

FOR INPORMATION ONLY. DO NOT USE FOR PRocUREMENT, FABRICATION OR CONSTRUCTION
BECHTEL CONFIDENTIAL. © 2013 BECHTBL POWER CORPORATION (BECHTEL). CONTALNS POWER CORPORATION (BECHTEL). CONTA
INFORMATION CONFIDENTIAL AND/OR INFORMATION CONFIDENTIAL AND/OR
PROPRIETARY TO BECHTEL AND ITS
Proprietary to bechtel and ITS
afplliated companies that is not to be USED, DISCLOSED, OR REPRODUCED IN ANY ORM BY ANY NON-BECHTEL PARTY WITHOUT uechtris prior written permisison ali BECHTLLS PRIOR
RIGETS RESEVVED.

[^0]notes: tenew hiectrical systen for unit 2 is identical efrerences:

CIECTIICAL EOUIPMENT REOUIRED :

2.) 2 WINDING TRANSFORMERS
-2
.) 13.8 gy switchegar (oprrated at 12 kV)
0.48 ky ucc

CUANTTY; RATING : 2; 1300A, G5LA
NOTE: CT MCC LOAD 1 and CT MCC LDAD 2 In YENDors
COPE. TIEREFORE, NOT COUNTED MERE.

NOTES:

1. Water flow rates are based on the specified process conditions for the plant configuration shown on Sheet 1 and are shown in gpm unless otherwise specified. These cases may or may not represent the appropriate design flow for a particular stream. Therefore, it is not appropriate to reference this drawing alone as a basis for establishing system equipment or line sizing design flows.
2. MMF Backwash is estimated to be 5% of the seawater influent.
3. Permeate from the SWRO is estimated to be 45% of the influent flow.
4. Reclaimed water from the San Luis Obispo WWTP is estimated to be 2000 gpm in both the summer and winter. This was the average daily recycled water availability from this facility in 2009.
5. Reclaimed water from the Morro Bay / Cayucos WWTP is estimated to be 800 gpm in both the summer and winter. This was the average water availability in 2011
6. Clarifier underflow is estimated to be 3% of the reclaim water clarifier influent flow.
7. Cooling tower drift is estimated to be 0.0005% of the circulating water flow ($864,300 \mathrm{gpm}$), which is 4 gpm .
8. Cooling tower cycles of concentration is estimated to be 8 . It is assumed to be limited by the 31 ton/year presumed limit for PM-10 emissions in the cooling tower drift.

...|ftgldwglDCPP\m6kwt001.pid 6/25/2013 3:11:15 PM

.|ftgldwgIDCPP\m6kwl002.pid 7/25/2013 2:52:43 PM

.|ftgldwglDCPPIm6kwl004.pid 9/10/2013 12:55:24 PM

tgldwgIDCPPIm6kwl001.pid 7/25/2013 2:52:13 PM

JUOTC - DIABLO CANYON

Preliminary Mechanical Equipment List

Dry Natural Draft Cooling
25762-110-MOX-YA-00001

00 C	$9 / 12 / 2 \cdot 13$	Re-lssued for Estimate Report	$R \rho$		$R P$
OOB	$7 / 24 / 2013$	Issued for Estimate Report	RP	-	RP
OOA	$7 / 10 / 2013$	Issued for Estimate	RP	-	RP
Rev	Date	Reason for Revision	Orignator	Checked	Approved

Bechtel Confidential. Copyright 2013 Bechtel Power Corporation. All rights reserved.

System Codes

PF Fire Protection
WL Circulating Water
WO Sea Water

Commodity Codes
ME Heat Exchange Component (Cooling Tower, Heat Exchanger)
MP
MT

Pump
Tank

NOTES:

1. Commodity Codes shown are Bechtel standard codes. Bechtel Commodity codes have beens assigned to exisiting plant equipment numbers to aid in equipment list sorts.

Oumantly	$\left\|\begin{array}{\|c\|l\|ccr} \\ \text { Quote to } \\ \text { Used } \end{array}\right\|$	Unit	$\begin{gathered} \text { sye } \\ \text { Coco } \end{gathered}$	$\begin{aligned} & \text { Com. } \\ & \text { costo } \end{aligned}$	Seq. No.	$\begin{array}{\|c\|} \text { Nowl } \\ \text { Exieting } \end{array}$	Deecription	Type	Capacity (\%) - Por Unit	$\begin{array}{\|l\|} \hline \text { Drive Motor } \\ 8 \mathrm{kro} \\ \text { HP (or kW) } \\ \hline \end{array}$	Commente	Rev.
1	$x^{\text {xjam anote }}$	1	WL	MP	0007 A	Now	CRRCULATING WATER PUMP - Unit 1	Fabricatod vochee, 215,700 gem, 115 tITDG	1×25\%	7250	Pump to ba bocaced ${ }^{\text {a }}$ new Unit 1 have	008
1	xymmout	1	WL	MP	0018	Now	CRCULATNG WATER PUMP-UnTI	Foblctated votte, 215,700 $\mathrm{pm}, 115 \mathrm{th}$ TDG	1 $\times 258 \%$	7250	Pump to be bocked in new Unit 1 houso	008
1	Xytem auth	1	WL	MP	001 C	Now	CRCULATNG WATER PUMP - Uni 1		1×25\%	7250		008
1	xyen cuote	1	WL	${ }_{\text {NP }}$	0010	Now	CRCULATNG WATER PUMP - URA 1		1 $\times 25 \%$	7250		008
1	$x^{\text {x }}$ yem aude	2	WL	NP	001A	Now	CRCULATNG WATER PUNP - Unt 2		1×25\%	7250		008
1	Xy mom coute	2	WL	${ }_{\text {MP }}$	${ }^{0} 0018$	Now	CRCULATNG WATER PUMP - Und 2	Frabicated votre, $215,700 \mathrm{gmm}, 115$ HTDG	1 $\times 25 \%$	7250	Punp to ba bocated t new Unit 1 haus	008
1	Xyemmout	2	WL	NP	001 C	Now	CRACULATNG WATER PUMM - Unt 2	Farmicated wotho, $215,700 \mathrm{pmm}, 115 \mathrm{~T}$ TDGG	1×25\%	7250		008
1	Xytem Quote	,	WL	MP	0010	Now	CRCULATNG WATER PUMP - UTH12	Frabrated volte, 215,700 pomen, 115 flDG	1 $\times 25 \%$	7250	Pump ro be located C new Unk 1 haxa	008
1	GEA - CT	1	wL	ME	001A	Now	NATURAL DRAFT COOLING TOWER - Uni 1	Hypertovic, metal tower, 500 It dlameter	1 $\times 33 \%$			00A
1	GEA-CT	1	WL	ME	0018	Now	NATURAL DRAFT COOLING TOWER - Unh 1	Hypertocre, metal tower, 590 It diameter	1 $\times 33 \%$			00A
1	GEA-CT	2	WL	ME	0018	Now	Natural draft COOLING TOWER - Unh 2	Hypertocte, metal tower, 590 It demeter	$1 \times 33 \%$			00 A
1	GEA - ct	2	wL	ME	001 C	Now	NATURAL DRAFT COOLING TOWER - UnH 2	Hypertosic, metal tower, 590 It dilamelar	$1 \times 33 \%$		Tower may be bcected equecent to ench other with midimw apacha	D0A
1	GEA.CT	1	WL	MP		Now	COOLING TOWER STORATE TANK TRANSFER PUMPS - UNT 1	T8D	1 $\times 25 \%$	100 hp	Mncused in Tower vendor's necpa	${ }^{00 A}$
1	GEA-CT	1	WL	MP		New	COOLING TOWER STORATE TANK TRANSFER PUMPS - UNTI 1	T8D	1 $\times 25 \%$	100 hp	Incuded in Towe vendors scape	00A
1	GEA - CT	1	WL	MP		New	COOLING TOWER STORATE TANK TRANSFER PUMPS - UNTT 1	т80	1 $\times 25 \%$	100 hp	Inculud in Town wemors scope	00 A
1	GEA - ct	1	WL	MP		Now	COOLING TOWER STORATE TANK TRANSFER PUMPS - UNTT 1	TBD	1 $\times 25 \%$	100 hp		00A
1	GEA-CT	2	wL	MP		New	COOLNG TOWER STORATE TANK TRANSFER PUMPS - UNT 2	TBD	1×25\%	100 hp	mavised i Towe vendor's	00A
1	GEA-CT	2	wL	MP		Now	COOLNG TOWER STORATE TANK TRANSFER PUMPS - UNTT 2	TBD	1 $\times 25 \%$	100 hp	Inculed in Tower vendor's scopo	00A
1	GEA-CT	2	wL	MP		Now	COOLING TOWER STORATE TANK TRANSFER PUMPS - UNIT 2	TBD	1×25\%	100 hp		OOA
1	GEA - CT	2	WL	mp		New	COOLING TOWER STORATE TANK TRANSFEA PUMPS - UNTT 2	TBD	1 $\times 25 \%$	100 hp		00A
1	GEA - CT	1	WL	MT		Now	DRAIN TANKS FOR COOLING TOWERS - UNTT 1	Underground, 53,000 gal, 7 per tower, Dimensions TBD	1 $\times 7 \%$	N/A	tincused in Tower vendot's scope	00A
1	GEA - CT	1	WL	MT		New	DRAIN TANKS FOR COOLING TOWERS - UNTT 1	Underground, 53,000 gal, 7 per tower, Dimenstons TBD	1×7\%	N/	nexiubed h Towe vamders scope	00 A
1	GEA-CT	1	WL	MT		Now	DRAN TANKS FOR COOLING TOWERS - UNIT 1	Underground, 53,000 gal, 7 per tower, Dimensions TBD	1×7\%	N/A	notuced in Towr vendors soppe	00A
1	GEA - CT	1	WL	MT		Now	DRAN TANKS FOR COOLING TOWERS - UNTT 1	Underground, 53,000 gal, 7 per tower, Dimensions TBD Dinnensions TBD	1×7\%	NA	Mratused in Towe vendors scopa	00A
1	GEA - GT	1	WL	MT		Now	DRAN TANKS FOR COOLING TOWERS - UNTT 1	Underground, 53,000 gal, 7 per tower, Dimensions TBD	1×7\%	NA	Mrevided in Towa vemdor's socpa	00A
1	GEA-CT	1	WL	MT		Now	DRAN TANKS FOR COOLNG TOWERS - UNIT 1	Underground, 53,000 gall, 7 per tower, Dknensions TBD	1x7\%	NA		OOA
1	GEA-CT	1	WL	mT		Now	DRAIN TANKS FOR COOLING YOWERS - UNIT 1	Underpround, 53,000 gal, 7 per tower. Dimensions TBO	1×7\%	N/A	movuce in Towe vensor's socpa	00A
1	GEA - CT	1	WL	м		New	DRAIN TANKS FOR COOLING TOWERS - UNTT 1	Underground, 53,000 gall, 7 per tower, Dimensions TBD	1×7\%	NA	trovied in Tower ventors scope	00A
1	GEA - GT	1	WL	MT		New	DRAIN TANKS FOR COOLING TOWERS - UNTT 1	Underground, 53,000 gal, 7 per tower. Dkmenstons TBD	1×7\%	NA	Mncured in Towar vendor's scope	00A
1	GEA - GT	1	WL	mT		Now	DRAIN TANKS FOR COOLING TOWERS - UNTT 1	Underground, 53,000 gal, 7 per tower. Drnenstons TBD	1×7\%	NA	matube in Town vendor's scape	OOA
1	GEA - CT	1	WL	MT		Now	DRAIN TANKS FOR COOLING TOWERS - UNIT 1	Underground, 53,000 gal, 7 per tower. Dimenstons TBD	1x7\%	NA	inculued h Tower vendors cocpe	OOA
1	GEA - CT	1	WL	MT		Now	DRAN TANKS FOR COOLNG TOWERS - UNT 1	Underground, 53,000 gal, 7 per tower, Dimensions TBD	1×7\%	NA	Incured in Tower vendors scope	00A
1	GEA-CT	1	WL	MT		Now	DRAIN TANKS FOR COOLING TOWERS - UNTI 1	Underynound, 53,000 gal, 7 per tower, Dimensions TBD	1×7\%	NA	motured in Towar vendor's scape	00A
1	GEA-CT	1	wL	MT		Now	DRAIN TANKS FOR COOLING TOWERS - UNT 1	Undenground, 53,000 gal, 7 per tower. Dimenstons TBD	1×7\%	N/	Inclused in Towe vendor't seope	00A

Quantly	$\begin{array}{\|l\|} \text { Biddor Quote to be } \\ \text { Used } \end{array}$	Unit	$\begin{gathered} \text { Sys } \\ \text { cod } \end{gathered}$	com. Code '	$\begin{aligned} & \text { Seq. } \\ & \text { No. } \end{aligned}$	Now/ Exdethng	Description	Typo	Capecity (\%) - Pet Unit	$\begin{array}{\|c\|} \hline \text { Drive Motor } \\ \text { Size } \\ \text { HP (or } \mathrm{kW}) \\ \hline \end{array}$	Commerte	Rev.
1	GEA - ct	2	WL.	MT		New	DRAN TANKS FOR COOLNG TOWERS - UNTT 2	Underground, 53,000 gal, 7 per tower, Dimenstons TBD	1×7\%	NA	Inctubed in Tower vensot's scope	00A
1	GEA - CT	2	WL	MT		Now	DRAN TANKS FOR COOLING TOWERS - UNTT 2	Underground, 53,000 gal, 7 per tower. Dimensions TBD	1 $\times 7 \%$	N/A	Indudad in Tower vemdorts meopo	00A
1	GEA - CT	2	WL	MT		New	DRAIN TANKS FOR COOLING TOWERS - UNTT 2	Underground, 53,000 gal, 7 per tower, Dimenstons TBD	1×7\%	NA	Moludad in Towe vendor's	00A
1	GEA - CT	2	WL	MT		New	DRAIN TANKS FOR COOLING TOWERS - UNT 2	Underground, 53,000 gal, 7 per tower, Dimenstons TBD	1×7\%	NA	Incursed in Tower vendor's soppe	004
1	GEA - CT	2	WL	MT		Now	DRAN TANKS FOR COOLING TOWERS - UNIT 2	Underground, 53,000 gal, 7 per tower, Dimenstons TBD	1×7\%	N/A	Mrevided in Tawe vendors seope	${ }^{00 A}$
1	GEA - ct	2	WL	MT		Now	DRAN TANKS FOR COOLNG TOWERS - UNIT 2	Underground, 53,000 gal, 7 per tower, Dimenstons TBD	1 $\times 7 \%$	N/A	Inoubed in Tower vendor's scope	00A
1	GEA - CT	2	WL	мт		Now	DRAIN TANKS FOR COOLNG TOWERS - UNTT 2	Underground, 53,000 gal, 7 per towior, Dimenstors TBD	1 $\times 7 \%$	N/A	Mravised in Tower vemotres scope	00A
1	GEA-CT	2	wL	MT		Now	DRAIN TANKS FOR COOLNG TOWERS - UNTT 2	Underpround, 53,000 gal, 7 per tower, Dimensions TBD	1×7\%	N/A	Indided in Tower vendors seope	00A
1	GEA-CT	2	WL	MT		New	DRAIN TANKS FOR COOLNG TOWERS - UNIT 2	Underground, 53,000 gal, 7 per tower, Dimensiors TBD	1×7\%	NA	Manced in Towe vendors scape	004
1	GEA - CT	2	WL	MT		Now	DRAIN TANKS FOR COOLING TOWERS - UNT 2	Underground, $53,000 \mathrm{gal}$, 7 per tower, Dimenstons TBD	1 7 \%	N/A	Inouxted in Tower vendors scope	OOA
1	GEA-CT	2	WL	MT		Now	DRAN TANKS FOR COOLING TOWERS - UNIT 2	Underground, 53,000 gal, 7 per tower, Dimensions TBD	1 $\times 7 \%$	NA	hackuded in Tower vandoris ceope	008
1	GEA - CT	2	WL	MT		New	DRAN TANKS FOR COOLING TOWERS - UNIT 2	Underground, 53,000 gal, 7 per tower, Dimenstors TBD	1×7\%	NA	ensuded in Towe vendors scope	00A
1	GEA - CT	2	WL	MT		Now	DRAN TANKS FOR COOLNG TOWERS - UNT 2	Underground, 53,000 gal, 7 per tower, Dimenstors TBD	1 $\times 7 \%$	N/A	moluded in Towe vendorts scape	00A
1	GEA-CT	2	WL	MT		Now	DRAN TANKS FOR COOLNG TOWERS - UNIT 2	Underpround, $53,000 \mathrm{gal}, 7$ per tower, Dimensions TBD	1×7\%	N/A	Inculded in Towe vendor's	00A
1	GEA - CT	1	WL	MT		Now	HEAD TANKS FOR COOLING TOWERS - UNTT 1	Underground, 12,500 gal, 3 per tower, Dimensions TBD	1 $\times 16.7$ \%	N/A	Mreduded in Towa vendoras scope	00A
1	GEA - CT	1	wL	мT		Now	HEAD TANKS FOR COOLING TOWERS - UNT 1	Underground, 12,500 gal, 3 per tower, Dfmenstions TBD	1 $\times 16.7$ \%	NA	mokuse in Towe vendors sexpe	00A
1	GEA - CT	1	WL	MT		Now	HEAD TANKS FOR COOLING TOWERS - UNT 1	Underground, 12,500 gal, 3 per tower. Dfmentions TBD	1 $\times 16.7$ \%	N/A	thacuded in Town rumbots socpe	00A
1	GEA - CT	1	WL	MT		Now	HEAD TANKS FOR COOLING TOWERS - UNTT 1	Underground, 12,500 gal, 3 per tower, Dtmensions TBD	1 $\times 16.7 \%$	N/A	Incurded in Tower vendoris scope	004
1	GEA - CT	1	WL	MT		Now	HEAD TANKS FOR COOLNGG TOWERS - UNT 1	Underground, 12,500 gal, 3 per tower, Dimensions TBD	1 $\times 18.7$ \%	N/A	metuded in Towa vendor's cocpe	00A
1	GEA-CT	1	wL	MT		Now	HEAD TANKS FOR COOLNG TOWERS - UNIT 1	Underground, 12,500 gal, 3 per fower, Dinmenstons TBD	1 $\times 16.7$ \%	NA	netured in Town vemberas seppe	00A
1	GEA-CT	2	WL.	MT		Now	HEAD TANKS FOR COOLNG TOWERS - UNT 2	Underground, 12,500 gal, 3 per tower. Dimensions TBD	1 $\times 16.7 \%$	NA	Mowluse in Town vendors scope	00A
1	GEA-CT	2	WL	MT		Now	HEAD TANKS FOR COOLNG TOWERS - UNTT 2	Underground, 12,500 gal, 3 par tower, Dimensions TBD	1 $\times 16.7$ \%	NA	Incuced in Towa vendor's socpe	00A
1	GEA-CT	2	WL	MT		New	HEAD TANKS FOR COOLING TOWERS - UNT 2	Underground, 12,500 gal, 3 per tower. Dimenstons TBD	1 $\times 16.7$ \%	N/A	Lnotuded In Towa vendors scepe	00A
1	GEA - CT	2	WL	MT		Now	HEAD TANKS FOR COOLING TOWERS - UNT 2	Underground, 12,500 gal, 3 per tower. Dimenaions 180	1 $\times 18.7$ \%	NA	Incuded in Towa versores soxpe	00A
1	GEA - CT	2	WL	MT		Now	HEAD TANKS FOR COOLING TOWERS - UNIT 2	Underground, 12,500 gal, 3 per tower, Dimensions TBD	1 $\times 18.7 \%$	N/A	Inckided in Tower vendor's scope	00A
1	GEA-CT	2	WL	MT		Now	HEAD TANKS FOR COOLING TOWERS - UNIT 2	Underground, 12,500 gal, 3 per tower, Dimensions TBD	1 $\times 16.7$ \%	N/A	Inctured in Towe vendor's scape	00A
1	GEA - CT	1	WL.	MP		Now	COOLING TOWER WASH SYSTEM CLEANNG PUMP - UNTT 1		1 $\times 50 \%$	30 mp	matured in Town vendor's scapa	00A
1	GEA-CT	1	WL	MP		Now	COOLNG TOWER WASH SYSTEM CLEANNG PUMP - UNT 1		1 \times 50\%	30 hp	Inctuded in Tower vendors scape	00A
1	GEA - CT	2	WL	MP		Now	COOLING TOWER WASH SYSTEM CLEANING PUMP - UNTT 2		1 $\times 50 \%$	30 hp	inctuded in Town vendor's scope	00A

