WATER BOARD STAFF WORKPLAN FOR DEVELOPMENT OF NUTRIENT OBJECTIVES

Rik Rasmussen, State Water Resources Control Board

Nutrient Objectives Stakeholder Advisory Group Meeting

July 7, 2014

9:30 am-12:30 pm Webinar

WELCOME TO THE NUTRIENT OBJECTIVES STAKEHOLDER ADVISORY GROUP MEETING

Goals:

• Water Board staff has a plan for nutrient objective development

-We want to your feedback on that plan

- Stakeholders need to be organized in order to effectively provide feedback to us through out the process
 - -At June 13, 2014 meeting, we started this process
 - This meeting is catching up those who couldn't attend to clue you into the process
- We will be putting together a Science Panel to provide ongoing technical review
 - -We've already gotten stakeholder feedback on the process and desired attributes of the Panel at the June 13, 2014 meeting
 - -Provide instructions for providing feedback on the candidates

AGENDA (9:30 AM - 12:30 PM)

- Introductions, meeting goals
- Discussion of State Water Board workplan for nutrient objective development

-Overarching plan (Rik Rasmussen, State Water Board)

- -Overview of technical elements (Martha Sutula, SCCWRP)
- Stakeholder organization and governance (Brock Bernstein)
- Science Panel Process and Selection Criteria (Martha Sutula, SCCWRP)
- Next steps and timing (Rik Rasmussen, State Water Board)

NUTRIENT OBJECTIVES- WHY NOW?

- Adverse effects of nutrient pollution are evident across California's landscape as well as the nation
 - -Well documented examples in streams, lakes, rivers and coastal waters
- Nutrient controls have largely not been implemented in California
 - -Few of California NDPES permits have nitrogen limits
 - Ag Waiver programs have focused on monitoring, not on load reductions
- EPA has been pushing for Numeric Nutrient Criteria

NUTRIENT OBJECTIVES NEED A DIFFERENT APPROACH THAN THAT OF TOXIC CONTAMINANTS

- Nutrients are required to support life
 - How do we establish the correct nutrient balance?
- Direct effects (e.g. toxicity) are often less important than indirect effects
 - Indirect effects occur at much lower levels than toxic effects
- Ambient concentrations can give false positives or negatives
- Need a different approach

THREE BASIC APPROACHES TO NUTRIENT OBJECTIVES

EPA guidance on nutrient criteria development suggests three basic approaches (EPA 2001)

• Reference

- Empirical stress-response
- Causal modeling

REFERENCE APPROACH

- Characterize distributions of nutrient in "minimally disturbed" waterbodies
- Choose nutrient concentrations at some statistical percentile of reference waterbodies

EMPIRICAL STRESS-RESPONSE APPROACH

- Identify biological response indicator of interest (e.g. algal biomass)
- Analyze statistical relationships between nutrient concentrations and response

Correlation Between Chl <u>a</u> and TP in Alkaline Lakes

SWRCB STAFF FAVOR CAUSE EFFECT APPROACH

- California's version of this is coined as "nutrient numeric endpoint (NNE) approach"
- Consists of two major components
 - Response indicators with numeric endpoints for waterbody assessment
 - Models to link response indicator numeric endpoints to nutrient targets (e.g. permits, TMDLs, etc.)

Algae & Aquatic Plants

Dissolved Oxygen, pH

PREVIOUS WORK ON NUTRIENT OBJECTIVES

- Water Board work has focused on streams and lakes beginning in 2001
 - Significant technical foundation completed in 2006
 - Since then focused on TMDL as case studies and implementation guidance
 - Initiated CEQA scoping in Fall 2011
- Funding science to support estuarine nutrient WQOs since 2009
 - That science is still ongoing

CEQA SCOPING IDENTIFIED ADDITIONAL WORK NEEDED

- New peer-reviewed science and additional data now available for wadeable streams and lakes
- Not a traditional regulatory approach
 - Need for stakeholder input and independent science review throughout the process

STAFF HAS DEVELOPED A WORKPLAN TO MOVE FORWARD ON NUTRIENT OBJECTIVES

Five Guiding Principals:

• The policy should address nutrient pollution and biostimulatory substances and/or conditions.

