Color: Pink
Physical State: Liquid
Odor: Ammoniacal
Hazards of product:

| DANGER! | Combustible liquid and vapor Causes severe eye burns May cause allergic skin reaction May cause skin irritation May be harmful if swallowed Vapor explosion hazard Evacuate area Keep upwind of spill Stay out of low areas Eliminate ignition sources Toxic fumes may be released in fire situations |

OSHA Hazard Communication Standard
This product is a "Hazardous Chemical" as defined by the OSHA Hazard Communication Standard, 29 CFR 1910 1200

Potential Health Effects
Eye Contact: May cause severe irritation with corneal injury which may result in permanent impairment of vision, even blindness Chemical burns may occur Vapor of amines may cause
swelling of the cornea resulting in visual disturbances such as blurred or hazy vision. Bright lights may appear to be surrounded by halos. Effects may be delayed and typically disappear spontaneously.

Skin Contact: Brief contact is essentially nonirritating to skin. Prolonged contact may cause slight skin irritation with local redness. Repeated contact may cause skin burns. Symptoms may include pain, severe local redness, swelling, and tissue damage.

Skin Absorption: Prolonged skin contact is unlikely to result in absorption of harmful amounts.

Skin Sensitization: Has caused allergic skin reactions when tested in guinea pigs. With the dilute mix, no allergic skin reaction is expected.

Inhalation: Brief exposure (minutes) is not likely to cause adverse effects. Prolonged excessive exposure to mist may cause adverse effects.

Ingestion: Low toxicity if swallowed. Small amounts swallowed incidentally as a result of normal handling operations are not likely to cause injury; however, swallowing larger amounts may cause injury.

Aspiration hazard: Based on available information, aspiration hazard could not be determined.

Effects of Repeated Exposure: For the active ingredient(s): In animals, effects have been reported on the following organs: Liver. Kidney. For the minor component(s): Ethanol. In humans, effects have been reported on the following organs: Central nervous system. Liver. Signs and symptoms of excessive exposure may include: Central nervous system depression. May cause dizziness and drowsiness. Headache.

Cancer Information: Ethanol when not consumed in an alcoholic beverage is not classifiable as a human carcinogen.

Birth Defects/Developmental Effects: For the active ingredient(s): Has been toxic to the fetus in laboratory animals at doses toxic to the mother.

Reproductive Effects: For similar active ingredient(s). Triclopyr. In laboratory animal studies, effects on reproduction have been seen only at doses that produced significant toxicity to the parent animals.

3. Composition Information

<table>
<thead>
<tr>
<th>Component</th>
<th>CAS #</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triclopyr Triethylamine Salt</td>
<td>57213-69-1</td>
<td>44.4 %</td>
</tr>
<tr>
<td>Triethylamine</td>
<td>121-44-8</td>
<td>3.0 %</td>
</tr>
<tr>
<td>Ethylenediamine tetraacetic acid</td>
<td>60-00-4</td>
<td>2.3 %</td>
</tr>
<tr>
<td>Ethanol</td>
<td>64-17-5</td>
<td>2.1 %</td>
</tr>
<tr>
<td>Balance</td>
<td>Not available</td>
<td>48.2 %</td>
</tr>
</tbody>
</table>

4. First-aid measures

Description of first aid measures

General advice: First Aid responders should pay attention to self-protection and use the recommended protective clothing (chemical resistant gloves, splash protection). If potential for exposure exists refer to Section 8 for specific personal protective equipment.

Inhalation: Move person to fresh air. If person is not breathing, call an emergency responder or ambulance, then give artificial respiration, by mouth to mouth use rescuer protection (pocket mask etc). Call a poison control center or doctor for treatment advice.

Skin Contact: Take off contaminated clothing. Wash skin with soap and plenty of water for 15-20 minutes. Call a poison control center or doctor for treatment advice. Wash clothing before reuse. Shoes and other leather items which cannot be decontaminated should be disposed of properly.

Eye Contact: Wash immediately and continuously with flowing water for at least 30 minutes. Remove contact lenses after the first 5 minutes and continue washing. Obtain prompt medical consultation, preferably from an ophthalmologist. Suitable emergency eye wash facility should be immediately available.

Ingestion: Call a poison control center or doctor immediately for treatment advice. Have person sip a glass of water if able to swallow. Do not induce vomiting unless told to do so by the poison control center or doctor. Never give anything by mouth to an unconscious person.

Most important symptoms and effects, both acute and delayed

Page 2 of 10
Aside from the information found under Description of first aid measures (above) and Indication of immediate medical attention and special treatment needed (below), no additional symptoms and effects are anticipated.

Indication of immediate medical attention and special treatment needed

Chemical eye burns may require extended irrigation. Obtain prompt consultation, preferably from an ophthalmologist. If burn is present, treat as any thermal burn, after decontamination. Exposure to amine vapors may cause minor transient edema of the corneal epithelium (glaucopsia) with blurred vision, blue haze and halos around bright objects. Effects disappear in a few hours and temporarily reduce ability to drive vehicles. No specific antidote. Treatment of exposure should be directed at the control of symptoms and the clinical condition of the patient. Have the Safety Data Sheet, and if available, the product container or label with you when calling a poison control center or doctor, or going for treatment.

