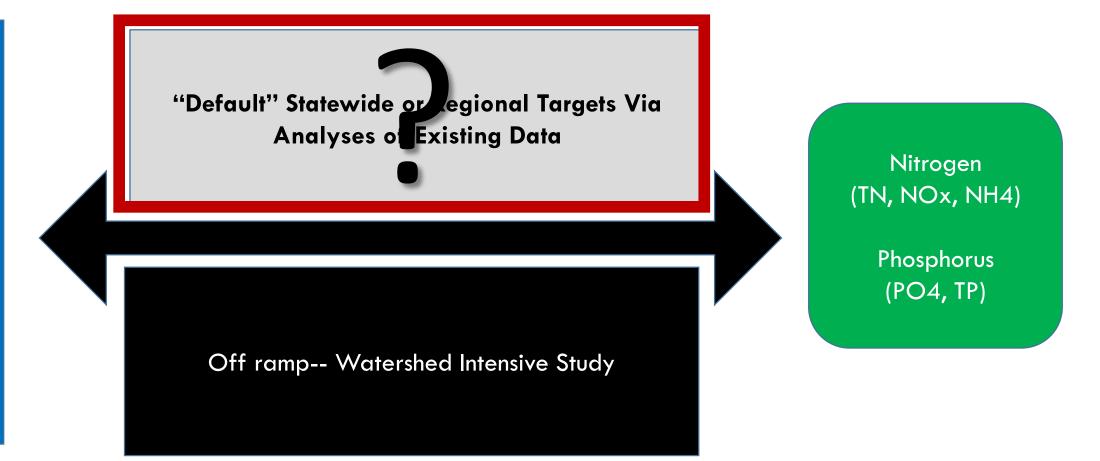
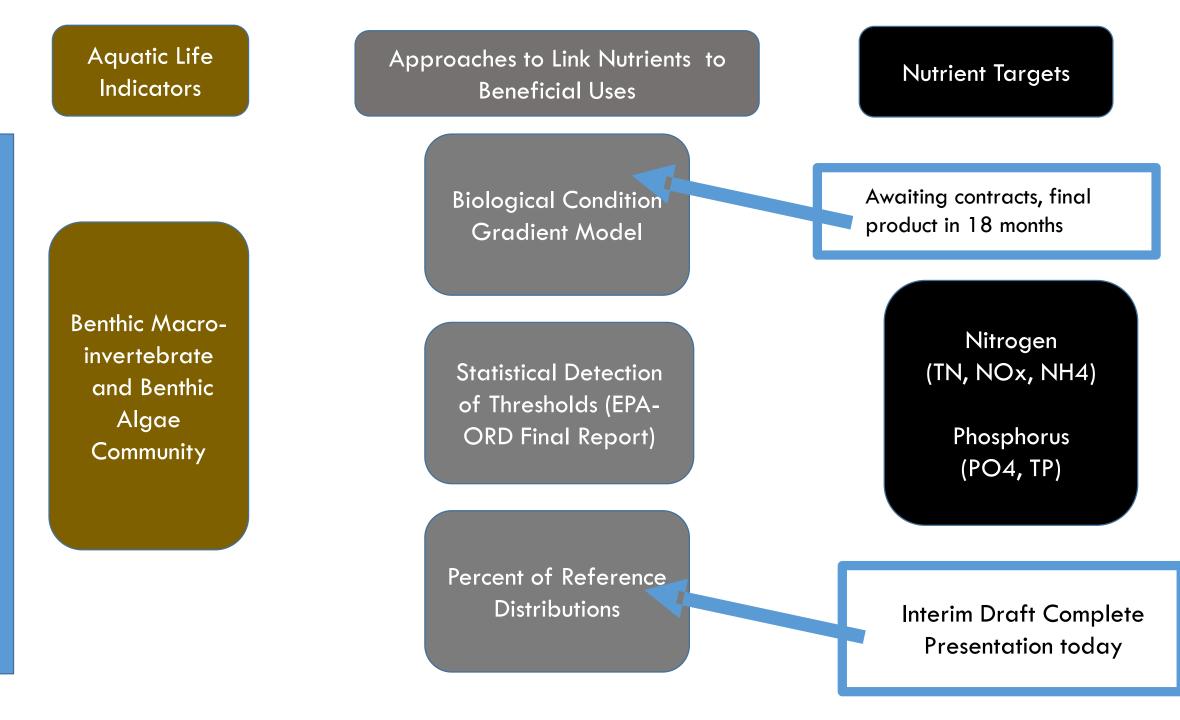
