Prepared for

SOUTHERN CALIFORNIA EDISON
An EDISON INTERNATIONAL® Company

and the
State Water Resources Control Board
Nuclear Review Committee

Independent Third-Party
Interim Technical Assessment

for the
Source Water Substrate Filtering Collection System
for San Onofre Nuclear Generating Station

Prepared by
Bechtel Power Corporation

Report No: 35751-000-30R-G016-00007 Rev. 0

July 22, 2012
Independent Third-Party
Interim Technical Assessment
for the
Source Water Substrate
Filtering Collection System
for San Onofre Nuclear Generating Station

Prepared by:

Bechtel Power Corporation

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Affected Sections</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>July 22, 2012</td>
<td>Initial Issue</td>
</tr>
</tbody>
</table>
Contents

List of Abbreviations and Acronyms ... iii

1. Executive Summary ... 1

2. Background and Introduction .. 2
 2.1 Purpose/Scope of Study ... 2
 2.2 Regulatory History ... 2
 2.2.1 Federal .. 2
 2.2.2 State ... 3
 2.3 Screening Process (A/B Criteria) ... 4

3. Technology Description ... 5
 3.1 Introduction .. 5
 3.2 Conceptual Design ... 6
 3.3 Design Considerations ... 8
 3.4 SONGS Conceptual Design Assumptions ... 9

4. Criterion Evaluation ... 11
 4.1 External Approval and Permitting – Substrate Filtering Intake System .. 11
 4.2 Impingement/Entrainment Design ... 19
 4.3 Offsetting Environmental Impacts – Substrate filtering Intake System ... 20
 4.4 First-of-a-Kind .. 24
 4.5 Operability General Site Conditions ... 24
 4.6 Seismic and Tsunami Issues .. 25
 4.7 Structural .. 25
 4.8 Construction ... 26
 4.9 Maintenance ... 26

5. Conclusion .. 27

6. References .. 27

List of Tables

Table SWS-1. Environmental Permit/Approval Assessment: Substrate Filtering Intake System 29
Table SWS-2. Offsetting Impacts for the Substrate Filter Intake System ... 36

List of Figures

Figure SWS-1. Conceptual Layout of a Typical Substrate Filtering Collection System (Taylor and Headland, 2005) ... 6
Figure SWS-2. Natural Substrate (Beach) Filtering Collection System Conceptual Design 6
Figure SWS-3. Artificial Substrate (Beach + Filter) Filtering Collection System Conceptual Design 7
Figure SWS-4. Conceptual Design Chart for Natural Substrate Filtering Collection System 8
Figure SWS-5. Conceptual Design Chart for Artificial Substrate Filtering Collection System 8
Figure SWS-6. Conceptual Layout of Source Water Substrate Filtering Collection System at SONGS 12
List of Abbreviations and Acronyms

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>agl</td>
<td>above ground level</td>
</tr>
<tr>
<td>APCD</td>
<td>(San Diego) Air Pollution Control District</td>
</tr>
<tr>
<td>ATC</td>
<td>Air Pollution Control District Authority to Construct</td>
</tr>
<tr>
<td>BLM</td>
<td>Bureau of Land Management</td>
</tr>
<tr>
<td>Caltrans</td>
<td>California Department of Transportation</td>
</tr>
<tr>
<td>CDFG</td>
<td>California Department of Fish & Game</td>
</tr>
<tr>
<td>CEC</td>
<td>California Energy Commission</td>
</tr>
<tr>
<td>CEQA</td>
<td>California Environmental Quality Act</td>
</tr>
<tr>
<td>CPUC</td>
<td>California Public Utility Commission</td>
</tr>
<tr>
<td>DCPP</td>
<td>Diablo Canyon Power Plant</td>
</tr>
<tr>
<td>EPCRA</td>
<td>Emergency Planning and Community Right-To-Know Act</td>
</tr>
<tr>
<td>FAA</td>
<td>Federal Aviation Administration</td>
</tr>
<tr>
<td>fps</td>
<td>foot per second</td>
</tr>
<tr>
<td>gpm</td>
<td>gallons per minute</td>
</tr>
<tr>
<td>GWA</td>
<td>Government of Western Australia</td>
</tr>
<tr>
<td>mgd</td>
<td>million gallons per day</td>
</tr>
<tr>
<td>NOI</td>
<td>notice of intent</td>
</tr>
<tr>
<td>NPDES</td>
<td>National Pollutant Discharge Elimination System</td>
</tr>
<tr>
<td>OHP</td>
<td>Office of Historic Preservation</td>
</tr>
<tr>
<td>PG&E</td>
<td>Pacific Gas and Electric</td>
</tr>
<tr>
<td>PTO</td>
<td>Air Pollution Control District Permit to Operate</td>
</tr>
<tr>
<td>RC</td>
<td>Resource Commission</td>
</tr>
<tr>
<td>RCRA</td>
<td>Resource Conservation and Recovery Act</td>
</tr>
<tr>
<td>RWQCB</td>
<td>Regional Water Quality Control Board</td>
</tr>
<tr>
<td>SDRWQCB</td>
<td>San Diego Regional Water Quality Control Board</td>
</tr>
<tr>
<td>SPCC</td>
<td>Spill Prevention Control and Countermeasure Plan</td>
</tr>
<tr>
<td>SWPPP</td>
<td>Storm Water Pollution Prevention Plan</td>
</tr>
<tr>
<td>SWRCB</td>
<td>State Water Resources Council Board</td>
</tr>
<tr>
<td>USACE</td>
<td>U.S. Army Corps of Engineers</td>
</tr>
<tr>
<td>USEPA</td>
<td>U.S. Environmental Protection Agency</td>
</tr>
<tr>
<td>USMC</td>
<td>U.S. Marine Corps</td>
</tr>
<tr>
<td>WDR</td>
<td>Waste Discharge Requirement</td>
</tr>
</tbody>
</table>
Independent Third-Party Interim Technical Assessment
for the Source Water Substrate Filtering Collection System
San Onofre Nuclear Generating Station
Report No. 25761-000-30R-G01G-00007

1. Executive Summary

The primary objective of implementing the source water substrate filtering collection system technology into the San Onofre Nuclear Generating Station (SONGS) once through cooling system is that this technology offers the possibility of substantially reducing the entrainment of aquatic species at different stages of life (including fish, fish egg, and larvae) and reducing impingement mortality.

The source water substrate filtering collection system technology screens eggs, larvae, and juvenile/adult fish from entering the system by a combination of filtration through bottom sediments and low through-sediment velocities. The design velocity is not expected to exceed 0.5 feet per second (fps) and so meets the Track 1 impingement criterion associated with Section 316(b), California Once-Through Cooling Policy. Even though the total volumetric flow withdrawal will be the same, the substrate filtration and low withdrawal velocities will result in significantly less fish egg/larvae entrainment relative to the existing system.

Permitting is expected to be contentious and have lengthy processes that will be aligned with the California Environmental Quality Act (CEQA)/Environmental Impact Report review process, even if this technology goes ahead. The primary difficulty appears to be that the substrate filtering intake system poses significant construction impacts to marine habitats, while offering clear impingement and entrainment-related benefits. Despite this system’s inability to meet the flow reduction requirements expressed in Section 316(b), California Once-Through Cooling Policy performance criteria, the consistent message from all of the interested regulatory agencies was that there were no environmental impact issues or criteria that would preclude this technology option from securing the necessary construction and operating permits and approvals. That is, there were no fatal flaws in the associated regulatory review process that would preclude the substrate filtering intake system from further consideration.

This study concludes that the use of the source water substrate filtering collection system technology is a first of kind and unconventional intake design for large once through cooling systems such as SONGS. This technology is used, if at all, only as a makeup source for cooling towers where the flow is a small fraction of once through cooling flow. Our preliminary evaluations have shown that to accommodate the flow rates required the lateral grid system would require between 250 acres and 775 acres depending on the use of artificial or natural substrate material, assuming 100 percent efficiency can be maintained over the life of the plant. These substrate areas are indeed very large. If the design efficiency is less than 100 percent, say 50 percent or 25 percent, the required substrate area will be two and four times larger.

Although the technology is theoretically scalable to a size meeting the flow requirements of SONGS it is our technical judgment that it is not a practical application for this service.

Consequently, this option should not be a candidate for further evaluation in the next phase of the assessment.
<table>
<thead>
<tr>
<th>Criterion</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>External Approval and Permitting</td>
<td>No fatal flaws</td>
</tr>
<tr>
<td>Impingement/Entrainment Design</td>
<td>No fatal flaws</td>
</tr>
<tr>
<td>Environmental Offsets</td>
<td>No fatal flaws</td>
</tr>
<tr>
<td>First-of-Kind to Scale</td>
<td>Fatal flaw - The use of this technology for a water supply system of this size has not been used and is impractical</td>
</tr>
<tr>
<td>Operability of General Site Conditions</td>
<td>Low reliability and ever decreasing lateral efficiency makes this technology a fatal flaw.</td>
</tr>
<tr>
<td>Seismic and Tsunami Issues</td>
<td>No fatal flaws</td>
</tr>
<tr>
<td>Structure and Construction</td>
<td>No fatal flaws</td>
</tr>
<tr>
<td>Maintenance</td>
<td>No practical maintenance program causes it to be a fatal flaw.</td>
</tr>
<tr>
<td>Conclusion</td>
<td>Technology is not a candidate for Phase 2 review</td>
</tr>
</tbody>
</table>

2. Background and Introduction

2.1 Purpose/Scope of Study

This study is performed in accordance with the requirement established by the State Water Resources Control Board (SWRCB) for Southern California Edison (SCE) to conduct a detailed evaluation to assess compliance alternatives to once-through cooling for SONGS. This requirement is associated with the California State-wide Policy on the Use of Coast and Estuarine Waters for Power Plant Cooling that established uniform, technology-based standards to implement the Clean Water Act Section 316(b) that mandates that location, design, construction, and capacity of the cooling water intake structures reflect the best technology available for minimizing adverse environmental impacts.

This report describes the detailed evaluation of source water substrate filtering collection system technology for SONGS based on the list of site-specific criteria approved by the review committee. The evaluation process includes critical review of published data and literature, consultation with permitting agencies and technical assessment supported by engineering experience and judgment. No new field data was collected as part of this effort. The results of the evaluation are used to characterize the feasibility of this technology and its possible selection as a candidate for further investigation in a follow-on phase of this study.