5. Fire Fighting Measures

Suitable extinguishing media

To extinguish combustible residues of this product use water fog, carbon dioxide, dry chemical or foam. Dry chemical fire extinguishers. Carbon dioxide fire extinguishers. Foam. General purpose synthetic foams (including AFFF type) or protein foams are preferred if available. Alcohol resistant foams (ATC type) may function.

Special hazards arising from the substance or mixture

Hazardous Combustion Products: Under fire conditions some components of this product may decompose. The smoke may contain unidentified toxic and/or irritating compounds. Combustion products may include and are not limited to: Nitrogen oxides, Hydrogen chloride, Carbon monoxide, Carbon dioxide.

Unusual Fire and Explosion Hazards: This material will not burn until the water has evaporated. Residue can burn. May produce flash fire. Vapors are heavier than air and may travel a long distance and accumulate in low-lying areas. Ignition and/or flash back may occur. If exposed to fire from another source and water has evaporated, exposure to high temperatures may cause toxic fumes.

Advice for firefighters

Fire Fighting Procedures: Keep people away. Isolate fire and deny unnecessary entry. Stay upwind. Keep out of low areas where gases (fumes) can accumulate. Eliminate ignition sources. To extinguish combustible residues of this product use water fog, carbon dioxide, dry chemical or foam. Carbon dioxide fire extinguishers. Foam. General purpose synthetic foams (including AFFF type) or protein foams are preferred if available. Alcohol resistant foams (ATC type) may function. Fire water run-off, if possible. Fire water run-off, if not contained, may cause environmental damage. Review the "Accidental Release Measures" and the "Ecological Information" sections of this (M)SDS.

Special Protective Equipment for Firefighters: Wear positive-pressure self-contained breathing apparatus (SCBA) and protective fire fighting clothing (includes fire fighting helmet, coat, trousers, boots, and gloves). Avoid contact with this material during fire fighting operations. If contact is likely, change to full chemical resistant fire fighting clothing with self-contained breathing apparatus. If this is not available, wear full chemical resistant clothing with self-contained breathing apparatus and fight fire from a remote location. For protective equipment in post-fire or non-fire clean-up situations, refer to the relevant sections.

6. Accidental Release Measures

Personal precautions, protective equipment and emergency procedures: Evacuate area. Refer to Section 7, Handling, for additional precautionary measures. Keep unnecessary and unprotected personnel from entering the area. Only trained and properly protected personnel must be involved in clean-up operations. Keep personnel out of low areas. Keep upwind of spill. Ventilate area of leak or spill. Eliminate all sources of ignition in vicinity of spill or released vapor. To avoid fire or explosion Vapor explosion hazard. Keep out of sewers. Use appropriate safety equipment. For additional information, refer to Section 8, Exposure Controls and Personal Protection.

Environmental precautions: Prevent from entering into soil, ditches, sewers, waterways and/or groundwater. See Section 12, Ecological Information.
Methods and materials for containment and cleaning up: Pump with explosion-proof equipment. If available, use foam to smother or suppress. Contain spilled material if possible. Small spills: Absorb with materials such as clay, dirt, sand. Large spills: Contact Dow AgroSciences for clean-up assistance. See Section 13, Disposal Considerations, for additional information.

7. Handling and Storage

Handling
General Handling: Keep out of reach of children. Keep away from heat, sparks and flame. No smoking, open flames or sources of ignition in handling and storage area. Electrically ground and bond all equipment. Use of non-sparking or explosion-proof equipment may be necessary, depending upon the type of operation. Containers, even those that have been emptied, can contain vapors. Do not cut, drill, grind, weld, or perform similar operations on or near empty containers. Vapors are heavier than air and may travel a long distance and accumulate in low lying areas. Ignition and/or flash back may occur. Do not get in eyes. Avoid contact with skin and clothing. Avoid prolonged or repeated contact with skin. Do not swallow. Avoid breathing vapor. Wash thoroughly after handling. Keep container closed. Use with adequate ventilation. See Section 8, EXPOSURE CONTROLS AND PERSONAL PROTECTION.

Storage
Minimize sources of ignition, such as static build-up, heat, spark or flame. Store in a dry place. Store in original container. Keep container tightly closed. Do not store near food, foodstuffs, drugs or potable water supplies.