Qumaraty	Bldder Quote to be Used	Unit	$\begin{gathered} \text { sye } \\ \text { code } \end{gathered}$	$\begin{gathered} \text { Com. } \\ \text { Codo } \end{gathered}$	Seq. No.	$\underset{\text { Exdath }}{\substack{\text { Nowl }}}$	Deseription	Type	$\begin{aligned} & \hline \text { Capectiy } \\ & \text { (\%)- Per } \end{aligned}$ Undt	Drive Motor Slze HP (or KW)	Comments	Rev.
1	GEA - CT	2	wL	MP		Now	COOLING TOWER WASH SYSTEM CLEANING PUMP - UNT 2		1 $\times 50 \%$	30 hp	Inecuded in Tower vemotos sccpo	004
1	Ethnetha	1	WL	${ }_{\text {MP }}$	00024		COOL MG TOWER MAKEUP PUMP - UNTIT 1		$1 \times 100 \%$	25	Whata co from extatrap iant water source	00 A
1	Esthastin	1	WL	MP			COOLNG TOWER MAKEUP PUUP-UNTT 1	Hotitortal Certhrul 500 pem, 100 TUH	1 $\times 100 \%$	25	mata up from exxtifop phan water source	${ }^{0} 00 \mathrm{~A}$
1	Extmosing	2	WL	MP	0022		COOLNG TOWER MAKEUP PUMP-UNIT2		$1 \times 100 \%$	25	Maka up from exxating planh water source	00 A
1	Extmatha	2	WL	MP	0028		COOLNG TOWER MAKEUP PUMP-UNIT 2	Hortrontid Centith	1 $\times 100 \%$	25	Muke Lp from extity phan water source	00 A
1	π-Gouldal Flowserve	1	wo	MP	001A	Now	SALT WATER COOLNG PUMP - UNTT 1	Vertical Tuthe: 10,200 gpm. TOH: 100 teet	1 $\times 100 \%$	350	New pumps to be locstad in intake structure to service only the savise water heat adoengers and the condensete coolv	008
1	$\begin{aligned} & 7 \pi \text { Goulds! } \\ & \text { Flowneme } \end{aligned}$	1	wo	MP	0018	Now	SALT WATER COOLING PUMP - UNIT 1	Vertical Tubine: $10,200 \mathrm{gPm}$, TDH: 100 feet	1 $\times 100 \%$	350	New purnpa to ba locetigd in intake structure to stervice only the anvice water heat exhengers and the condenate cocier	008
1	TT-Goulds Flowserve	2	wo	MP	001A	Now	SALT WATER COOLNG PUMP - UNTT 2	Vertical Turtime: $10,200 \mathrm{gpm}$, TDH: 100 teet	1 $\times 100 \%$	350	New pumpe to be locitad in intake otructure to eervice only the sarvice water heat edengers and the corndenstate coclem	008
1	$\begin{gathered} \text { Tm-Goukst } \\ \text { Flowserve } \end{gathered}$	2	wo	MP	0018	Now	SALT WATER COOLING PUMP - UNTT 2	Vertical Tudme: $10,200 \mathrm{gpm}$, TDH: 100 teet	1 $\times 100 \%$	350	New purnpe to be loceted in intake structure to survice only the service white heat axhangers Find the condensele cocler	008
1	GEA-CT	1	WL	HV		Now	TOWER MOV ISOLATKON VALVE - UNTT 1	MOV Butterfiy, 4 per tower sector $\times 11$ sectors per fower $=88$ per unt	1x.57\%			00A
1	GEA-CT	2	WL	HV		Now	TOWER MOV ISOLATION VALVE - UNTT 2	MOV Butherfit, 4 por towar sector $\times 11$ sectors per tower $=88$ per unt	1×.57\%			00 A
1	GEA-CT	1	WL	HV		Now	MOV MAKE-UP VALVE - UNT 1	Mov Butionti, 2 per tower (one to doaning tark, one to storage	1 $\times 25 \%$			00A
1	GEA-CT	1	WL	HV		New	MOV MAKE-UP VALVE - UNIT 1	MOV Butterfly, 2 per tower (one to cleaning tank, one to storage tanks)	1 $\times 25 \%$			COA
1	GEA-CT	1	wL	HV		Now	MOV MAKE-UP VALVE - UNT 1	MOV Butlerily, 2 per tower (one to claaring tark, ons to storage tanks)	1 $\times 25 \%$			OOA
1	GEA-CT	1	wL	HV		Now	MOV MAKE-UP VALVE-UNTT 1	MOV Butterlly, 2 per tower (one to clearing tank, one to storage tanks)	1 $\times 25 \%$			O0A
1	gea-ct	2	WL	HV		Now	MOV MAKE-UP VALVE - UNIT 2	MOV Butheritly, 2 per tower (ons to clearing tank, one to storage	1 $\times 25 \%$			00A
1	GEA-CT	2	WL	HV		Now	MOV MAKE-UP VALVE-UNIT 2	MOV Butterlit, 2 per tower (one to claanting tark, one to storage tanks)	1 $\times 25 \%$			OOA
1	GEA.CT	2	WL	HV		Now	MOV MAKE-UP VaLVE-UNTT 2	MOV Butterfly, 2 per tower (one to cleaning lank, one to storege tanks)	$1 \times 25 \%$			OOA
1	GEA - CT	2	WL	HV		Now	MOV MAKE-UP VALVE - UNIT 2	MOV Butherly, 2 per tower (one to cloaring tarkk, one to storage tarkss)	1 $\times 25 \%$			00A
1	GEA- CT	1	WL	HV		Now	MOV TRANSFER PUMP VALVES - UNIT 1	MoV Butterfy, 2 per tower	$1 \times 25 \%$			00A
1	GEA - ct	1	WL	HV		Now	MOV TRANSFER PUMP VALVES - UNT 1	MOV Butterfly, 2 per tower	1 $\times 25 \%$			OOA
1	GEA-CT	1	WL	HV		Now	MOV TRANSFER PUMP VALVES - UNT 1	MOV Buttertly, 2 per tower	1×25\%			COA
1	GEA-CT	1	WL	HV		Now	MOV TRANSFER PUMP VALVES - UNTT 1	MOV Buttorly, 2 per tower	1 $\times 25 \%$			OOA
1	GEA-CT	2	WL	HV		Now	MOV TRANSFER PUMP VALVES - UNIT 2	MOV Butarity, 2 per tower	1 $\times 25 \%$			00A
1	GEA-CT	2	WL	HV		Now	MOV TRANSFER PUMP VALVES - UNIT 2	MOV Butterty, 2 per tower	1 $\times 25 \%$			DOA
1	GEA-CT	2	WL	HV		Now	MOV TRANSFER PUMP VALVES - UNTT 2	MOV Butherfly, 2 per tower	1 $\times 25 \%$			004
1	GEA - CT	2	wL	HV		Now	MOV TRANSFER PUMP VALVES - UNTT 2	MOV Bumartly, 2 per tower	1 $\times 25 \%$			00A
32	Estimating		PF	Pr			Fro Heptarat	Dry Baral Type				004
1	Extimating	1	AC	MU		Now	Low Prosere Stoem Tuthe					006
1	Estinathing	2	AC	MU		Now	Low Presure Stoem Tuthe				LO) blabem wead tober removed	008
1	Quote - Cond	1	AD	ME		ExIST	CONDENSER				Tube side desgin pressure to be increased to 50 psitg Water boxes replaced and condenser robundod	000
1	Cuote - Cond	2	AD	ME		EXIST	Condenser				Tube side design pressure to be hcreased to 50 psig Water boxas replaced and condenseor rebundilad	000
							-					

JUOTC - DIABLO CANYON

Preliminary Mechanical Equipment List
 Dry Mechanical Cooling

25762-110-M0X-YA-00002

00 C	$9 / 12 / 2 थ 3$	Re-Issued for Estimate Report	$R P$	-	P
00 B	$7 / 24 / 2013$	Issued for Estimate Report	$R P$	-	RP
00 A	$7 / 10 / 2013$	Issued for Estimate	RP	-	RP
Rev	Date	Reason for Revision	Orignator	Checked	Approved

System Codes
$\begin{array}{llll}\text { WL } & \text { Circulating Water } & \text { ME } & \text { Heat Exchange Component (Cooling Tower, Heat Exchanger) } \\ \text { WO } & \text { Sea Water } & \text { MP } & \text { Pump } \\ & & \text { MT } & \text { Tank }\end{array}$

NOTES:

1. Commodity Codes shown are Bechtel standard codes. Bechtel Commodity codes have beens assigned to exisiting plant equipment numbers to aid in equipment list sorts.

Sys Code	$\begin{aligned} & \text { Com. } \\ & \text { Code } \end{aligned}$	Seq. No.	Now/ Existing	Description	Type	Capacity (\%) - Per Unit	$\begin{array}{\|c\|} \hline \text { Drive Motor } \\ \text { Size } \\ \text { BHP (or kW) } \end{array}$	Comments	Rov.
WL	MP	001A	New	CIRCULATING WATER PUMP - Unit 1	Fabricated volute, $215700 \mathrm{gpm}, 115 \mathrm{tt}$ TDH	1 $\times 25 \%$	7250	Pump to be located in new Unk 1 pump bulling	00B
WL	MP	001 B	New	Circulating water pump - Unit 1	Fabricated volute, $215700 \mathrm{gpm}, 115 \mathrm{ft} \mathrm{TDH}$	1 $\times 25 \%$	7250	Pump to be located in now Unt 1 pump bulling	00B
WL	MP	0016	New	CIRCULATING WATER PUMP - Unit 1	Fabricaled volute, $215700 \mathrm{gpm}, 115 \mathrm{ft} \mathrm{TDH}$	1 $\times 25 \%$	7250	Pump to be located in new Unit 1 pump bullichn	00B
WL	MP	001D	New	CIRCULATING WATER PUMP - Unit 1	Fabricated voluta, 215700 gpm , 115 ft TDH	1×25\%	7250	Pump to be located l now Unit 1 pump bulling	00B
WL	MP	001A	New	CIFCULATING WATER PUMP - Unit 2	Fabricated volute, 215700 gpm , 115 ft TDH	1 $\times 25 \%$	7250	Pump to be located in new Unit 2 pump building	008
WL	MP	001 B	New	CIRCULATING WATER PUMP - Unit 2	Fabricated volute, $215700 \mathrm{gpm}, 115 \mathrm{ft} \mathrm{TDH}$	1 $\times 25 \%$	7250	Pump to be located l now Unit 2 pump bullding	OOB
WL	MP	0016	New	CIRCULATING WATER PUMP - Unit 2	Fabricated volute, $215700 \mathrm{gpm}, 115 \mathrm{ft} \mathrm{TDH}$	1 $\times 25 \%$	7250	Pump to be located l n new Unil 2 pump bulliding	008
WL	MP	001 D	New	CIRCULATING WATER PUMP - Unit 2	Fabricated volute, $215700 \mathrm{gpm}, 115$ f TDH	1 $\times 25 \%$	7250	Pump to be located in new Unk 2 pump bullichs	008
WL	ME	001A	New	MECHANICAL DRAFT COOLING TOWER - UNIT 1	$1200 \mathrm{ft} \times 100 \mathrm{ft}, 60$ fans, 250 hp motor each fan	$1 \times 50 \%$	$\begin{array}{\|c\|} \hline 250 \text { each fan } \\ \times 60 \\ \hline \end{array}$	Rectangular arrangements	00B
WL	ME	001B	New	MECHANICAL DRAFT COOLING TOWER - UNIT 1	$1200 \mathrm{ft} \times 100 \mathrm{ft}, 60$ fans, 250 hp motor each fan	$1 \times 50 \%$	$\begin{gathered} 250 \text { each fan } \\ \times 60 \end{gathered}$	Rectangular arrangements	00 B
WL.	ME	001A	New	MECHANICAL DRAFT COOLING TOWER - UNIT 2	$1200 \mathrm{ft} \times 100 \mathrm{ft}, 60$ fans, 250 hp motor each fan	1 $\times 50 \%$	$\begin{array}{\|c\|} \hline 250 \text { each fan } \\ \times 60 \\ \hline \end{array}$	Rectangular arrangements	00B
WL	ME	0018	New	MECHANICAL DRAFT COOLING TOWER - UNIT 2	$1200 \mathrm{ft} \times 100 \mathrm{ft}, 60$ fans, 250 hp motor each fan	$1 \times 50 \%$	$\begin{gathered} 250 \text { each fan } \\ \times 60 \end{gathered}$	Rectangular amangements	00B
wo	MP	001A	New	SALT WATER COOLING PUMP - UNIT 1	Vertical Turbine: 10200 gpm , TDH 100	1 $\times 100 \%$	350	New purpps to be located in intake structure to service only the service water heat exhangers and the condensate cooler	OOA
wo	MP	001B	New	SALT WATER COOLING PUMP - UNIT 1	Vertical Turbine: 10200 gpm , TDH 100	1 $\times 100 \%$	350	Now purnps to be located in intake structure to service only the service water heat exthangers and the condensate cooler	00A
wo	MP	001A	New	SALT WATER COOLING PUMP - UNIT 2	Vertical Turbine: 10200 gpm , TDH 100	1 $\times 100 \%$	350	New pumps to be located in intake structure to service only the service water heat exhangers and the condensate cooler	00 A
wo	MP	0018	New	SALT WATER COOLING PUMP - UNIT 2	Vertical Turbine: 10200 gpm , TDH 100	1 $\times 100 \%$	350	New pumps to be located in intake structure to service only the sarvice water heat exhengers and the condensate cooler	00A
WL	MP	002A	Now	COOLING TOWER MAKEUP PUMP - UNIT 1	Cenilifugal Horizontal: 500 gpm, 100 TDH	1 $\times 100 \%$	25	Make up from existring plant water source	00 A
WL	MP	0028	Now	COOLING TOWER MAKEUP PUMP - UNIT 1	Centitugal Horrzontal: $500 \mathrm{gpm}, 100 \mathrm{TDH}$	1 $\times 100 \%$	25	Make up from existing plant water source	00A
WL	MP	002A	Now	COOLING TOWER MAKEUP PUMP - UNIT 2	Cenlitugal Hortzontal: $500 \mathrm{gpm}, 100 \mathrm{TDH}$	$1 \times 100 \%$	25	Make up from existing plant water source	00A
WL	MP	0028	Now	COOLING TOWER MAKEUP PUMP - UNIT 2	Cenntifugal Horizontal: $500 \mathrm{gpm}, 100 \mathrm{TDH}$	1 $\times 100 \%$	25	Make up from existing plant water source	OOA
WL			Now	COOLING TOWER SYSTEM EXPANSION TANK - UNIT 1	12,500 fl3	1 x 50\%		Inoludod in Tower vendor's scops	OOA
WL			New	COOLING TOWER SYSTEM EXPANSION TANK UNIT 1	12,500 fla	1 $\times 50 \%$		Ineluded in Tower vendor's scope	COA
WL			Now	COOLING TOWER SYSTEM EXPANSION TANK UNIT 2	12,500 f3	1 x 50\%		Included in Tower vendors scope	00A
WL			Now	COOLING TOWER SYSTEM EXPANSION TANK- UNIT 2	12,500 13	1 $\times 50 \%$		Inciuced in Tower vendor's scope	OOA
WL			Now	${ }_{1}$ UNDERGROUND WATER STORAGE TANK - UNIT	64,000 f13	1 $\times 50 \%$		meluded in Tower vendor's scope	00A
WL			New	UNDERGROUND WATER STORAGE TANK - UNIT 2	64,000 fta	1×50\%		hecluded in Tower vendors scope	OOA
WL			New	COOLING YOWER DRAIN TANK TRANSFER PUMP - UNIT 1		1 $\times 50 \%$	100 hp	Included in Tower vandor's scope	00A
WL			New	COOLING TOWER DRAIN TANK TRANSFER PUMP - UNIT 1		$1 \times 50 \%$	100 hp	Inciuded h Tower vendor's scope	00A

Sys Code	$\begin{aligned} & \text { Com. } \\ & \text { Code } \end{aligned}$	Seq. No.	$\begin{aligned} & \text { Now/ } \\ & \text { Existing } \end{aligned}$	Description	Type	Capacity (\%) - Per Unit	$\begin{array}{\|l\|} \hline \text { Drive Motor } \\ \text { Size } \\ \text { BHP (or kW) } \end{array}$	Comments	Rev.
WL			Naw	COOLING TOWER DRAIN TANK TRANSFEA PUMP - UNIT 2		$1 \times 50 \%$	100 hp	Heluded in Tower vendor's scope	OOA
WL			Now	COOLING TOWER DRAIN TANK TRANSFER PUMP - UNIT 2		$1 \times 50 \%$	100 hp	Included in Tower vendor's scope	OOA
WL			New	COOLING TOWER WASH SYSTEM CLEANING PUMP - UNTT 1		1 $\times 100 \%$	30 hp	Included in Tower vendor's scope	00A
WL			New	COOLING TOWER WASH SYSTEM CLEANING PUMP - UNIT 2		1 $\times 100 \%$	30 hp	fincuded in Tower vendor's scope	O0A
WL			New	MOV MAKE-UP ISOLATION VALVE - UNIT 1	Butterfly 1 per storage tank $\times 1$ tank per tower	1 $\times 50 \%$		Included in Tower vendor's scope	O0A
WL			Now	MOV MAKE-UP ISOLATION VALVE - UNIT 1	Butterfly 1 per storage tank $x 1$ tank per tower	1 $\times 50 \%$		Included in Tower vendor's scope	00A
WL			Now	MOV MAKE-UP ISOLATION VALVE - UNIT 2	Butterfly 1 per storage tank x tank per tower	1 \times 50\%		Mriuded in Tower vendor's scope	00A
WL			New	MOV MAKE-UP ISOLATION VALVE - UNIT 2	Butterfly 1 per storage tank x t tank per tower	1 $\times 50 \%$		Included in Tower vendor's scope	00A
WL			New	MOV TOWER HALF RING ISOLATION VALVE UNIT 1	Butterfly 2 per towar	1 $\times 25 \%$		moluded in Tower vendor's scope	00A
WL			New	MOV TOWER HALF RING ISOLATION VALVE - UNIT 1	Butterfly 2 per tower	1 $\times 25 \%$		Mncluded in Tower vendor's scope	00A
WL			New	MOV TOWER HALF RING ISOLATION VALVE UNIT 1	Buttertly 2 per tower	1 $\times 25 \%$		Included in Tower vendor's scope	DOA
WL			Now	MOV TOWER HALF RING ISOLATION VALVE UNIT 1	Buttertly 2 per tower	1 $\times 25 \%$		Included in Tower vendor's scopp	00A
WL			New	MOV TOWER HALF RING ISOLATION VALVE UNIT 2	Butterfly 2 per tower	1 $\times 25 \%$		Included in Tower vendors scopo	00A
WL			New	\qquad UNIT 2	Butterily 2 per tower	1 x 25\%		meluded in Tower vendor's scoppe	00A
WL			New	MOV TOWER HALF RING ISOLATION VALVE UNIT 2	Butherlly 2 per tower	1 $\times 25 \%$		Included in Tower vendor's scope	00A
WL			New	MOV TOWER HALF RING ISOLATION VALVE UNIT 2	Buntertly 2 per tower	1 x 25\%		Included in Tower vendor's scope	00A
WL			New	MOV STORAGE TANK DRAIN AND EXCESS VALVES - UNIT 1	Butterily 3 per storage tank $\times 1$ tank per tower	1 $\times 16.7 \%$		Included in Tower vendor's scope	00A
WL			New	MOV STORAGE TANK DRAIN AND EXCESS VALVES - UNIT 1	Bulterfly 3 per storage tank $\mathbf{1}$ tank per tower	1 $\times 16.7 \%$		Included in Tower vendor's scope	00A
WL			New	MOV STORAGE TANK DRAIN AND EXCESS VALVES - UNIT 1	Butterily 3 per storage tank $\mathbf{1}$ tank per tower	1 $\times 16.7 \%$		Included in Tower vendor's scope	00A
WL			New	MOV STORAGE TANK DRAIN AND EXCESS VALVES - UNIT 1	Butherfly 3 per storage tank $\times 1$ tank per tower	1 $\times 16.7 \%$		Included in Tower vendor's scope	00A
WL			Now	MOV STORAGE TANK DAAIN AND EXCESS VALVES - UNIT 1	Butherily 3 per storage tank $\mathbf{x} 1$ tank per tower	1 $\times 16.7 \%$		Included in Tower vendor's scope	00A
WL			New	MOV STORAGE TANK DRAIN AND EXCESS VALVES - UNIT 1	Buttarily 3 per storage tank $\times 1$ tank per tower	1 $\times 16.7 \%$		Inctuded in Tower vendor's scopes	00A
WL			Naw	2 MOV STORAGE TANK DRAIN AND EXCESS VALVES - UNIT 3	Butterfly 3 per storage tank $\times 1$ tank per tower	1 $\times 16.7 \%$		Included in Tower vendor's scope	00A
WL			New	MOV STORAGE TANK DRAIN AND EXCESS VALVES - UNIT 2	Butterly 3 per storage tank $\times 1$ tank per tower	1 $\times 16.7 \%$		Mroluded in Tower vendor's scope	00A
WL			Now	MOV STORAGE TANK DRAIN AND EXCESS VALVES - UNIT 2	Butterfly 3 per storage tank $\times 1$ tank per tower	1 $\times 16.7 \%$		Included h Towar vendors scope	OOA
WL			New	MOV STORAGE TANK DRAIN AND EXCESS VALVES - UNIT 2	Butterfly 3 per storage tank f tank per tower	1 $\times 16.7 \%$		Included in Tower vendor's scope	OOA
WL			New	MOV STORAGE TANK DRAIN AND EXCESS VALVES - UNIT 2	Butterily 3 per storage tank $\times 1$ tank per tower	1 $\times 16.7 \%$		Included in Tower vendor's scope	00A
WL			New	MOV STORAGE TANK DRAIN AND EXCESS VALVES - UNIT 2	Butterfly 3 per storage tank $\mathbf{1}$ tank per tower	$1 \times 16.7 \%$		Included in Tower vendor's scope	00A