2.2 Regulatory History

2.2.1 Federal

The U.S. Environmental Protection Agency (USEPA) has proposed standards to meet its obligations under the Section 316(b) of the Clean Water Act to issue cooling water intake safeguards. More specifically, this section requires that National Pollutant Discharge Elimination System (NPDES) permits for facilities with cooling water intake structures ensure that the location, design, construction, and capacity of the structures reflect the best technology available to minimize the harmful impacts on the environment. These impacts are associated with the significant withdrawal of cooling water by industrial facilities, which remove or otherwise impact significant quantities of aquatic organisms from the waters of the United States. The most of the impacts are to early life stages of fish and shell fish through impingement and entrainment. Impingement occurs when fish and other aquatic life are trapped against the screens when cooling water is withdrawn result-
ing in injury and often death. Entrainment occurs when these organisms are drawn into the facility where they are exposed to high temperatures and pressures—again resulting in injury and death. (USEPA, 2011)

In response to a consent decree with environmental organizations, the USEPA divided the Section 316(b) rules into three phases. Most new facilities (including power plants) addressed in the Phase I rules, initially promulgated in December 2001. Existing power plants were subsequently addressed, along with other industrial facilities, in the Phase II version of the rules, issued in February 2004. Since then the rule has been challenged, remanded, suspended, and re-proposed. The current proposed version of the rule dictates that all existing facilities that withdraw more than 2 million gallons per day (mgd) of water from waters of the United States and use at least 25 percent of the water they withdraw exclusively for cooling purposes would be subject to:

- Upper limit on the number of fish killed because of impingement and determining the technology necessary to comply with this limit, or
- Reduce the intake velocity to 0.5 feet/second (through-screen) or below, which would allow most fish to avoid impingement.

Large power plants (water withdraw rates 125 million gallons a day [mgd] or greater) would also be required to conduct a studies to help their local permitting authorities (SWRCB) determine site-specific best technology available for entrainment mortality control. Note this version abandoned the original performance standards approach, which mandated the calculation of baseline against which reduction in entrainment and impingement can be measured.

The Section 316(b) Phase II final rule is expected to be issued on July 27, 2012. When the final rule become effective it is likely to include an implementation timeline, which would drive the implementation of technologies to the impingement requirements within 8 years (2020).

2.2.2 State

The SWRCB is responsible for ensuring compliance with the finalized Section 316(b) rules in California and it has been actively pursuing a parallel path regulatory program that is focused on the state’s coastal generating stations with once-through cooling systems including SONGS. The SWRCB’s Once-Through Cooling Policy became effective on October 2, 2010. This Policy established statewide technology-based requirements to significantly reduce the adverse impacts to aquatic life from once-through cooling. Closed-cycle wet cooling has been selected as best technology available.

Affected facilities, including SONGS, are expected to:

- Reduce intake flow to a level commensurate with that attainable with a closed-cycle wet cooling system and reduce through-screen velocity to 0.5 fps or below—Track 1, or
- Reduce impacts to aquatic life comparably by other means – Track 2

This policy is being implemented through a so-called “adaptive management strategy” that is intended to achieve compliance with the policy standards without disrupting the critical needs of the state’s electrical generation and transmission system. A Nuclear Review Committee was later established to oversee the studies, which will investigate the ability, alternatives, and costs for both SONGS and DCPP to meet the policy.
requirements. This study is direct outgrowth that adaptive management strategy to implement this Once-Through Cooling Policy (Bishop, 2011).

Current Cooling Water Intake System and Section 316(b) Compliance History

SONGS operates two independent cooling water intake structures to provide cooling water to Unit 2 and Unit 3. Each unit’s water withdrawal rate is nominally 828,000 gpm or 1,192 mgd. Both units withdraw water from separate, parallel submerged conduits extending 3,183 feet offshore, terminating at a depth of 32 feet in the Pacific Ocean. The submerged end of each conduit is fitted with a velocity cap to minimize fish entrainment by transforming the vertical flow to a lateral flow, which encourages a flight response from fish in close proximity to the structure.

The onshore portion of each intake consists of six vertical traveling screens fitted with 3/8 inch mesh panels. Screens are rotated based on the pressure differential between the upstream and downstream faces or manually. A high-pressure spray removes any debris or fish that have become impinged in the screen face. The vertical traveling screens are angled at approximately 30º to incoming flow. This feature, combined with a series of vertical louvers place in the forebay, guides the fish to a quiet zone at the end of the cooling water intake structure. A fish elevator periodically empties captured fish into a 4-foot-diameter conduit that returns them by gravity flow to a submerged location approximately 1900 feet offshore (Tetra Tech, 2008). Also housed in the cooling water intake structure of each unit are four saltwater cooling pumps, each rated 17,000 gpm. These pumps are safety-related and located downstream of the traveling water screens. Operation of one pump is sufficient to supply the saltwater cooling needs for one unit. The total saltwater cooling flow needs for both units is 34,000 gpm (SONGS, 2004).

SONGS is also planning to add a “large marine organism protection device” to reduce the spacing between the exclusion bars to less than 9 inches in conformance with SWRB’s *Statewide Water Quality Control Policy on the Use of Coastal and Estuarine Water for Power Plant Cooling*. (Enercon, 2012)

The SONGS cooling water intake system’s offshore velocity cap, onshore angled traveling screen system collectively help reduce entrainment and impingement impacts to aquatic life. These systems, along with various previous quarterly impingement monitoring programs have represented SONGS ongoing measures to demonstrate compliance with previously applicable Section 316(b) regulatory guidance. This guidance can be described as an overarching federal regulation (40 CFR 125.90(b)) and broadly expressed state policies and permit language, which collectively required facilities to implement Section 316(b) rules using professional judgment on a case-by-case basis.

2.3 Screening Process (A/B Criteria)

The technology screening process for the Phase I portion of the evaluation will be performed using a Criteria Set A/B approach that achieves a technically comprehensive assessment while concurrently minimizing the time and effort required. The screening will be performed for Set A criteria first. If a technology is judged passing all Set A criteria, it will then be screened further for Set B criteria.

Set A criteria include the following that are judged to be critical for the screening process:

- External approval and permitting (nonnuclear licensing)
- Impingement/entrainment design
- Offsetting environmental impacts
All remaining criteria are grouped into Set B criteria, which are the following:

- First of a kind to scale
- Operability general site conditions
- Seismic and tsunami issues
- Structural
- Construction
- Maintenance

During the screening process, if any criterion is deemed to be not acceptable, then the screening process would stop and a summary report for that technology would be prepared.

3. Technology Description

3.1 Introduction

The source water substrate filtering collection system, also known as an infiltration intake, is an unconventional intake design. That, to our knowledge, has not been applied to a once through cooling system with a required design flow rate capacity of approximately 1.7 million gpm. It has been used, however, for cooling tower makeup water systems, with intake flow rates that are typically a fraction of the once through cooling flow rates. This type of intake consists of a set of horizontal laterals constructed of perforated or slotted pipe placed below the seafloor in a bed of porous media. The laterals are connected via a network of manifolds leading to a pump intake forebay for use in the cooling water system.

The advantages of the substrate filtering collection system include:

- It can be applied to shallow water areas close to the shoreline.
- The flow capacity is relatively unaffected by tidal influences.
- The turbidity of the produced water is low and relatively constant.
- Impingement and entrainment of aquatic organisms and debris are eliminated.

However, the disadvantages are:

- Clogging of porous media (filtered media such as gravel or sand) due to vegetation growth, silt/clay and bio-growth, can lead to reduced or stopped flow to the connecting manifolds after certain period of operation.
- With horizontal laterals buried under the sea bottom, it is difficult to know whether a lateral is flowing with water or clogged.
- For a vast field of laterals for a once through cooling application, the vast number of laterals may make the maintenance cleaning using hydraulic jet or brushes not practical.
- From day one of the operation, the available efficiency of laterals is only decreasing. There is no assurance if the remaining efficiency of laterals can maintain adequate flow after a period of operation, which could lead to forced plant shutdown.
3.2 Conceptual Design

Two configurations of the substrate filtering collection system have been considered: the natural (beach) filter system and the artificial (beach + filter) filter system. The natural substrate filter system uses the natural substrate (that is, offshore deposits of beach sand or gravel) as backfill around the horizontal laterals. The artificial substrate filter system uses an engineered filter media (that is, clean sand or gravel) to replace the natural substrate around the horizontal laterals to enhance seawater infiltration. Figure SWS-1 presents a general conceptual layout and Figures SWS-2 and SWS-3 illustrate the two configurations.

![Figure SWS-1. Conceptual Layout of a Typical Substrate Filtering Collection System (Taylor and Headland, 2005)](image)

![Figure SWS-2. Natural Substrate (Beach) Filtering Collection System Conceptual Design](image)
The natural filter system is used in areas where the natural substrate (offshore deposits of sand and gravel) has the desired material properties (hydraulic conductivity) for the required flow velocities through the substrate. These properties serve to limit the need to increase the laterals area. The artificial filter system is useful in areas where the natural substrate (offshore deposits) has lower hydraulic conductivity as a result of having more fine particles (silt and clays) in the material, resulting in less than desired flow velocities. In this case, the natural substrate is removed and an artificial filter of sand or gravel is placed as backfill over the horizontal laterals. This increases the local flow velocities, and reduces the areal extent of laterals. The permeability of the substrate, both natural and artificial, along with the design inflow rate for the cooling system is the primary factor that determines the number of required laterals.

Design criteria were developed (Taylor and Headland, 2005) for the substrate filtering collection system conceptual design using a variety of substrate and artificial filter parameters. These parameters include the horizontal hydraulic conductivity of the substrate (K_h), the vertical anisotropy ratio (ratio of horizontal to vertical hydraulic conductivity K_h/K_v) of the substrate, lateral length (L), lateral burial depth, lateral spacing (S), lateral radius (r), and head difference across the system (d_h) as shown in Figure SWS-1. These parameters were used with a groundwater model to develop a family of design charts for various pumping rates, horizontal hydraulic conductivities, vertical anisotropy ratios, and head differences (Taylor and Headland, 2005). Figures SWS-4 and SWS-5 show the charts for an anisotropy ratio of 10 (horizontal hydraulic conductivity is 10 times the vertical hydraulic conductivity), which is typical of natural materials. It should be noted that the anisotropy ratio of the artificial filter is maintained at one (horizontal and vertical hydraulic conductivities are the same) with a fixed horizontal hydraulic conductivity of 1 x 10-2 m/s (2800 feet/d) that is typical of coarse gravel. For the artificial filter design, the hydraulic properties of both the engineered filter media and that of the surrounding natural substrate are considered in the design.
3.3 Design Considerations

The design considerations for the substrate filtering collection system include the following:

- Site-specific hydraulic conductivity testing for the substrate needs to be required,
Substrate is not suitable for shallow (less than 10 feet) bedrock areas due to excavation difficulty, however, there are other excavation technologies, such as horizontal drilling, which can support installation,

Additional permitting for spoils disposal associated with the artificial filter system will be required,

Substrate installation may require custom marine excavating equipment depending on site conditions,

The local availability of material for the artificial filter system, and

Substrate may require long-term prevention and maintenance program to limit vegetation growing over the substrate filtering collection system that could cause leading to a reduction in the permeability of the sea floor material above the laterals area.

Installation of suction piping network connecting various offshore horizontal laterals to the shoreline pump intake followed. The high head differential across the system will likely require the addition of a new pump forebay connected to a suction pipeline so that the cooling water pumps can have sufficient submergence and NPSH for continuous reliable operation.