STAFF HAS DEVELOPED A WORKPLAN TO MOVE FORWARD ON NUTRIENT OBJECTIVES

Five Guiding Principals:

- The policy should address nutrient pollution and biostimulatory substances and/or conditions.
- The state should develop narrative nutrient objectives with numeric guidance.
- Numeric guidance should have a strong linkage to beneficial use.
- The state should have numeric guidance for all waterbody types.
- There should be statewide consistency with regional flexibility.

NUMERIC GUIDANCE WILL BE PHASED BY WATERBODY TYPE

Phase I (2016): Establish narrative approach applicable to all waterbodies and numeric guidance for wadeable streams

Phase II (2017): Lakes

Phase III: (2019): Estuaries and non-wadeable rivers

PHASE I: NARRATIVE OBJECTIVE AND NUMERIC GUIDANCE FOR WADEABLE STREAMS

Phase I Tasks

- Conceptual Approach, Waterbody Definition and Classification
- Conduct and Synthesize Science to Support Nutrient
 Objectives in Wadeable Streams
- 3 Implementation Plan Development
- 4 Rulemaking
- 5 Outreach

6 Training, Standardization, and Information Management

TASK 1: CONCEPTUAL APPROACH, WATERBODY DEFINITION AND CLASSIFICATION

- Provides the problem statement for nutrient pollution and biostimulatory conditions
- Lays out the options considered for development of nutrient objectives
 - -How each option was explored in California
 - -Advantages and disadvantages of each
- Provides waterbody definitions and classification of habitat types relevant for interpretation of numeric guidance

Key Products: Technical report and presentations

TASK 2: CONDUCT & SYNTHESIZE SCIENCE TO SUPPORT NUTRIENT OBJECTIVES IN WADEABLE STREAMS

- Evaluate candidate ecological response indicators
- Conduct & synthesize science on thresholds at which indicators support or adversely affect beneficial uses
- Summarize the distribution of these indicators in reference and ambient sites across the State
- Develop models to support the linkage of response indicators to nutrient management
- Identify technical considerations for implementation of numeric guidance

Key Products: Technical reports and presentations

TASK 3: Implementation Plan Development

- Define how numeric guidance should be used in regulatory programs
 - -Waterbody assessments and 303(d) listing
 - -Total maximum daily loads
 - -NPDES permitting and compliance
 - -Non-point sources, etc.

Key Products: Implementation guidance that includes draft language relevant for each of the regulatory programs

TASK 4: Rulemaking

- Follow the legislatively defined public process of developing, adopting, and implementing objectives
- Include public dissemination, review, and response process such as:
 - -Public workshops
 - -Response to comments
 - -Informational meeting presentations
 - -State Water Board briefing
 - -California Environmental Quality Assessment (CEQA) document or equivalent

Key Products: Detailed staff report and proposed amendments to the State Water Board's Inland Surface Waters Plan

TASK 5: Outreach

- Conducted in accordance with the State Water Boards Public Participation Plan
- The goal of this task is to actively reach out to stakeholders to ensure that their ideas and concerns are fully considered
- Covers three important areas
 - -Transparency in development of policy
 - -Opportunity to voice their opinions about the relative merits of the possible approach(es)
 - -Technical aspects of the objectives should receive an independent and rigorous technical review

Key Products: 1) A Stakeholder Management Plan, 2) Facilitation of Advisory Groups and 3) Meeting materials and summaries

STATEWIDE NUTRIENT OBJECTIVES PROGRAM: ORGANIZATION

MEET THE TEAM

TASK 6: TRAINING, STANDARDIZATION, AND INFORMATION MANAGEMENT

- Need to standardize:
 - -How to collect data with prescribed quality assurance
 - -How to interpret data with linkage to implementation guidance
- What we need:
 - -Standard Operating Procedures, and Quality Assurance Plans
 - -SWAMP standardized data transfer formats
- We are benefiting from investment in stream bioassessment
 - -A lot of this work has already been done
- We will assess what else is required for implementation

TIMING OF TASKS

Phase I Tasks	Year 1	Year 2	Year 3
1 Conceptual Approach			
2 Stream Science			
3 Implementation			
4 Rulemaking			
5 Outreach			
6 Standardization and IM			

QUESTIONS? COMMENTS?