Sys Code	$\begin{aligned} & \text { Com. } \\ & \text { Code } \end{aligned}$	$\begin{aligned} & \text { Seq. } \\ & \text { No. } \end{aligned}$	$\underset{\text { Exisowling }}{\text { Nowl }}$	Description	Type	Capacity (\%) - Per Unit	$\left\lvert\, \begin{gathered} \text { Drive Motor } \\ \text { Size } \\ \text { BHP (or } \mathrm{kW}) \end{gathered}\right.$	Comments	Rev.
WL			Now	MOV SECTOR ISOLATION VALVE - UNIT 1 , Tower A	Bulterily 4 per cooling sector $\times 30$ sectors per tower $=120$ per tower	1 \times 0.42\%		Included in Tower vendor's scope	OOA
WL			New	$\begin{aligned} & \text { MOV SECTOR ISOLATION VALVE - UNIT } 1, \\ & \text { Tower B } \end{aligned}$	Butherlly 4 per coolling sector $\times 30$ sectors pert tower $=120$ per tower	$1 \times 0.42 \%$		Included in Towervendor's scope	OOA
WL			New	$\begin{aligned} & \text { MOV SECTOR ISOLATION VALVE - UNIT 2, } \\ & \text { Tower A } \end{aligned}$	$\begin{aligned} & \begin{array}{l} \text { Buthertly } 4 \text { per cooling sector } \times 30 \text { sectors per tower }=120 \text { per } \\ \text { tower } \end{array} \\ & \hline \text {. } \end{aligned}$	1 \times 0.42\%		Induluded i Tower v vandor's scope	${ }^{00 A}$
WL			New	MOV SECTOR ISOLATION VALVE - UNIT 2, Tower B	Bullerfily 4 per cooling sectior $\times 30$ sectors per tower $=120$ per tower	1 \times 0.42\%		Incluted i Tower vendor's scope	OOA
PF			Now	Fira Hydrants	Dry barel lype			Every 300 t. Now frop ppo 9772 th.	OOA
$\frac{A C}{A C}$	MU		New	Low Prossure Steam Turbine				LO) blades will need to be removed	008
	Mu		Now	Low Prossure Steam Turtine				L(O) blasdes will noed lo be removed	008
AD	ME		Exist	Condenser				Tube side desgin pressure to be increased to 50 psig Water boxes replaced and condenser rebundled	000
AD	ME		Exist	Condenser				Tube side desgin pressura to be increased to 50 psla Water boxes replaced and condenser rebundled	000
					,				

JUOTC - DIABLO CANYON

Preliminary Mechanical Equipment List
 Wet Natural Draft Cooling

25762-110-M0X-YA-00003

OOC	$9 / 12 / 2013$	Re-Issued for Estimate Report	$R P$	-	$R P$
OOB	$7 / 24 / 2013$	lssued for Estimate Report	RP	-	RP
OOA	$7 / 10 / 2013$	Issued for Estimate	RP	-	RP
Rev	Date	Reason for Revision	Orignator	Checked	Approved

Preliminary Mechanical Equipment List

System Codes

AD	Condensate	ME	Heat Exchange Component (Cooling Tower, Heat Exchanger)
PF	Fire Protection	MP	Pump
PI	Plant Air	MT	Tank
TL	Circ. Wtr Chem Inj	PY	Piping Specialty
WB	Service water		
WL	Circulating Water		
WO	Sea Water		
WR	Raw Water (Reclaim water)		

Commodity Codes

ME Heat Exchange Component (Cooling Tower, Heat Exchanger) Pump
Tank
Piping Specialty

WB Service water

WR Raw Water (Reclaim water)

NOTES:

1. System codes are Bechtel Standard codes. Bechtel Standard codes have been assigned to existing plant equipment to aid in equipment sorts.
2. Commodity Codes shown are Bechtel standard codes. Bechtel Commodity codes have beens assigned to exisiting plant equipment numbers to aid in equipment list sorts.
3. Valves furnished with cooling tower are included in the equipment to provide a clear understanding of the Cooling Tower Suppliers scope.

Biddar Quote to be Used	Unit	$\begin{aligned} & \text { Sys } \\ & \text { Code } \end{aligned}$	Com. Code ${ }^{1}$	Seq. No.	$\begin{gathered} \text { Now / } \\ \text { EXISTIN } \\ \mathbf{G} \end{gathered}$	Description	Type	Capacity (\%) - Per Unit	$\begin{gathered} \text { Drive } \\ \text { Motor } \\ \text { Sizo } \\ \text { BHP (or } \\ \text { kW) } \\ \hline \end{gathered}$	Comments	Rev.
	1	AC	MU		Exist	LP TURBINE				No modification currently required. Monltoring program should be sent up	00A
	2	AC	MU		Exist	LP TURBINE		\checkmark		No modification currently required. Monitoring program should be sent up	00A
Quote - Cond	1	AD	ME		EXIST	CONDENSER				Tube side desgin pressure to be increased to 50 psig Water boxes replaced and condenser rebundled	00A
Quote - Cond	2	$A D$	ME		EXIST	CONDENSER			.	Tube side desgin pressure to be increased to 50 psig Water boxes replaced and condenser rebundled	00A
Estimating	0	PF	PY		New	FIRE HYDRANT	Dry Barrel Type			One every 300 ft , New fire plping 16,188 ft	OOA
ESTIMATING	0	Pl	MC	001 A	Naw	DESAL PLANT AIR COMPRESSOR	Dry, rotary screw 200 scfm 100-125 pslg	$1 \times 100 \%$	125		OOA
ESTIMATING	0	PI	MC	001 B	Now	DESAL PLANT AIR COMPRESSSOR	Dry, rotary screw 200 scfm 100-125 psig	$1 \times 100 \%$	125		OOA
ESTIMATING	0	PI	MT	cond	Naw	DESAL PLANT AIR RECEIVER	5,000 gallion	$1 \times 100 \%$			00A
ESTIMATING	0	PI	MT	001B	Now	DESAL PLANT AIR RECEIVER	5,000 gallon	$1 \times 100 \%$			00 A
estimating	0	PI	MV	001A	Now	desal plant air dryer	Heatless, dessicant, dual towers with pre and after filters	$1 \times 100 \%$		Matched to compressor	00A
ESTIMATING	0	PI	MV	0018	New	DESAL PLANT AIR DRYER	Heatless, dessicant, dual towers with pre and after filters	1 $\times 100 \%$		Matched to compressor	00A
Estimating		PW	PY		New	Emergency Shower and Eyewash					OOA
ESTIMATING	1	TL	MP	001A	New	CIRCULATING WATER SULFURIC ACID PUMP - UNIT 1	Positive displacement diaphragm metering pump	$1 \times 100 \%$	<1	Assumes common pump house for tower 001A and 001B	00A
ESTIMATING	2	TL	MP	001A	New	CIRCULATING WATER SULFURIC ACID PUMP - UNIT 2	Positive displacement diaphragm metering pump	$1 \times 100 \%$	<1	Assumes common pump house for tower 001A and 001B	00A
ESTIMATING	1	TL	MP	001B	New	CIRCULATIING WATER SULFURIC ACID PUMP-UNIT 1	Positive displacement diaphragm metering pump	$1 \times 100 \%$	<1	Assumes common pump house for tower 001A and 001B	O0A
ESTIMATING	2	TL	MP	0018	Now	CIRCULATING WATER SULFURIC ACID PUMP - UNIT 2	Positive displacement diaphragm metering pump	1 $\times 100 \%$	<1	Assumes common pump house for tower 001A and 001B	00A
ESTIMATING	1	TL	MP	002A	Now	CIRCULATING WATER DISPERSANT PUMP - UNIT 1	Positive displacement dlaphragm metering pump	$1 \times 100 \%$	<1	Assumes common pump house for tower 001A and 0018	OOA
ESTIMATING	2	TL	MP	002A	New	CIRCULATING WATER DISPERSANT PUMP - UNIT 2	Positive displacement diaphragm metering pump	$1 \times 100 \%$	<1	Assumes common pump house for tower 001A and 001B	00A
ESTIMATING	1	TL	MP	0028	New	CIRCULATAING WATER DISPERSANT PUMP - UNIT 1	Positive displacement diaphragm metering pump	$1 \times 100 \%$	<1	Assumes common pump house for tower 001A and 001 B	00 A
ESTIMATING	2	TL	MP	002B	New	CIRCULATING WATER DISPERSANT PUMP-UNIT 2	Positive displacement diaphragm metering pump	1 $\times 100 \%$	<1	Assumes common pump house for tower 001A and 001B	OOA
ESTIMATING	1	TL	MP	003A	Now	CIRCULATING WATER SODIUM HYPOCHLORITE PUMP - UNIT 1		$1 \times 100 \%$	<1	Assumes common pump house for tower 001A and 001B	00A
ESTIMATING	2	TL	MP	003A	New	CIRCULATING WATER SODIUM HYPOCHLORITE PUMP - UNIT 2		$1 \times 100 \%$	<1	Assumes common pump house for tower 001A and 001B	00A
ESTIMATING	1	TL	MP	0038	New	CIRCULATING WATER SODIUM HYPOCHLORITE PUMP - UNIT 1		1 $\times 100 \%$	<1	Assumes common pump house for tower 001A and 001 B	00A
ESTIMATING	2	TL	MP	0038	New	CIRCULATING WATER SODIUM HYPOCHLORITE PUMP - UNIT 2		$1 \times 100 \%$	<1	Assumes common pump house for tower 001A and 001B	00A
ESTIMATING	1	TL	MP	004A	New	CIRCULATING WATER SCALE INHIBITOR PUMP - UNIT 1	Positive displacement diaphragm metering pump	TBD	<1	Assumes common pump house for tower 001A and 001B; QTY to be determined when budgetary bids are received	O0A
ESTIMATING	1	TL	MP	004A	New	CIRCULATING WATER SCALE INHIBITOR PUMP - UNIT 1	Positive displacement diaphragm metering pump	TBD	<1	Assumes common pump house for tower 001A and 001B; QTY to be determined when budgetary bids are received	OOA
ESTIMATING	2	TL	MP	004B	New	GIRCULATING WATER SCALE INHIBITOR PUMP - UNIT 2	Positive displacement diaphragm metering pump	TBD	<1	Assumes common pump house for tower 001A and 001B; QTY to be determined when budgetary bids are received	00A
ESTIMATING	2	TL	MP	004B	New	CIRCULATING WATER SCALE INHIBITOR PUMP - UNIT 2	Positive displacement diaphragm metering pump	TBD	<1	Assumes common pump house for tower 001A and 001B; QTY to be determined when budgetary bids are recelved	00A
ESTIMATING	1	TL	MT	001	New	CIRCULATING WATER SULFURIC ACID STORAGE TANK - UNIT 1	Horizontal cylindrical with dessicant breather for vent and oil-filled loop seal for overilow	$1 \times 100 \%$	N/A	Assumes common pump house for tower 001A and 001B	00A

Bidder Quote to be Used	Unit	$\begin{aligned} & \text { Sys } \\ & \text { Code } \end{aligned}$	Com. Code ${ }^{1}$	Seq. No.	$\left\|\begin{array}{c} \text { Now / } \\ \text { EXISTIN } \\ \mathbf{G} \end{array}\right\|$	Description	Type	Capacity (\%) - Per Unit	$\begin{gathered} \hline \text { Drive } \\ \text { Motor } \\ \text { Size } \\ \text { BHP (or } \\ \hline \text { kW) } \\ \hline \end{gathered}$	Comments	Rev.
ESTIMATING	2	TL	MT	001	Now	CIRCULATING WATER SULIFURIC ACID STORAGE TANK - UNIT 2	Horizontal cylindrical with dessicant breather for vent and oil-filled loop seal for overilow	$1 \times 100 \%$	N/A	Assumes common pump house for tower 001A and 001B	OOA
ESTIMATING	1	TL	MT	002	Now	CIRCULATING WATER DISPERSANT STORAGE TANK - UNIT 1	5,000 gallons, shop fabricated	1 $\times 100 \%$	N/A		00A
ESTIMATING	2	TL	MT	002	New	CIRCULATING WATER DISPERSANT STORAGE TANK - UNIT 2	5,000 gallons, shop fabricated	1 $\times 100 \%$	N/A		OOA
ESTIMATING	1	TL	MT	003	New	CIRCULATING WATER SODIUM HYPOCHLORITE STORAGE TANK - UNIT 1	15,000 gallons, shop fabricated	1 $\times 100 \%$	N/A		OOA
ESTIMATING	2	TL	MT	003	New	CIRCULATING WATER SODIUM HYPOCHLORITE STORAGE TANK - UNIT 2	15,000 gallons, shop fabricated	$1 \times 100 \%$	N/A		O0A
ESTIMATING	1	TL	MT	004	New	CIRCULATING WATER SCALE INHIBITOR STORAGE TANK - UNIT 1	5,000 gallons, shop fabricated	$1 \times 100 \%$	N/A		00A
ESTIMATING	2	TL	MT	004	New	CIRCUULATING WATER SCALE INHIBITOR STORAGE TANK-UNIT 2	5,000 gallons, shop fabricated	$1 \times 100 \%$	N/A		OOA
Estimating	1	WB	ME	2	NEW	CONDENSATE COOLER	Shell and tube, $9,500,000 \mathrm{btuhr}$ (assumed) Hot side: Flow-1500 gpm (assumed), temp out 90F Cold Side: Flow - 2150 gpm, temp out 82F			Replaces existing heat exchanger. Design information for original heat exchanger unavailble from site. Base on piping connection sizes it is estimate to have a duty 50% of the service water heat exchanger.	OOA
Estimating	2	WB	ME	2	NEW	CONDENSATE COOLER	Shell and tube, $9,500,000 \mathrm{btuhr}$ (assumed) Hot side: Flow- 1500 gpm (assumed), temp out 90F Cold Side: Flow - 2150 gpm, temp out 82 F			Replaces existing heat exchanger. Design information for original heat exchanger unavailble from slte. Base on piping connection sizes it is estimate to have a duty 50% of the service water heat exchanger.	00A
$\begin{aligned} & \text { Quote -HX } \\ & \text { VHT } \end{aligned}$	1	WB	ME	001A	NEW	SERVICE COOLING WATER HX	Shell and tube, $19,000,000 \mathrm{btuhr}$ Hot Side: Flow- $\mathbf{3 0 0 0}$ gpm, Temp. out- 90 F Cold Side: Flow - 4300 gpm, Temp. In - 82 F			Replaces existing heat exchanger	OOA
Quote -HX VHT	2	WB	ME	001A	NEW	SERVICE COOLING WATER HX	Shell and tube, 19,000,000 btuhr Hot Side: Flow- 3000 gpm, Temp. out- 90 F Cold Side: Flow - 4300 gpm, Temp. in - 82F			Replaces existing heat exchanger	OOA
Quote -HX VHT	1	WB	ME	0018	NEW	SERVICE COOLING WATER HX	Shell and tube, 19,000,000 btu/hr Hot Side: Flow- 3000 gpm, Temp. out- 90F Cold Side: Flow - 4300 gpm, Temp. in - 82F			Replaces existing haat exchanger	00A
$\begin{gathered} \text { Quote -HX } \\ \text { VHT } \end{gathered}$	2	WB	ME	001B	NEW	SERVICE COOLING WATER HX	Shell and tube, 19,000,000 btu/hr Hot Side: Flow- 3000 gpm, Temp. out- 90F Cold Side: Flow - 4300 gpm, Temp. in - 82F			Replaces existing heat exchanger	OOA
N/A	1	WL	CWP	1	EXIST	CIRCULATING WATER PUMP	Concrete volute pump			Decommission	00 B
N/A	2	WL	CWP	1	EXIST	CIRCULATING WATER PUMMP	Concreto volute pump			Decommission	008
N/A	1	WL	CWP	2	EXIST	CIRCULATING WATER PUMP	Concreto volute pump			Decommisslon	00 B
N/A	2	WL	CWP	2	EXIST	CIRCULATING WATER PUMP	Concrete volute pump			Decommission	00 B
QUOTE-CT	1	WL	HV			TOWER MOV BYPASS VALVE - UNIT 1		1 $\times 25 \%$	4 hp	Provided by tower vendor.	OOA
QUOTE-CT	1	WL	HV			TOWER MOV BYPASS VALVE - UNIT 1		1 $\times 25 \%$	4 hp	Providad by tower vendor.	OOA
QUOTE-CT		WL	HV			TOWER MOV BYPASS VALVE - UNIT 1		1 $\times 25 \%$	4 hp	Provided by tower vendor.	OOA
QUOTE-CT	1	WL	HV			TOWER MOV BYPASS VALVE-UNIT 1		1 $\times 25$	4 hp	Provided by tower vendor.	OOA
QUOTE-CT	2	WL	HV			TOWER MOV BYPASS VALVE-UNIT 2		1 $\times 2.25$	4 hp	Provided by tower vendor.	OOA
QUOTE-CT	2	WL	HV			TOWER MOV BYPASS VALVE-UNIT 2		1 $\times 25 \%$	4 hp	Provided by tower vendor.	OOA
QUOTE-CT	2	WL	HV			TOWER MOV BYPASS VALVE - UNIT 2		1×25\%	4 hp	Provided by tower vendor.	OOA
QUOTE-CT	2	WL	HV			TOWER MOV BYPASS VALVE - UNIT 2		1 $\times 25$	4 hp	Provided by tower vendor.	OOA
QUOTE-CT	1	WL	ME	001A	New	natural draft cooling tower Unit 1		1 $\times 50 \%$			OOA
QUOTE -CT	2	WL	ME	001A	New	NATURAL DRAFT COOLING TOWER Unit 2		1 $\times 50 \%$			OOA
QUOTE -CT	1	WL	ME	001B	New	NATURAL DRAFT COOLING TOWER Unit 1		1 $\times 50 \%$			O0A