3.4 SONGS Conceptual Design Assumptions

The following assumptions are used in the SONGS conceptual design:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>English Units</th>
<th>Metric Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow Demand ((Q_d))</td>
<td>1,694,000 gpm</td>
<td>384,700 m³/hr</td>
</tr>
<tr>
<td>Horizontal hydraulic conductivity ((K_h))</td>
<td>28 to 280 ft/d</td>
<td>1 x 10⁻⁴ to 1 x 10⁻³ m/s</td>
</tr>
<tr>
<td>Anisotropy Ratio ((K_h/K_v))</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Lateral length ((L))</td>
<td>80 ft</td>
<td>25 m</td>
</tr>
<tr>
<td>Lateral spacing ((S))</td>
<td>13 ft</td>
<td>4 m</td>
</tr>
<tr>
<td>Lateral area ((L \times S))</td>
<td>1,040 ft²</td>
<td>100 m²</td>
</tr>
<tr>
<td>Head difference across system ((h_w))</td>
<td>11.5 ft</td>
<td>3.5 m</td>
</tr>
</tbody>
</table>

\[
\text{gallons x 0.003785 = m}^3; \text{m x 3.28083 = ft}; \text{m}^2 \times 10.7639 = \text{ft}^2
\]

The range of horizontal hydraulic conductivities selected represents typical values for beach sands. Woodward-McNeill & Associates (1974) report a coefficient of permeability (horizontal hydraulic conductivity) for the SONGS site of 0.025 feet/min \((1.3 \times 10^{-4} \text{ m/s})\). Using the charts on Figures SWS-4 and SWS-5, the resulting infiltration area needed to produce the required flow are listed below:

<table>
<thead>
<tr>
<th>Intake Type</th>
<th>Horizontal hydraulic conductivity of substrate (K_h) (m/s)</th>
<th>Flow per unit length of lateral (Q/L_T) (m³/hr)</th>
<th>Total length of lateral (Q_d(\frac{Q}{L_T}) = L_Σ) (m)</th>
<th>Number of laterals needed - N (L_Σ/25) (m)</th>
<th>Infiltration area (N \times 100 \text{ m}^2) (m²)</th>
<th>Infiltration area (acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural</td>
<td>1 x 10⁻⁴</td>
<td>0.5</td>
<td>769,400</td>
<td>30,800</td>
<td>3,080,000</td>
<td>761</td>
</tr>
<tr>
<td>Natural</td>
<td>1 x 10⁻³</td>
<td>5</td>
<td>76,940</td>
<td>3,080</td>
<td>308,000</td>
<td>76</td>
</tr>
<tr>
<td>Artificial</td>
<td>1 x 10⁻⁴</td>
<td>1.5</td>
<td>256,500</td>
<td>10,260</td>
<td>1,026,000</td>
<td>254</td>
</tr>
</tbody>
</table>
Intake Type | Horizontal hydraulic conductivity of substrate \(K_h\) (m/s) | Flow per unit length of lateral \(Q/L_T\) (m³/hr) | Total length of lateral \(Q_d/(Q/L_T) = L_d\) (m) | Number of laterals needed - \(N = L_d/25\) (m) | Infiltration area N x 100 m² (m²) | Infiltration area (acres)
---|---|---|---|---|---|---
Artificial | \(1 \times 10^{-3}\) | 15 | 25,650 | 1,026 | 102,600 | 25

*Artificial filter consists of coarse gravel with a \(K_h = 1 \times 10^{-2}\) m/s and an anisotropy ratio of 1.

To develop the type curves shown in Figure SWS-5, the horizontal hydraulic conductivity of the artificial filter bed surrounding the laterals (shown in Figure SWS-3) are kept at a constant value of \(1 \times 10^{-2}\) m/s with anisotropy of 1 (that is horizontal and vertical hydraulic conductivity of the artificial filter bed to be equal). Whereas, the natural substrate filter was varied to develop the type curves in Figure SWS-5. Based on the preliminary sensitivity analyses using the type curves presented in Taylor and Headland (2005), the area required for the substrate filtration collection system would range from 25 acres (102,600 m²) to 761 acres (3,080,000 m²) depending on the actual substrate horizontal hydraulic conductivity and whether the artificial or natural filtration system is used. This, however, is based on a 100 percent efficiency assumption.

Figure SWS-6 presents a conceptual location of the area where the substrate filtration collection system may be located. The locations are preliminary and the layout of the laterals has not been specifically delineated. The final locations and geometry of the actual size can be determined after the required site-specific tests and studies (geologic, hydrogeologic, geophysical and thermal recirculation potential from the outfall diffusers) are performed. Figure SWS-6, shows the upper bound of the area required for lateral placement when using natural substrate material (775 acres). These areas are based on the assumption that the substrate laterals are of 100 percent efficient and that the differential head and other design parameters remain constant. However, the efficiency of the laterals will be less (due to operational plugging of the laterals over time) resulting in the need for a greater number of laterals and the associated increase in offshore impacts. If it is assumed that the laterals are 50 percent efficient over the operational life of the plant, then the size of the area and the laterals will be two (2) times greater than initial estimate presented. The initial estimate is also based on the assumption that the flow across the laterals is uniform and the head in the laterals does not vary along the length; however, the flows and heads across the laterals could be nonuniform resulting in dynamic head differential while pumping from a caisson, and thus requiring additional laterals to account for a reduction in efficiency. In addition, flow balancing to each horizontal lateral will be difficult due to a large network of manifolds fan out to receive flow from laterals and then converge to a central pump forebay. This condition will result in laterals located far away from the main manifold/piping to receive less flow than laterals closer to the main manifold/piping, which can ultimately cause flow stoppage through those laterals, reducing overall efficiency of the substrate intake system.

The composition and properties of the seafloor sediments at SONGS within two miles of the shore can be characterized as 3 to 8 feet of gravel, cobbles, and a trace of bottom sediment overlying the San Mateo Formation (Woodward-McNeill & Associates, 1974). The potential for submarine landslides and vegetation growth be further investigated to determine the feasibility of implementing this technology at SONGS.
4. Criterion Evaluation

4.1 External Approval and Permitting – Substrate Filtering Intake System

4.1.1 General Discussion

The external approval and permitting assessment focused on identifying the applicable (required) permits and approvals for construction and operation of a substrate filtering intake system.
The initial assessment effort focused on developing a comprehensive list of potentially applicable permits and approvals at the federal, California, county, and municipal level (as applicable). This applicability of each permit/approval to the proposed substrate filtering intake option was evaluated. Those permits and approvals that were deemed applicable were subsequently scrutinized to characterize the expected duration and complexity of the regulatory review process. Special attention was directed to identifying environmental impact issues or criteria that would preclude the applicable permit or approval from ever being issued or granted. That is, the focus was to screen each applicable permit or approval for fatal flaws in the associated regulatory review process, which would preclude the substrate filtering system from further consideration.

The assessment also focused on identifying the critical path (longest duration) initial preconstruction permitting processes, that is, those that support site mobilization, physical site access, initial earthwork/ foundations for each cooling system technology option. The duration of the permitting and the approval process, while not a definitive fatal flaw, could later serve as a screening tool if combined with specific schedule limitations.

Permits and approvals that support later stages of construction and operation that are not critical path to the commencement of construction were also included in the assessment since these items could pose significant operational constraints to future SONGS operations.
4.1.2 Detailed Evaluation

This summary list of permits provided the basis for subsequent discussions with key relevant regulatory authorities regarding the applicable permit application needs and the permit review time frames. These discussions were also critical for the identification of potential regulatory or permit-related barriers to implementation - fatal flaws.

The following regulatory authorities contacted:

- U.S. Army Corps of Engineers (USACE)
- U.S. Marine Corps – Camp Pendleton (USMC)
- California Public Utility Commission (CPUC)
- California Coastal Commission (CCC)
- California State Lands Commission
- State Water Resources Control Board (SWRCB)
- San Diego Regional Water Quality Control Board (SDRWQCB)
- San Diego Air Pollution Control District (APCD)
- San Diego County Department of Environmental Health

The following sections discuss the relevant key permitting/approval processes for each cooling system technology and summarize these findings in Table SWS-1. This table lists the applicable permits and approvals, determines the critical path review processes and most importantly, highlights those processes that may be fatally flawed.

4.1.2.1 Substrate filtering Intake System

This cooling system intake system is essentially an infiltration sea water intake system or more correctly, a substrate filtering/collection system. This system includes a set of horizontal laterals constructed of perforated or slotted pipe placed below the seafloor in a bed of porous media. The laterals are connected via a manifold to a pump intake forebay for pumping. The seabed acts as the filter for this system. The offshore footprint needed to accommodate this substrate collection system is significant.

U.S. Army Corps of Engineers

The U.S. Army Corps of Engineers (USACE) is the lead agency for Clean Water Act Section 404 and Section 10 permitting processes, which are focused primarily on impacts to waters of the United States and water-borne navigation. The substrate filtering intake system will involve offshore cut and fill or tunneling (tunnel boring machine) processes, which will pose significant construction impacts to USACE jurisdictional waters.

For minor impacts, the USACE has established a general permit program (nationwide permit) for a host of less significant work processes involving waters of the United States. The significant marine work associated with this cooling system option precludes any Nationwide Permit permitting process for cut/fill and tunneling construction options. SONGS, therefore, would then be faced with securing the more complex individual Section 404/10 permit.

While Section 404 permit review periods can often be lengthy, the USACE representative for the SONGS area explained that all USACE facilities have goal to issue an individual Section 404 permit within 120 days of deeming the associated application complete (Lambert, 2012). This period is a goal, not a statutory com-
mitment. Consequently, in many cases this goal is not realized. These delays are often associated with the mandated consulting processes that need to be pursued with the State Historic Preservation Office, U.S. Fish and Wildlife Service, or National Marine Fisheries Service. In other cases there are extensions of public notice periods or scheduling complications for the public hearing. The applicant for the Section 404/10 permit has to directly pursue consultations with California Coastal Commission (CCC) and SWRCB. Receipt of an individual Section 404 permit is contingent on previous receipt of permits from the CCC and SWRCB.

This difficult situation is impeded further by the under-staffed local USACE office (two to three permit writers), so permit review durations have been getting longer. For the more complex and contentious situations, the permitting process can extend to 1–2 years. Hence, the USACE permits are often characterized as the critical path permitting process. Given the significant new marine work associated with this cooling technology option, it is likely that the Section 404 will represent a critical path item to the completion of permitting.

Despite the potential for review periods longer than the 120 day target, the USACE did not see any specific barriers or fatal flaws regarding the Section 404 permitting process for the substrate filtering intake system. (Lambert, 2012)

U.S. Marine Corps – Camp Pendleton

SONGS is located on leased property that is part of the USMC Camp Pendleton. Any significant physical improvements to the SONGS facility, such as addition of closed cooling systems are potentially subject to a formal review and approval process by the USMC and U.S. Department of the Navy.