PLEASE SEND WRITTEN COMMENTS ON WATER BOARD WORK PLAN BY COB JULY 18, 2014 TO BROCK@BROCKBERNSTEIN.COM

AGENDA (10 AM – 3 PM)

- Introductions, meeting goals
- Discussion of State Water Board workplan for nutrient objective development

-Overarching plan (Rik Rasmussen)

-Overview of technical elements (Martha Sutula, SCCWRP)

- Stakeholder organization and governance (Brock Bernstein)
- Science Panel Process and Selection Criteria (Martha Sutula, SCCWRP)
- Next steps, timing of SAG meetings

OVERVIEW OF TECHNICAL ELEMENTS SUPPORTING WADEABLE STREAM NUMERIC GUIDANCE

Martha Sutula, Ph.D.

Principal Scientist, Biogeochemistry Department Southern California Coastal Water Research Project Authority (SCCWRP)

PHASE I: NARRATIVE OBJECTIVE AND NUMERIC GUIDANCE FOR WADEABLE STREAMS

Phase I Tasks

2 Classification 2 THESE TASKS HAVE TECHNICAL ELEMENTS Conduct and Synthesize Science to Support Nutrient

Objectives in Wadeable Streams

- 3 Implementation Plan Development
- 4 Rulemaking
- 5 Outreach

6 Training, Standardization, and Information Management

THIS PRESENTATION FOCUSES ON TASK 2

GOAL OF TODAY'S PRESENTATION

- Give you sufficient detail to allow you to comment on the State Water Board work plan
- Not enough detail to allow you to comment on the technical workplan
 - Meant to be an orientation
- Opportunity for focused feedback on the technical workplan will happen at the next stakeholder meeting
 - We will give you a written workplan in advance to review

WATER BOARD STAFF FAVOR CAUSE EFFECT APPROACH

- Coined as "nutrient numeric endpoint (NNE) approach"
- Consists of two major components
 - Response indicators with numeric endpoints for waterbody assessment
 - Models to link response indicator numeric endpoints to nutrient targets (e.g. permits, TMDLs, etc.)

Algae & Aquatic Plants

Dissolved Oxygen, pH

MODELS TO LINK TO NUTRIENT MANAGEMENT: TWO BOOK ENDS

- Calibrated numerical models
 - Site-specific, high precision, requires considerable expertise and expensive data
- Basic models
 - Regional or statewide, lower precision, low cost and expertise

Basic Models Models Calibrated Numerical Models

Increasing Data Requirements, Cost

STATE OFFERING BASIC MODELS TO SET "DEFAULT" NUTRIENT TARGETS

- Translates response indicator numeric endpoints to sitespecific nutrient targets
 - Accounts for site-specific factors that control response to nutrients (canopy cover, temperature, etc.)
- "Default" nutrient targets resulting from model are a starting point for conversations on permits and TMDLs
- Flexibility offered to stakeholders to develop more sophisticated models if required
- Models available for wadeable stream and lakes (Tetra Tech 2006)

CORE ELEMENTS OF NNE SCIENCE PLAN WILL FOCUS ON BASIC MODELS FIRST

TECHNICAL WORKPLAN FOR WADEABLE STREAM NUMERIC GUIDANCE

Goals:

- 1. Identify **appropriate response indicators** representative of beneficial uses
- 2. Identify thresholds of adverse effects of response indicators on aquatic life to support decision on regulatory endpoints
 - Relative to reference and ambient concentrations of those indicators in wadeable streams
- 3. Develop basic models for wadeable streams
- 4. Identify key technical elements addressing implementation

WHAT ARE THE APPROPRIATE RESPONSE INDICATORS IN WADEABLE STREAMS?