Bidder Quote to be Used	Unit	Sys Code	Com. Code ${ }^{1}$	Seq. No.	$\begin{gathered} \text { Naw / } \\ \text { EXISTIN } \\ \mathbf{G} \end{gathered}$	Description	Type	Capacity (\%) - Per Unit	$\begin{gathered} \hline \text { Drive } \\ \text { Motor } \\ \text { Size } \\ \text { BHP (or } \\ \text { kw? } \end{gathered}$	Comments	Rev.
QUOTE -CT	2	WL	ME	001B	New	NATURAL DRAFT COOLING TOWER Unit 2		1 $\times 50 \%$			00A
QUOTE - PUMPS Xylem	1	WL	MP	001A	New	CIRCULATING WATER PUMP - Unit 1	Fabricated Volute, $218250 \mathrm{gpm}, 110$ ft TDH	1 $\times 25 \%$	7250	Pump to be located in new Unit 1 pump house	O0A
QUOTE - PUMPS Xylem	2	WL	MP	001A	New	CIRCULATING WATER PUMP - Unit 2	Fabricated Volute, 218250 gpm 110 tt TDH	1X 25\%	7250	Pump to be located in new Unit 2 pump house	00 A
QUOTE - PUMPS Xylem	2	WL	MP	001A	New	CIRCULATING WATER PUMP - Unit 2	Fabricated Volute, $218250 \mathrm{gpm}, 110$ H TDH	1X 25\%	7250	Pump to be located in new Unit 2 pump house	00A
QUOTE - PUMPS Xylem	1	WL	MP	0018	New	GIRCULATING WATER PUMP - Unit 1	Fabricated Volute, $218250 \mathrm{gpm}, 110$ tt TDH	1X 25\%	7250	Pump to be located in new Unit 1 pump house	00A
QUOTE - PUMPS Xylem	2	WL	MP	00118	New	CIRCULATING WATER PUMP - Unit 2	Fabricated Volute, 218250 gpm, 110 t TDH	1X 25\%	7250	Pump to be located in new Unit 2 pump house	OOA
QUOTE - PUMPS Xylem	2	WL	MP	0018	New	GIRCULATING WATER PUMP - Unit 2	Fabricated Volute, 218250 gpm, 110 f TDH	1X25\%	7250	Pump to be located in new Unit 2 pump house	O0A
QUOTE- PUMPS Xylem	1	WL	MP	001 C	New	GIRCULATING WATER PUMP • Unit 1	Fabricated Volute, 218250 gpm, 110 ft TDH	1X 25\%	7250	Pump to be located in new Unit 1 pump house	00A
QUOTE - PUMPS Xylem	1	WL	MP	001D	New	CIRCULATING WATER PUMP - Unit 1	Fabricated Volute, 218250 gpm, 110 t TDH	1X 25\%	7250	Pump to be located in new Unit 1 pump house	OOA
ESTIMATING	0	WL	MT	001	New	COOLING TOWER MAKEUP STORAGE POND	Pond, 5,000,000 galion useable	$1 \times 100 \%$		-2.5 hours (evaporation, dritt \& blowdown of 33,100 gpm).	OOA
QUOTE - CT	1	WL	PV			TOWER SECTION ISOLATION VALVE UNIT 1	Gate or Butterily	$1 \times 8 \%$	1 hp	Provided by tower vendor.	00A
N/A	1	WL	SCW HX	1	EXIST	SERVICE COOLING WATER HX	Sheill and tube			Remove and replace with new HX 1-WB-ME-001A	OOB
N/A	2	WL	SCW HX	1	EXIST	SERVICE COOLING WATER HX	Shell and tube			Remove and replace with new HX 2-WB-ME-001A	00B
N/A	1	WL	SCW HX	2	EXIST	SERVICE COOLING WATER HX	Shell and tube			Remove and replace with new HX 1-WB-ME-001B	OOB
NA	2	WL	SCW HX	2	EXIST	SERVICE COOLING WATER HX	Shell and tube			Remove and replace with new HX 2-WB-ME-001B	00B
NA	1	WL		1	EXIST	CONDENSATE COOLER	Shell and tube			Remove and replace with new HX 2-WB-ME-002	OOB
N/A	2	WL		1	EXIST	CONDENSATE COOLER	Shell and tube			Remove and replace with new HX 2-WB-ME-002	00 B
QUOTE - CT	1	WL				TOWER SECTION ISOLATION VALVE: UNIT 1	Gate or Butterily	1 8\%\%	1 hp	Provided by tower vendor.	OOA
QUOTE - CT	1	WL				TOWER SECTION ISOLATION VALVE UNIT 1	Gate or Butherily	1 $\times 8 \%$	1 hp	Provided by tower vendor.	00A
QUOTE - CT	1	WL				TOWER SECTION ISOLATION VALVE UNIT 1	Gate or Butterily	1 8 8\%	1 hp	Provided by tower vendor.	OOA
QUOTE - CT	1	WL				TOWER SECTION ISOLATION VALVEUNIT 1	Gate or Butterly	1 8\%	1 hp	Provided by tower vendor.	OOA
QUOTE-CT	1	WL				TOWER SECTION ISOLATION VALVE UNIT 1	Gate or Butterlly	1 x 8\%	1 hp	Provided by tower vendor.	00A
QUOTE - CT	1	WL				TOWER SECTION ISOLATION VALVE- UNIT 1	Gate or Butterlly	1×8\%	1 hp	Provided by tower vendor.	OOA
QUOTE - CT	1	WL				TOWER SECTION ISOLATION VALVE UNIT 1	Gate or Butterily	1 x 8\%	1 hp	Provided by tower vendor.	00A
QUOTE - CT	1	WL				TOWER SECTION ISOLATION VALVE UNIT 1	Gate or Buttertly	1 x 8\%	1 hp	Provided by tower vendor.	O0A
QUOTE - CT	1	WL				TOWER SECTION ISOLATION VALVEUNIT 1	Gate or Butterly	1 $\times 8 \%$	1 hp	Provided by tower vendor.	OOA
QUOTE-CT	1	WL				TOWER SECTION ISOLATION VALVE UNIT 1	Gate or Butterlly	1×8\%	1 hp	Provided by tower vendor.	OOA

Bidder Quote to be Used	Unit	Sys Code	Com. Code ${ }^{1}$	Seq. No.	$\begin{array}{\|c\|} \text { Now / } \\ \text { EXISTIN } \\ G \end{array}$	Description	Type	Capacity (\%) - Per Unit	Drive Motor Size BHP (or kW) 俗	Comments	Rev.
QUOTE - CT	1	WL				TOWER SECTION ISOLATION VALVE UNIT 1	Gate or Butterily	1 $\times 8 \%$	1 hp	Provided by tower vendor.	OOA
QUOTE-CT	2	WL				TOWER SECTION ISOLATION VALVE UNIT 2	Gate or Butterfly	1 $\times 8 \%$	1 hp	Provided by tower vendor.	OOA
QUOTE.CT	2	WL				TOWER SECTION ISOLATION VALVE UNIT 2	Gate or Butterily	1 x 8\%	1 hp	Provided by tower vendor.	OOA
QUOTE - CT	2	WL				TOWER SECTION ISOLATION VALVE UNIT 2	Gate or Butterfly	$1 \times 8 \%$	1 hp	Provided by tower vendor.	OOA
QUOTE-CT	2	WL				TOWER SECTION ISOLATION VALVE UNIT 2	Gate or Butterily	$1 \times 8 \%$	1 hp	Provided by tower vendor.	OOA
QUOTE - CT	2	WL				TOWER SECTION ISOLATION VALVE UNIT 2	Gate or Butterly	1×8\%	1 hp	Provided by tower vendor.	00A
QUOTE - CT	2	WL				TOWER SECTION ISOLATION VALVE - UNIT 2	Gate or Butterlly	1 $\times 8 \%$	1 hp	Provided by tower vendor.	00 A
QUOTE - CT	2	WL				TOWER SECTION ISOLATION VALVE UNIT 2	Gate or Butterlly	1 x 8\%	1 hp	Provided by tower vendor.	00A
QUOTE - CT	2	WL				TOWER SECTION ISOLATION VALVE UNIT 2	Gate or Butterily	1 $\times 8 \%$	1 hp	Provided by tower vendor.	OOA
QUOTE - CT	2	WL				TOWER SECTION ISOLATION VALVE UNIT 2	Gate or Butterlly	$1 \times 8 \%$	1 hp	Provided by tower vendor.	00A
QUOTE - CT	2	WL				TOWER SECTION ISOLATION VALVE UNIT 2	Gate or Butterily	1×8\%	1 hp	Provided by tower vendor.	00A
QUOTE - CT	2	WL				TOWER SECTION ISOLATION VALVE UNIT 2	Gate or Butterily	1 $\times 8 \%$	1 hp	Provided by tower vendor.	OOA
QUOTE-CT	2	WL				TOWER SECTION ISOLATION VALVE UNIT 2	Gate or Butterily	$1 \times 8 \%$	1 hp	Provided by tower vendor.	00A
Anderson	0	WO	MA			MMF AlR SCOUR BLOWER		-	-	Not required	00A
Anderson	0	WO	ME		New	CIP TANK HEATER	50 KW heater, 10 KW pump		10 KW	Add 50 KW to operating power for the 50 KW heater	00 A
Anderson	0	WO	ML.		New	DISSOLVED AIR FLOATATION	TBD Gallons, TBD $\mathrm{L} \times \mathrm{W} \times \mathrm{H}$	9 $\times 12.5 \%$	-		00A
Anderson	0	WO	ML		New	FIRST STAGE DUAL MEDIA FILTERS	2,630 gpm throughput	30 $\times 3.6 \%$	-		OOA
Anderson	0	wo	ML		New	SECOND STAGE DUAL MEDIA FILTERS	3,540 gpm throughput	$22 \times 5 \%$	-		00A
Anderson	0	wo	ML		Now	SWRO CARTRIDGE FILTER	4,370 gpm throughput each	$18 \times 5.9 \%$			OOA
Anderson	0	wo	ML		New	CIP CARTRIDGE FILTER	1,000 gpm throughput	1 $\times 100 \%$	\cdots		OOA
Quote - Pump ITTGoulds/Flowserve	0	wo	MP	001A	New	DESAL SEA WATER SUPPLY PUMP	Vertical Turbine, 36800 gpm , TDH: 570 feet with variable speed drive	$1 \times 50 \%$	6800		00A
Quote - Pump ITTGoulds/Flowserve	0	wo	MP	001B	New	DESAL SEA WATER SUPPLY PUMP	Vertical Turbine, 36800 gpm , TDH: 570 feet with variable speed drive	$1 \times 50 \%$	6800		00A
Quote - Pump ITTGoulds/Flowserve	0	wo	MP	001C	New	DESAL SEA WATER SUPPLY PUMP	Vertical Turbine, 36800 gpm , TDH: 570 feet with variable speed drive	$1 \times 50 \%$	6800		00A
EStIMATING	0	wo	MP	002A	New	SWRO MMF BACKWASH RETURN PUMP	Vertical Turbine, 2000 gpm , TDH 100 feet	1 $\times 100 \%$	75		OOA
ESTIMATING	0	wo	MP	002B	New	SWRO MMF BACKWASH RETURN PUMP	Vertical Turbine, 2000 gpm , TDH 100 feat	1 $\times 100 \%$	75		00A
Anderson	0	WO	MP		New	DAF FORWARDING PUMP	9,780 gom, 100 t	10×11.1\%	350		OOA
Anderson	0	WO	MP		New	SWRO BOOSTER PUMP	4,240 gpm, 2,000 ft TDH	9 $\times 12.5 \%$	3000		OOA
Anderson	0	wo	MP		New	SWRO ENERGY RECOVEAY DEVICE	$5,110 \mathrm{gpm}$	$9 \times 12.5 \%$			OOA
Anderson	0	WO	MP		New	SWRO ERD BOOSTER PUMP	$5,110 \mathrm{gpm}, 200 \mathrm{ft}$ TDH	$9 \times 12.5 \%$	400		OOA
Anderson	0	Wo	MP		Now	CIP RECIRCULATION PUMP	$1200 \mathrm{gpm}, 250 \mathrm{ft}$ TDH	2×100\%	100		OOA
Anderson	0	wo	MP		New	SODIUM HYPOCHLORITE DOSING PUMP	25 gph	$2 \times 100 \%$.	1		00A

Bidder Quote to be Used	Unit	Sys Code	Com. Code ${ }^{1}$	Seq. No.	$\left\|\begin{array}{c} \text { Now / } \\ \text { EXISTIN } \\ \mathbf{G} \end{array}\right\|$	Description	Type	$\begin{gathered} \text { Capacity } \\ \text { (\%) - Per } \\ \text { Unit } \end{gathered}$	$\begin{array}{c\|} \hline \text { Drive } \\ \text { Motor } \\ \text { Size } \\ \text { BHP (or } \\ \text { kW? } \\ \hline \end{array}$	Comments	Rev.
Anderson	0	wo	MP		New	DAF COAGULANT DOSING PUMP	TBD gph	$2 \times 100 \%$	1		OOA
Anderson	0	WO	MP		New	MMF COAGULANT DOSING PUMP	TBD gph	$2 \times 100 \%$	1		OOA
Anderson	0	WO	MP		New	ACID DOSING PUMP	25 gph	$2 \times 100 \%$	1		OOA
Anderson	0	wo	MP		New	ANTISCALANT DOSING PUMP	TBD gph	$2 \times 100 \%$	1		OOA
Anderson	0	WO	MP		New	DECHLORINATION DOSING PUMP	TBD gph	$2 \times 100 \%$	1		OOA
Anderson	0	WO	MT		New	AİR SATURATION TANK	TBD Gallons	$9 \times 12.5 \%$	-		OOA
Anderson	0	WO	MT		New	CIP SOLUTION TANK	6,000 gallons	1 $\times 100 \%$	-		00 A
Anderson	0	wo	MT		New	SODIUM HYPOCHLORITE STORAGE	21,000 gallons	$1 \times 100 \%$	-		00A
Anderson	0	WO	MT		New	DAF COAGULANT STORAGE TANK	21,000 gallons	1 $\times 100 \%$	-		OOA
Anderson	0	WO	MT		New	MMF COAGULANT STORAGE TANK	21,000 gallons	1 $\times 100 \%$	-		00A
Anderson	0	wo	MT		New	ACID STORAGE TANK	21,000 gallons	$1 \times 100 \%$	-		00 A
Anderson	0	wo	MT		New	ANTISCALANT STORAGE TANK	21,000 gallons	$1 \times 100 \%$	-		00A
Anderson	0	WO	MT		New	DECHLORINATION STORAGE TANK	21,000 gallons	$1 \times 100 \%$.		00 A
QUOTE-DESAL	0	wo	MW	001	New	DESALINATION PLANT	Multiple Train System consisting of multimedia filters (MMF), seawater reverse osmosis (SWRO) trains, clean-in-place (CIP) systems and chemical dosing systems, product flowrate - 33100 gpm .	100\%		Estimated Plant area: 422,000 sq feet	OOA
Anderson	0	WO	MW		New	SWROO MEMBRANE UNIT	3,670 gpm throughput	9 $\times 12.5 \%$	-		OOA
IDI	0	WR	MC		New	FILTEA "A' VACUUM PUMP	TBD	2 $\times 100 \%$	5.5		OOA
IDI	0	WR	ML		New	FILTER (GREENLEAF FILTER)	2,800 gpm	$1 \times 100 \%$			00A
[D]	0	WR	ML		New	FILTER PRESS	20 Ct	2 $\times 100 \%$	5.0		OOA
Estimating	0	WR	MP	001A	New	CLARIFIER FORWARDİNG PUMP	Horizontal centrifugal, $3000 \mathrm{gpm}, 100$ feet TDLH	$1 \times 100 \%$	125		OOA
Estimating	0	W	MP	001B	New	CLARIFIER FORWARDING PUMP	Horizontal centrifugal, $3000 \mathrm{gpm}, 100$ feet TDH	1 $\times 100 \%$	125		OOA
Estlmating	0	WR	MP	002A	New	CLARIFIER FEED PUMP	Horizontal centrifugal, $3000 \mathrm{gpm}, 100$ feet TDH	1 $\times 100 \%$	125		00A
Estimating	0	WR	MP	002 B	New	CLARIFIER FEED PUMP	Horizontal centrifugal, $3000 \mathrm{gpm}, 100$ feet TDH	1 $\times 100 \%$	125		OOA
Estimating	0	WR	MP	003 A	New	CLARIFIER MMF BACKWASH PUMP	Vertical sump pump, $1000 \mathrm{gpm}, 100$ feet TDH	1 $\times 100 \%$	40		OOA
Estimating	0	WR	MP	003B	New	CLARIFIER MMF BACKWASH PUMP	Vertical sump pump, $1000 \mathrm{gpm}, 100$ feet TDH	$1 \times 100 \%$ \|	40		00 A
Estimating	0	WR	MP	0048	New	MORO BAY RECLAIM WATER SUPPLY PUMP	Vertical Turbine, $800 \mathrm{gpm}, 500$ feet TDH, 15 feet baseplate to suction bell inlet	$1 \times 100 \%$	150	Pump station is located approximately 20 miles off site.	00C
Estlmating	0	WR	MP	005A	New	SAN LUIIS OBISPO RECLAIM WATER SUPPLY PUMP	Vertical Turbine, 2000 gpm , 580 feet TOH, 15 feet baseplate to suction bell inlet	$1 \times 100 \%$	400	Pump station is located approximately 20 miles off site.	00C
Estlmating	0	WR	MP	005B	New	SAN LUIS OBISPO RECLAIM WATER SUPPLY PUMP	Vertical Turbine, $2000 \mathrm{gpm}, 580$ feet TDH, 15 feet baseplate to suction bell inlet	$1 \times 100 \%$	400	Pump station is located approximately 20 miles off site.	00C
101	0	WR	MP		Naw	CLARIFIER "A" SLUDGE RECIRCULATION / BLOWDOWN PUMP SET	$140 \mathrm{gpm}, 46 \mathrm{ft}$ TDH with VFD	3x50\%	7.5		00A
101	0	WR	MP		New	FILTER PRESS FEED PUMP	$30 \mathrm{gpm}, 100 \mathrm{psig}$	3×50\%	N/A	Air operated diaphragm	OOA
101	0	WR	MP		Naw	FILTRATE SUMP TRANSFER PUMP	$100 \mathrm{gpm}, 46 \mathrm{tt}$ TDH	2 $\times 100 \%$	2.0		OOA
101	0	WR	MP		New	SODIUM HYPOCHLORITE DOSING PUMPS	10 gph	$4 \times 25 \%$	0.3		OOA
[DI	0	WR	MP		New	FERRIC CHLORIDE DOSING PUMP	20 gph	4×25\%	0.5		OOA
[DI	0	WR	MP		New	POLYELECTROLYTE DOSING PUMP	2 gph	$3 \times 50 \%$	0.25		00A
Estimating	0	WR	MP	004A	New	MORO BAY RECAIM WATER SUPPLY PUMP	Vertical Turbine, $800 \mathrm{gpm}, 500$ feet TDH, 15 feet baseplate to suction bell Inlet	1 $\times 100 \%$	150	Pump station is located approximately 20 milas off site.	00C
ESTIMATING	0	WR	MT	001	New	RECLAIM WATER STORAGE TANK	Field Fabricated Epoxy Coated Carbon Steel, 100,000 gallon	$1 \times 100 \%$		Sized for 30 mln storage, 40 tt Diameter and 40 ft High	00 C
IDI	0	WR	MT		Now	MIX TANK (RAPID)	9,300 gallons, $9^{\prime} \mathrm{D} \times 20.25^{\prime} \mathrm{H}$	$1 \times 100.3 \%$			OOA
IDI	0	WR	MT		New	REACTION TANK (DENSADEG REACTOR)	37,000 gallons $19^{\prime} \mathrm{D} \times 18.5^{\prime} \mathrm{H}$	$1 \times 100.3 \%$	-		OOA
\| 101	0	WR	MT		Naw	FILTER BACKWASH SÜPPLY TANK	21,000 gallons	$1 \times 100 \%$	-		OOA
IDI	0	WA	MT		Now	SLUDGE STORAGE TANK	6,000 gallons, $10^{\prime} \mathrm{O} \times 12^{\prime} \mathrm{H}$	$1 \times 100 \%$	-		OOA
IDi	0	WR	MT		New	SLUDGE STORAGE TANK MIXER	With VFD	$1 \times 100 \%$	5.0		O0A
ID	0	WR	MT		New	SODIUM HYPOCHLORITE BULK STORAGE TANK	5000 gallons	1 $\times 100 \%$	-		OOA
\|DI	0	WR	MT		Now	FERRIC CHLORIDE STORAGE TANK	5,000 gallons	1 $\times 100 \%$	-		OOA