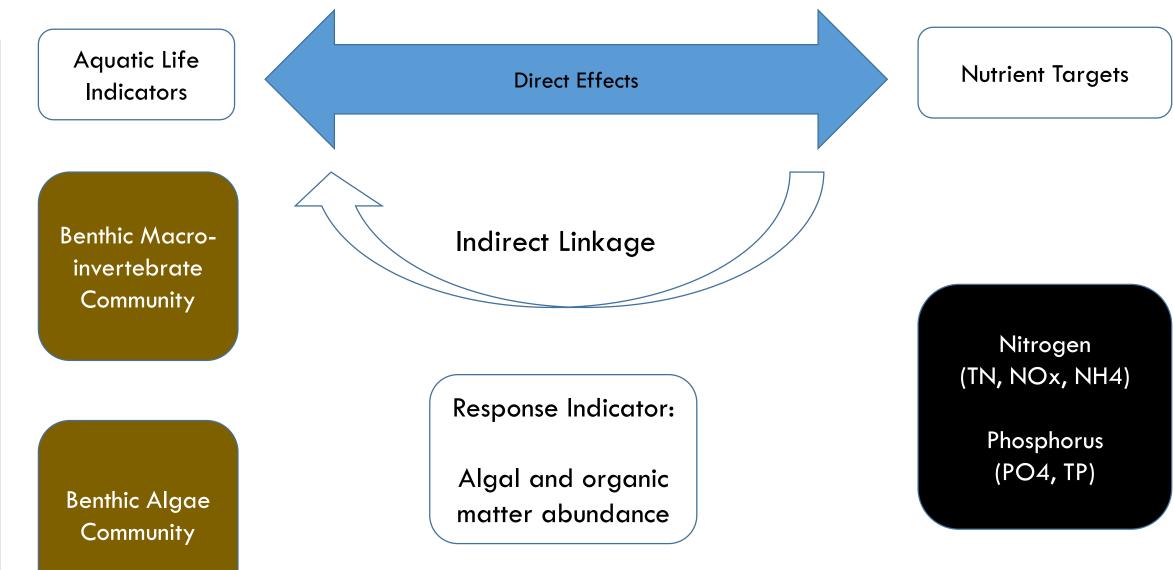
California Stream Nutrient Objectives Stakeholder Advisory Group Webinar