8. Exposure Controls / Personal Protection

Exposure Limits

<table>
<thead>
<tr>
<th>Component</th>
<th>List</th>
<th>Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triclopyr Triethylamine Salt</td>
<td>Dow IHG</td>
<td>TWA</td>
<td>2 mg/m3</td>
</tr>
<tr>
<td>Triethylamine</td>
<td>ACGIH</td>
<td>TWA</td>
<td>1 ppm</td>
</tr>
<tr>
<td></td>
<td>ACGIH</td>
<td>STEL</td>
<td>3 ppm</td>
</tr>
<tr>
<td></td>
<td>OSHA Table Z-1</td>
<td>PEL</td>
<td>100 mg/m3</td>
</tr>
<tr>
<td></td>
<td>OSHA Table Z-1</td>
<td>PEL</td>
<td>25 ppm</td>
</tr>
<tr>
<td>Ethanol</td>
<td>OSHA Table Z-1</td>
<td>PEL</td>
<td>1,900 mg/m3</td>
</tr>
<tr>
<td></td>
<td>ACGIH</td>
<td>STEL</td>
<td>1,000 ppm</td>
</tr>
</tbody>
</table>

RECOMMENDATIONS IN THIS SECTION ARE FOR MANUFACTURING, COMMERCIAL BLENDING AND PACKAGING WORKERS. APPLICATORS AND HANDLERS SHOULD SEE THE PRODUCT LABEL FOR PROPER PERSONAL PROTECTIVE EQUIPMENT AND CLOTHING.

A "skin" notation following the inhalation exposure guideline refers to the potential for dermal absorption of the material including mucous membranes and the eyes either by contact with vapors or by direct skin contact. It is intended to alert the reader that inhalation may not be the only route of exposure and that measures to minimize dermal exposures should be considered.

A D-SEN notation following the exposure guideline refers to the potential to produce dermal sensitization, as confirmed by human or animal data.

Personal Protection
Eye/Face Protection: Use chemical goggles. If exposure causes eye discomfort, use a full-face respirator.
Skin Protection: Use protective clothing chemically resistant to this material. Selection of specific items such as face shield, boots, apron, or full body suit will depend on the task.

Hand protection: Use gloves chemically resistant to this material. Examples of preferred glove barrier materials include: Butyl rubber, Natural rubber (“latex”), Neoprene, Nitrile/butadiene rubber (“nitrile” or “NBR”), Polyethylene, Ethyl vinyl alcohol laminate (“EVAL”), Polyvinyl chloride (“PVC” or “vinyl”). Notice: The selection of a specific glove for a particular application and duration of use in a workplace should also take into account all relevant workplace factors such as, but not limited to: Other chemicals which may be handled, physical requirements (cut/puncture protection, dexterity, thermal protection), potential body reactions to glove materials, as well as the instructions/specifications provided by the glove supplier.

Respiratory Protection: Respiratory protection should be worn when there is a potential to exceed the exposure limit requirements or guidelines. If there are no applicable exposure limit requirements or guidelines, wear respiratory protection when adverse effects, such as respiratory irritation or discomfort have been experienced, or where indicated by your risk assessment process. In misty atmospheres, use an approved particulate respirator. The following should be effective types of air-purifying respirators: Organic vapor cartridge with a particulate pre-filter.

Ingestion: Use good personal hygiene. Do not consume or store food in the work area. Wash hands before smoking or eating.

Engineering Controls
Ventilation: Use engineering controls to maintain airborne level below exposure limit requirements or guidelines. If there are no applicable exposure limit requirements or guidelines, use only with adequate ventilation. Local exhaust ventilation may be necessary for some operations.

9. Physical and Chemical Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appearance</td>
<td>Liquid</td>
</tr>
<tr>
<td>Physical State</td>
<td>Liquid</td>
</tr>
<tr>
<td>Color</td>
<td>Pink</td>
</tr>
<tr>
<td>Odor</td>
<td>Ammoniacal</td>
</tr>
<tr>
<td>Odor Threshold</td>
<td>No test data available</td>
</tr>
<tr>
<td>pH</td>
<td>9.5 (@ 10 %) pH Electrode</td>
</tr>
<tr>
<td>Melting Point</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Freezing Point</td>
<td>No test data available</td>
</tr>
<tr>
<td>Boiling Point (760 mmHg)</td>
<td>No test data available</td>
</tr>
<tr>
<td>Flash Point - Closed Cup</td>
<td>43 °C (109 °F) Setatlass Closed Cup ASTM3828</td>
</tr>
<tr>
<td>Evaporation Rate (Butyl Acetate = 1)</td>
<td>No test data available</td>
</tr>
<tr>
<td>Flammable Limits In Air</td>
<td>Lower. No test data available</td>
</tr>
<tr>
<td></td>
<td>Upper. No test data available</td>
</tr>
<tr>
<td>Vapor Pressure</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Vapor Density (air = 1)</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Specific Gravity (H2O = 1)</td>
<td>1.1385 Digital Density Meter (Oscillating Coil)</td>
</tr>
<tr>
<td>Solubility In water (by weight)</td>
<td>Soluble</td>
</tr>
<tr>
<td>Autolignition Temperature</td>
<td>No test data available</td>
</tr>
<tr>
<td>Decomposition</td>
<td>No test data available</td>
</tr>
<tr>
<td>Temperature</td>
<td></td>
</tr>
<tr>
<td>Dynamic Viscosity</td>
<td>12.5 mPa s @ 25 °C</td>
</tr>
<tr>
<td>Kinematic Viscosity</td>
<td>No test data available</td>
</tr>
<tr>
<td>Explosive properties</td>
<td>No. Thermal, No Mechanical Impact @ 8 inches No Mechanical Impact @ 15 inches No Mechanical Impact @ 20.25 inches</td>
</tr>
<tr>
<td>Oxidizing properties</td>
<td>No EPA OPPTS 830.6314 (Oxidizing or Reducing Action)</td>
</tr>
<tr>
<td>Liquid Density</td>
<td>1.1385 g/cm3 @ 20 °C Digital density meter</td>
</tr>
</tbody>
</table>