Bidder Quote to be Used	Unit	Sys Code	Com. Code ${ }^{1}$	Seq. No.	$\begin{gathered} \text { Now / } \\ \text { EXISTIN } \\ \mathbf{G} \end{gathered}$	Description	Type	Capacity (\%) - Per Unit	Drive Motor Size BHP (or kW)	Comments	Rev.	
\|D		0	WR			New	MIX TANK MIXER	With VFD	$1 \times 100 \%$	5.0		COA
\|DI	0	WR			Now	REACTION TANK MIXER	With VFD	3 $\times 33.3 \%$	7.5		OOA	
IDI	0	WR			New	CLARIFIER (DENSADEG CLARIFIER/ THICKENER)	2,800 gpm $26^{\prime} \mathrm{O} \times 18.5^{\prime} \mathrm{H}$	$1 \times 100 \%$	-		OOA	
101	0	W			New	CLARIFIER SLUDGE SCRAPER	Two arms	1 $\times 100 \%$	0.5		OOA	
Estimating		XN				DESAL AREA SANITARY LIFT STATION	48" diameter concrete sump, vented cover, duplex submersible pumps ($50 \mathrm{gpm}, \mathrm{TH}: 100 \mathrm{t}$), control panel, external valve box,				OOA	
								-				
								\square				
							-					
							-					
							-					
								-				
							,	I				
							-					
							-					
							-					

JUOTC - DIABLO CANYON
 Preliminary Mechanical Equipment List
 Wet Mechanical Draft Cooling
 25762-110-M0X-YA-00004

00 C	$9 / 12 / 20 / 3$	Re-Issued for Estimate Report	∞	-	R
00 B	$7 / 24 / 2013$	Issued for Estimate Report	RP	-	RP
00 A	$7 / 10 / 2013$	Issued for Esitmate	RP	-	RP
Rev	Date	Reason for Revision	Orignator	Checked	Approved

AC	Steam Turbine	MC	Compressors/vacuum Pump
AD	Condensate	ME	Heat Exchange Component (Cooling Tower, Heat Exchanger)
PF	Fire Protection	ML	Liquid -Solid Separation (Clarifer, Automatic filters)
PI	Plant Air	MP	Pump
PW	Potable Water	MT	Tank
TL	Circ Water Chem, Inj,	MU	Driver
WB	Turbine Bldg Cooling	MW	Liquid Separation \& Purification (Desal)
WL	Circulating Water	PV	Manual Valve
WO	Sea Wate/Desal		
WR	Reclaim Water		

NOTES:

1. Commodity Codes shown are Bechtel standard codes. Bechtel Commodity codes have beens assigned to exisiting plant equipment numbers to aid in equipment list sorts.

Unit	Sys Code	Com. Code	Seq. No.		Description	Type	Capacity (\%) - Per Unit	Drivg Motor Size BHP (or kW)	Comments	Rev.
1	AC	MU		Exist	LP TURBINE				No modification currently required. Monitoring program should be sent up	OOA
2	AC	MU		Exist	LP TURBINE				No modification currently required. Monitoring program should be sent up	00A
1	AD	ME		EXIST	CONDENSER		-		Tube side desgin pressure to be increased to 50 psig Water boxes replaced and condenser rebundled	OOA
2	AD	ME		EXIST	CONDENSER				Tube side desgin pressure to be increased to 50 psig Water boxes replaced and condenser rebundled	OOA
0	PF	PY		New	FIRE HYDRANT	Dry Barrel Type			One every 300 ft , New fire piping 16,188 ft	OOA
0	PI	MC	001A	New	DESAL PLANT AIR COMPRESSOR	Dry, rotary screw 200 scfm 100-125 psig	$1 \times 100 \%$	125		OOA
0	PI	MC	001B	Now	DESAL PLANT AIR COMPRESSOR	Dry, rotary screw 200 scfm 100-125 psig	1 $\times 100 \%$	125		00A
0	P1	MT	001A	Now	DESAL PLANT AIR RECEIVER	5,000 gallon	1 $\times 100 \%$			00A
0	PI	MT	001B	New	DESAL PLANT AIR RECEIVER	5,000 gallon	$1 \times 100 \%$			OOA
0	PI	MV	001A	New	DESAL PLANT AIR DRYER	Heatless, dessicant, dual towers with pre and after filters	$1 \times 100 \%$		Matched to compressor	00A
0	PI	MV	001B	New	DESAL PLANT AIR DRYER	Heatless, dessicant, dual towers with pre and after filters	$1 \times 100 \%$		Matched to compressor	OOA
	PW	PY		New	Emergency Shower and Eyewash					OOA
1	TL	MP	001A	New	CIRCULATING WATER SULFURIC ACID PUMP - UNIT 1	Positive displacement diaphragm metering pump	$1 \times 100 \%$	<1	Assumes common pump house for tower 001A and 001B	00A
2	TL	MP	001A	New	CIRCULATING WATER SULFURIC ACID PUMP - UNIT 2	Positive displacement diaphragm metering pump	$1 \times 100 \%$	<1	Assumes common pump house for tower 001A and 001B	00A
1	TL	MP	001B	New	CIRCULATING WATER SULFURIC ACID PUMP - UNIT 1	Positive displacement diaphragm metering pump	$1 \times 100 \%$	<1	Assumes common pump house for tower 001A and 001B	00A
2	TL	MP	001B	New	CIRCULATING WÄTER SULFURIC ACID PUMP - UNIT 2	Positive displacement diaphragm metering pump	$1 \times 100 \%$	<1	Assumes common pump house for tower 001A and 001B	OOA
1	TL	MP	002A	New	CIRCULATING WATER DISPERSANT PUMP - UNIT 1	Positive displacement diaphragm metering purnp	$1 \times 100 \%$	<1	Assumes common pump house for tower 001A and 001B	00A
2	TL	MP	002A	New	CIRCULATING WATER DISPERSANT PUMP - UNIT 2	Positive displacement diaphragm metering pump	$1 \times 100 \%$	<1	Assumes common pump house for tower 001A and 001B	OOA
1	TL	MP	002B	New	CIRCULATING WATER DISPERSANT PUMP - UNIT 1	Positive displacement diaphragm metering purnp	$1 \times 100 \%$	<1	Assumes common pump house for tower 001A and 001B	OOA
2	TL	MP	002B	New	CIRCULATING WATER DISPERSANT PUMP - UNIT 2	Positive displacement diaphragm melering pump	$1 \times 100 \%$	<1	Assumes common pump house for tower 001A and 001B	OOA
1	TL	MP	003A	New	CIRCULATING WATER SODIUM HYPOCHLORITE PUMP - UNIT 1	Positive displacement diaphragm metering pump	$1 \times 100 \%$	<1	Assumes common pump house for tower 001A and 001B	00A
2	TL	MP	003A	New	CIRCULATING WATER SODIUM HYPOCHLORITE PUMP - UNIT 2	Positive displacement diaphragm metering pump	$1 \times 100 \%$	<1	Assumes common pump house for tower 001A and 001B	00A
1	TL	MP	003B	New	CIRCULATING WATER SODIUM HYPOCHLORITE PUMP - UNIT 1	Positive displacement diaphragm metering pump	$1 \times 100 \%$	<1	Assumes common pump house for tower 001A and 001B	00A
2	TL	MP	003B	New	CIRCULATING WATER SODIUM HYPOCHLORITE PUMP - UNIT 2	Positive displacement diaphragm metering pump	$1 \times 100 \%$	<1	Assumes common pump house for tower 001A and 001B	OOA
1	TL	MP	004A	New	CIRCULATING WATER SCALE INHIBITOR PUMP - UNIT 1	Positive displacement diaphragm metering pump	TBD	<1	Assumes common pump house for tower 001A and 001B; QTY to be determined when budgetary bids are received	OOA
1	TL	MP	004A	New	CIRCULATING WATER SCALE INHIBITOR PUMP - UNIT 1	Positive displacement diaphragm metering pump	TBD	<1	Assumes common pump house for tower 001A and 001B; QTY to be determined when budgetary bids are received	00A

Unit	Sys Code	Com. Code	Seq. No.		Description	Type	Capacty (\%) - Per Unit	Drive Motor Size BHP (or kW)	Comments	Rev.
2	TL	MP	004B	New	CIRCULATING WATER SCALE INHIBITOR PUMP - UNIT 2	Positive displacement diaphragm metering pump	TBD	<1	Assumes common pump house for tower 001A and 001B; QTY to be determined when budgetary bids are received	00A
2	TL	MP	004B	New	CIRCULATING WATER SCALE INHIBITOR PUMP - UNIT 2	Positive displacement diaphragm metering pump	TBD	<1	Assumes common pump house for tower 001A and 001B; QTY to be determined when budgetary bids are received	00A
1	TL	MT	001	New	CIRCULATING WATER SULFURIC ACID STORAGE TANK - UNIT 1	Horizontal cylindrical with dessicant breather for vent and oil-filled loop seal for overflow	$1 \times 100 \%$	N/A	Assumes common pump house for tower 001A and 0018	00A
2	TL	MT	001	New	CIRCULATING WATER SULFURIC ACID STORAGE TANK - UNIT 2	Horizontal cylindrical with dessicant breather for vent and oil-filled loop seal for overflow	1 $\times 100 \%$	N/A	Assumes common pump house for tower 001A and 001B	00A
1	TL	MT	004	New	CIRCULATING WATER SCALE INHIBITOR STORAGE TANK - UNIT 1	5,000 gallons, shop fabricated	$1 \times 100 \%$	N/A		00A
2	TL	MT	004	New	CIRCULATING WATER SC̄ALE INHIBITOR STORAGE TANK - UNIT 2	5,000 gallons, shop fabricated	$1 \times 100 \%$	N/A		00A
1	WB	ME	002	NEW	CONDENSATE COOLER	Shell and tube, 9,500,000 btuhr (assumed) Hot side: Flow-1500 gpm (assumed), temp out 90F Cold Side: Flow - 2150 gpm , temp out 82 F			Replaces existing heat exchanger. Design information for original heat exchanger unavailble from site. Base on piping connection sizes it is estimate to have a duty 50% of the service water heat exchanger.	00A
2	WB	ME	002	NEW	CONDENSATE COOLER	Shell and tube, 9,500,000 btuhr (assumed) Hot side: Flow-1500 gpm (assumed), temp out 90F Cold Side: Flow - 2150 gpm , temp out 82F			Replaces existing heat exchanger. Design information for original heat exchanger unavailble from site. Base on piping connection sizes it is estimate to have a duty 50% of the service water heat exchanger.	00A
1	WB	ME	001A	New	Senvice Cooling Exchanger - UNIT 1	Duty: $19,000,000$ btuhr Hot Side: Out: 90F, Flow 3000 gpm Cold Side In: 78F, flow 4300	100\%			OOA
2	WB	ME	001A	New	Service Cooling Exchanger - UNIT 2	Duty: 19,000,000 btuhr Hot Side: Out: 90F, Flow 3000 gpm Cold Side In: 78F, flow 4300	100\%			OOA
1	WB	ME	001B	New	Service Cooling Exchanger - UNIT 1	Duty: 19,000,000 btuhr Hot Side: Out: 90F, Flow 3000 gpm Cold Side In: 78F, flow 4300	100\%			00A
2	WB	ME	001B	New	Service Cooling Exchanger - UNIT 2	Duty: 19,000,000 btu/hr Hot Side: Out: 90F, Flow 3000 gpm Cold Side In: 78F, flow 4300	100\%			00A
1	WB	SCW HX	1	EXIST	SERVICE COOLING WATER HX	Shell and tube			Remove and replace with new HX 1-WB-ME-001A	OOB
2	WB	SCW HX	1	EXIST	SERVICE COOLING WATER HX	Shell and tube			Remove and replace with new HX 2-WB-ME-001A	OOB
1	WB	SCW HX	2	EXIST	SERVICE COOLING WATER HX	Shell and tube			Remove and replace with new HX 1-WB-ME-001B	OOB
2	WB	SCW HX	2	EXIST	SERVICE COOLING WATER HX	Shell and tube			Remove and replace with new HX 2-WB-ME-001B	O0B
1	WB		1	EXIST	CONDENSATE COOLER	Shell and tube			Remove and replace with new HX 1-WB-ME-002	00B
2	WB		1	EXIST	CONDENSATE COOLER	Shell and tube			Remove and replace with new HX 1-WB-ME-002	00B
1	WL	CWP	1	EXIST	CIRCULATING WATER PUMP	Concrete volute pump			Decommission	00A

Unit	Sys Code	Com. Code	Seq. No.		Description	Type	Capacity (\%) - Per Unit	Drive Motor Size日HP (or kW)	Comments	Rev.
2	WL	CWP	1	EXIST	CIRCULATING WATER PUMP	Concrate volute pump			Decommission	00A
1	WL	CWP	2	EXIST	CIRCULATING WATER PUMP	Concrete volute pump			Decommission	00A
2	WL	CWP	2	EXIST	CIRCULATING WATER PUMP	Concrete volute pump			Decommission	00A
1	WL	ME	001	New	MECHANICAL DRAFT COOLING TOWER - UNIT 1	Circular design, 459 ft . dia, 40 fans, 300 hp motors	1 $\times 100 \%$	11,400 (285 input hp required for each fan $x 40$)	Minimum spacing between tower is one (1 diameter)	00A
2	WL	ME	001	New	MECHANICAL DRAFT COOLING TOWER - UNIT 2	Circular design, 459 ft . dia, 40 fans, 300 hp motors	1 $\times 100 \%$	11,400 (285 input hp required for each fan $\times 40$)	Minimum spacing between tower is one (1 diameter)	OOA
1	WL	MP	001A	New	CIRCULATING WATER PUMP- Unit 1	Vertical Turtine, $218250 \mathrm{gpm}, 110 \mathrm{ft}$ TDH	1 X 25\%	7250	Pump to be located in common pump house for tower 001A \& 001B	00A
2	WL	MP	001A	New	CIRCULATING WATER PUMP- Unit 2	Vertical Turbine, $218250 \mathrm{gpm}, 110 \mathrm{ft}$ TDH	1 $\times 25 \%$	7250	Pump to be located in common pump house for tower 001A \& 001B	00A
1	WL	MP	001B	New	CIRCULATING WATER PUMP- Unit 1	Fabricated Volute, 218250 gpm , 110 ft TDH	1 X 25\%	7250	Pump to be located in common pump house for tower 001A \& 001B	008
2	WL	MP	001B	New	CIRCULATING WATER PUMP- Unit 2	Fabricated Volute, 218250 gpm , 110 ft TDH	1 $\times 25 \%$	7250	Purnp to be located in common purnp house for tower 001A \& 001B	00B
1	WL	MP	001C	New	CIRCULATING WATER PUMP-Unit 1	Fabricated Volute, $218250 \mathrm{gpm}, 110 \mathrm{ft}$ TDH	1 $\times 25 \%$	7250	Pump to be located in common pump house for tower 001A \& 001B	00B
2	WL	MP	001C	New	CIRCULATING WATER PUMP-Unit 2	Fabricated Volute, 218250 gpm , 110 ft TDH	1 X 25\%	7250	Pump to be located in common pump house for tower 001A \& 001B	00B
1	WL	MP	001D	New	CIRCULATING WATER PUMP- Unit 1	Fabricated Volute, $218250 \mathrm{gpm}, 110$ ft TDH	1 $\times 25 \%$	7250	Pump to be located in common pump house for tower 001A \& 001 B	00B
2	WL	MP	001D	New	CIRCULATING WATER PUMP- Unit 2	Fabricated Volute, $218250 \mathrm{gpm}, 110 \mathrm{ft} \mathrm{TDH}$	1 $\times 25 \%$	7250	Pump to be located in common pump house for tower 001A \& 001 B	00B
0	WL	MT	001	New	COOLING TOWER MAKEUP POND Common	5,000,000 gallons	$1 \times 100 \%$		≈ 2.5 hours (evaporation, drift \& blowdown of $33,100 \mathrm{gpm}$). Pond to be located at a higher elevation than cooling tower basins.	00A
1	WL	PV		New	TOWER RISER ISOLATION VALVES UNIT 1	Slide Gate	$1 \times 12.5 \%$		Supplied by tower vendor.	OOA
1	WL	PV		New	TOWER RISER ISOLATION VALVES UNIT 1	Slide Gate	1 X 12.5\%		Supplied by tower vendor.	00A
1	WL	PV		New	TOWER RISER ISOLATION VALVES UNIT 1	Slide Gate	$1 \times 12.5 \%$		Supplied by tower vendor.	OOB
1	WL	PV		New	TOWER RISER ISOLATION VALVES UNIT 1	Slide Gate	$1 \times 12.5 \%$		Supplied by tower vendor.	00B
1	WL	PV		New	TOWER RISER ISOLATION VALVES UNIT 1	Slide Gate	$1 \times 12.5 \%$		Supplied by tower vendor.	00B
1	WL	PV		New	TOWER RISER ISOLATION VALVES UNIT 1	Slide Gate	1 X 12.5\%		Supplied by tower vendor.	00B
1	WL	PV		New	TOWER RISER ISOLATION VALVES UNIT 1	Slide Gate	$1 \times 12.5 \%$		Supplied by tower vendor.	00B