The SONGS resides on land that is subdivided into two leases and 9 easements. The SONGS lease grants the USMC and the U.S. Department of the Navy authority to review and improve physical improvements on the subject property (Rannals, 2012). While this authority does not formally extend to offshore properties, the USMC is also interested in offshore work in the area, since it could potentially impact their offshore training activities.

While the offshore substrate filtering intake system is not expected to demand any additional federal land nor add any significant land-based structures, it is possible that addition of this cooling system technology will pose sufficient land-based alterations to trigger a formal review and approval process. If required, the related application is initially submitted to the USMC/Camp Pendleton (with appropriate site plan drawings and associated written descriptions). This application would be reviewed by the Camp Pendleton staff and the staff would subsequent compile their findings and make a recommendation to the Camp Pendleton Base Commander regarding the application. With this input, the Base Commander would then develop and submit a recommendation to the USMC headquarters and subsequently to the U.S. Department of Navy. The U.S. Department of the Navy would provide the final approval/denial of the proposed new SONGS facility on leased Camp Pendleton property.

While the substrate filtering intake system may not trigger this formal review and approval process, the associated significant offshore work could be viewed negatively by the Marine Corps, if it appears to compromise their offshore training regimen. It is unclear whether the Marine Corp can (or would choose to) exert influence through their land-based lease and easement arrangement for work carried outside of their lease area.

California Public Utility Commission

SONGS is regulated by the California Public Utility Commission (CPUC), which is charged with overseeing investor-owned public utilities. Given the lack of significant county involvement on this federal property, the
CPUC will likely be designated the lead agency for the CEQA review process. CEQA is regulatory statute, which requires state or local regulatory agencies to identify, assess, avoid or otherwise mitigate the significant environmental impacts from the proposed action—the addition of new cooling system technology.

The proposed new substrate filtering intake system will certainly trigger preparation of Environmental Impact Report. The Environmental Impact Report is a detailed report that identifies the potentially significant environmental effects the project is likely to have; identifies feasible alternatives to the proposed project; and indicates the ways in which significant effects on the environment can be mitigated or avoided. This Environmental Impact Report will also be used by other state agencies to support their respective review and approval processes.

Following finalization of the Environmental Impact Report, the CPUC will evaluate whether to certify CEQA compliance. This certification then supports their subsequent decision regarding whether the costs associated with the new cooling system can be reclaimed via a consumer rate base adjustment.

While the CPUC-sponsored review process and decision regarding cost recovery will likely be a lengthy, complex and contentious process, there are no definitive environmental barriers, which preclude successfully completion of the CEQA review and a positive record of decision.

California Coastal Commission

The CCC has a broad mandate to protect the coast resources of California that includes the SONGS facility. Consequently, the CCC’s environmental concerns address a broad range of subject matter include visual resources, land and marine-based biological resources, land use and socioeconomic concerns (for example, recreational use/access). Despite this comprehensive focus, the CCC has little in the way of specific, objective criteria that could be used to effectively screen any of the cooling system technology options from further consideration.

The CCC representatives (Detmer 2012 and Luster 2012) indicated that the Commission recognized that there were no great options to the existing once-through cooling system at SONGS. The CCC believes that almost all of the cooling system technology replacement options present some sort of negative impacts. Given that basis, the CCC appears to be resigned to consider options that may present additional onshore or different offshore impacts to help mitigate the offshore environmental consequences of the existing once-through cooling. The CCC mandate to protect the coastal resources offers this agency some latitude to balance one set of impacts versus another. This evaluation process is on a case-by-case basis, which can be translated into the conclusion that there are few triggers that would automatically preclude any cooling system options from further consideration.

Despite the lack of obvious fatal flaws, the substrate filtering intake system will certainly include significant offshore construction efforts, so the CCC will be focused on the deleterious construction impacts on marine resources (for example, local fish, shellfish, vegetation, hard marine substrate, commercial fishing) and the potentially offsetting positive benefits associated with reducing operational entrainment impacts. These impacts will be reduced simply because there is less likely to be a less rich biological environment and so less entrainment losses despite the largely unchanged water withdrawal rate. Visual impacts in the coastal zone, a typical key CCC subject area, will obviously not be an important factor for this submerged intake system. The thermal discharge impact matters will be a sideline issue, since the discharge characteristics will remain largely unchanged with this cooling system.
The CCC consideration of these issues and their follow-on approval process is mostly aligned with the CEQA process. That is, any application for a coastal development permit will be dependent on information that is generated by associated Environmental Impact Report development process. Consequently, the CCC permit review process will also be aligned with CEQA and consequently its duration will mirror the CEQA timeline (6 months–1 year). That period offers evidence that the Coastal Development Permit could be a critical path permitting process.

California State Lands Commission

Construction efforts in subaqueous lands associated with any cooling system modifications will be evaluated/approved by the California State Lands Commission. This review and associated lease approval process can follow three different tracks as shown below:

- **Categorical Exemption** – applicable to those situations where there are no significant environmental impacts and there are no substantive changes in the existing land use. It is unlikely that this option would apply to any of the potential cooling system options that require marine work.

- **Mitigated Negative Declaration** - applicable for work that poses minor environmental impacts, during noncritical seasons, for limited period of time. The current SONGS Marine Mammal Screening retrofit work has been reviewed and approved via Mitigated Negative Declaration.

- **Environmental Impact Report/CEQA Process** – applicable for work that could potentially generate significant environmental impacts, uses heavy construction equipment, and/or will continue over a significant time periods (months). This review process is not fast-track and could extend for a year.

The State Lands Commission evaluates each project individually and determines the appropriate review/approval path. As the substrate filtering intake technology will obviously result in a significant addition of cooling system infrastructure to subaqueous lands, SONGS will not be able to pursue the largely administrative Categorical Exemption path or the streamlined Mitigated Negative Declaration process. This option will invoke the longer, more complex Environmental Impact Report/CEQA review process.

Commission representatives (DeLeon and Oggins, 2012) explained the current process for nonnuclear coastal power plant lease holders to develop and implement their “implementation plan” to meet California’s Once-Through Cooling Policy performance goals has been very slow. Most of these facilities have requested extensions to continue to evaluate the potentially available mitigation strategies. This experience offers evidence that the associated CEQA review will not be an expeditious process. A review period of at least a year is a distinct possibility.

Despite this expected lengthy review process, the related marine work in subaqueous lands does not appear to offer any specific impacts or regulatory considerations that represent fatal flaws.

State Water Resources Control Board - San Diego Regional Water Quality Control Board

While the SWRCB has overall permit authority for California’s two active the nuclear power stations, the SDRWQCB has the follow-on inspection and enforcement role for the issue permits. For SONGS, the SWRCB expects to modify the existing NPDES Permit in support of the proposed substrate filtering intake system. The lack of significant disruption to local land surfaces is expected to negate any need for new waste discharge requirements permit for construction impacts to jurisdictional streambed areas and possibly avoid the need to seek coverage under the general storm water permit for construction activity.
The substrate filtering intake system construction activities will potentially generate significant, temporary water quality and marine habitat impacts. Installation of the lateral pipelines via the cut and fill process will result in significant localized turbidity impacts and the temporary and permanent loss of a biologically productive marine habitat area. Installation of the system using the tunnel boring machine will reduce marine habitat losses and water quality impacts to these areas.

Operationally, the substrate filtering intake system will significantly reduce the impingement impacts, relative to current velocity cap system. This system will not, by itself, reduce the overall water withdrawal or discharge rates. Entrainment-related impacts will be reduced primarily because of the substrate filtering action and the deeper less biologically active region of the withdrawal. Thermal discharge impacts to aquatic life will remain largely unchanged.

Given that the cooling water withdrawal and discharge rates will be remain essentially unchanged, any revisions to the current SONGS NPDES permit will be limited to compliance provisions of Section 316(b), California Once-Through Cooling Policy, Phase II requirements. There will ostensibly be no changes to the current water treatment system, as this option is still a once-through cooling system.

Both the SWRCB and SDRWQCB representatives (Jauregui, 2012 and Morris, 2012) explained that there are no obvious regulatory barriers regarding issuance of this revised NPDES permit for any of the cooling system options currently under consideration, including the substrate filtering intake system. The SDRWQCB and SWRCB will not necessarily preclude cooling system options from consideration, even if these options fall short of full compliance with the performance criteria tied to Section 316(b), California Once-Through Cooling Policy, Phase II rules (that is, through-screen velocity less than 0.5 fps and entrainment/impingement levels equivalent that associated with a closed-cooling cycle system). The substrate filtering intake system entrainment reduction performance may fall short of closed-cycle cooling system attributes.

The SWRCB is ultimately a political body (9 individuals), whose members are interested in reviewing as much information/evidence as possible from the applicant and from their own technical staff regarding the feasibility and impacts of various cooling system alternatives. Consequently, none of the SWRCB permits represent a fatal flaw or critical path permitting process to the substrate filtering intake system.

San Diego Air Pollution Control District (APCD)

SONGS is located within the San Diego APCD, a state-designated, non-attainment area for PM-10 and PM-2.5, that is, the District has failed to achieve compliance with the state ambient air quality standards for these pollutants (Annicchiarico, 2012). In addition to this air quality compliance issue, there are also local concerns regarding visibility impacts on the nearest visibility sensitive areas, so-called Class I areas that are comprised of national parks (over 6000 acres), wilderness areas (over 5000 acres), national memorial parks (over 5000 acres), and international parks that were in existence as of August 1977. While these situations may have ramifications for those cooling system options that generate significant particulate emissions (closed cooling cycle systems), air quality permits/approvals are not expected to play an appreciable role for the substrate filtering intake system—a system that is not expected to generate any additional operational air emissions.

San Diego County Department of Environmental Health

As SONGS is located entirely on leased federal property that is part of the USMC Camp Pendleton, any significant physical improvements to the SONGS facility are not subject to San Diego County review. The review process is essentially delegated to the USMC and U.S. Department of the Navy. Consequently, most of
the San Diego County Departments (Planning and Land Use, Public Works, and Building Division) do not directly regulate SONGS.

Despite the fact that the county oversight for SONGS is constrained, there are six separate ongoing county-led regulatory programs at this facility (Mache, 2012). County Environmental Health Department has received CalEPA approval to be the Certified Unified Program Agency responsible for management of the following programs:

- California Aboveground Storage Tank Program – mandates development and implementation of a Spill Prevention and Countermeasure Control Program (SPCC) and tank inspections.
- California Underground Storage Tank Monitoring Program – addresses fuel storage and leak detection in Mesa Complex and power block area.
- Hazardous Waste Storage and Treatment – includes small proprietary oil separation facility.
- Medical Waste Disposal – a county ordinance makes this an Environmental Health Department responsibility.
- Clean Air Act 112r Risk Management Plan – addresses onsite aqueous ammonia storage
- Hazardous Material Business Plan – addresses storage of greater than 55 gallons of chemicals with potential for offsite impacts and addresses the facility’s Emergency Planning and Community-Right-to-Know (EPCRA) responsibilities.