10. Stability and Reactivity
Reactivity
No dangerous reaction known under conditions of normal use

Chemical stability
Thermally stable at recommended temperatures and pressures

Possibility of hazardous reactions
Polymerization will not occur

Conditions to Avoid: Active ingredient decomposes at elevated temperatures

Incompatible Materials: Avoid contact with Oxidizers

Hazardous decomposition products
Decomposition products depend upon temperature, air supply and the presence of other materials
Decomposition products can include and are not limited to Hydrogen chloride Nitrogen oxides

11. Toxicological Information

Acute Toxicity
Ingestion
As product LD50, Rat 1,847 mg/kg
Dermal
As product LD50, Rabbit > 5,000 mg/kg
Inhalation
LC50, 4 h, Aerosol, Rat > 2 6 mg/l
Maximum attainable concentration No deaths occurred at this concentration

Eye damage/eye irritation
May cause severe irritation with corneal injury which may result in permanent impairment of vision, even blindness Chemical burns may occur Vapor of amines may cause swelling of the cornea resulting in visual disturbances such as blurred or hazy vision Bright lights may appear to be surrounded by halos Effects may be delayed and typically disappear spontaneously

Skin corrosion/irritation
Brief contact is essentially nonirritating to skin Prolonged contact may cause slight skin irritation with local redness Repeated contact may cause skin burns Symptoms may include pain, severe local redness, swelling, and tissue damage

Sensitization
Skin
Has caused allergic skin reactions when tested in guinea pigs With the dilute mix, no allergic skin reaction is expected

Respiratory
No relevant data found

Repeated Dose Toxicity
For the active ingredient(s) In animals, effects have been reported on the following organs Liver Kidney For the minor component(s) Ethanol In humans, effects have been reported on the following organs Central nervous system Liver Signs and symptoms of excessive exposure may include Central nervous system depression May cause dizziness and drowsiness Headache

Chronic Toxicity and Carcinogenicity
Ethanol when not consumed in an alcoholic beverage is not classifiable as a human carcinogen For similar active ingredient(s) Triclopyr Did not cause cancer in laboratory animals

Developmental Toxicity
For the active ingredient(s) Has been toxic to the fetus in laboratory animals at doses toxic to the mother For the active ingredient(s) Did not cause birth defects in laboratory animals

Reproductive Toxicity
For similar active ingredient(s) Triclopyr In laboratory animal studies, effects on reproduction have been seen only at doses that produced significant toxicity to the parent animals

Genetic Toxicology
For the active ingredient(s) In vitro genetic toxicity studies were negative For the minor component(s) Ethanol Animal genetic toxicity studies were negative in some cases and positive in other cases
12. Ecological Information

Toxicity
Material is slightly toxic to aquatic organisms on an acute basis (LC50/EC50 between 10 and 100 mg/L in the most sensitive species tested)

Fish Acute & Prolonged Toxicity
LC50, rainbow trout (Oncorhynchus mykiss), 96 h 400 mg/l
Aquatic Invertebrate Acute Toxicity
EC50, eastern oyster (Crassostrea virginica), static, 48 h, shell growth inhibition 56 - 87 mg/l
LC50, water flea Daphnia magna, static, 48 h, immobilization > 1,000 mg/l

Persistence and Degradability

Data for Component Triclopyr Triethylamine Salt
Chemical degradation (hydrolysis) is expected in the environment. Biodegradation under aerobic static laboratory conditions is high (BOD20 or BOD28/ThOD > 40%)

Data for Component Triethylamine
Material is readily biodegradable. Passes OECD test(s) for ready biodegradability. Material is inherently biodegradable (reaches > 20% biodegradation in OECD test(s) for inherent biodegradability)

OECD Biodegradation Tests:

| Biodegradation Exposure Time Method 10 Day Window |
|---|-----------------|
| 95 % 21 d OECD 301A Test pass |
| 25 - 34 % 28 d OECD 302C Test Not applicable |

Indirect Photodegradation with OH Radicals

<table>
<thead>
<tr>
<th>Rate Constant Atmospheric Half-life Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.26E-11 cm3/s 0.116 d Estimated</td>
</tr>
</tbody>
</table>

Theoretical Oxygen Demand: 3.49 mg/mg

Data for Component Ethylenediamine tetraacetic acid
Material is inherently biodegradable (reaches > 20% biodegradation in OECD test(s) for inherent biodegradability)