Unit	Sya Code	Com. Code	Seq. No.		Description	Type	Capacity (\%) - Per Unit	Drive Motor Size BHP (or kW)	Commenta	Rev.
1	WL	PV		New	TOWER RISER ISOLATION VALVES UNIT 1	Slide Gate	1 $\times 12.5 \%$		Supplied by tower vendor.	00B
2	WL	PV		New	TOWER RISER ISOLATION VALVES UNIT 2	Slide Gate	1 $\times 12.5 \%$		Supplied by tower vendor.	00A
2	WL	PV		Now	TOWER RISER ISOLATION VALVES UNIT 2	Slide Gate	1 $\times 12.5 \%$		Supplied by tower vendor.	00B
2	WL	PV		New	TOWER RISER ISOLATION VALVES UNIT 2	Slide Gate	1 $\times 12.5 \%$		Supplied by tower vendor.	00B
2	WL	PV		New	TOWER RISER ISOLATION VALVES UNIT 2	Slide Gate	$1 \times 12.5 \%$		Supplied by tower vendor.	00B
2	WL	PV		New	TOWER RISER ISOLATION VALVES UNIT 2	Slide Gate	$1 \times 12.5 \%$		Supplied by tower vendor.	00B
2	WL	PV		New	TOWER RISER ISOLATION VALVES UNIT 2	Slide Gate	1 $\times 12.5 \%$		Supplied by tower vendor.	00B
2	WL	PV		New	TOWER RISER ISOLATION VALVES UNIT 2	Slide Gate	1 $\times 12.5 \%$		Supplied by tower vendor.	00B
2	WL	PV		New	TOWER RISER ISOLATION VALVES UNIT 2	Slide Gate	$1 \times 12.5 \%$		Supplied by tower vendor.	OOB
0	WO	ME		New	CIP TANK HEATER	50 KW heater, 10 KW pump		10 KW	Add 50 KW to operating power for the 50 KW heater	00A
0	WO	ML		New	DISSOLVED AIR FLOATATION	TBD Gallons, TBD L $\times W \times \mathrm{H}$	9×12.5\%	-		OOA
0	WO	ML		New	FIRST STAGE DUAL MEDIA FILTERS	2,630 gpm throughput	$30 \times 3.6 \%$,	-		00A
0	wo	ML		New	SECOND STAGE DUAL MEDIA FILTERS	3,540 gpm throughput	$22 \times 5 \%$	-		OOA
0	WO	ML		Now	SWRO CARTRIDGE FILTER	4,370 gpm throughput each	18×5.9\%			OOA
0	WO	ML		New	CIP CARTRIDGE FILTER	$1,000 \mathrm{gpm}$ throughput	1 $\times 100 \%$	-		00A
0	WO	MP	001A	New	DESAL SEA WATER SUPPLY PUMP	Vertical Turbine, $368,800 \mathrm{gpm}, \mathrm{TDH}: 570$ feet	1 $\times 50 \%$	6800		00C
0	WO	MP	0018	New	DESAL SEA WATER SUPPLY PUMP	Vertical Turbine, $368,800 \mathrm{gpm}$, TDH: 570 foet	1 $\times 50 \%$	6800		00 C
0	WO	MP	001C	New	DESAL SEA WATER SUPPLY PUMP	Vertical Turbine, $368,800 \mathrm{gpm}$, TDH: 570 feet	1 $\times 50 \%$	6800		00 C
0	WO	MP	002A	New	SWRO MMF BACKWASH RETURN PUMP	Vertical Turbine, 2000 gpm , TDH 100 feet	$1 \times 100 \%$	75		00B
0	wo	MP	002B	New	SWRO MMF BACKWASH RETURN PUMP	Vertical Turbine, 2000 gpm , TDH 100 feet	$1 \times 100 \%$	75		OOB
0	WO	MP		New	DAF FORWARDING PUMP	9,780 gpm, 100 ft	$10 \times 11.1 \%$	350		OOA
0	WO	MP		New	SWRO BOOSTER PUMP	$4,240 \mathrm{gpm}, 2,000 \mathrm{ft} \mathrm{TDH}$	9 $\times 12.5 \%$	3000		OOA
0	WO	MP		New	SWRO ENERGY RECOVERY DEVICE	$5,110 \mathrm{gpm}$	9 $\times 12.5 \%$	-		00A
0	WO	MP		New	SWRO ERD BOOSTER PUMP	5,110 gpm, 200 ft TDH	9 $\times 12.5 \%$	400		00A
0	WO	MP		New	CIP RECIRCULATION PUMP	$1200 \mathrm{gpm}, 250 \mathrm{ft}$ TDH	$2 \times 100 \%$	100		OOA
0	wo	MP		New	SODIUM HYPOCHLORITE DOSING PUMP	25 gph	$2 \times 100 \%$	1		OOA
0	WO	MP		New	DAF COAGULANT DOSING PUMP	TBD gph	$2 \times 100 \%$	1		OOA
0	WO	MP		New	MMF COAGULANT DOSING PUMP	TBD gph	$2 \times 100 \%$	1		00A
0	WO	MP		Now	ACID DOSING PUMP	25 gph	$2 \times 100 \%$	1		00A
0	wo	MP		New	ANTISCALANT DOSING PUMP	TBD gph	$2 \times 100 \%$	1		00A
0	WO	MP		New	DECHLORINATION DOSING PUMP	TED gph	$2 \times 100 \%$	1		OOA
0	WO	MT		New	AlR SATURATION TANK	TBD Gallons	9 $\times 12.5 \%$	-		OOA
0	WO	MT		New	CIP SOLUTION TANK	6,000 gallons	1 $\times 100 \%$	-		00A
0	WO	MT		New	SODIUM HYPOCHLORITE STORAGE TANK	21,000 gallons	$1 \times 100 \%$	-		00A
0	WO	MT		New	DAF COAGULANT STORAGE TANK	21,000 gallons	1 $\times 100 \%$	-		00A
0	WO	MT		New	MMF COAGULANT STORAGE TANK	21,000 gallons	$1 \times 100 \%$	-		00A
0	WO	MT		New	ACID STORAGE TANK	21,000 gallons	$1 \times 100 \%$	-		00A

Unit	Sys Code	Com. Code	Seq. No.		Doscription	Type	Capacity (\%) - Par Unit	Drive Motor Size BHP (or kW)	Comments	Rev.
0	WO	MT		New	ANTISCALANT STORAGE TANK	21,000 gallons	1 $\times 100 \%$	-		00A
0	WO	MT		New	DECHLORINATION STORAGE TANK	21,000 gallons	$1 \times 100 \%$	-		00A
0	wo	MW	001	New	DESALINATION PLANT	Multiple Train System consisting of multimedia filters (MMF), seawater reverse osmosis (SWRO) trains, ciean-in-place (CIP) systems and chemical dosing systems, product flowrate - 33100 gpm .	100\%		Estimated Plant area: 422,000 sq feet	OOA
0	WO	MW		New	SWRO MEMBRANE UNIT	$3,670 \mathrm{gpm}$ throughput	$9 \times 12.5 \%$	-		OOA
0	WR	MC		New	FILTER 'A" VACUUM PUMP	TBD	2×100\%	5.5		00A
0	WR	ML		New	FILTER (GREENLEAF FILTER)	2,800 gpm	$1 \times 100 \%$			OOA
0	WR	ML		New	FILTER PRESS	20 Cf	2×100\%	5.0		OOA
0	WR	MP	001A		CLARIFIER FORWARDİING PUMP	Horizontal cennritugal, $3000 \mathrm{gpm}, 100$ feet TDH	$1 \times 100 \%$			00A
0	WR	MP	001 B		CLARIFIER FORWARDING PUMP	Horizontal centrifugal, $3000 \mathrm{gpm}, 100$ feet TDH	$1 \times 100 \%$			00A
0	WR	MP	002A	New	RECLAIM WATER CLARIFIER FEED PUMP	Horizontal centrifugal, $3000 \mathrm{gpm}, 100$ feet TDH	$1 \times 100 \%$	125		00C
0	WR	MP	002B	New	RECLAIM WATER CLARIFIER FEED PUMP	Horizontal centrifugal, $\mathbf{3 0 0 0} \mathrm{gpm}, 100$ feet TDH	$1 \times 100 \%$	125		00C
0	WR	MP	003A		CLARIFIER MMF BACKWASH PUMP	Vertical Centrifugal, $1000 \mathrm{gpm}, 100$ feet TDH	$1 \times 100 \%$			00A
0	WR	MP	003B		CLARIFIER MMF BACKWASH PUMP	Vertical Centrifugal, $1000 \mathrm{gpm}, 100$ foet TDH	$1 \times 100 \%$			00A
0	WR	MP	004B	New	MORO BAY RECLAIM WATER SUPPLY PUMP	Vertical Turbine, $800 \mathrm{gpm}, 500$ feet TDH, 15 feet baseplate to suction bell inlet	$1 \times 100 \%$	150	Pump station is located approximately 20 miles off site.	00C
0	WR	MP	005A	New	SAN LUIS OBISPO RECLAIM WATER SUPPLY PUMP	Vertical Turbine, 2000 gpm , 580 feet TDH, 15 feet baseplate to suction bell inlet	$1 \times 100 \%$	400	Pump station is located approximately 20 miles off site.	00C
0	WR	MP	005B	New	SAN LUIS OBISPO RECLAIM WATER SUPPLY PUMP	Vertical Turbine, 2000 gpm , 580 feet TDH, 15 feet baseplate to suction bell inlet	$1 \times 100 \%$	400	Pump station is located approximately 20 miles off site.	00C
0	WR	MP		New	CLARIFIER "A" SLUDGE RECIRCULATION / BLOWDOWN PUMP SET	$140 \mathrm{gpm}, 46 \mathrm{ft} \mathrm{TDH} \mathrm{with} \mathrm{VFD}$	$3 \times 50 \%$	7.5		00A
0	WR	MP		New	FILTER PRESS FEED PUMP	$30 \mathrm{gpm}, 100 \mathrm{psig}$	3×50\%	N/A	Air operated diaphragm	00A
0	WR	MP		New	FILTRATE SUMP TRANSFER PUMP	$100 \mathrm{gpm}, 46 \mathrm{ft} \mathrm{TDH}$	2×100\%	2.0		OOA
0	WR	MP		New	SODIUM HYPOCHLORITE DOSING PUMPS	10 gph	$4 \times 25 \%$	0.3		OOA
0	WR	MP		New	FERRIC CHLORIDE DOSING PUMP	20 gph	$4 \times 25 \%$	0.5		00A
0	WR	MP		New	POLYELECTROLYTE DOSING PUMP	2 gph	$3 \times 50 \%$	0.25		00A
0	WR	MP	004A	New	MORO BAY RECLAIM WATER SUPPLY PUMP	Vertical Turbine, $800 \mathrm{gpm}, 500$ feet TDH, 15 feet baseplate to suction bell inlet	$1 \times 100 \%$	150	Pump station is located approximately 20 miles off site.	00C
0	WR	MT	001	New	RECLAIM WATER STORAGE TANK	Field Fabricated Epoxy Coated Carbon Steel, 100,000 gallon	1 $\times 100 \%$		Sized for 30 min storage, 40 ft Diameter and 40 ft High	00C
0	WR	MT		New	MIX TANK (RAPID)	9,300 gallons, $9^{\prime} \mathrm{D} \times 20.25^{\prime} \mathrm{H}$	$1 \times 100.3 \%$			OOA
0	WR	MT		New	REACTION TANK (DENSADEG REACTOR)	37,000 gallons 19'D $\times 18.5^{\prime} \mathrm{H}$	1 $\times 100.3 \%$	-		00A
0	WR	MT		New	FILTER BACKWASH SUPPLY TANK	21,000 gallons	$1 \times 100 \%$	-		OOA
0	WR	MT		New	SLUDGE STORAGE TANK	6,000 gallons, $10^{\circ} \mathrm{D} \times 12^{\prime} \mathrm{H}$	1 $\times 100 \%$	-		00A
0	WR	MT		New	SLUDGE STORAGE TANK MIXER	With VFD	$1 \times 100 \%$	5.0		OOA
0	WR	MT		New	SODIUM HYPOCHLORITE BULK STORAGE TANK	5000 gallons	1 $\times 100 \%$	-		OOA
0	WR	MT		Now	FERRIC CHLORIDE STORAGE TANK	5,000 gallons	1 $\times 100 \%$	-		00A
0	WR			New	MIX TANK MIXER	With VFD	$1 \times 100 \%$	5.0		OOA
0	WR			New	REACTION TANK MIXER	With VFD	$3 \times 33.3 \%$	7.5		00A
0	WR			New	CLARIFIER (DENSADEG CLARIFIER / THICKENER)	2,800 gpm $26^{\prime} \mathrm{D} \times 18.5^{\prime} \mathrm{H}$	$1 \times 100 \%$	-		OOA
0	WR			New	CLARIFIER SLUDGE SCRAPER	Two arms	$1 \times 100 \%$	0.5		OOA

Unit	Sys Codo	Com. Code	Seq. No.	Description	Type	Capacity (\%) - Per Unit	Drive Motor Size BHP (or kW)	Comments	Rev.
	XN			DESAL AREA SANITARY LIFT STATION	48' diameter concrete sump, vented cover, duplex submersible pumps (50 gpm , TH: 100 ft), control panel, extemal valve box,				00A

JUOTC - DIABLO CANYON
 Preliminary Mechanical Equipment List Hybrid Cooling

25762-110-M0X-YA-00005

00 C	$9 / 12 / 2,13$	Re-Issued for Estimate Report	∞	-	R
00 B	$7 / 24 / 2013$	Issued for Estimate Report	RP	-	RP
00 A	$7 / 10 / 2013$	Issued for Estimating	RP	-	RP
Rev	Date	Reason for Revision	Orignator	Checked	Approved

25762-11-MOX-YA-00005, Rev. 00C

sye Code	$\begin{gathered} \text { com. } \\ \text { codo } \end{gathered}$	$\begin{aligned} & \text { Seve. } \\ & \text { No. } \end{aligned}$	$\begin{gathered} \text { Nowlt } \\ \text { Existing } \end{gathered}$	Doscription	Typa	Capactity ($\%$) - Per Unli	Drive Motor Size BHP (or kW)	Comments	Rov.
AC	MU		Exist	LP TURBINE				No modification currently required. Monitoring program should be sent up	00A
AC	MU		Exist	LP TURBINE				No modification currently required. Monitoring program should be sent up	0 A
AD	ME		EXIST	CONDENSER				Tube side desgin pressure to be increased to 50 psig Water boxes raplaced and condenser rebundled	00A
AD	ME		EXIST	CONDENSER				Tube side desgin pressure to be increased to 50 psig Water boxes replaced and condenser rebundled	00A
PF	Pr		New	FIRE HYDRANT	Dry Barrel Type			One every 300 t , New fire piping 16,188 tt	00A
PI	MC	001 A	New	DESAL PLANT AIR COMPRESSOA	Dry, rotary screw 200 sctm 100-125 psig	$1 \times 100 \%$	125		00 A
PI	MC	0018	New	DESAL PLANT AIR COMPRESSOR	Dry, rotary screw 200 scfm 100-125 psig	$1 \times 100 \%$	125		OOA
PI	MT	001 A	New	DESAL PLANT AIR RECEIVER	5,000 gallon	$1 \times 100 \%$			00 A
PI	MT	0018	New	DESAL PLANT AIR RECEIVER	5,000 galion	$1 \times 100 \%$			00 A
PI	MV	001A	New	DESAL PLANT AIR DRYER	Heatless, dessicant, dual towers with pre and after filters	$1 \times 100 \%$		Matched to compressor	OOA
PI	MV	0018	New	desal plant Alp dRyER	Heatless, dessicant, dual towers with pre and after fillers	$1 \times 100 \%$		Matched to compressor	00A
PW	PY		New	Emergency Shower and Eyewash					00A
TL	MP	001A	New	CIRCULATING WATER SULFURIG ACID PUMP - UNIT 1	Positive displacement diaphragm metering pump	$1 \times 100 \%$	<1	Assumes common pump house for tower 001A and 001B	00A
TL	MP	001A	New	CIRCULATING WATER SULFURIC ACID PUMP - UNIT 2	Positive displacement diaphragm metering pump	1 $\times 100 \%$	<1	Assumes common pump house for tower 001A and 001B	00A
TL	MP	0018	New	CIRGULATING WATER SULFUAIC ACID PUMP - UNIT	Positive displacement diaphragm metaring pump	$1 \times 100 \%$	<1	Assumes common pump house for tower 001A and 001B	00A
TL	MP	0018	Now	${ }_{2}$ CIRCULATING WATER SULFUAIC ACID PUMP - UNIT	Positive displacement diaphragm metering pump	$1 \times 100 \%$	<1	Assumes common pump house for tower 001A and 001B	OOA
TL	MP	002A	New	CIRCULATING WATER DISPERSANT PUMP - UNIT 1	Positive displacement diaphragm metering pump	$1 \times 100 \%$	<1	Assumes common pump house for tower 001A and 001B	00A
TL	MP	002A	New	CIRCULATING WATER DISPERSANT PUMP - UNIT 2	Positive displacement dlaphragm metering pump	$1 \times 100 \%$	<1	Assumes common pump house for tower 001A and 001 B	OOA
TL	MP	002B	ow	CIRCULATING WATER DISPERSANT PUMP - UNIT 1	Positive displacement diaphragm metering pump	1 $\times 100 \%$	<1	Assumes common pump house for tower 001A and 001B	00A
TL	MP	0028	New	CIRCULATING WATER DISPERSANT PUMP - UNIT 2	Positive displacement diaphragm metering pump	1 $\times 100 \%$	<1	Assumes common pump house for tower 001A and 001B	OOA
TL	MP	003A	New	CIRCULATING WATER SODIUM HYPOCHLORITE PUMP-UNIT 1		1 $\times 100 \%$	<1	Assumes common pump house for tower 001A and 001B	00A
TL	MP	003A	Now	CIRCULATING WATER SODIUM HYPOCHLORITE PUMP-UNIT 2		1 $\times 100 \%$	<1	Assumes common pump house for tower 001A and 001B	OOA
TL	MP	003B	New	CIRCULATING WATER SODIUM HYPOCHLORITE PUMP - UNIT 1		$1 \times 100 \%$	<1	Assumes common pump house for tower 001A and 001B	OOA
TL	MP	0038	Now	CIRCULATING WATER SODIUMM HYPOCHLORITE PUMP -UNIT 2		1 $\times 100 \%$	<1	Assumes common pump houss for tower 001A and 001B	OOA
TL	MP	004A	New	CIRCULATING WATER SCALE INHIBITOR PUMP UNIT 1	Positive displacement dlaphragm metering pump	TBD	<1	Assumes common pump house for tower 001A and 001B; QTY to be determined when budgetary bids are recelved	OOA
TL	MP	004A	New	CIRCULATING WATER SCALE INHIBITOR PUMP UNIT 1	Positive displacement diaphragm metering pump	TBD	<1	Assumes common pump house for tower 001A and 001B; QTY to be determined when budgetary bids are recelved	OOA
TL	MP	004B	New	CIRCULATING WATER SCALE INHIBITOR PUMM UNIT 2	Positive displacement diaphragm metering pump	TBD	<1	Assumes common pump house for tower 001A and 001B; QTY to be determined when budgetary blds are received	00A
TL	MP	004B	New	CIRCULATING WATER SCALE INHIBITOR PUUMP UNIT 2	Positive displacement diaphragm metering pump	TBD	<1	Assumes common pump house for tower 001A and 001B; QTY to be determined when budgetary blds are recelved	00A
TL	MT	001	New	CIRCULATING WATER SULFURIC ACID STORAGE TANK - UNIT 1	Horizontal cylindrical with dessicant breather for vent and oil-filled loop seal for overtiow	$1 \times 100 \%$		Assumes common pump house for tower 001A and 001B	DOA
TL	MT	001	New	CIRCULATING WATER SULFURIC ACID STORAGE TANK-UNIT 2	Horizontal cylindrical with dessicant breather for vent and oil-filled loop seal for overfiow	$1 \times 100 \%$		Assumes common pump house for tower 001A and 001B	00A