The substrate filtering intake system will likely not demand any additional chemical additives or force the relocation of any existing chemical and fuel storage systems. Routine maintenance and cleaning needs associated with this new system may be an issue, as there is little experience with this system in an open ocean environment. Despite this maintenance uncertainty, operation of the substrate filtering system is not expected to present any obvious county-sponsored regulatory barriers or represent critical path permitting processes.

Other Regulatory Agencies

In addition to the key regulatory agencies described above, there are a number of regulatory agencies that could potentially play a role in the permitting of the various cooling system technology options. The U.S. Fish and Wildlife Service, California Department of Fish & Game, and California Office of Historic Preservation, for example, often play significant regulatory roles in power plant upgrade projects. Construction and operation of the substrate filtering intake system is likely to temporarily and permanently disturbance sensitive marine habitat and also reduce entrainment impacts to local fish and shellfish. These attributes will make the U.S. Fish and Wildlife Service and California Department of Fish & Game service key parties to CEQA review process, but they are note expected to trigger the need to secure a 2081 Incidental Take Permit because of the lack of marine-based endangered species (Enercon). Since this option primarily involves offshore work and underwater facilities, it is unlikely the cultural or historic resources (land-based) will be impacted.

Installation of this submerged system will not alter the overall profile of the SONGS facility and certainly not require significantly tall or large construction equipment. These considerations will preclude significant interactions with California Department of Transportation (Caltrans) (roadway crossings, encroachments, oversized vehicles) and the Federal Aviation Administration (FAA), whose focus would be limited to aviation
obstruction impacts posed by tall new permanent or temporary features (less than 200 feet above ground level).

Finally, the California Energy Commission (CEC) will be largely excluded from the permitting processes primarily because offshore substrate filtering intake system will not boost currently power levels of the SONGS facility, let alone reach the 50 MW threshold, which would mandate CEC review.

4.1.2.2 Summary

The external approval and permitting assessment for the offshore system identified a list of potentially applicable federal, state and local permits and approvals, that not surprisingly, focused on its significant impacts to the marine environment. The efforts to conduct a successful CEQA review and secure the USACE Section 404 permit, CCC Coastal Development Permit, State Lands Commission Lease, NPDES permit modification will represent the primary regulatory challenges.

These permits are all expected to be contentious and have lengthy processes that will be aligned with the CEQA/Environmental Impact Report review process. The primary difficulty appears to be that the substrate filtering intake system poses significant construction impacts to marine habitats, while offering clear impingement and entrainment-related benefits. Despite this system’s inability to meet the flow reduction requirements expressed in Section 316(b), California Once-Through Cooling Policy performance criteria, the consistent message from all of the interested regulatory agencies was that there were no environmental impact issues or criteria that would preclude this technology option from securing the necessary construction and operating permits and approvals. That is, there were no fatal flaws in the associated regulatory review process that would preclude the substrate filtering intake system from further consideration.

The assessment also indicated that the Section 404 permit and the CPUC-sponsored CEQA review process will likely represent the critical path review and approval processes (approximately 12 month) for the substrate filtering intake system. This critical path process does not represent a barrier to development of this cooling technology system.

4.2 Impingement/Entrainment Design

4.2.1 General Discussion

The current SONGS offshore velocity cap system permits fish and other marine species to enter the offshore intake pipe and be carried to the onshore pump intake structure. The current onshore pump intake structure is equipped with a angled traveling screen system, and at end of intake forebay a fish lift to collect and transfer fish and other marine life for transport back to the Pacific Ocean. With the use of the source water substrate filtering collection system, in lieu of the offshore velocity cap, it effectively screens egg, larvae, and juvenile/adult fish from entering the cooling system, precluding the need for the traveling screen and fish return system.

4.2.2 Detailed Evaluation

The source water substrate filtering collection system technology is a passive system with no moving parts. Egg, larvae, and juvenile/adult fish are screened from entering the system by a combination of filtration through bottom sediments and low through-flow water velocities. The design velocity is not expected to ex-
ceed 0.5 feet per second (fps) and therefore meets the Track 1 impingement criterion associated with Section 316(b), California Once-Through Cooling Policy. Even though the total volumetric flow withdrawal will be the same, the substrate filtration and lower than 0.5 fps withdraw velocities will result in less fish egg/larvae entrainment in comparison to the relative to the existing system.

4.3 Offsetting Environmental Impacts – Substrate filtering Intake System

4.3.1 General Discussion

The environmental offsets are an environmental management tool, which has been characterized as the “last line of defense” after attempts to mitigate the environmental impacts of an activity are considered and exhausted (GWA, 2006). In some cases significant unavoidable adverse environmental impacts may be counterbalanced by some associated positive environmental gains. Environmental offsets, however, are not a project negotiation tool, that is, they do not preclude the need to meet all applicable statutory requirements and they cannot make otherwise “unacceptable” adverse environmental impacts acceptable within the applicable regulatory agency.

In some cases, regulatory agencies may be so constrained by their regulatory foundation that offset opportunities are limited or unavailable. The San Diego APCD, for example, has the regulatory authority to offset new air emissions in their district from previously banked emission reductions as long as the new emission sources meet appropriate stringent emission performance criteria. The APCD cannot offset new air emissions with reductions in the impingement and entrainment impacts to aquatic life or reductions in land disturbance. In other cases, the regulatory agencies, such as the California Coastal and State Lands Commissions, have a more broad-based, multidisciplinary review process that supports a more flexible approach to using environmental offsets to generate the maximum net environmental benefit.

With these considerations in mind, the following assessment of offsetting environmental impacts focuses on identifying both positive and negative construction and operational environmental impacts associated with the construction and operation of the substrate filtering intake system from a broad range of environmental evaluation criteria.

4.3.2 Detailed Discussion

The following sections evaluate the air, water, waste, noise, marine and terrestrial ecological resources, land use, cultural and paleontological resources, visual resources, transportation, and socioeconomic issues associated with construction and operation of the substrate filtering system. Given the wide range of environmental impact subject areas under consideration, the systematic approach used in the Diablo Canyon License Renewal Application process was used (PG&E, 2009). Consequently, following discussion of the individual environmental subject areas, the related consequences are categorized as having either positive or negative small, moderate or large impact significance. The specific criteria for this categorization are shown below

- **Small**: Environmental effects are not detectable or are minor such they will not noticeably alter any important attribute of the resource
- **Moderate**: Environmental effects are sufficient to noticeably alter, but not significantly change, the attributes of the resource.
- **Large**: Environmental effects are clearly noticeable and are sufficient to change the attributes of the resource.
The results of these evaluations and impact categorization are subsequently summarized in the Table SWS-2.

Air

The air quality impacts associated with installation of the substrate filtering system are small given that the primarily marine-based nature of the associated construction activities. There will be little or no opportunity to generate fugitive dust from land disturbance activities, as the primary activity will involve offshore marine work. Some additional vehicles-related air emissions can be expected from the small number of outage workforce personal vehicles and over-the-road project construction vehicles. Self-propelled earthmoving equipment will be unnecessary, but there may be some emission sources on temporary offshore platforms or barges. Construction supplies and piping-related equipment deliveries may be significant in the early phases of construction.

The offshore system may result in a minor decrease in overall SONGS overall plant efficiency due to increased pumping power demands associated a more distant, offshore buried system of piping. The resulting power reduction is not expected to produce any tangible increase in greenhouse gas or other pollutant emissions from replacement fossil power sources.

Surface Water

Substrate filtering system construction activities are primarily marine-based and they have the potential to generate significant water quality impacts. Placement of the parallel and connecting piping will result in localized turbidity impacts from disruption of the local seabed – a potentially large negative construction impact if cut and fill practices are used. If the piping systems are installed via a tunneling (tunnel boring machine), this impact could be reduced to a moderate negative level. These construction efforts are not expected to result in any land-based disturbance or storm water-related impacts.

The substrate filtering system will not change the overall cooling water withdrawal or discharge rates.

Groundwater

Given the primarily offshore construction environment associated with the installation of the substrate filtering system, no significant additional groundwater resources will be needed.

The substrate filtering system is not expected to require any additional groundwater resources.

Waste

Constructions-related waste, including marine bed sediment and recyclable metals associated with surplus piping materials, will be generated during the outage. Marine dredge spoils or tunneling wastes, depending on the nature of pipe installation, are expected to be considerable. The final disposition of these materials has not been determined. Most of the piping wastes are expected to have salvage value and therefore, not represent a burden to offsite disposal facilities. Disposal of the marine sediment, whether directed to an on-site or offsite disposal area, will represent a moderate construction negative impact.

While the substrate filtering system could potentially include some type of self-cleaning capability, it is unlikely that these buried piping systems can be inspected or cleaned by external actions. Consequently, there is limited potential for this system to generate additional biological wastes during operation.
Noise

Previous studies have concluded from consultations with the County of San Diego County, City of San Clemente and Camp Pendleton, that noise levels are expected not to exceed 70 dBA at the nearest public receptor (Tetra Tech, 2008). Noise impacts from construction activities for the substrate filtering system are not expected to be significant for land-based locations, since the primary work areas will be well offshore. Buffer areas around offshore construction zones will likely be established for safety reasons, but which will also serve to reduce noise impacts to offshore noise receptors (watercraft) and shoreline recreational areas (for example, San Onofre State Beach). Given the remaining potential for noise impacts to the public along the immediate shoreline recreational areas, the construction activities could pose a small negative impact.

Operational noise levels are expected to be largely unchanged following installation of the new substrate filtering system.

Land Use

Construction activities associated with substrate filtering system are primarily offshore and these activities will likely temporarily preclude normal recreational activities in waters in the immediate construction areas. As mentioned above, buffer zones will be created and maintained during the course of construction for the safety of the workforce and public. The potential temporary restriction of normal public access in these marine areas represents a small negative impact for this cooling technology option.

The associated buried piping could represent a change in land use in those previously undeveloped subaqueous areas. The buried piping systems will be located in relatively deep waters and therefore should not represent an impediment to surface navigation. Given these impacts, operation of this underwater system is expected to offer a small term negative impact.

Marine Ecological Resources

Substrate filtering system construction activities will potentially generate significant, temporary water quality and marine habitat impacts. Installation of the buried piping systems via the cut and fill process will result in significant localized turbidity impacts and the temporary and permanent loss of a considerable area of biological productive marine habitat – a large negative impact. Installation of the system using the tunnel boring machine will reduce marine habitat losses and water quality impacts to localized areas around the screen modules – a moderate negative impact.

The new offshore system will certainly reduce the impingement and entrainment impacts associated with SONGS once-through system. However, because of the existing intake location in deeper less biological productive area, the current SONGS once-through system already employs some technologies (offshore velocity cap, angled inshore traveling screens), which serve to reduce these impacts. While the substrate filtering system will not reduce the overall water withdrawal or discharge rates, its ability to reduce intake velocities and filter the influent water will likely satisfy the performance requirements of Section 316(b) California Once-Through Cooling Policy. Consequently, this system will, operationally, offer a large positive impact relative to the current condition.