Response Indicators

TEST STRENGTH OF STRESS-RESPONSE RELATIONSHIPS ALONG BIOLOGICAL CONDITION GRADIENT

STREAM BIOASSESSMENT PROGRAM PROVIDES ROBUST DATASET FOR STRESS-RESPONSE ANALYSIS

Available data from combined surveys (>1,000 wadeable stream reaches)

Includes both ambient and reference sites

Narrow down 10+ algal abundance available

HOW DO WE IDENTIFY THRESHOLDS? TWO APPROACHES

Let the Data Speak for Itself

Identify quantitative thresholds for an indicator of beneficial use

Threshold or Levels = Science; Endpoint= Policy Decision

SCIENTIFIC FOUNDATION FOR WADEABLE STREAM NUMERIC GUIDANCE

Goals:

- 1. Identify **appropriate response indicators** representative of beneficial uses
- 2. Identify thresholds of adverse effects of response indicators on aquatic life to support decision on regulatory endpoints
 - Relative to reference and ambient concentrations of those indicators in wadeable streams
- 3. Develop basic models for wadeable streams
- 4. Identify key technical elements addressing implementation

STATE ALREADY HAS BASIC MODEL FOR WADEABLE STREAMS: NNE BENTHIC BIOMASS SPREADSHEET TOOL

Two basic types of model:

<u>Empirical</u> (Dodds et al. 1997 and 2002):

10² 10² 10⁴ 10⁴ 10⁴ 10⁴ 10⁴ 10⁵ 10⁴ 10⁵ 10⁴ 10⁴ 10⁴ 10⁴ 10⁵ 10⁴ 1

Chl a (mg m²)

<u>Mechanistic</u> (River and Stream Water Quality <u>Model; Q</u>UAL2K):

First step is to validate them and consider refinements...

RECENTLY COMPLETED EPA-ORD STUDY BEGINS TO ADDRESS THREE OF FOUR TECHNICAL GOALS

Goals:

- 1. Identify appropriate response indicators
- 2. Identify thresholds of adverse effects of response indicators on aquatic life to support decision on regulatory endpoints
 - Relative to reference and ambient concentrations of those indicators in wadeable streams
- 3. Evaluate the performance of the Benthic Biomass Spreadsheet Tool for wadeable streams and recommend avenues for refinement

CONTEXT AND STATUS OF EPA-ORD REPORT

- Research project conducted in collaboration with EPA-ORD and SCCWRP
 - Not meant to give the final word on neither thresholds nor basic models!
- Additional analysis and synthesis is planned to address other aspects
 - This will be detailed in the technical work plan
- Report currently in expert peer review
- Expecting final version to be available for public distribution in early August

WHAT WILL THE PRODUCTS LOOK LIKE- TARGETED FOR SPRING 2015

- Synthesis of appropriate response indicators, thresholds relative to reference and ambient condition, and options for how to get to default nutrient targets
- Supporting technical reports
 - EPA-ORD ReSERVe
 - Supplemental analyses to support decisions on numeric endpoints for response indicators
 - Basic models of nutrient-algal abundance
 - And others...

SCIENTIFIC FOUNDATION FOR WADEABLE STREAM NUMERIC GUIDANCE

Goals:

- 1. Identify **appropriate response indicators** representative of beneficial uses
- 2. Identify thresholds of adverse effects of response indicators on aquatic life to support decision on regulatory endpoints
 - Relative to reference and ambient concentrations of those indicators in wadeable streams
- 3. Develop basic models for wadeable streams
- 4. Identify key technical elements addressing implementation
 This work element is not in contract

TECHNICAL ELEMENTS ADDRESSING IMPLEMENTATION

Two Flavors:

- 1. Key technical products needed to ease policy into implementation
 - Training, Standardization, and Information Management (e.g. Task 6)
- 2. Science needed to address key data gaps identified during implementation discussions
 - E.g. Control technologies, limits they can achieve and costs
 - Science plan should evolve to capture these needs

PARTING THOUGHTS ON TECHNICAL WORKPLAN...