August 26, 2015 1:00 – 2:30 pm



CONTEXT FOR TODAY'S MEETING


- California State Water Board has a work plan to develop nutrient objectives for the State's waterbodies, focusing first on wadeable streams
- A Science Plan has been produced to describe technical activities that will support policy decisions on nutrient objectives in wadeable streams
 - An independent Science Panel has reviewed this plan; findings and recommendations are available on the Water Board website
- We agreed that the Technical Team would provide interim updates on science products as they become available
 - Today (and last week) we are reporting out on some of the interim products from that Science Plan
 - We are planning a fall meeting to provide response to Science Panel recommendations and discuss your feedback on these interim products

Science To Support Decisions on Nutrient Targets Protective of Beneficial Uses

Two Approaches to Link Nutrients to Response Indicators

GOAL OF TODAY'S WEBINAR: NUTRIENT TARGETS AND RESPONSE ENDPOINTS AS A PERCENTILE OF REFERENCE

Provide an overview of the approach and findings of analyses to relate nutrients, algal abundance, and organic matter to aquatic life indicators

(In advance of science that you will see in interim report)

TECHNICAL PRODUCTS STATUS AND SCHEDULE FOR REVIEW

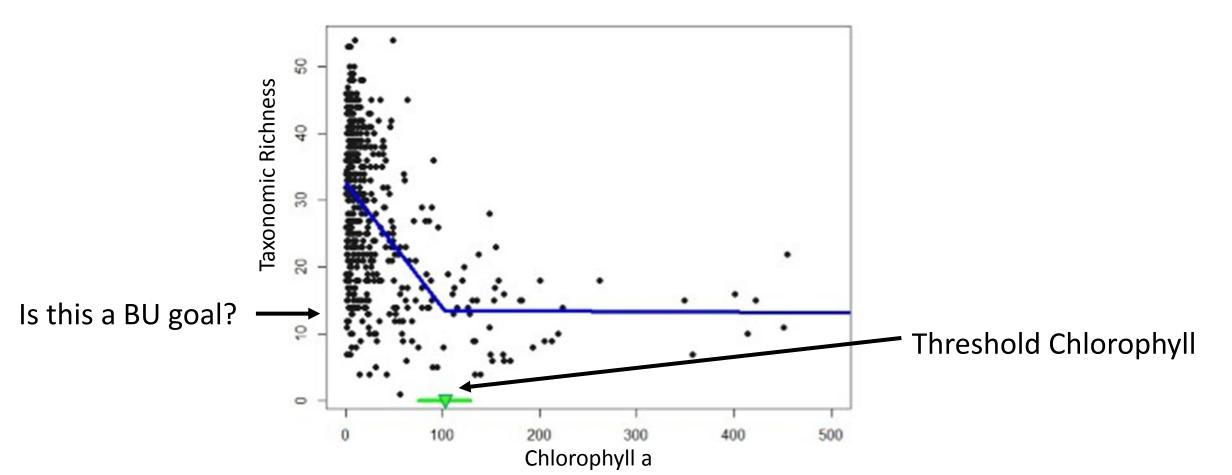
Product	Status	SAG/RG	Science Panel			
Conceptual Approach and Waterbody Classification	Interim report draft complete					
Candidate Indicator Review	In progress					
Percentile of Reference	Interim report draft complete	Fall 2015	Winter 2015			
B-CART Nutrient-Response Modeling	Interim report draft complete					
Biological Condition Gradient Model	Contract pending	14 months	18 months			
Algal Community Nutrient Response Relationships	Analyses complete					
Synthesis and Recommendations	Pending completion of technical elements	16 months	18 months			

Relating Nutrients and Algal Abundance to Aquatic Life As a "Percentile of Reference"

Michael Paul Tetra Tech, Inc.

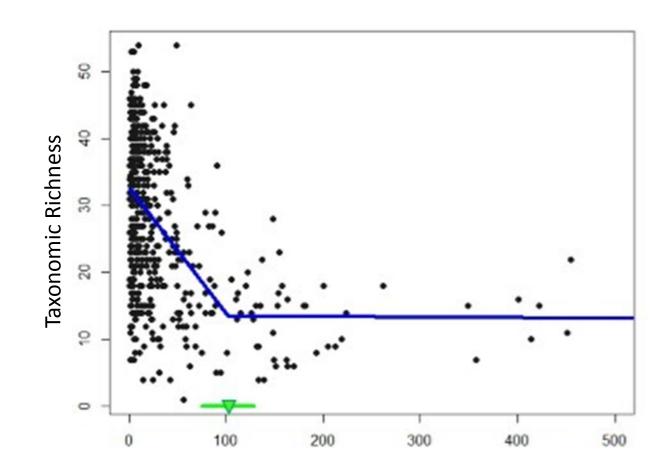
IMPETUS FOR THIS WORK: EPA ORD STUDY (FETSCHER ET AL. 2014)

Fetscher, A.E., M. Sutula, A. Sengupta, and N.E. Detenbeck. 2014. Linking nutrients to alterations in aquatic life in California wadeable streams. U.S. Environmental Protection Agency, Washington, DC (NTIS EPA/600/R-14/043).


LINKING NUTRIENTS TO ALTERATIONS IN AQUATIC LIFE IN CALIFORNIA WADEABLE STREAMS

IT STARTED WITH A SIMPLE QUESTION

• How do numeric nutrient values associated with the EPA-ORD statistical threshold analyses relate to beneficial aquatic life uses?



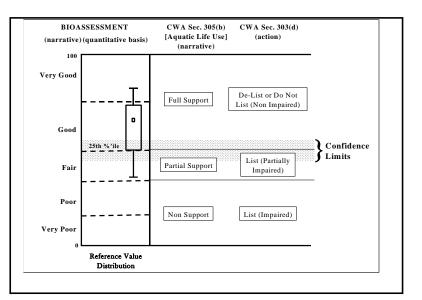
THAT LED TO ANOTHER QUESTION

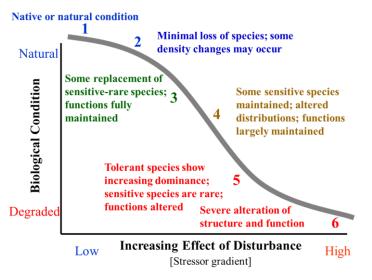
• What are the goals for beneficial uses related to aquatic life?