Terrestrial Ecological Resources

Construction activities associated with the substrate filtering system are primarily marine-based and consequently, present little or no impact to land areas. Thus, there will be no construction impacts to terrestrial
natural habitat areas or areas with significant ecological value or sensitivity. Operation of the substrate filtering system will similarly present no new threat to these resource areas.

Cultural and Paleontological Resources

Since installation of the substrate filtering system will be confined to subaqueous lands, there is little or no potential to discover new land-based cultural or paleontological resources. Operation of this system will similarly pose no new threat to cultural or paleontological resources.

Visual Resources

All construction equipment will be low profile, that is, the construction support features and equipment will not extend above the height of local facility structures.

The substrate filtering system will be submerged and buried. It will present no permanent change in the external profile of the facility.

Transportation

Increased commuting traffic from the construction workforces and construction deliveries could worsen the existing level of service on local roads during the plant outage. While the associated construction period means that related traffic impacts will not be transitory, the necessary workforce is not expected to be large. Consequently, the transportation-related construction impacts should be considered a small negative impact.

Operationally, the substrate filtering system may increase maintenance and service requirements, but any related maintenance staff increases are expected to be minimal. Therefore, there are limited or no operational transportation impacts for this system.

Socioeconomic Issues

While there will be some additional construction-related employment opportunities, these opportunities are not expected to significantly strain local community resources (for example, housing, school, fire/police services, water/sewer).

Operational maintenance staff levels may increase slightly in response to the addition of this system, but it will not result in any related community service or resource concerns.

4.3.3 **Summary**

Table SWS-2 summarizes the air, water, waste, noise, marine and terrestrial ecological resources, land use, cultural and paleontological resources, visual resources, transportation, and socioeconomic environmental offsets for the substrate filtering intake system. The construction impacts could be characterized as having moderate to large negative impact significance depending on the nature of the installation method (cut and fill versus tunneling). Both construction practices will involve significant marine-based work that will generate increased turbidity in the seawater near construction areas, produce a sizeable marine spoils waste, and result in some permanent and temporary losses of marine habitat. These impacts are not offset by the limited employment opportunities that may be gained during this same period.
Operationally, there is a large positive impact significance related to the substrate filtering systems reduction of the already partially mitigated impingement impacts and its reduction of previously unconstrained entrainment impacts. There is no coincident reduction of cooling water withdrawals, so there is no improvement in thermal discharge impacts. Overall, the operational benefits associated with reductions of impingement and entrainment impacts are largely counterbalanced by the construction-related disruption of the marine habitats and degradation of local water quality. While, the cut and fill construction practices will be more disruptive than the tunneling processes, this option does not collectively offer a definitive overall positive environmental outcome.

4.4 First-of-a-Kind

4.4.1 General Discussion

Use of the source water substrate filtering collection system to supply water to a once through cooling system is a first of a kind application of this technology. Previous applications of this technology have been used to supply makeup water to closed cycle cooling systems, which demand a fraction of the amount of water required for once through cooling.

4.4.2 Detailed Evaluation

Review of available information regarding the substrate filtering collection system suggests that this technology can be scalable for the once through cooling water demand but is not practical due to the required size of the field necessary to support the flow requirements of SONGS and the fact that efficiency of this system is very difficult to maintain. As noted above if the efficiency cannot be maintained the size of the field must be dramatically increased. Selection of the type of substrate system (natural or artificial filter) depend on the geologic setting of the offshore environment, the seafloor materials present in the area designated for the installation of the substrate filtering collection system, and the site-specific hydraulic conductivity test measurements of the substrate material. For these reasons, it has been determined that this technology should not be used for this application.

4.5 Operability General Site Conditions

4.5.1 General Discussion

In theory, the source water substrate filtering collection system technology can be integrated into the existing system by modifying the onshore pump intake structure (existing pump forebay will be replaced by the new pump forebay). The new pump forebay will be located at the confluence of the manifold lines. However, over time, the efficiency of horizontal lateral will only go down due to lateral clogging, vegetation growth over the substrate field, marine growth inside the laterals and manifolds. These adverse conditions generate great uncertainty to the large scale substrate intake system, which renders it a fatal flaw.

4.5.2 Detailed Evaluation

- The source water substrate filtering collection system components with be corrosion resistant to the marine environment.
Independent Third-Party Interim Technical Assessment
for the Source Water Substrate Filtering Collection System
for the San Onofre Nuclear Generating Station

Report No. 25761-000-30R-G01G-00007

- The imported materials used in the system: artificial filter, crushed stone, and armor rock will be free of deleterious material and essentially nonreactive in the marine environment.

- Periodic bottom surveys will be needed to assess substrate conditions. Significant build-up of vegetation or fine materials (sils or clays) on the bottom could likely interfere with the efficient operation of the system, that is, clogging of laterals.

- Even though frequent inspection and cleaning of laterals, using hydraulic jets or mechanical brushes, can in theory maintain optimum water production. However, due to the large field of laterals/manifold networks, this maintenance cleaning of laterals with hydraulic jet and brushes will be not practical.

- System must be overdesigned to account for lateral plugging where rehabilitation results in less than 100 percent of the initial flow conditions. The unknown is on the determination of what over design margin shall be. If the laterals are designed with 50 percent and 25 percent efficiency, the number of laterals required and substrate area impacted will be two and four times larger.

In summary, despite manual cleaning of vast number of lateral off clogging is possible in theory, it is not practical for a once through cooling system application such as SONGS. All the envelop design parameters given in Section 3 are based on a 100 percent efficiency, which can not be maintained following a plant operation. Exactly how much design margin is needed to maintain a given design efficiency can not be known nor accurately predicted. This will result in generally less reliable intake system, as compared to other traditional intake systems. Therefore, from operation point of view, this technology is considered a fatal flaw, when it is applied to a once through cooling system such as SONGS.

4.6 Seismic and Tsunami Issues

4.6.1 General Discussion

Design criteria will be similar to that used for the design of existing structures. The system can properly be designed to accommodate the seismic requirements and design wave forces.

4.6.2 Detailed Evaluation

- The structural design will use the same seismic category that was used for the current shoreline intake.

- The offshore substrate system will be designed to withstand design wave forces.

4.7 Structural

4.7.1 General Discussion

The substrate filtering collection system can be designed properly accommodate critical loading, including full collapse pressure on the laterals and manifold piping.

4.7.2 Detailed Evaluation

The offshore substrate filtering collection system is an independent system delivering the cooling water, via a large conduit and is not interfering with the shoreline pump intake structural.
4.8 Construction

4.8.1 General Discussion

The major construction activities for using this technology will include the following:

- Dredge/excavate the seabed for placement of laterals and manifold lines,
- Install the offshore laterals. Installation consists of placing laterals in the excavated trench and covering with backfill material (either excavated substrate or artificial filter), crushed stone, and armor stone.
- Install of the pump forebay at the confluence of the manifold lines.

4.8.2 Detailed Evaluation

- Turbidity curtains may be required to control suspended solids.
- Upon completion of the laterals and manifold, the seabed will be leveled with graded crushed stone and protected with riprap and topped by armor stone for stability and scour protection

4.9 Maintenance

4.9.1 General Discussion

There will be a significantly greater operation and maintenance efforts associated with the source water substrate filtering collection system technology as compared to the existing shoreline intake. In fact, the level of maintenance needed can be so high and demanding that is not practical. The major maintenance concerns are plugging of the substrate filter media and encrustation or plugging of lateral openings. Due to the vast number of laterals, it will be not practical to manually clean the laterals off deposits/clogging using hydro jets or mechanical brushes.

4.9.2 Detailed Evaluation

- Periodic dredging may be required if a build-up of fine materials or organic debris is observed on the substrate.
- Periodic undersea video inspections of laterals will be needed to detect encrustation or plugging of lateral openings.
- Cleaning of laterals using water jet or brush techniques will be performed if encrustation or plugging is observed. For a large field of laterals this may not be practical.
- Limitations of a laterals inspection, maintenance and cleaning program can result in degradation of the lateral systems and eventual flow reduction to the receiving manifolds, may be even flow stoppage.
5. Conclusion

While the substrate infiltrating system offers significant reduction in entrainment and impingement by screening out fish egg/larvae, juvenile and adult fish and it complies with impingement mortality rule with less than 0.5 fps intake velocity, this technology is considered a fatal flaw when evaluated against the first-of-a-kind, the operability general site conditions, and maintenance criterion. The technology could be theoretically be scaled to meet the SONGS flow requirement but in practice it can not be recommended and there is no assurance a maintenance program can maintain the intake system efficiency at 100 percent. This is because, for a large field of horizontal laterals on a once through cooling system application such as for SONGS, the amount of maintenance needed is not practical or dependable. With likely vegetation growth, silt/clay presence and bio-growth, continuous flow though laterals can not be assured. If the ultimate efficiency at end of plant life become 50 percent or 25 percent efficiency, respectively, the magnitude of the lateral/filter installation needs to be twice and four times as large as currently presented in this report.

Therefore, due to the highly uncertain nature of the ultimate intake system efficiency and reliability for expected plant life and being a first of a kind technology in scale, it is recommended not to consider this technology further to Phase 2 of the study.

6. References

Annicchiarico, J., San Diego Air Pollution Control District (personal communications, April 6, 2012)

DeLeon, J., California State Lands Commission (personal communications, April 16, 2012)

Detmer, A., California Coastal Commission (personnel communications, April 17, 2012)

Enercon, Design of Large Organism Exclusion Device for San Onofre Nuclear Generating Station Units 2 and 3, May 2012.

Feasibility Study for Installation of Cooling Towers at San Onofre Nuclear Generating Station, Enercon Services, Inc.