- Today was meant to give you sufficient detail to allow you to comment on the State Water Board work plan
- Not enough detail to allow you to comment on the technical workplan
 - Meant to be an orientation
- Focused feedback on the technical workplan will happen at the next stakeholder meeting
 - We will give you the written technical workplan and EPA-ORD report in advance to review

QUESTIONS AND COMMENTS?

Martha Sutula www.sccwrp.org Marthas@sccwrp.org 714-755-3222

Taking a break–Back at 10:55

Please email <u>Brock@brockbernstein.com</u> to be added to the email distribution list

AGENDA (9:30 AM - 12:30 PM)

- Introductions, meeting goals
- Discussion of SWRCB workplan for nutrient objective development
 - -Overarching plan (Rik Rasmussen)
 - -Overview of technical elements (Martha Sutula, SCCWRP)
- Stakeholder organization and governance (Brock Bernstein)
- Science Panel Process and Selection Criteria (Martha Sutula, SCCWRP)
- Next steps, timing of SAG meetings

OVERVIEW OF STAKEHOLDER ORGANIZATION AND GOVERNANCE

Brock Bernstein, Ph.D.

ROLE OF STAKEHOLDER GROUP

- Based on experience with other statewide stakeholder groups
- Foster transparent process
- Provide review and input to State Board, technical team, Scientific Advisory Committee
- Address both scientific and implementation issues
- Communicate information to and from constituencies
- Examine sources and implications of disagreement
- Goal is NOT to reach consensus

POTENTIAL ISSUE AREAS

- Agriculture
- Environmental protection
- Land managers
- Municipalities
- POTWs
- Resource managers
- Stormwater: municipal, industrial
- Tribes
- Water agencies
- Others? (Builders, fire fighting, hatcheries, mining, mosquito abatement, pesticide manufacturers, recreation)

COMMITTEE MEMBERSHIP

- Primary and alternate for each issue area
 - Responsible for communication and outreach to constituencies
 - One or the other should attend all (or most) meetings
- Meetings open to all other interested parties
- All attendees participate equally
- Information provided to all interested parties

CONTACT INFORMATION

Dr. Brock Bernstein

805-646-8369

brock@brockbernstein.com

AGENDA (9:30 AM - 12:30 PM)

- Introductions, meeting goals
- Discussion of SWRCB workplan for nutrient objective development
 - -Overarching plan (Rik Rasmussen)
 - -Overview of technical elements (Martha Sutula, SCCWRP)
- Stakeholder organization and governance (Brock Bernstein)
- Science Panel Process and Selection Criteria (Martha Sutula, SCCWRP)
- Next steps, timing of SAG meetings

STATEWIDE NUTRIENT OBJECTIVES PROGRAM: ORGANIZATION

ROLE OF SCIENCE PANEL

- Provide independent technical review of policy development products
 - Includes the workplan and individual tasks
- Provide critical scientific insight based on extensive real world experience
 - Data gaps, alternative approaches, limits of interpretation
 - Potential management implications
- Like the SAG, their role is not approval
 - Its advisory

CONTEXT

- Vetted criteria for Science Panel previously with stakeholder groups for SF Bay and other estuaries
- Expanding work to freshwater habitats
 - Need to expand the expertise on panel
 - Allow involve new stakeholders in process
- Forming a new panel
 - Have already sought SAG input on process, desired attributes and asked them to suggest candidates
 - Want to make sure that you folks know how to provide input on the final set of candidates

Additional Guidance From State Water Board

- Keep relatively small
 - Four members
- Needs to cover streams, lakes and estuaries
- Ensure no conflicts of interest
 - Try to choose from outside California to avoid potential conflicts
- Pick necessary disciplines for representation
 - Provide optional candidates for each