What are the biological targets for aquatic life measures?

Where on this y-axis are we trying to protect?

THAT LED TO A BIT OF A PICKLE


 California does not yet have numeric aquatic life use targets (a.k.a. "biological objectives").


- Match Mismatch
 - We'd like to relate chlorophyll and nutrients to numeric beneficial use targets.
 - But we don't yet have numeric beneficial use targets.
 - But maybe there is a ballpark....
 - Well, there are lots of ballparks, we started with a traditional one

COMMON BIOLOGICAL GOAL SETTING METHODS

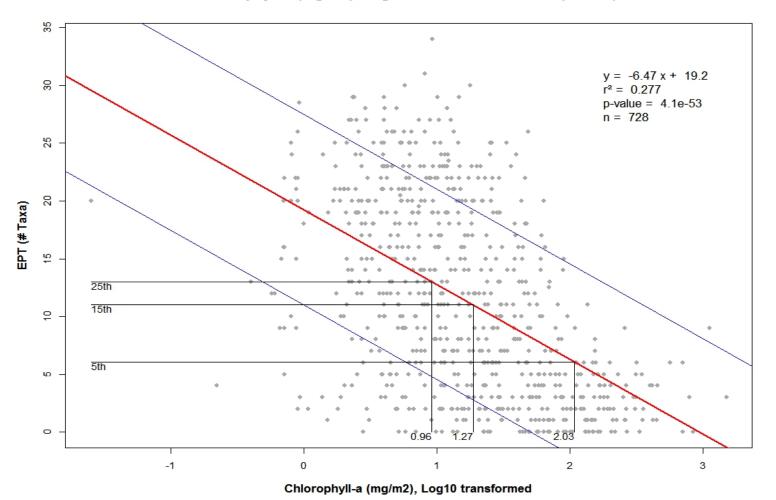
• Statistical property of a least disturbed "reference" population

• Expert elicitation based on the biological condition gradient


WE CHOSE THIS ONE....

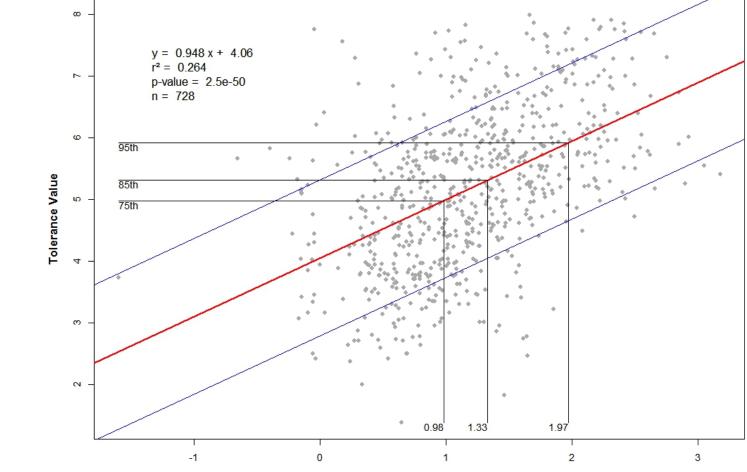
• Statistical property of a least disturbed "reference" population

Long history of use in biological goal setting globally (and CA).

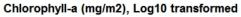

Consistent with many narrative goals ("...as naturally occurs...")

Consistent with ultimate CWA goals ("biological integrity").

So this is what we did

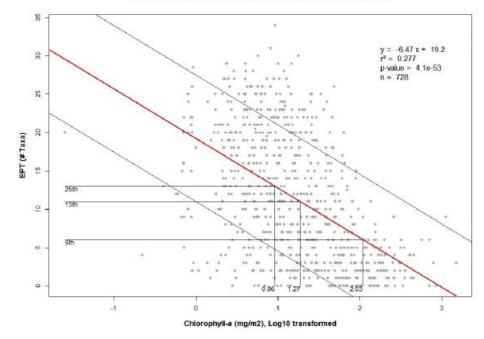

- Identified response measures (invertebrates and algae)
- Calculated reference site percentiles (5th, 15th, 25th)
- Built simple linear regression models
- Solve for the X condition....