OECD Biodegradation Tests:

| Biodegradation Exposure Time Method 10 Day Window |
|---|-----------------|
| 37 % 14 d OECD 302B Test Not applicable |

Theoretical Oxygen Demand: 1.37 mg/mg

Data for Component Ethanol
Material is readily biodegradable. Passes OECD test(s) for ready biodegradability

OECD Biodegradation Tests:

| Biodegradation Exposure Time Method 10 Day Window |
|---|-----------------|
| > 70 % 5 d OECD 301D Test pass |

Indirect Photodegradation with OH Radicals

<table>
<thead>
<tr>
<th>Rate Constant Atmospheric Half-life Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.58E-12 cm3/s 2.99 d Estimated</td>
</tr>
</tbody>
</table>

Theoretical Oxygen Demand: 2.08 mg/mg

Bioaccumulative potential

Data for Component Triclopyr Triethylamine Salt
Bioaccumulation: Bioconcentration potential is low (BCF < 100 or Log Pow < 3)
Partition coefficient, n-octanol/water (log Pow): 0.196 - 0.309. Shake flask (OECD 107 Test)
Bioconcentration Factor (BCF): 1, invertebrate, Measured

Data for Component Triethylamine
Bioaccumulation: Bioconcentration potential is low (BCF < 100 or Log Pow < 3)
Partition coefficient, n-octanol/water (log Pow): 1.45 Measured
Bioconcentration Factor (BCF): < 4.9, common carp (Cyprinus carpio), Measured

Data for Component: Ethylenediamine tetraacetic acid
Bioaccumulation: Bioconcentration potential is low (BCF < 100 or Log Pow < 3)
Partition coefficient, n-octanol/water (log Pow): -5.05 Estimated
Bioconcentration Factor (BCF): 1.1; fish, Measured

Data for Component: Ethanol
Bioaccumulation: Bioconcentration potential is low (BCF < 100 or Log Pow < 3)
Partition coefficient, n-octanol/water (log Pow): -0.31 Measured

Mobility in soil

Data for Component: Triclopyr Triethylamine Salt
Partition coefficient, soil organic carbon/water (Koc): 4,523 Estimated
Henry's Law Constant (H): 3.724E-14 atm*m3/mole, 25 °C Estimated

Data for Component: Triethylamine
Mobility in soil: Potential for mobility in soil is very high (Koc between 0 and 50)
Partition coefficient, soil organic carbon/water (Koc): 11 - 146 Estimated
Henry's Law Constant (H): 1.49E-04 - 1.86E-03 atm*m3/mole, 25 °C Measured

Data for Component: Ethylenediamine tetraacetic acid
Mobility in soil: Potential for mobility in soil is very high (Koc between 50 and 150)
Partition coefficient, soil organic carbon/water (Koc): 9.8
Henry's Law Constant (H): 7.7E-16 atm*m3/mole Estimated

Data for Component: Ethanol
Mobility in soil: Potential for mobility in soil is very high (Koc between 0 and 50)
Partition coefficient, soil organic carbon/water (Koc): 1.0 Estimated
Henry's Law Constant (H): 5.00E-06 atm*m3/mole, 25 °C Measured

13. Disposal Considerations

If wastes and/or containers cannot be disposed of according to the product label directions, disposal of this material must be in accordance with your local or area regulatory authorities. This information presented below only applies to the material as supplied. The identification based on characteristic(s) or listing may not apply if the material has been used or otherwise contaminated. It is the responsibility of the waste generator to determine the toxicity and physical properties of the material generated to determine the proper waste identification and disposal methods in compliance with applicable regulations. If the material as supplied becomes a waste, follow all applicable regional, national and local laws.

14. Transport Information

DOT Non-Bulk
NOT REGULATED

DOT Bulk
Proper Shipping Name: COMBUSTIBLE LIQUID, N O S
Technical Name: TRIETHYLAMINE, ETHANOL
Hazard Class: COMBUSTIBLE LIQUID ID Number: NA1993 Packing Group: PG III

IMDG
Proper Shipping Name: FLAMMABLE LIQUID, N O S
Technical Name: TRIETHYLAMINE, ETHANOL
Hazard Class: 3 ID Number: UN1993 Packing Group: PG III
EMS Number: f-e,s-e
ICAO/IATA
Proper Shipping Name: FLAMMABLE LIQUID, N O S
Technical Name: TRIETHYLAMINE, ETHANOL
Hazard Class: 3 ID Number: UN1993 Packing Group: PG III
Cargo Packing Instruction: 366
Passenger Packing Instruction: 355

This information is not intended to convey all specific regulatory or operational requirements/information relating to this product. Additional transportation system information can be obtained through an authorized sales or customer service representative. It is the responsibility of the transporting organization to follow all applicable laws, regulations and rules relating to the transportation of the material.

15. Regulatory Information

OSHA Hazard Communication Standard
This product is a "Hazardous Chemical" as defined by the OSHA Hazard Communication Standard, 29 CFR 1910.1200.