Government of Western Australia (GWA), Environmental Offsets Position No. 9, January 2006

Jauregui, R., State Water Resources Board (personnel communications, May 2, 2012)

Lambert, J., U.S. Army Corps of Engineers (personal communication, April 11, 2012)

Luster, T., California Coastal Commission (personal communication, April 17, 2012)

Mache, Manon, San Diego County Department of Environmental Health (personal communications, May 1, 2012)

Morris, R., San Diego Regional Water Quality Control Board (personal communications, April 19, 2012)
Oggins, C., California State Lands Commission (personal communications, April 16, 2012)

PG&E, License Renewal Application Diablo Canyon Power Plant Unit 1 and 2 - Appendix E Applicants Environmental Report – Operating Renewal Stage (Chapter 4), November 2009

Rannals, L., USMC, Camp Pendleton (personnel communication, April 3, 2012)

SONGS, 2004. Saltwater Cooling System, System Description, Rev. 7

SONGS, 2008. Circulating Water System Description, SD-S023-280, Revision 14

Tetra Tech, California’s Coast Power Plants: Alternative Cooling System Analysis, Section N. San Onofre Nuclear Generating Station, 2008

USEPA, Proposed Regulations to Establish Requirements for Existing Cooling water Intake Structures at Existing Facilities, EPA – 820-F-11-002, March 2011
<table>
<thead>
<tr>
<th>Permit/Approval</th>
<th>Assessment</th>
<th>Permit Review Period (Preconstruction)</th>
<th>Critical Path</th>
<th>Fatal Flaw</th>
</tr>
</thead>
<tbody>
<tr>
<td>National Environmental Policy Act – BLM or Other Responsible Lead Federal Agency (Record of Decision, ROW)</td>
<td>Not applicable – the addition of the substrate filtering intake system does not constitute major federal action (federal land, funding).</td>
<td>Not applicable</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Department of Navy and United States Marine Corp – Camp Pendleton Lease</td>
<td>Not applicable - USMC Camp Pendleton and ultimately the Department of Navy approvals are needed to amend the lease for significant additions to the SONGS leased property or adjacent Camp Pendleton lands. The system should not demand any additional land, nor involve any exterior changes to existing structures.</td>
<td>Not applicable</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Section 404/10 Permit – U.S. Army Corps of Engineers (USACE)</td>
<td>Installation of the substrate filtering intake system, either via cut and fill processes or tunneling, will generate significant impacts to waters of U.S. and will involve work in navigable waters. Individual form of permit will be required.</td>
<td>120 days from complete application (goal) ~12 months (expected)</td>
<td>Potential</td>
<td>NA</td>
</tr>
<tr>
<td>Section 401 Water Quality Certificate – U.S. Army Corp of Engineers (USACE) & Regional Quality Control Board (RWQCB)</td>
<td>Section 401 permit process will parallel Section 404 permit process.</td>
<td>~12 months (expected)</td>
<td>Potential</td>
<td>NA</td>
</tr>
<tr>
<td>Nationwide Permit – U.S. Army Corps of Engineers</td>
<td>Not applicable - the installation of the substrate filtering intake system will generate significant impacts to waters of U.S. that cannot be addressed by the Nationwide permitting process.</td>
<td>Not applicable</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Section 7 Consultation with U.S. Fish and Wildlife Service (Endangered Species Act of 1973)</td>
<td>Installation of the substrate filtering intake system poses significant impacts marine habitat and aquatic life and may also serve to further reduce operational entrainment losses.</td>
<td>Connected to CEQA process</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Notice of Proposed Construction or Alteration – Federal Aviation Administration (FAA)</td>
<td>Not applicable - the addition of the addition of the substrate filtering intake system will not result in any exterior changes to existing structures.</td>
<td>Not applicable</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>
Table SWS-1.
Environmental Permit/Approval Assessment: Substrate Filtering Intake System
San Onofre Nuclear Generating Station (cont.)

<table>
<thead>
<tr>
<th>Permit/Approval</th>
<th>Assessment</th>
<th>Permit Review Period (Preconstruction)</th>
<th>Critical Path</th>
<th>Fatal Flaw</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notice of Proposed Construction or Alteration – FAA</td>
<td>Not applicable - the addition of the substrate filtering intake system will not demand the services of a crane or other construction equipment in excess of 200 feet agl.</td>
<td>Not applicable</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Multiple-Use Class L Limited Land Use Designated Utility Corridor – Bureau of Land Management (BLM) or Other Responsible Federal Agency</td>
<td>Not applicable - superseded by Department of Navy lease arrangement with SONGS. The addition of the substrate filtering intake system will not require any additional land, nor involve any exterior changes to existing structures</td>
<td>Not applicable</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>California Public Utility Commission (CPUC) Approval</td>
<td>CPUC will likely be the lead agency for the California Environmental Policy Act (CEQA) review process regarding the proposed substrate filtering intake system. The CEQA review process trigger development of a comprehensive EIR.</td>
<td>~12 months</td>
<td>Potential</td>
<td>No</td>
</tr>
<tr>
<td>California Energy Commission (CEC) – Final Decision</td>
<td>Not applicable – the addition of the substrate filtering intake will not result in a net power capacity (increase) > 50 MW, the threshold for CEC.</td>
<td>Not applicable</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Coastal Development Permit - California Coastal Commission/Local Coastal Programs</td>
<td>Applicable because of the considerable offshore and nearshore development within the coastal zone While there are no specific fatal flaws with the substrate filtering intake system, the significant construction-related marine habitat impacts and associated limited reduction in operational entrainment losses are likely to make for a contentious approval process.</td>
<td>Connected to CEQA (~12 months)</td>
<td>Potential</td>
<td>NA</td>
</tr>
<tr>
<td>Coastal Development Lease – California State Lands Commission</td>
<td>Applicable because of the considerable offshore development on subaqueous lands. While there are no specific fatal flaws with the substrate filtering intake system, the significant construction-related marine habitat impacts and associated limited reduction in operational entrainment losses are likely to make for a contentious approval process.</td>
<td>Connected to CEQA (~12 months)</td>
<td>Potential</td>
<td>NA</td>
</tr>
</tbody>
</table>
Table SWS-1.
Environmental Permit/Approval Assessment: Substrate Filtering Intake System
San Onofre Nuclear Generating Station (cont.)

<table>
<thead>
<tr>
<th>Permit/Approval</th>
<th>Assessment</th>
<th>Permit Review Period (Preconstruction)</th>
<th>Critical Path</th>
<th>Fatal Flaw</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regional Pollution Control District Permit to Construct (ATC) – San Diego Regional Air Pollution Control District</td>
<td>Not applicable - the substrate filtering intake system will not generate any additional operational air emissions.</td>
<td>Not applicable</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Regional Control District Permit to Operate (PTC) – San Diego Air Pollution Control District</td>
<td>Not applicable - the substrate filtering intake system will not generate any additional operational air emissions.</td>
<td>Not applicable</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Title V Federal Operating Permit – San Diego Air Pollution Control District and USEPA</td>
<td>Not applicable - the substrate filtering intake system will not generate any additional operational air emissions.</td>
<td>Not applicable</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Title IV Acid Rain Permit - USEPA</td>
<td>Not applicable - the substrate filtering intake system will not generate any additional operational air emissions.</td>
<td>Not applicable</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Dust Control Plan – San Diego Air Pollution Control District</td>
<td>Not applicable – construction of the substrate filtering intake system expected to disturb little or ground surfaces and so there is little potential to generate significant dust emissions. The substrate filtering intake system, itself, will not generate any additional air emissions.</td>
<td>Not applicable</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>NPDES Industrial Discharge Permit. – Regional Water Quality Control Board (RWQCB) and State Water Resources Board</td>
<td>The substrate filtering intake system will not change the cooling water withdrawal or blowdown rates. This system is not expected to demand any changes in the water treatment system. Any subsequent required alteration of the current NPDES permit will be minor.</td>
<td>~6 months</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Notice of Intent (NOI) – National Pollutant Discharge Elimination System General Permit for Storm Water Discharges Associated with Construction Activity, San Diego Regional Water Quality Control Board (RWQCB)</td>
<td>Not applicable – construction of the substrate filtering intake system is not expected to disturb ground surfaces or alter storm water management features onsite.</td>
<td>Not applicable</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>
Table SWS-1. Environmental Permit/Approval Assessment: Substrate Filtering Intake System

San Onofre Nuclear Generating Station (cont.)

<table>
<thead>
<tr>
<th>Permit/Approval</th>
<th>Assessment</th>
<th>Permit Review Period (Preconstruction)</th>
<th>Critical Path</th>
<th>Fatal Flaw</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storm Water Pollution Prevention Plan (SWPPP) – National Pollutant Discharge</td>
<td>Not applicable – construction of the substrate filtering intake system is not expected to disturb ground surfaces or alter storm water management features onsite.</td>
<td>Not applicable</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Elimination System General Permit for Storm Water Discharges Associated with</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Construction Activity – San Diego Regional Quality Control Board (RWQCB)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Notice of Intent (NOI) – National Pollutant Discharge Elimination System</td>
<td>Not applicable - SONGS NPDES permit addresses operational storm water. No changes to existing storm water management system are expected from addition of the substrate filtering intake system.</td>
<td>Not applicable</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>General Permit for Storm Water Discharges Associated with Industrial Activity,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>San Diego Regional Water Quality Control Board (RWQCB)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storm Water Pollution Prevention Plan (SWPPP) – National Pollutant Discharge</td>
<td>Not applicable - SONGS NPDES permit addresses operational storm water. There is no separate operational phase SWPPP.</td>
<td>Not applicable</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Elimination System General Permit for Storm Water Discharges Associated with</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Industrial Activity, Regional Quality Control Board (RWQCB)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2081 Permit for California Endangered Species Act of 1984 (Fish and Game Code,</td>
<td>The installation of the substrate filtering intake system is expected to impact marine habitat areas, but there are no threatened or endangered species in the immediate marine area.</td>
<td>Not applicable</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>§2050 through 2098) – California Department of Fish & Game (CDFG)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lake and Streambed Alteration Agreement - California Department of Fish & Game</td>
<td>Not applicable – the addition of the substrate filtering intake system will not results in impacts to jurisdictional streambed areas (waters of the state).</td>
<td>Not applicable</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>(CDFG)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waste Discharge Requirements (WDR) – San Diego Regional Water Quality Control Board</td>
<td>Not applicable – the addition of the substrate filtering intake system will not results in impacts to jurisdictional streambed areas (waters of the state).</td>
<td>Not applicable</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Section 106 Review – Office of Historic Preservation (OHP)</td>
<td>Not applicable - the substrate filtering system will not demand any additional land nor generate any new surface disturbances.</td>
<td>Not applicable</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Permit/Approval</td>
<td>Assessment</td>
<td>Permit Review Period (Preconstruction)</td>
<td>Critical Path</td>
<td>Fatal Flaw</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>--</td>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>Notification of Waste Activity - RCRA Hazardous Waste Identification Number (Small Quantity Generator) – Construction Phase - Department of Toxic Substance Control, USEPA, San Diego County Department of Environmental Health - California Unified Program Agency</td>
<td>Installation of the substrate filtering intake system could potentially require an ID number to support management or construction wastes, unless current SONGS ID will be used.</td>
<td>1-2 weeks</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Notification of Waste Activity - RCRA Hazardous Waste Identification Number (Small Quantity Generator) – Operation - Department of Toxic Substance Control, USEPA, San Diego County Department of Environmental Health - California Unified Program Agency</td>
<td>Not applicable – the addition of the substrate filtering intake system will allow for the continuing use of the existing hazardous waste ID number. There will be not impacts to the onsite hazardous treatment facility (oil separation unit).</td>
<td>Not applicable</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>SPCC Plan. - 40 CFR 112 and Aboveground Petroleum Storage Act – San Diego County Department of Environmental Health - California Unified Program Agency and USEPA</td>
<td>Not applicable – the addition of the substrate filtering intake system is not expected to require additional water treatment chemicals.</td>
<td>Not applicable</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Underground Storage Tank Permit - San Diego County Department of Environmental Health - California Unified Program Agency and State Water Resources Board</td>
<td>Not applicable - the addition of the substrate filtering intake system is not expected to require force the relocation of underground tanks.</td>
<td>Not applicable</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Risk Management Plan (Clean Air Act 112r) – San Diego County Department of Environmental Health - California Unified Program Agency and USEPA</td>
<td>Not applicable – the addition of the substrate filtering intake system will not require the addition of any new volatile chemicals.</td>
<td>Not applicable</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>
Table SWS-1.
Environmental Permit/Approval Assessment: Substrate Filtering Intake System
San Onofre Nuclear Generating Station (cont.)