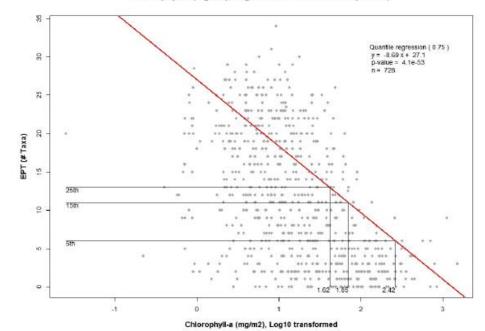
Chlorophyll-a (mg/m2), Log10 transformed vs. EPT (# Taxa)


Data: Statewide SWAMP macroinvertebrate dataset metric and Fetscher et al. (2014) stream algae dataset metrics

So this is what we did

Chlorophyll-a (mg/m2), Log10 transformed vs. Tolerance Value


- Some measures increase with stress
- Calculated reference site percentiles (75th, 85th, 95th)


Chlorophyll-a (mg/m2), Log10 transformed vs. EPT (# Taxa)

So this is what we did

• We modeled the mean and the 75th quantile

Chlorophyll-a (mg/m2), Log10 transformed vs. EPT (# Taxa)

IN THE REPORT - YOU WILL SEE....

• Chlorophyll a, AFDM, TP and TN values associated with reference condition invertebrate response goals

				Linear Regression								Quantile Regression (25th or 75th percentile for increasor or decreasor stressors, respectively)							
Response	Expected Response Direction P-value		Slope	Intercept	Slope p-value	r ²	Reference Percentile	Response Threshold	Endpoint	Interpolated/ Extrapolated	Slope	Intercept	Slope p- value	r² (est)	Reference Percentile	Response Threshold	Endpoint	Interpolated/ Extrapolated	
							25th	0.0593	105	I					25th	0.0593		E	
							5th	0		E			< 0.001 5		5th	0		E	
Coleoptera_Taxa	Ļ	< 0.001	-1.11	3.79	< 0.001	0.123	15th	1	324	l I	-1.83 6.22	6.22		527	15th	1	708	I.	
							25th	2	40.7	l I					25th	2	204	I. I.	
					< 0.001	0.193	5th	0.783	44.7	1	-0.154				5th	0.783	692	1	
CSCI	Ļ	< 0.001	-0.168	1.06			15th	0.913	7.41	I I		1.22	< 0.001	48.2	15th	0.913	97.7	I.	
							25th	0.974	3.24	l I					25th	0.974	39.8	I.	
					0.352		75th	0.481					0.005	45.9	75th	0.481			
Diptera_Percent	1	0.58 (ns)	0.0118 (ns)	0.347	(ns)	0	85th	0.578			0.00307 (ns)	0.18	0.835 (ns)		85th	0.578			
					(113)		95th	0.725					(113)		95th	0.725			
		< 0.001		0.158	< 0.001	0.094	75th	0.222	12.6	I	0.027 0		< 0.001	20.1	75th	0.222		E	
Diptera_PercentTaxa	ercentTaxa †		0.0584				85th	0.256	47.9	1		0.117			85th	0.256		E	
							95th	0.320	603	I					95th	0.320		E	

Table 3-4. Linear and quantile regression statistics and endpoint concentrations for Chlorophyll a, log10(x) transformed, for benthic macroinvertebrate responses. Grey-shaded cells indicate slopes opposite expectation. Endpoints are not identified for correlations or slopes that are opposite expected, extrapolated, or not statistically significant (p<0.05).

Only derived nutrient values using ecologically sound, significant models, that were not extrapolated Good models: all significant p-values, r² up to 0.60

IN THE REPORT - YOU WILL SEE....