PROCESS

- Technical Team lead (SCCWRP) identifies candidates, based on desired attributes of SP panel members
- Representatives of the Regulatory Advisory Group (RAG) and SAG:
 - Review nominated candidates
 - Rank the candidates in the preferred order, <u>and tell us</u> <u>if you really dislike a candidate</u>
- Technical Team lead (SCCWRP) summarizes stakeholder input and provides to SWRCB staff
- SWRCB staff makes final decision

DESIRED ATTRIBUTES

- Four panel members, internationally or nationally recognized in one of four areas:
 - Nutrient and organic biogeochemistry and/or ecology with experience in management of eutrophication <u>in estuaries;</u>
 - Nutrient and organic biogeochemistry and/or ecology with experience in management of eutrophication <u>in freshwater habitats;</u>
 - Development of statistical and computational models of nutrients, environmental variables and ecological response and their application to nutrient management;
 - Science needed to support the implementation to support a wide array of nutrient management activities.
- No conflict of interest
 - Has not conducted significant work in California freshwater and estuarine habitats that would likely be subjected to technical review

CANDIDATES- ESTUARINE ECOLOGIST/ BIOGEOCHEMIST

- Walter Boynton, Professor, University of Maryland
- Ivan Valiela, Professor, Boston University
- Robert Twilley, Professor, Louisiana State University
- Robert Diaz, Professor, Virginia Institute of Marine Science

CANDIDATES- FRESHWATER ECOLOGIST/ BIOGEOCHEMIST

- Walter Dodds, Professor, Kansas State University
- Judith Meyer, Professor, University of Georgia
- Robert (Jan) Stevenson, Professor, Michigan State University
- Stephen Carpenter, Professor, University of Wisconsin

CANDIDATES- MODELER

- Ken Reckhow, Professor Emeritus, Duke University
- Dominic DiToro, Professor, University of Delaware
- Stephen Chapra, Professor, Tufts University
- Don Scavia, Professor, University of Michigan

CANDIDATES- NUTRIENT MANAGEMENT

- Richard Batiuk, Assistant Director, US EPA Chesapeake Bay Program
- Holly Greening, Executive Director, Tampa Bay Estuary Program
- Paul Stacey, Connecticut Department of Environmental Protection
- Donald Boesch, President, University of Maryland Center for Environmental Science

WHAT HAPPENS NOW?

- We've already received feedback on process and desired attributes
- You gave us recommendations for candidates by June 25, 2014
- We sent out a list of candidates on June 30, 2014
- Contact <u>Brock@brockbernstein.com</u> to be placed on distribution list
- Submit candidate ranks (and let us know if there is anyone you have an issue with, if needed) by COB July 18, 2014 to <u>NNE@sccwrp.org</u>.

COMMENTS OR QUESTIONS?

AGENDA (9:30 AM - 12:30 PM)

- Introductions, meeting goals
- Discussion of SWRCB workplan for nutrient objective development
 - -Overarching plan (Rik Rasmussen)
 - -Overview of technical elements (Martha Sutula, SCCWRP)
- Stakeholder organization and governance (Brock Bernstein)
- Science Panel Process and Selection Criteria (Martha Sutula, SCCWRP)
- Next steps, timing of SAG meetings

NEXT STEPS AND TIMING OF SAG MEETINGS

Late Summer- Early Fall 2014- SAG meeting

- Presentation on EPA-ORD ReSERV study findings
- -Presentation of proposed technical workplan
- -Stakeholder presentation of feedback on technical workplan

Mid Fall 2014–SAG meeting

- Presentation of revised technical workplan
- -Brainstorming of implementation issues to address in policy

Late Fall 2014— Science Panel meeting

- -Presentation of state of science and proposed workplan
- -Stakeholder presentation of issues

Early 2015– SAG meeting

- Technical Team Response to Science Panel comments
- -Beginning of focused discussion of implementation issues