Superfund Amendments and Reauthorization Act of 1986 Title III (Emergency Planning and Community Right-to-Know Act of 1986) Sections 311 and 312
Immediate (Acute) Health Hazard Yes
Delayed (Chronic) Health Hazard Yes
Fire Hazard Yes
Reactive Hazard No
Sudden Release of Pressure Hazard No

Superfund Amendments and Reauthorization Act of 1986 Title III (Emergency Planning and Community Right-to-Know Act of 1986) Section 313
This product contains the following substances which are subject to the reporting requirements of Section 313 of Title III of the Superfund Amendments and Reauthorization Act of 1986 and which are listed in 40 CFR 372

<table>
<thead>
<tr>
<th>Component</th>
<th>CAS #</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triethylamine</td>
<td>121-44-8</td>
<td>30%</td>
</tr>
</tbody>
</table>

Pennsylvania (Worker and Community Right-To-Know Act): Pennsylvania Hazardous Substances List and/or Pennsylvania Environmental Hazardous Substance List:
The following product components are cited in the Pennsylvania Hazardous Substance List and/or the Pennsylvania Environmental Substance List, and are present at levels which require reporting

<table>
<thead>
<tr>
<th>Component</th>
<th>CAS #</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triethylamine</td>
<td>121-44-8</td>
<td>30%</td>
</tr>
<tr>
<td>Ethylene diamine tetraacetic acid</td>
<td>60-00-4</td>
<td>2.3%</td>
</tr>
<tr>
<td>Ethanol</td>
<td>64-17-5</td>
<td>2.1%</td>
</tr>
</tbody>
</table>

Pennsylvania (Worker and Community Right-To-Know Act): Pennsylvania Special Hazardous Substances List:
To the best of our knowledge, this product does not contain chemicals at levels which require reporting under this statute

Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) Section 103
This product contains the following substances which are subject to CERCLA Section 103 reporting requirements and which are listed in 40 CFR 302.4

<table>
<thead>
<tr>
<th>Component</th>
<th>CAS #</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triethylamine</td>
<td>121-44-8</td>
<td>30%</td>
</tr>
<tr>
<td>Ethylene diamine tetraacetic acid</td>
<td>60-00-4</td>
<td>2.3%</td>
</tr>
<tr>
<td>Ethanol</td>
<td>64-17-5</td>
<td>2.1%</td>
</tr>
</tbody>
</table>

California Proposition 65 (Safe Drinking Water and Toxic Enforcement Act of 1986)
Product Name: GARLON® 3A Herbicide

Issue Date: 05/25/2011

WARNING This product contains a chemical(s) known to the State of California to cause cancer

California Proposition 65 (Safe Drinking Water and Toxic Enforcement Act of 1986)

WARNING This product contains a chemical(s) known to the State of California to cause birth defects or other reproductive harm

Toxic Substances Control Act (TSCA)

All components of this product are on the TSCA Inventory or are exempt from TSCA Inventory requirements under 40 CFR 720.30

16. Other Information

Hazard Rating System

<table>
<thead>
<tr>
<th>NFPA</th>
<th>Health</th>
<th>Fire</th>
<th>Reactivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Revision

Identification Number 50634 / 1016 / Issue Date 05/25/2011 / Version 6 4

DAS Code XRM-3724

Most recent revision(s) are noted by the bold, double bars in left-hand margin throughout this document

Legend

N/A	Not available
W/W	Weight/Weight
OEL	Occupational Exposure Limit
STEL	Short Term Exposure Limit
TWA	Time Weighted Average
ACGIH	American Conference of Governmental Industrial Hygienists, Inc
DOW IHG	Dow Industrial Hygiene Guideline
WEEL	Workplace Environmental Exposure Level
HAZ DES	Hazard Designation
Action Level	A value set by OSHA that is lower than the PEL which will trigger the need for activities such as exposure monitoring and medical surveillance if exceeded

Dow AgroSciences LLC urges each customer or recipient of this (M)SDS to study it carefully and consult appropriate expertise, as necessary or appropriate, to become aware of and understand the data contained in this (M)SDS and any hazards associated with the product. The information herein is provided in good faith and believed to be accurate as of the effective date shown above. However, no warranty, express or implied, is given. Regulatory requirements are subject to change and may differ between various locations. It is the buyer’s/user’s responsibility to ensure that his activities comply with all federal, state, provincial or local laws. The information presented here pertains only to the product as shipped. Since conditions for use of the product are not under the control of the manufacturer, it is the buyer’s/user’s duty to determine the conditions necessary for the safe use of this product. Due to the proliferation of sources for information such as manufacturer-specific (M)SDSs, we are not and cannot be responsible for (M)SDSs obtained from any source other than ourselves. If you have obtained an (M)SDS from another source or if you are not sure that the (M)SDS you have is current, please contact us for the most current version.
Attachment C – Glyphosate Pro 4 MSDS
1. PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME: Glyphosate Pro™ 4
Active Ingredient: Glyphosate (in the form of its isopropylamine salt)
Chemical Formula: \(\text{C}_5\text{H}_{17}\text{N}_2\text{O}_5\text{P} \)

COMPANY IDENTIFICATION:
PROKöZ, Inc.
100 North Point Center E.
Suite 330
Alpharetta, GA 30022

2. COMPOSITION/INFORMATION ON INGREDIENTS

Glyphosate
CAS No. 38641-94-0 41.0%
Isopropylamine Salt

3. HAZARD IDENTIFICATION

EMERGENCY OVERVIEW
Causes moderate eye irritation. Avoid contact with eyes or clothing.