• TP and TN values associated with reference condition algal response thresholds

	Expected	Correlation		Linear Regression							Quantile Regression (25th or 75th percentile for increaser or decreaser stressors, respectively)							
Response	Response Direction	p-value	Slope	Intercept	Slope p- value	r²	Reference Percentile	Response Threshold	Endpoint (mg/L)	Interpolated/ Extrapolated	Slope	Intercept	Slope p- value	r² (est)	Reference Percentile	Response Threshold	Endpoint (mg/L)	Interpolated/ Extrapolated
							5th	58.0	0.08	I					5th	58.0	0.48	I
D18	Ļ	< 0.001	-23.7	32.5	< 0.001	0.364	15th	70.0	0.03	l I	-20.1	51.6	< 0.001	5410	15th	70.0	0.12	I
							25th	76.0	0.01	I					25th	76.0		E
							5th	52.0	0.09	I					5th	52.0	0.39	I
H20	Ļ	< 0.001	-23.2	27.4	< 0.001	0.432	15th	64.0	0.03	I	-19.9	-19.9 43.9	< 0.001	4650	15th	64.0	0.10	I
							25th	69.0	0.02	I					25th	69.0		E
							5th	54.4	0.07	I					5th	54.4	0.29	I
H21	Ļ	< 0.001	-21.7	29.5	< 0.001	0.337	15th	62.2	0.03	I	-20.9	43.2	< 0.001	5460	15th	62.2	0.12	I
							25th	67.0	0.02	I					25th	67.0	0.07	I
							5th	58.0	0.06	I					5th	58.0	0.28	1
H23	Ļ	< 0.001	-22.8	30.5	< 0.001	0.373	15th	65.0	0.03	I	-20.8	46.6	< 0.001	5120	15th	65.0	0.13	I
							25th	70.0	0.02	I					25th	70.0	0.08	

Table 3-10. Linear and quantile regression statistics and endpoint concentrations for Total Phosphorus, log10(x) transformed, for diatom and soft algae responses. Grey-shaded cells indicate slopes opposite expectation. Endpoints are not identified for correlations or slopes that are opposite expected, extrapolated, or not statistically significant (p<0.05).

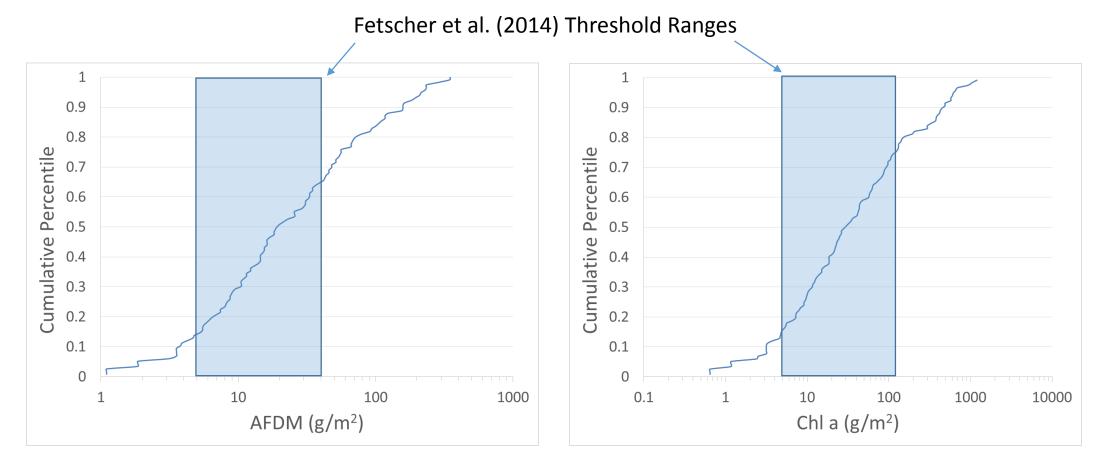
Only derived nutrient values using ecologically sound, significant models, that were not extrapolated Similarly good models: all significant p-values, r² up to 0.46

RESULTS SUMMARY

• Best Invertebrate Responses

Stressor	Response	Linear Re	egression	Quantile Regression (75 th percentile)					
		Minimum	Maximum	Minimum	Maximum				
	# Intolerant Taxa	8.71 g/m ²	41.7 g/m ²	22.9 g/m ²	72.4 g/m ²				
AFDM	# EPT Taxa	8.71 g/m ²	51.3 g/m ²	24.5 g/m ²	97.7 g/m ²				
Oblassa bull a	# Intolerant Taxa	9.77 mg/m ²	75.9 mg/m ²	33.9 mg/m ²	145 mg/m ²				
Chlorophyll a	# EPT Taxa	9.12 mg/m ²	107 mg/m ²	41.7 mg/m ²	263 mg/m ²				
TN	# Intolerant Taxa	0.20 mg/L	1.15 mg/L	0.62 mg/L	2.8 mg/L				
IIN	# EPT Taxa	0.20 mg/L	1.32 mg/L	0.58 mg/L]	3.3 mg/L				
тр	# Intolerant Taxa	0.03 mg/L	0.21 mg/L	0.12 mg/L	0.50 mg/L				
TP	# EPT Taxa	0.03 mg/L	0.20 mg/L	0.12 mg/L	0.60 mg/L				
		_							