Sya Code	Com. Code	Seq. No.	$\begin{aligned} & \text { Nowl/ } \\ & \text { Existing } \end{aligned}$	Description	Type	$\begin{array}{\|c\|} \hline \text { Capacty }(\%) \\ - \text { Por Unit } \end{array}$	Dirve Motor Stze BHP (or kW)	Comments	Rov.
TL	MT	002	New	CIRCULATING WATER DISPERSANT STORAGE TANK - UNIT 1		$1 \times 100 \%$			00A
TL	MT	002	New	CIRCULATING WATER DISPERSANT STORAGE TANK - UNIT 2		$1 \times 100 \%$			00A
TL	MT	003	New	CIRCULATING WATER SODIUM HYPOCHLORITE STORAGE TANK - UNIT 1	Vertical cylindrical	$1 \times 100 \%$			00A
TL	MT	003	New	CIRCULATING WATER SODIUM HYPOCHLORITE STORAGE TANK - UNIT 2	Vertical cylindrical	$1 \times 100 \%$			OOA
TL	MT	004	New	CIRCULATING WATER SCALE INHIBITOR STORAGE TANK - UNIT 1		$1 \times 100 \%$			00A
TL	MT	004	New	CIRCULATING WATER SCALE INHIBITOR STORAGE TANK - UNIT 2		$1 \times 100 \%$			00A
WB	ME	002	New	CONDENSATE COOLER	Shell and tube, $9,500,000 \mathrm{btwhr}$ (assumed) Hot side: Flow-1500 gpm (assumed), temp out 90F			Replaces existing heat exchanger. Design information for original heat exchanger unavailble from site. Base on piping connection	00B
WB	ME	002	New	CONDENSATE COOLER	Shell and tube, $9,500,000$ btuhr (assumed) Hot side: Flow- 1500 gpm (assumed), temp out 90 F			Replaces existing heat exchanger. Design information for orlginal heat exchanger unavailble from site. Base on piping connection	OOB
WB	ME	001A	New	Service Cooling Exchanger - UNIT 1	Duty: 19,000,000 btu/hr Hot Side: Out: 90F, Flow 3000 gpm	100\%			00A
WB	ME	001A	New	Service Cooling Exchanger - UNIT 2	Duty: 19,000,000 btu/hr Hot Side: Out: 90F, Flow 3000 gpm	100\%			00A
WB	ME	0018	New	Service Cooling Exchanger - UNIT 1	$\begin{aligned} & \text { Duty: } 19,000,000 \text { btuhr } \\ & \text { Hot Side: Out: } 90 \mathrm{~F}, \text { Flow } 3000 \mathrm{gpm} \end{aligned}$	100\%			00A
WB	ME	0018	New	Service Cooling Exchanger - UNIT 2	Duty: 19,000,000 btwhr Hot Side: Out: 90F, Flow 3000 gpm	100\%			OOA
WL	ME	001A	New	MECHANICAL DRAFT HYBRID (WET/DAY) COOLING TOWER - UNIT 1	Circular design, 459 ft . dia, Wet section - 40 fans, 300 hp motors and Dry section - 40 fans, 200 hp motors	1 $\times 100 \%$	19,000 (285 input power required each	Minimum spacing between tower is one (1 diameter)	OOA
WL	ME	001A	New	MECHANICAL DRAFT HYBRID (WET/DRY) COOLING TOWER - UNIT 2	Circular design, 459 ft . dia, Wet sectlon - 40 fans, 300 hp motors and Dry section - 40 fans, 200 hp motors	1 $\times 100 \%$	power required each \qquad	Minimum spacing between tower is one (1 diameter)	00A
WL	MP	001A	New	CIRCULATING WATER PUMP - Unit 1	Fabricated Volute, 218,250 gpm, 110 ft TDH	1 $\times 25 \%$	7250	Pump to be located in common pump house for tower 001A \& 001B	OOB
WL	MP	001A	New	CIRCULATING WATER PUMP - Unit 2	Fabricated Volute, 218,250 gpm, 110 ft TDH	1 $\times 25 \%$	7250	Pump to be located in common pump house for tower 001A \& 0018	00B
WL	MP	0018	New	CIRCULATING WATER PUMP - Unit 1	Fabricated Volute, 218,250 gpm, 110 ft TDH	1 $\times 25 \%$	7250	Pump to be located in common pump house for tower 001A \& 001 B	COB
WL	MP	001B	New	CIRCULATING WATER PUMP - Unit 2	Fabricated Volute, 218,250 gpm, 110 tt TDH	$1 \times 25 \%$	7250	Pump to be located in common pump house for tower 001A \& 001B	008
WL	MP	001C	Naw	CIRCULATING WATER PUMP - Unit 1	Fabricated Volute, 218,250 gpm, 110 tt TDH	1 $\times 25 \%$	7250	Pump to be located in common pump house for tower 001A \& 001B	OOB
WL	MP	001C	New	CIRCULATING WATER PUMP - UnIt 2	Fabricated Volute, 218,250 gpm, 110 ft TDH	1 $\times 25 \%$	7250	Pump to be located in common pump house for tower 001A \& 001B	OOB
WL	MP	001D	New	CIRCULATING WATER PUMP - Unit 1	Fabricated Volute, 218,250 gpm, 110 ft TDH	1 $\times 25 \%$	7250	Pump to be located in common pump house for tower 001A \& 001B	00B
WL	MP	001D	New	CIRCULATING WATER PUMP - Unit 2	Fabricated Volute, 218,250 gpm, 110 ft TDH	1 $\times 25 \%$	7250	Pump to be located in common pump house for tower 001A \& 001 B	OOB
WL	MP	002A	New	HYBRID COOLING TOWER BOOSTER PUMP - UNIT 1	4 Pumps per Tower, 25 ft Static Head	1 $\times 25 \%$	1140	Supplied by tower vendor.	008
WL	MP	002A	New	HYBRID COOLING TOWER BOOSTER PUMP - UNIT 2	4 Pumps per Tower, 25 ft Static Head	$1 \times 25 \%$	1140	Supplied by tower vendor.	008
WL	MP	002B	New	HYBRID COOLING TOWER BOOSTER PUMP - UNIT 1	4 Pumps per Tower, 25 ft Static Head	$1 \times 25 \%$	1140	Supplied by tower vendor.	008
WL	MP	002B	New	HYBRID COOLING TOWER BOOSTER PUMP - UNIT 2	4 Pumps per Tower, 25 ft Static Head	1 $\times 25 \%$	1140	Supplied by tower vendor.	008
WL	MP	002C	New	HYBRID COOLING TOWER BOOSTER PUMP - UNIT 1	4 Pumps per Tower, 25 ft Static Head	1 $\times 25 \%$	1140	Supplled by tower vendor.	00B
WL	MP	002C	New	HYBRID COOLING TOWER BOOSTER PUMP - UNIT 2	4 Pumps per Tower, 25 ft Static Head	1 $\times 25 \%$	1140	Supplied by tower vendor.	008

\％	8	8	8	8	¢	8	¢	¢	¢	8	¢	δ	8	8	8	8	8	8	\％	8	C			8	8	88	8	¢	8		88	88
		$\begin{array}{\|l\|l} \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline \end{array}$																														
																								ふ	O－M	－	88					
	$\begin{array}{\|l} \hline \stackrel{\circ}{\circ} \\ \text { No } \\ \dot{x} \\ \hline \end{array}$	$\begin{array}{\|l} \hline \stackrel{\circ}{\text { in }} \\ \underset{\sim}{\mathrm{N}} \\ \dot{x} \end{array}$	$\begin{aligned} & \hline \stackrel{\circ}{\circ} \\ & \stackrel{0}{N} \\ & \stackrel{1}{x} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \stackrel{\circ}{\circ} \\ & \stackrel{\sim}{n} \\ & \stackrel{1}{x} \\ & \underset{x}{2} \end{aligned}$		$\begin{array}{\|l\|} \hline \stackrel{\circ}{\circ} \\ \text { Ni } \\ \times \underset{~}{x} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \stackrel{8}{\circ} \\ \stackrel{1}{\mathrm{~N}} \\ \dot{x} \\ \hline \end{array}$	$\begin{aligned} & \stackrel{\circ}{\stackrel{\circ}{0}} \underset{\underset{\sim}{x}}{ } \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{0} \\ & \stackrel{\rightharpoonup}{\mathrm{o}} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\stackrel{\circ}{\sim}} \\ & \underset{\sim}{x} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\stackrel{\circ}{\sim}} \\ & \underset{\sim}{\sim} \end{aligned}$	$\begin{aligned} & \text { \% } \\ & \stackrel{\circ}{n} \\ & \times \\ & \times \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{4} \\ & \stackrel{+}{x} \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{0} \\ & \stackrel{\sim}{0} \\ & \times \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{\sim}{6} \\ & \times \\ & \hline \end{aligned}$	د		－						$\begin{aligned} & \stackrel{8}{8} \\ & \stackrel{6}{x} \\ & \hline \end{aligned}$				－				（\％）
$\stackrel{8}{2}$																	2，630 gpm throughput															
둔 音 莫																																
	$\frac{\mathbf{3}}{\mathbf{2}}$	$\frac{\mathbf{3}}{\mathbf{2}}$	$\frac{\mathbf{3}}{\mathbf{2}}$	$\stackrel{3}{2}$	$\frac{\mathbf{3}}{\mathbf{2}}$	$\frac{\text { Z }}{2}$	$\frac{\mathbf{3}}{\mathbf{2}}$	$\frac{\mathbf{3}}{\mathbf{2}}$	$\frac{\mathbf{3}}{\mathbf{2}}$	$\frac{⿳ 亠 丷 厂}{\mathbf{2}}$	$\frac{\mathbf{3}}{\mathbf{2}}$	$\frac{⿳ 亠 丷 厂}{2}$	$\frac{\mathbf{z}}{\mathbf{2}}$	$\frac{3}{2}$	$\frac{\mathbf{3}}{\mathbf{Z}}$	产 ${ }_{2}$		$\begin{array}{l\|l} \frac{3}{2} & \frac{3}{2} \\ 2 & \frac{1}{2} \\ \hline \end{array}$		2	2			$\frac{3}{\frac{3}{2}}$	$\begin{array}{l\|l} 3 \\ \frac{3}{2} & \frac{3}{2} \\ 2 \end{array}$	$\frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2}$	${ }_{5}^{3} \frac{3}{2}$	2				2
䔍定																				8				呂								
	交	ㄹ	ㄹ	ㄹ	ㄹ	조	ㄹ									｜${ }_{\underline{2}}$	$\stackrel{1}{2}$	$\sum \sum$		$\frac{0}{2}$	$\underline{\square}$			$\frac{0}{2}$	$\frac{1}{2} \frac{1}{2}$	$\frac{1}{2} \frac{0}{2} \frac{0}{2}$	$\frac{1}{2} \frac{0}{2}$	$\frac{0}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{0}{2}$	$2 \frac{1}{2}$
\％ d 或	$\stackrel{1}{3}$	3	$\frac{1}{3}$	3	$\stackrel{3}{3}$	3	3	3	3	3	3	3	3	$\stackrel{1}{3}$	3	\bigcirc	30	3 O		3	30			3	$0 \begin{aligned} & 0 \\ & 3 \\ & 3 \end{aligned}$	30	3	O	3%	3	3	30

JUOTC - DIABLO CANYON

Preliminary Mechanical Equipment List

Fine Mesh Screening

25762-110-M0X-YA-00006

00B	$6 / 24 / 2013$	lssued for Estimate Report	P^{P}		RP
OOA	$5 / 8 / 2013$	Issued for Estimating	RP	-	RP
Rev	Date	Reason for Revision	Orignator	Checked	Approved

System Codes		Commodity Codes	
WL	Circulating Water	ME	Heat Exchange Component (Cooling Tower, Heat Exchanger)
wo	Sea Water	ML	Liquid-Solid Separation (Traveling Screens, Trash Racks, Automatic Strainser/Filters)
		MP	Pump
		MT	Tank
		PP	Pump - exist plant
		PY	In line piping specialty

NOTES:

1. Commodity Codes shown are Bechtel standard codes. Bechtel Commodity codes have beens assigned to exisiting plant equipment numbers to aid in equipment list sorts.
2. System Codes shown are Bechtel standard codes. Bechtel System Codes have been assigned to existing plant equipment numbers to aid in list sorts.

Oumathy	Bidder Quode to be Used	Unht	$\begin{gathered} \text { Sye } \\ \text { Code } \end{gathered}$	$\begin{aligned} & \text { com. } \\ & \text { codot } \end{aligned}$	$\begin{aligned} & \text { Seq. } \\ & \text { No. } \end{aligned}$	$\underset{\text { Exlating }}{\text { Now/I }}$	Description	тype	$\begin{aligned} & \text { Capactiy } \\ & \text { (\%) - Per } \end{aligned}$ Unit	$\begin{array}{\|c\|} \hline \text { Drive Motor } \\ \text { size } \\ \text { BHP (or kW) } \end{array}$	Comments	Rev.
1		1	WT	ML	001	Now	DUAL FLOW TRAVELING SCREEN WTTH FISH CATCHER	Frie mesh ($1 \mathrm{~mm} \times 6 \mathrm{~mm}$), 13 foct, vartable speed dithes (5/10/20/40 tpm)	16.67	15.0	priced by fineur foot	008
1	$\begin{array}{\|c\|} \hline \text { Ovio Proposal BP12 } \\ \text { 189R1 } \\ \hline \end{array}$	1	wT	ML	002	New	DUAAL FLOW TRAVELNG SCREEN WITH FISH CATCHER	Fine mesh ($1 \mathrm{~mm} \times 6 \mathrm{~mm}$), 13 foot, variable speed divives (510/20/40 ppm)	18.67	15.0	pilced by thene foot.	OOA
1	Owio Proposal BP12 189R1	1	WT	ML	003	New	DUAL FLOW TRAVELNG SCREEN WIH FISH CATCHER	Fine mosh ($1 \mathrm{~mm} \times 6 \mathrm{~mm}$), 13 foot, variable apeed divivas (5/10/20140 fpm)	18.67	15.0		OOA
1	OWMO Proposal BP 12 189R1	1	WT	ML	004	Now	DUAL FLOW TRAVELING SCREEN WTH FISH CATCHER	Fine mesh ($1 \mathrm{~mm} \times 6 \mathrm{~mm}$). 13 foct, variable apeed chives (5/10/20/40 fpm)	16.67	15.0		00A
1	Ovivo Proposal BP 12 189R1	1	WT	ML	005	Now	DUAL FLOW TRAVELING SCREEN WTH FISH CATCHER	Fime mesh (1 mm $\times 6 \mathrm{~mm}), 13$ 100t, variable speed dives $(5 / 10 / 2040 \mathrm{tpm})$	16.67	15.0		00A
1		1	wT	M.	006	New	DUAL FLOW TRAVELING SCREEN WTH FISH CATCHER	Fhe mesh (1 mm $\times 8 \mathrm{~mm}), 13$ focd, varable speed dives $(5 / 10 / 20 / 40 \mathrm{lpm})$	18.67	15.0		OOA
1	NA	1	wT		7	Exsthy	Once through screen				matang control peane	OOA
1	N/	1	WT	PP	1-1	Exxting	SCREEN WASH PUMP	vertical 3000 rem, TDH: 260 foet, varabibio spoed	1 $\times 100 \%$	350	Continue bue	00 A
1	N/A	1	WT	PP	1-2	Exsting	SCREEN WASH PUMP	vertical 3800 pemm, TDH: 280 toet, varablo spoed	1 $\times 100 \%$	350	Continue tous	00 A
1.	Estmathe	1	WT	MP	003	Now	SCREEN WASH PUMP.		1×100\%	200		004
	Estmath	1	WT	PY		Now	Pump MP Cos discharge expanston foht	$10^{\prime} \mathrm{n}$ ibber with to rods				
1	Esthating	1	WT	ML.	009	Now	SCREEN WASH STRAINER	AUTOMATIC BACKWASH	1 $\times 100 \%$	0.5		00 A
1	Esthmating	1	WT	PSV	001	Now	SCREEN WASH STRAINER SAFETY VALVE	** ${ }^{+1}$				00 A
1		2	WT	ML	001	Now	DUAL FLOW TRAVELNG SGREENWTH FISH CATCHER	Fhe mees ($1 \mathrm{~mm} \times 6 \mathrm{~mm}$), 13 foot, varable speed divivas ($51 / 1020040 \mathrm{ppm}$)	16.67	15.0	$\begin{aligned} & \text { i ft/s thru mesh valockly, flah and debris tranation troughas included. Discharge troughas } \\ & \text { priced by linear foot. } \end{aligned}$	00A
1	Owro Proposal 189R1 12	2	WT	ML	002	Now	DUAL FLOW TRAVELING SCREEN WTHH FISH CATCHER	Fhe mesh ($1 \mathrm{~mm} \times 6 \mathrm{~mm}$), 13 food, vartable speed divives (5/10/20/40 fpm)	16.87	15.0	prtcend by lineur foot.	00 A
1	Owo Proposeal BP12 180R11	2	wT	ML	003	Now	DUAL FLOW TRAVELING SGREEN WTHH FISH CATCHER	Fine mest (1 $\mathrm{mm} \times 8 \mathrm{~mm}), 13$ foct, varlable speed ditves $(5 / 10 \mathrm{R} 0 \mathrm{O} 40 \mathrm{fpm})$	18.67	15.0		OOA
1	$\begin{array}{\|c\|c\|} \hline \begin{array}{c} \text { Owo Propossasi BP12 } \\ 189 R 1 \end{array} \\ \hline \end{array}$	2	WT	M.	004	Now	DUAL FLOW TRAVELING SCREEN WITH FISH CATCHER	Fra mesh ($1 \mathrm{~mm} \times 6 \mathrm{~mm}$), 13 foot, vartable speod ditives ($5 / 101020 / 40 \mathrm{fpm}$)	18.67	15.0		00A
1	$\begin{array}{\|c\|} \hline \text { Oivo Proposal BP12 } \\ \text { 180R1 } \end{array}$	2	WT	ML.	Dos	Now	DUAL FLOW TRAVELING SCREEN WITH FISH CATCHER	Fine mest ($1 \mathrm{~mm} \times 6 \mathrm{~mm}$), 13 foot, variable speed divives ($51 / 1020 / 40 \mathrm{fpm}$)	16.67	15.0		00A
1		2	WT	ML	006	Now	DUAL FLOW TRAVELING SCREEN WTH FISH CATCHER	Fhe mesh ($1 \mathrm{~mm} \times 6 \mathrm{~mm}$), 13 foot, vartable speod divives ($51 / 10 / 20 / 40 \mathrm{fpm}$)	18.67	15.0		00A
1	N/	2	WT		7	Exatang	ONGE THROUGH SCAEEN					00 A
1	Estmatich	2	WT	PP	$2-1$	Existing	SCREEN WASH PUMP	vertical 3900 gmm , Tid: 260 toot, varable eppoed	1 $\times 100 \%$	350	Corthuo toune	00 A
1	Estmatho	2	WT	MP	003	Now	SCREEN WASH PUMP	vertical 2100 gmm , TDH: 280 leot, varable spoed	1×100\%	200		00 A
	Estimating	1	WT	PY		Now	Pump MP 003 dscharpo expansionjoiot	$10^{\prime \prime}$ nitber with le rods				
1	Esthnating	2	WT	ML	009	New	SCREEN WASH STRAINEA	AUTOMATIC BACKWASH	1×100\%	0.5		00 A
1	Estmationg	2	WT	PSV	001	Now	SCREEN WASH STRAINER SAFETY VALVE	*'×10				00 A
1	Estimating	1	wT	PY		New	Y-stratinor - Spray inn to Traveling Screen ML001	6 nch				008
1	Estimating	1	wT	Pr		New	Y-strainor - Spray ina to Traveling Screen ML.002	6 noh				008
1	Estimathy	1	wT	Pr		Now		8 inch				008
1	Estimathing	1	wT	PY		Now	Y-strainor - Spray ins to Travotho Screen M. 004	8 noh				008
1	Estimathg	1	wT	PY		Now	Y-straner - Spray me to Traveling Screen MLCo5	6 neh				008
1	Estimathy	1	wT	Pr		Now	Y-straner - Spray line to Truveing Screen MLOOS	6 nch				008
1	Estimating	2	wT	Pr		Now	Y-straner - Spray line to Travelng Scroen ML001	8 hah				008
1	Estimation	2	wT	PY		Now	Y-strainer - Spray une to Traveing Screen ML.002	8 hach				008
1	Estmattry	2	wT	Pr		Now	Y-strater - Spray lins to Traveltng Screen ML.003	6 neh				008
1	Estimating	2	wT	Pr		Now	Y -tramer - Spray line to Travolng Screen ML004	6 man				C08
1	Estimating	2	wT	Pr		Now	Y-atrainar - Spray line to Traveling Screen MLCo5	6 heh				${ }^{008}$
1	Estmathy	2	wT	PY		New	Y-straner - Spray llme to Traveling Screen MLOOB	6 nch				008

