Alternative Cooling System Analysis: California’s Coastal Power Plants

Tim Havey
Tetra Tech, Inc.

Once-through Cooling: Results Symposium
University of California
Davis, California
January 16, 2008

El Segundo
1. Study Purpose
2. Feasibility
3. Methods / Assumptions
4. Cost
5. Maulbetsch Consulting Study
Purpose & Parameters

– 2006 OPC Resolution on Once-through Cooling:

“implement the most protective controls to achieve a 90-95 percent reduction in impacts [from impingement and entrainment]”

– Scope of Work:

“report will not analyze impingement and entrainment levels at each plant nor...the specific decrease in impingement and entrainment achieved by...each alternative cooling technology”

– Repower vs. Retrofits
Some Feasibility Issues

- IM & E Reduction
- Land Use
- System Tolerances

Technical & Logistical
Some Feasibility Issues

Local Use Restrictions
- Noise
- Building Height
- Visual

Technical & Logistical
- IM & E Reduction
- Land Use
- System Tolerances
Some Feasibility Issues

Other Effects

- Air Emissions
- Water Discharge
- Social / Cultural

Local Use Restrictions

- Noise
- Building Height
- Visual

Technical & Logistical

- IM & E Reduction
- Land Use
- System Tolerances

- Social / Cultural
- Noise
- Building Height
- Visual
- IM & E Reduction
- Land Use
- System Tolerances
Some Feasibility Issues

- Technical & Logistical
 - IM & E Reduction
 - Land Use
 - System Tolerances

- Local Use Restrictions
 - Noise
 - Building Height
 - Visual

- Other Effects
 - Air Emissions
 - Water Discharge
 - Social / Cultural

- Total Cost
 - Grid Reliability
 - Age and Utility
Methods / Assumptions

General Assumptions:
- Provide sufficient cooling for active capacity
- Salt water use for makeup water
- Condenser reinforcement; no re-optimization

Engineering Profile:
- Facility-specific data & local zoning
- Develop conceptual design
- Design-and-build estimate from CT vendors (GEA and SPX/Marley)
- Professional estimators for mechanical, electrical, civil works
Technical / Logistical Feasibility

REDONDO BEACH

- 4 active units / 1,300 MW
- 612,000 gpm
- Noise limit: 55 dBA
- Nearest building < 80 feet
ORMOND BEACH

- 2 active units / 1,500 MW
- 476,000 gpm
- Pt. Mugu NAS ~ 2.5 miles SE
- Conservation areas
Technical / Logistical Feasibility

- El Segundo
- Ormond Beach
- Redondo Beach

- Alamitos
- Diablo Canyon
- Mandalay
- Moss Landing
- Morro Bay
- San Onofre

- Contra Costa
- Harbor
- Haynes
- Huntington
- Pittsburg
- Scattergood
Cost Estimate

Direct:
- All civil, mechanical and electrical; including cooling tower design-and-build

Indirect:
- 30% of all direct costs (35% for Diablo and SONGS)

Contingency:
- 25% of all direct costs (30% for Diablo and SONGS)

Energy Penalty:
- Parasitic load and efficiency change
Annual Energy Penalty Estimate (%)

- Harbor
- Moss
- Haynes
- Mandalay
- El Segundo
- Contra Costa
- Alamitos
- Huntington
- Ormond
- Pittsburg
- Scattergood
- San Onofre
- Diablo

Legend:
- Fan
- Pump
- Efficiency

Note: w/ combined cycle and nuclear
OM & EP based on 2006 output rate
<table>
<thead>
<tr>
<th>MC</th>
<th>Cell Flow ((gpm))</th>
<th>TT</th>
</tr>
</thead>
<tbody>
<tr>
<td>10,000</td>
<td>11,000 – 16,500</td>
<td></td>
</tr>
<tr>
<td>2,500</td>
<td>Cell Footprint ((ft^2))</td>
<td>2,300 – 3,900</td>
</tr>
<tr>
<td>~1,000</td>
<td>Piping ((ft / tower))</td>
<td>500 – 4,000</td>
</tr>
<tr>
<td>~40</td>
<td>Pump Head ((ft))</td>
<td>~50 – 190</td>
</tr>
<tr>
<td>200</td>
<td>Fan Power ((hp / cell))</td>
<td>200 – 270</td>
</tr>
<tr>
<td>Location</td>
<td>Parasitic Load Increase</td>
<td>Number of Cells</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td></td>
<td>TT</td>
<td>MC</td>
</tr>
<tr>
<td>Alamitos</td>
<td>1.02%</td>
<td>1.35%</td>
</tr>
<tr>
<td>Contra Costa</td>
<td>1.35%</td>
<td>1.25%</td>
</tr>
<tr>
<td>El Segundo*</td>
<td>1.00%</td>
<td>1.00%</td>
</tr>
<tr>
<td>Harbor</td>
<td>0.66%</td>
<td>0.64%</td>
</tr>
<tr>
<td>Haynes</td>
<td>0.78%</td>
<td>1.20%</td>
</tr>
<tr>
<td>Huntington</td>
<td>1.12%</td>
<td>1.00%</td>
</tr>
<tr>
<td>Mandalay</td>
<td>1.17%</td>
<td>1.04%</td>
</tr>
<tr>
<td>Moss</td>
<td>0.65%</td>
<td>0.90%</td>
</tr>
<tr>
<td>Ormond*</td>
<td>0.87%</td>
<td>1.00%</td>
</tr>
<tr>
<td>Pittsburg</td>
<td>0.90%</td>
<td>1.30%</td>
</tr>
<tr>
<td>San Onofre</td>
<td>2.04%</td>
<td>3.00%</td>
</tr>
<tr>
<td>Scattergood</td>
<td>2.03%</td>
<td>1.10%</td>
</tr>
</tbody>
</table>

*TT: Unable to design preferred option; represents conventional design
Summary

- Wet cooling retrofits reduce impingement and entrainment impacts by ~95%, plus thermal discharge reductions

- 12 of 15 facilities considered “technically feasible” in this study

- “Feasible” facilities still face hurdles

- Capital cost: 255 to 524 $/gpm
- NPC: 324 to 1,334 $/gpm