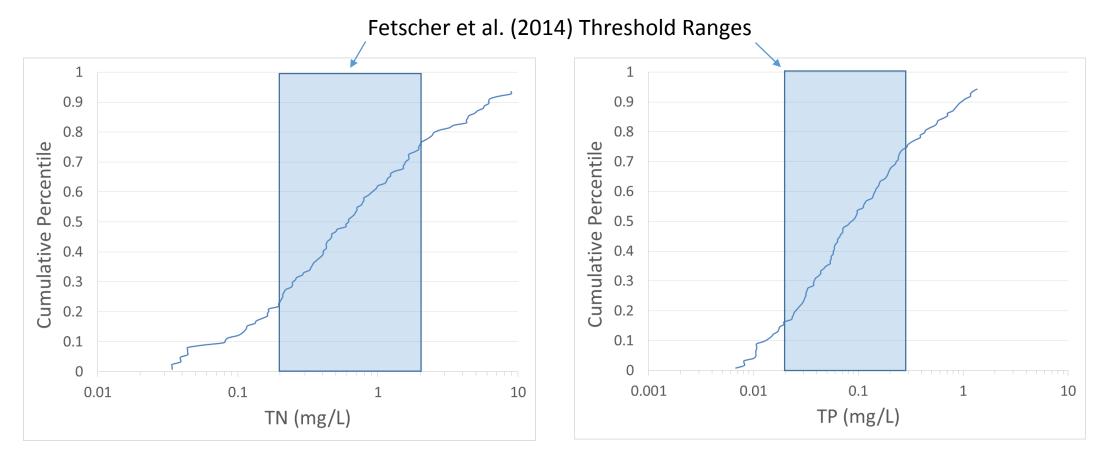
25th


5th

25th

5th

Results summary - Invertebrate Models


• Nutrient value statistics (linear model)

Only significant regressions, in the expected direction, with interpolated values

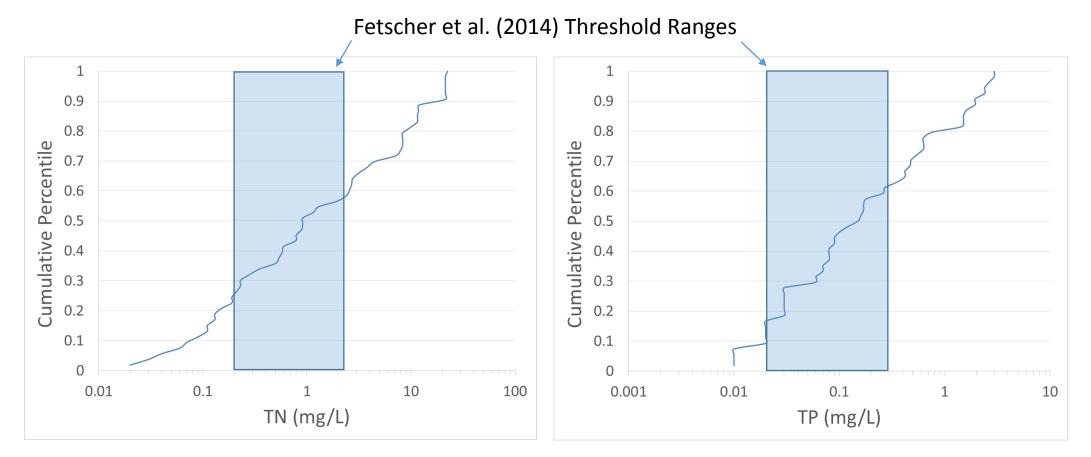
Results summary - Invertebrate Models

• Nutrient value statistics (linear model)

Only significant regressions, in the expected direction, with interpolated values

RESULTS SUMMARY

ReSERV Report: TN: 0.3 to 0.8 mg/m² (0.2-2.1)