POTENTIAL HEALTH EFFECTS:
EYE: Moderate eye irritant.

POTENTIAL PHYSICAL HAZARDS: May react with metals such as galvanized or mild steel to produce hydrogen gas, potentially forming a highly combustible gas mixture.

4. FIRST AID

IF IN EYES: Hold eye open and rinse slowly and gently with water for 15-20 minutes. Remove contact lenses, if present, after the first 5 minutes, then continue rinsing eye. Call a poison control center or doctor for treatment advice.
Have the product container or label with you when calling a poison control center or doctor, or going for treatment. You may also contact 1-800-424-9300 for emergency medical treatment information.

5. FIRE-FIGHTING MEASURES

Flash point: Will not flash
Flammable Limits (LFL-UFL): N/A
Fire and Explosion Hazards: During a fire, product may generate irritating or toxic gasses through thermal decomposition.
Means of Extinction: Use water spray, foam or dry chemical.
Fire Fighting Instructions: Evacuate area and fight fire from a safe distance. Approach from upwind to avoid hazardous vapors and decomposition products. A foam or dry chemical fire extinguishing system is preferred to prevent environmental damage from excessive water run off. If water is used, avoid heavy hose streams. If possible, dike and collect water used to fight fire to prevent/minimize run off.
Fire Fighting Equipment: Self-contained breathing apparatus with full face piece. Wear full firefighting turn-out gear (Bunker gear).

Hazardous Combustion Products: Carbon monoxide, nitrogen oxides, phosphorous oxides.

6. ACCIDENTAL RELEASE MEASURES

Clean up spills immediately. Isolate and post spill area. Wear protective clothing and personal protective equipment as prescribed in Section 8 “Exposure Controls/Personal Protection”. Keep unprotected persons and animals out of area.

Small Spill: Absorb spill with inert material such as dry sand, vermiculite or fuller’s earth, then place in a chemical waste container.

Large Spill: Dike large spills using absorbent or impervious material such as clay or sand. Recover and contain as much free liquid as possible for reuse. Allow absorbed material to solidify and scrape up for disposal. After removal, scrub the area with detergent and water and neutralize with dilute alkaline solutions of soda ash or lime.
7. HANDLING AND STORAGE
Keep out of reach of children and animals. Do not contam­
inate other pesticides, fertilizers, water, food or feed by stor­
age or disposal. Wash thoroughly after handling this product.
Store above 10°F (-12°C) to keep product from crystallizing.

8. EXPOSURE CONTROLS/PERSONAL PROTECTION
ENGINEERING CONTROLS: To keep exposure to airborne con­tam­
inants below exposure limits, proper ventilation is
required when handling or using this product. Local
mechanical exhaust ventilation may be required. Facilities
storing or using this material should be equipped with an
eyewash facility and a safety shower.
Eyewear: Safety goggles are recommended when mixing,
loading or cleaning equipment.
Clothing: All pesticide handlers must wear a long-sleeved
shirt and long pants and shoes plus socks.
Gloves: Waterproof gloves are recommended when mixing,
loading or cleaning equipment.
NOTE: Remove clothing immediately if pesticide gets inside.
Then wash thoroughly and put on clean clothing.

9. PHYSICAL AND CHEMICAL PROPERTIES
Appearance: Clear yellow to amber liquid
Odor: Slight amine odor
pH: 4.4
Flashpoint (PMA-4): N/A
Specific Gravity: 1.17 g/ml
Solubility in Water: Emulsifies

10. STABILITY AND REACTIVITY
CONDITIONS TO AVOID: Avoid temperatures above 115°F
(46°C) and below 25°F (-5°C)
CHEMICAL STABILITY: Product is normally stable.
However, product may decompose if heated.
HAZARDOUS DECOMPOSITION PRODUCTS: Heat and
fire may result in thermal decomposition and the release of
nitrogen oxides, phosphorous oxides and carbon monoxide.
INCOMPATIBILITY WITH OTHER MATERIALS: Strong ox­i­
dizers and bases, mild and galvanized steel.
POLYMERIZATION: Will not occur.