<table>
<thead>
<tr>
<th>Permit/Approval</th>
<th>Assessment</th>
<th>Permit Review Period (Preconstruction)</th>
<th>Critical Path</th>
<th>Fatal Flaw</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emergency Planning and Community Right-to-Know Act (EPCRA) – 40 CFR 311 & 312 - San Diego County Department of Environmental Health - California Unified Program Agency and USEPA</td>
<td>Not applicable – the addition of the substrate filtering intake system is not expected to require any new chemicals are stored in quantities that exceed applicable thresholds (for example, 10,000 lbs for hazardous chemicals, 500 lbs for extremely hazardous chemicals).</td>
<td>Not applicable</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Land Use Zones/Districts Approval - San Diego County Department of Planning and Land Use</td>
<td>Not applicable - the SONGS property is entirely situated on federal property (USMC Camp Pendleton property) and the offshore subaqueous lands are the responsibility of the California State Lands Commission.</td>
<td>Not applicable</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Conditional Use Plan Amendment - San Diego County Department of Planning and Land Use</td>
<td>Not applicable - the SONGS property is entirely situated on federal property (USMC Camp Pendleton property) and the offshore subaqueous lands are the responsibility of the California State Lands Commission.</td>
<td>Not applicable</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Grading Plan Approval or Permit - San Diego County Department of Public Works & Planning and Land Use</td>
<td>Not applicable - the SONGS property is entirely situated on federal property (USMC Camp Pendleton property) and the offshore subaqueous lands are the responsibility of the California State Lands Commission.</td>
<td>Not applicable</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Erosion and Sediment Control Plan (Rain Event Action Plan) - San Diego County Department of Public Works</td>
<td>Not applicable - similar to the construction phase SWPPP. No separate submittal is expected to be directed to the county, since the SONGS property is entirely situated on federal property (USMC Camp Pendleton property) and the offshore subaqueous lands are the responsibility of the California State Lands Commission.</td>
<td>Not applicable</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Building Permit (including plumbing and electrical) – San Diego County Building Division</td>
<td>Not applicable because the SONGS property is entirely situated on federal property (USMC Camp Pendleton property) and the offshore subaqueous lands are the responsibility of the California State Lands Commission.</td>
<td>Not applicable</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Permit/Approval</td>
<td>Assessment</td>
<td>Permit Review Period (Preconstruction)</td>
<td>Critical Path</td>
<td>Fatal Flaw</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>---</td>
<td>---------------</td>
<td>------------</td>
</tr>
<tr>
<td>Domestic Water Supply Permit (public potable water) - San Diego County Department of Environmental Health</td>
<td>Not applicable – no new potable water systems are planned.</td>
<td>Not applicable</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>San Diego County Well Water Permit - San Diego County Department of Environmental Health</td>
<td>Not applicable – no new wells to be developed.</td>
<td>Not applicable</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>California Department of Transportation (Caltrans) – Oversize/Overweight Vehicles</td>
<td>Not applicable – the substrate filtering intake components and associated piping are expected to be oversized.</td>
<td>Not applicable</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Caltrans Heavy Haul Report (transport and delivery of heavy and oversized loads)</td>
<td>Not applicable - the substrate filtering intake components and associated piping are expected to be oversized.</td>
<td>Not applicable</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Resource Conservation (RC) Land Use Management Approval</td>
<td>Not applicable - while local municipality rules may supersede this regional land use/watershed protection-related project approval process, this is not the case for SONGS.</td>
<td>Not applicable</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Temporary Power Pole – Local municipality or San Diego County Public Works Department</td>
<td>Not applicable - the installation of the substrate filtering intake system is not expected to require local power poles.</td>
<td>Not applicable</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Fire Safety Plan Approval, Certificate of Occupancy, Flammable Storage – San Diego County Fire Department</td>
<td>The addition of substrate filtering intake system may require minor revisions to the existing Fire Safety Plan.</td>
<td>1 month for approval of Fire Safety Plan.</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Sewer and Sewer Connections – San Diego County Environmental Health Department</td>
<td>Not applicable - No new sanitary connections are envisioned.</td>
<td>Not applicable</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Road Crossing or Encroachment Permit (Caltrans)</td>
<td>Not applicable – the addition of substrate filtering intake system will not pose any road crossing or encroachment issues.</td>
<td>Not applicable</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>
Table SWS-2. Offsetting Impacts for the Substrate Filter Intake System
San Onofre Nuclear Generating Station

<table>
<thead>
<tr>
<th>Category</th>
<th>Impacts – Construction</th>
<th>Impacts – Operations</th>
<th>Magnitude</th>
<th>Construction Impact Significance</th>
<th>Operation Impact Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air</td>
<td>Minor increase in greenhouse gases, NOx, volatile organic compound, CO, and particulate matter from construction equipment, material deliveries, commuting workforce. Increased greenhouse gas emissions from replacement fossil-fuel generation to offset the short term loss of SONGS generation during the plant outage to install the substrate system.</td>
<td>While the substrate filtering system could result in some reduction of plant efficiency, but there should be no significant changes in overall air quality impacts or greenhouse gas emissions during operation.</td>
<td>Insignificant temporary increase in CO2 greenhouse gas emissions from temporary increase in commuting traffic during associated plant outage.</td>
<td>Small Negative</td>
<td>None</td>
</tr>
<tr>
<td>Surface Water</td>
<td>Construction activities are primarily marine-based and they have the potential to generate significant water quality impacts from disruption of the intertidal and subtidal lands. Cut and fill installation practices will be more disruptive than the tunneling option.</td>
<td>Operational cooling water withdrawal and discharge rates will be remain largely unchanged.</td>
<td>Not applicable</td>
<td>Large Negative - cut and fill Moderate Negative - tunneling</td>
<td>None</td>
</tr>
<tr>
<td>Groundwater</td>
<td>No additional groundwater resources will be needed to support construction.</td>
<td>No additional groundwater resources will be needed to support operations.</td>
<td>Not applicable</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Waste</td>
<td>A significant marine sediment wastes will be generated to facilitate installation of the offshore piping system.</td>
<td>No increase in waste generation is expected from maintenance activities on the substrate filtering system.</td>
<td>Marine Spoil Wastes (pending subsequent phase of assessment)</td>
<td>Moderate Negative</td>
<td>None</td>
</tr>
</tbody>
</table>
Table SWS-2. Offsetting Impacts for the Substrate Filter Intake System
San Onofre Nuclear Generating Station (cont.)

<table>
<thead>
<tr>
<th>Category</th>
<th>Impacts – Construction</th>
<th>Impacts – Operations</th>
<th>Magnitude</th>
<th>Construction Impact Significance</th>
<th>Operation Impact Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noise</td>
<td>Buffer areas around offshore construction zones will serve to reduce noise impacts to offshore noise receptors (watercraft) and shoreline recreational areas, but there is the potential for impacts to the shoreline areas.</td>
<td>Operational noise levels are expected to be largely unchanged as a result of the substrate filtering system.</td>
<td>Noise impacts above the 70 dBA threshold value may occur along shoreline during construction.</td>
<td>Small negative</td>
<td>None</td>
</tr>
<tr>
<td>Land Use</td>
<td>Construction activities are primarily offshore and they may temporarily preclude normal recreational activities in nearby waters.</td>
<td>The substrate filtering system piping represent a change in land use of the marine bed, but it will probably not pose any impacts to water borne activities.</td>
<td>Work schedule (pending subsequent assessment)</td>
<td>Small negative</td>
<td>Small negative</td>
</tr>
<tr>
<td>Marine Ecological Resources</td>
<td>Construction will potentially generate significant, temporary water quality and marine habitat impacts (localized turbidity impacts and loss of marine habitat). These impacts will be more significant for the cut and fill installation option, then for the tunneling option.</td>
<td>Further reduces impingement and entrainment impacts (deeper, less biological active zone) that are already partially mitigated. Overall water withdrawal or discharge rates are unchanged so thermal discharge impacts to aquatic life will remain largely unchanged</td>
<td>Disturbed area (pending subsequent assessment)</td>
<td>Large Negative – cut and fill</td>
<td>Large Positive</td>
</tr>
<tr>
<td>Terrestrial Ecological Resources</td>
<td>Since construction will be mostly offshore, there is no potential to disturb land-based natural habitats or other areas with significant ecological value or sensitivity.</td>
<td>No permanent loss of natural habitat areas or other areas with significant ecological value or sensitivity.</td>
<td>Not applicable</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Cultural & Paleontological Resources</td>
<td>Since construction will be mostly offshore, there is little or no potential to discover and/or impact new cultural or paleontological resources.</td>
<td>No permanent loss of cultural or paleontological resources.</td>
<td>Not applicable</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>
Table SWS-2. Offsetting Impacts for the Substrate Filter Intake System
San Onofre Nuclear Generating Station (cont.)

<table>
<thead>
<tr>
<th>Category</th>
<th>Impacts – Construction</th>
<th>Impacts – Operations</th>
<th>Magnitude</th>
<th>Construction Impact Significance</th>
<th>Operation Impact Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visual Resources</td>
<td>All construction equipment will be low profile, that is, not extend above the height of local facility structures.</td>
<td>The substrate filtering system will be submerged and present no permanent change in external profile of the facility.</td>
<td>Not applicable</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Transportation</td>
<td>Increased traffic from the construction workforce and construction deliveries could temporarily worsen the existing level of service on local roads during the plant outage.</td>
<td>The deepwater system will not significantly alter the current number of plant deliveries or operating personnel.</td>
<td>Workforce and Level of Service (pending subsequent phase of assessment)</td>
<td>Small Negative</td>
<td>None</td>
</tr>
<tr>
<td>Socioeconomic Issues</td>
<td>While there will be some additional construction-related employment opportunities, these opportunities are not expected to significantly strain local community resources (for example, housing, school, fire/police services, water/sewer).</td>
<td>Maintenance staff levels are expected to be largely unchanged in response to the substrate filtering system.</td>
<td>Workforce (pending subsequent phase of assessment)</td>
<td>Small Positive</td>
<td>None</td>
</tr>
</tbody>
</table>

Notes: Levels of Impact of Significance
Small: Environmental effects are not detectable or are minor such they will not noticeably alter any important attribute of the resource.
Moderate: Environmental effects are sufficient to noticeably alter, but not significantly change the attributes of the resource.
Large: Environmental effects are clearly noticeable and are sufficient to change the attributes of the resource.