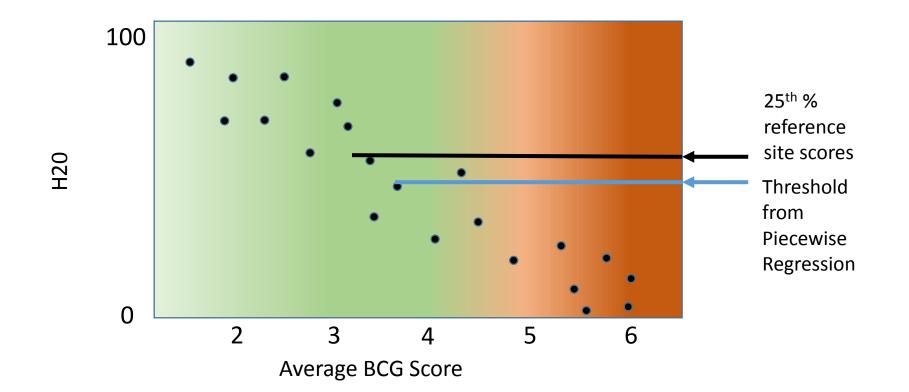

TP: $0.05 \text{ to } 0.08 \text{ mg/m}^2 (0.02-0.275)$

• Best Algal Responses

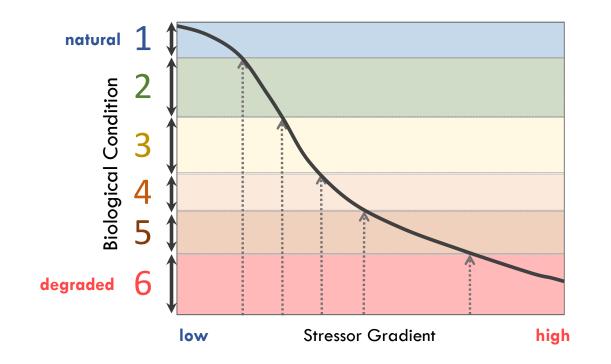
Stragger	Deepenee	Linear R	egression	Quantile Regression					
Stressor	Response	Minimum	Maximum	Minimum	Maximum				
TN	H23	0.13 mg/L	0.50 mg/L	0.55 mg/L	2.19 mg/L				
TN H20		0.11 mg/L	0.79 mg/L	0.47 mg/L]	5.37 mg/L				
то	H23	0.02 mg/L	0.06 mg/L	0.08 mg/L	0.28 mg/L				
TP	H20	0.02 mg/L	0.09 mg/L	0.10 mg/L	0.39 mg/L				
		25 th	5 th	25 th	5 th				

Results summary – Algal responses

• Nutrient value statistics (linear model)


Only significant regressions, in the expected direction, with interpolated values

TAKE HOME MESSAGES: NUTRIENT AND ALGAL ABUNDANCE TARGETS AS A PERCENTILE OF REFERENCE


- Large number of statistically significant, precise models
- Interpolated TN, TP, chlorophyll, and AFDM values associated with invertebrate and algal targets
 - Generally low
 - Include range from thresholds response model
- Quantile regression model values are higher than linear models

On to the BCG

- Map biotic response/nutrient thresholds to BCG scores
- Translate assessment endpoints into BCG context

KEY SYNTHESIS PRODUCT IS BCG GRAPHIC, WITH STATISTICAL "THRESHOLDS" & PERCENT OF REFERENCE VALUES SUPERIMPOSED

Key graphic is the basis for discussion between the Water Board and its Advisory Groups on decisions on assessment endpoints and default numeric targets

Questions? Comments?

Next Steps

- Both technical webinars (August 21st and 26th) are available on Water Board website
- Release of draft (interim) reports in September 2015
- Targeting October 2015 for next stakeholder meeting focused on technical elements
 - Response to Science Panel recommendations
 - Feedback on interim reports
 - BCG workplan discussion and technical approach for mapping channels in "developed landscapes"¹
- Next Science Panel Meeting: January/February 2016

¹Pending new Water Board contract start

Water Board Staff Policy Schedule

Milestone	Estimated Date				
Focus group meetings (Dischargers – Industry, Publicly Owned					
Treatment Works - , Agriculture, Stormwater, Concentrated	Sentember 2015 December 2015				
Animal Feed Operations/Grazers/Dairy, Environmental	September 2015- December 2015				
Groups, Non-governmental organizations and Tribes)					
Publicly available draft plan and technical staff report	January 2017				
Scientific peer review and staff responses	January 2017				
Draft substitute environmental documentation (i.e. project	April 2017				
alternatives, environmental impacts, economic factors)	April 2017				
Public comment period: Draft plan, staff reports, and draft	Summer 2017				
substitute environmental documentation	Summer 2017				
Board Workshop	2017				
Board Adoption Meeting	2017				