11. TOXICOLOGICAL INFORMATION
ACUTE ORAL TOXICITY
Oral LD₅₀ (rat): >5,000 mg/kg

ACUTE DERMAL TOXICITY
Dermal LD₅₀ (rat, male): >5,000 mg/kg

ACUTE INHALATION TOXICITY
Inhalation LC₅₀ (rat): >2.5 mg/L

EYE IRRITANT
Rabbit – Moderate

SKIN IRRITATION
Rabbit – Mild

DERMAL SENSITIZATION
Guinea pig – Non-Sensitizer

MEDICAL CONDITIONS AGGRAVATED BY EXPOSURE:
None known.

CARCINOGENICITY:
ACGIH: Not listed
IARC: Not listed
NTP: Not listed
OSHA: Not listed

MUTAGENIC DATA: No evidence of mutagenic effects dur­ing in vivo and in vitro assays.

ADDITIONAL DATA: None.

12. ECOLOGICAL INFORMATION
ENVIRONMENTAL DATA: Do not apply directly to water, to
areas where surface water is present or to intertidal areas
below the mean high water mark. Do not contaminate water
when cleaning equipment or disposing of equipment wash­
waters.
MAMMALIAN TOXICITY: This product is considered to be
relatively nontoxic to dogs and other domestic animals; how­
ever, ingestion of this product or large amounts of freshly
sprayed vegetation may result in temporary gastrointestinal
irritation (vomiting, diarrhea, colic, etc.). If such symptoms are
observed, provide the animal with plenty of fluids to prevent
dehydration. Call a veterinarian if symptoms persist for more
than 24 hours.

FISH TOXICITY
96 hour LC₅₀, Rainbow trout – 8.2 µg/L (technical)
96 hour LC₅₀, Bluegill – 5.8 µg/L (technical)

AVIAN TOXICITY
Oral LD₅₀, Bobwhite quail – > 3,800 mg/kg (technical)

BEE TOXICITY: Non-toxic.

13. DISPOSAL CONSIDERATIONS
PESTICIDE DISPOSAL: Wastes resulting from the use of
this product that cannot be used or chemically reprocessed
should be disposed of in a landfill approved for pesticide dis­
posal or in accordance with applicable Federal, state or local
procedures. Emptied container retains vapor and product
residue. Observe all labeled safeguards until container is
cleaned, reconditioned, or destroyed.

CONTAINER DISPOSAL: For plastic containers, triple rinse
(or equivalent). Then offer for recycling or reconditioning,
or puncture and dispose of in a sanitary landfill, or incineration,
or, if allowed by state and local authorities, by burning. If
burned, stay out of smoke.
For refillable containers, do not reuse the container except for
refill in accordance with a valid PROKoZ Repackaging or Toll
Repackaging Agreement. If not refilled or returned to the
authorized repackaging facility, triple rinse container, then
puncture and dispose of in a sanitary landfill, or by inciner­
ation or, if allowed by state and local authorities, by burning. If
burned, stay out of smoke.
For bulk containers, triple rinse (or equivalent) and wash with
appropriate cleaners before reusing.
14. TRANSPORT INFORMATION
DOT PROPER SHIPPING NAME: Not regulated by DOT.
DOT HAZARD CLASS OR DIVISION: N/A
DOT UN/NA NUMBER: N/A
DOT PACKING GROUP: N/A
REPORTABLE QUANTITY: None
MARINE POLLUTANT: Not Listed
DOT EMERGENCY RESPONSE GUIDE: N/A

15. REGULATORY INFORMATION
FIFRA –
All pesticides are governed under the Federal Insecticide, Fungicide, and Rodenticide Act. The regulatory information presented below is pertinent only when this product is handled outside of the normal use and application as a pesticide.

OSHA HAZARD COMMUNICATION STANDARD STATUS:
Not Regulated

SARA Title III – Section 302 Extremely Hazardous Substances
Not listed

SARA Title III – Section 311/312 Hazard Categories
Immediate

SARA Title III – Section 312 Threshold Planning Quantity
The threshold planning quantity (TPQ) for this product treated as a mixture is 10,000 lbs. This product contains no ingredients with a TPQ of less than 10,000 lbs.

SARA Title III – Section 313 Reportable Ingredients
None

CERCLA – None

CALIFORNIA PROP 65 STATUS –
Not listed

16. OTHER INFORMATION
This product has been classified in accordance with the hazard criteria of the Controlled Products Regulations (CPR) and the MSDS contains all of the information required by CPR.

DISCLAIMER:
PROKox, INC. believes the information and recommendations provided above to be accurate. NO WARRANTY OF FITNESS FOR ANY PARTICULAR PURPOSE, WARRANTY OF MERCHANTABILITY, OR ANY OTHER WARRANTY, EXPRESS OR IMPLIED, IS MADE CONCERNING THE INFORMATION PROVIDED HERELN. The information provided above relates only to the specific product designated and may not be applicable where such product is used in combination with any other materials or in any process. Use of this product is regulated by the U.S. Environmental Protection Agency (EPA). It is a violation of Federal law to use this product in a manner inconsistent with its labeling. Additionally, as the conditions and methods of use are beyond the control of PROKox, INC., PROKox expressly disclaims any and all liability as to any results obtained or arising from any use of the product or reliance on such information.