JUOTC DRY NATURAL DRAFT CT OPTION

DCPP

Valve List

00B	$7 / 2 y / 2 \cdot / 3$	Issued for Estimate Report	AP	-	PP
00A	$7 / 11 / 2013$	Issue for Estimate	RP	-	RP
Rev	Date	Reason for Revision	Orignator	Checked	Approved

System Codes

PF	Fire System
WL	Circulating Water
WO	Salt Water Cooling

WO Salt Water Cooling

Commodity Code
PV Valve
HV valve with motor or pneumatic operator used for on /off operation PIV Post Indicating Valve

1 Valves furnished with vendor packages are not included in this list. Some valves supplier by the cooling tower supplier have been included in the equipment list to help define the scope of supply by

Description	Unit	Comm	System	$\begin{array}{\|c\|} \hline \text { Valve } \\ \text { Seq. } \\ \text { No. } \\ \hline \end{array}$	Suffix	Dia (in)	Valve Type	Act. Type	End Prep.	Design Press (pisg)	Design Temp (${ }^{\circ} \mathrm{F}$)	Service Press (psig)	$\begin{gathered} \text { Service } \\ \text { Temp } \\ \left({ }^{\circ} \mathrm{F}\right) \end{gathered}$	P\&ID	Heat Trace (Yes/No)	Bid	Remarks	Rev
Salt Water Cooling Pump WO-MP-001A discharge, HV 022A	1	HV	WO	022	A	24	Butterfly	Motor	flange	100	70	75	56	$\left\|\begin{array}{l} 25762-110- \\ \text { M6K-WL-00001 } \end{array}\right\|$	No	Valve Quote	Ductile iron, rubber lined, general service, lug type,	00A
Salt Water Cooling Pump WO-MP-001B discharge, HV 022B	1	PV	WO	022	B	24	Butterfly	Motor	flange	100	70	75	56	$\left\|\begin{array}{l} 25762-110- \\ \text { M6K-WL-00001 } \end{array}\right\|$	No	Valve Quote	Ductile iron, rubber lined, general service, lug type,	00A
Inlet to Pl021A	1	PV	WO			1	gate		flange	100	70	75	56	$\left\lvert\, \begin{aligned} & 25762-110- \\ & \text { M6K-WL-00001 } \end{aligned}\right.$	No	Estimating	Super duplex material	00A
Outlet to WO-MP-001A auto vent isolation	1	PV	wo			2	ball		flange	100	70	75	56	$\left\|\begin{array}{l} 25762-110- \\ \text { M6K-WL-00001 } \end{array}\right\|$	No	Estimating	Super duplex material	00A
Outlet to WO-MP-001A auto vent	1	PV	wo			2	AR		flange	100	70	75	56	25762-110-M6K-WL-00001	No	Estimating	Super duplex material	00A
Inlet to Pl021B	1	PV	WO			1	gate		flange	100	70	75	56	$\left\|\begin{array}{l} 25762-110- \\ \text { M6K-WL-00001 } \end{array}\right\|$	No	Estimating	Super duplex material	00A
Outlet to WO-MP-001B auto vent isolation	1	PV	WO			2	ball		flange	100	70	75	56	$\left\|\begin{array}{l} 25762-110- \\ \text { M6K-WL-00001 } \end{array}\right\|$	No	Estimating	Super duplex material	00A
Outlet to WO-MP-001B auto vent	1	PV	WO			2	AR		flange	100	70	75	56	$\left\|\begin{array}{l} 25762-110- \\ \text { M6K-WL-00001 } \end{array}\right\|$	No	Estimating	Super duplex material	00A
Upstream of HV009A to Makeup Water Line	1	PV	WL			6	gate		flange	100	70	50	56	$\left\lvert\, \begin{aligned} & \text { 25762-110- } \\ & \text { M6K-WL-00001 } \end{aligned}\right.$	No	Estimating	Duplex SS material	OOA
On Makeup Water Line, HV009A	1	HV	WL	009	A	6	globe	Air	flange	100	70	50	56	$\left\|\begin{array}{l} 25762-110- \\ \text { M6K-WL-00001 } \end{array}\right\|$	No	Estimating	Duplex SS material	00A
Downstream of HV009A isolation	1	PV	WL			6	gate		flange	100	70	50	56	$\left\|\begin{array}{l} 25762-110- \\ M 6 K-W L-00001 \end{array}\right\|$	No	Estimating	Duplex SS material	00A
Upstream of HV009B to Makeup Water Line	1	PV	WL			6	gate		flange	100	70	50	56	$\left\|\begin{array}{l} 25762-110- \\ \text { M6K-WL-00001 } \end{array}\right\|$	No	Estimating	Duplex SS material	00A
On Makeup Water Line, HV009B	1	PV	WL	009	B	6	globe	Air	flange	100	70	50	56	$\left\|\begin{array}{l} 25762-110- \\ \text { M6K-WL-00001 } \end{array}\right\|$	No	Estimating	Duplex SS material	00A
Downstream of HV009B islolation	1	PV	WL			6	gate		flange	100	70	75	56	$\left\|\begin{array}{l} 25762-110- \\ \text { M6K-WL-00001 } \end{array}\right\|$	No	Estimating	Duplex SS material	00A
On PITT003A	1	PV	WL			1	gate			50	70	75	56	$\left\|\begin{array}{l} 25762-110- \\ \text { M6K-WL-00001 } \end{array}\right\|$	No	Estimating	Duplex SS material	00A

Description	Unit	Comm	System	Valve Seq. No.	Suftix	Dia (in)	Valve Type	Act. Type	End Prep.	Design Press (pisg)	Design Temp (${ }^{\circ} \mathrm{F}$)	$\begin{array}{\|c\|} \hline \text { Service } \\ \text { Press } \\ (\text { psig }) \\ \hline \end{array}$	Service Temp (${ }^{\circ} \mathrm{F}$)	P\&ID	Heat Trace (Yes/No)	Bid	Remarks	Rev
On PIT003B	1	PV	WL			1	gate		flange	50	70	75	56	$\left\lvert\, \begin{aligned} & 25762-110- \\ & \text { M6K-WL-00001 } \end{aligned}\right.$	No	Estimating	Super duplex material	00A
On PIT003C	1	PV	WL			1	gate		flange	50	70	75	56	$\left\|\begin{array}{l} 25762-110- \\ \text { M6K-WL-00001 } \end{array}\right\|$	No	Estimating	Duplex SS material	00A
On PIT003D	1	PV	WL			1	Gate		flange	100	70	75	56	$\left\|\begin{array}{l} 25762-110- \\ \text { M6K-WL-00001 } \end{array}\right\|$	No	Estimating	Duplex SS material	00A
Outlet from WL-MP-001A vent	1	PV	WL			2	globe		flange	50	70	75	56	$\left\|\begin{array}{l} 25762-110- \\ \text { M6K-WL-00001 } \end{array}\right\|$	No	Estimating	Duplex SS material	00A
Outlet from WL-MP-001B vent	1	PV	WL			2	globe		flange	85	70	75	56	$\left\|\begin{array}{l} 25762-110- \\ \text { M6K-WL-00001 } \end{array}\right\|$	No	Estimating	Duplex SS material	00A
Outlet from WL-MP-001C vent	1	PV	WL			2	globe		flange	85	70	75	56	$\left\|\begin{array}{l} 25762-110- \\ \text { M6K-WL-00001 } \end{array}\right\|$	No	Estimating	Duplex SS material	00A
Outlet from WL-MP-001D vent	1	PV	WL			2	globe		flange	85	70	75	56	$\left\|\begin{array}{l} 25762-110- \\ \text { M6K-WL-00001 } \end{array}\right\|$	No	Estimating	Duplex SS material	00A
Root connection to PI 001 A	1	PV	WL			1	gate		flange	85	70	75	56	$\left\|\begin{array}{l} 25762-110- \\ \text { M6K-WL-00001 } \end{array}\right\|$	No	Estimating	Duplex SS material	00A
Root connection to PI 001B	1	PV	WL			1	gate		flange	85		75	56	$\left\|\begin{array}{l} 25762-110- \\ \text { M6K-WL-00001 } \end{array}\right\|$	No	Estimating	Duplex SS material	00A
Root connection to PI 001C	1	PV	WL			1	gate		flange	85	70	75	56	$\left\|\begin{array}{l} 25762-110- \\ \text { M6K-WL-00001 } \end{array}\right\|$	No	Estimating	Duplex SS material	00A
Root connection to PI 001D	1	PV	WL			1	gate		flange	85	70	75	56	$\left\|\begin{array}{l} 25762-110- \\ \text { M6K-WL-00001 } \end{array}\right\|$	No	Estimating	Duplex SS material	00A
Salt Water Cooling Pump WO-MP-001A discharge, HV 022A	2	HV	WO	022	A	24	Butterily	Motor	flange	100	70	75	56	$\left\lvert\, \begin{aligned} & 25762-110- \\ & \text { M6K-WL-00001 } \end{aligned}\right.$	No	Valve Quote	Ductile iron, rubber lined, general service, lug type,	00A
Salt Water Cooling Pump WO-MP-001B discharge, HV 022B	2	HV	wo	022	B	24	Butterfly	Motor	flange	100	70	75	56	$\left\lvert\, \begin{aligned} & 25762-110- \\ & \text { M6K-WL-00001 } \end{aligned}\right.$	No	Valve Quote	Ductile iron, rubber lined, general service, lug type,	00A
Inlet to Pl021A	2	PV	WO			1	gate		flange	100	70	75	56	$\left\lvert\, \begin{aligned} & 25762-110- \\ & \text { M6K-WL-00001 } \end{aligned}\right.$	No	Estimating	Super duplex material	00A
Outlet to WL-MP-001A auto vent isolation	2	PV	Wo			2	ball		flange	100	70	75	56	$\left\|\begin{array}{l} 25762-110- \\ \text { M6K-WL-00001 } \end{array}\right\|$	No	Estimating	Super duplex material	00A

Description	Unit	Comm	System	$\begin{array}{\|c\|} \hline \text { Valve } \\ \text { Seq. } \\ \text { No. } \\ \hline \end{array}$	Suffix	Dia (in)	Valve Type	Act. Type	End Prep.	Design Press (pisg)	Design Temp (${ }^{\circ} \mathrm{F}$)	Service Press (psig)	Service Temp (${ }^{\circ} \mathrm{F}$)	P\&ID	Heat Trace (Yes/No)	Bid	Remarks	Rev
Outlet to WO-MP-001A auto vent	2	PV	WO			2	AR		flange	100	70	75	56	$\begin{aligned} & 25762-110- \\ & \text { M6K-WL-00001 } \end{aligned}$	No	Estimating	Super duplex material	00A
Inlet to PI021B	2	PV	WO			1	gate		flange	100	70	75	56	$\begin{aligned} & 25762-110- \\ & \text { M6K-WL-00001 } \end{aligned}$	No	Estimating	Super duplex material	00A
Outlet to WO-MP-001B auto vent isolation	2	PV	WO			2	ball		flange	100	70	75	56	$\left\lvert\, \begin{aligned} & 25762-110- \\ & \text { M6K-WL-00001 } \end{aligned}\right.$	No	Estimating	Super duplex material	00A
Outlet to WO-MP-001B auto vent	2	PV	WO			2	AR		flange	100	70	75	56	$\left\lvert\, \begin{aligned} & 25762-110- \\ & \text { M6K-WL-00001 } \end{aligned}\right.$	No	Estimating	Super duplex material	00A
Upstream of HV009A on Makeup Water Line	2	PV	WL			6	gate		flange	100	70	75	56	$\left\|\begin{array}{l} 25762-110- \\ \text { M6K-WL-00001 } \end{array}\right\|$	No	Estimating	Duplex SS material	00A
On Makeup Water Line, HV009A	2	HV	WL	009	A	6	globe	Air	flange	100	70	75	56	$\left\|\begin{array}{l} 25762-110- \\ \text { M6K-WL-00001 } \end{array}\right\|$	No	Estimating	Duplex SS material	00A
Downstream of HV009A on the Makeup Water Pump	2	HV	WL	009	B	6	gate		flange	100	70	75	56	$\left\lvert\, \begin{aligned} & 25762-110- \\ & \text { M6K-WL-00001 } \end{aligned}\right.$	No	Estimating	Duplex SS material	00A
Upstream of HV009B on Makeup Water Line	2	PV	WL			6	gate		flange	100	70	75	56	$\begin{array}{\|l\|} 25762-110- \\ \text { M6K-WL-00001 } \end{array}$	No	Estimating	Duplex SS material	00A
On Makeup Water Line, HV009B	2	PV	WL			6	globe	Motor	flange	100	70	75	56	$\left\lvert\, \begin{aligned} & 25762-110- \\ & \text { M6K-WL-00001 } \end{aligned}\right.$	No	Estimating	Duplex SS material	00A
Downstream of HV009B on the Makeup Water Pump	2	PV	WL			6	gate		flange	100	70	75	56	$\left\lvert\, \begin{aligned} & 25762-110- \\ & \text { M6K-WL-00001 } \end{aligned}\right.$	No	Estimating	Duplex SS material	00A
On PIT003A	2	PV	WL			1	Gate		flange	50	130	30	125	$\left\|\begin{array}{l} 25762-110- \\ \text { M6K-WL-00001 } \end{array}\right\|$	No	Estimating	Duplex SS material	00A
On PIT003B	2	PV	WL			1	Gate		flange	50	130	30	125	$\left\lvert\, \begin{aligned} & \text { 25762-110- } \\ & \text { M6K-WL-00001 } \end{aligned}\right.$	No	Estimating	Duplex SS material	OOA
On PIT003C	2	PV	WL			1	Gate		flange	50	130	30	125	$\begin{aligned} & 25762-110- \\ & \text { M6K-WL-00001 } \end{aligned}$	No	Estimating	Duplex SS material	00A
On PIT003D	2	PV	WL			1	Gate		flange	50	130	30	125	$\left\|\begin{array}{l} 25762-110- \\ \text { M6K-WL-00001 } \end{array}\right\|$	No	Estimating	Duplex SS material	00A
Outlet from WL-MP-001A vent	2	PV	WL			2	globe		flange	85	130	75	125	$\left\lvert\, \begin{aligned} & 25762-110- \\ & \text { M6K-WL-00001 } \end{aligned}\right.$	No	Estimating	Duplex SS material	OOA
Outlet from WL-MP-001B vent	2	PV	WL			2	globe		flange	85	130	75	125	$\begin{aligned} & 25762-110- \\ & \text { M6K-WL-00001 } \end{aligned}$	No	Estimating	Duplex SS material	OOA

Description	Unit	Comm	System	$\begin{array}{\|c\|} \hline \text { Valve } \\ \text { Seq. } \\ \text { No. } \\ \hline \end{array}$	Suffix	Dia (in)	Valve Type	Act. Type	End Prep.	$\begin{array}{\|c\|} \hline \text { Design } \\ \text { Press } \\ \text { (pisg) } \\ \hline \end{array}$	Design Temp (${ }^{\circ} \mathrm{F}$)	$\begin{array}{\|c\|} \hline \text { Service } \\ \text { Press } \\ \text { (psig) } \\ \hline \end{array}$	Service Temp (${ }^{\circ} \mathrm{F}$)	P\&ID	Heat Trace (Yes/No)	Bid	Remarks	Rev
Outlet from WL-MP-001C vent	2	PV	WL			2	globe		flange	85	130	75	125	$\left\|\begin{array}{l} 25762-110- \\ \text { M6K-WL-00001 } \end{array}\right\|$	No	Estimating	Duplex SS material	00A
Outlet from WL-MP-001D auto vent	2	PV	WL			2	globe		flange	85	130	75	125	$\left\|\begin{array}{l} 25762-110- \\ \text { M6K-WL-00001 } \end{array}\right\|$	No	Estimating	Duplex SS material	00A
Root connection to PI 001A	2	PV	WL			1	gate		flange	85	130	75	125	$\left\|\begin{array}{l} 25762-110- \\ \text { M6K-WL-00001 } \end{array}\right\|$	No	Estimating	Duplex SS material	00A
Root connection to PI 001B	2	PV	WL			1	gate		flange	85	130	75	125	$\left\|\begin{array}{l} 25762-110- \\ \text { M6K-WL-00001 } \end{array}\right\|$	No	Estimating	Duplex SS material	00A
Root connection to PI 001 C	2	PV	WL			1	gate		flange	85	130	75	125	$\left\|\begin{array}{l} 25762-110- \\ \text { M6K-WL-00001 } \end{array}\right\|$	No	Estimating	Duplex SS material	00A
Root connection to PI 001D	2	PV	WL			1	gate		flange	85	130	75	125	$\left\|\begin{array}{l} 25762-110- \\ \text { M6K-WL-00001 } \end{array}\right\|$	No	Estimating	Duplex SS material	00A
Inlet isolation WL-MP001A	1	HV	WL	002	A	120	Butterfly	Motor	flange	50	130	30	125	$\left\|\begin{array}{l} 25762-110- \\ \text { M6K-WL-00001 } \end{array}\right\|$	No	Valve Quote	Ductile Iron, epoxy coated or rubber lined	00B
Inlet isolation WL-MP001B	1	HV	WL	002	B	120	Butterily	Motor	flange	50	130	30	130	$\left\|\begin{array}{l} 25762-110- \\ \text { M6K-WL-00001 } \end{array}\right\|$	No	Valve Quote	Ductile Iron, epoxy coated or rubber lined	00B
Inlet isolation WL-MP001 C	1	HV	WL	002	C	120	Butterily	Motor	flange	50	130	30	125	$\left\lvert\, \begin{aligned} & 25762-110- \\ & \text { M6K-WL-00001 } \end{aligned}\right.$	No	Valve Quote	Ductile Iron, epoxy coated or rubber lined	00B
Inlet isolation WL-MP001D	1	HV	WL	002	D	120	Butterfly	Motor	flange	50	130	30	125	$\left\|\begin{array}{l} 25762-110- \\ \text { M6K-WL-00001 } \end{array}\right\|$	No	Valve Quote	Ductile Iron, epoxy coated or rubber lined	OOB
Inlet isolation WL-MP001A	2	HV	WL	002	A	120	Butterfly	Motor	flange	50	130	30	125	$\left\lvert\, \begin{aligned} & 25762-110- \\ & \text { M6K-WL-00001 } \end{aligned}\right.$	No	Valve Quote	Ductile Iron, epoxy coated or rubber lined	OOB
Inlet isolation WL-MP001B	2	HV	WL	002	B	120	Butterily	Motor	flange	50	130	30	125	$\left\lvert\, \begin{aligned} & \text { 25762-110- } \\ & \text { M6K-WL-00001 } \end{aligned}\right.$	No	Valve Quote	Ductile Iron, epoxy coated or rubber lined	OOB
Inlet isolation WL-MP001 C	2	HV	WL	002	C	120	Butterfly	Motor	flange	50	130	30	125	$\left\|\begin{array}{l} 25762-110- \\ \text { M6K-WL-00001 } \end{array}\right\|$	No	Valve Quote	Ductile Iron, epoxy coated or rubber lined	OOB

JUOTC DRY MECHANICAL DRAFT CT OPTION

DCPP
Valve List

00B	$7 / 2 y / 2 \bullet 13$	Issuded for Estimate Report	$R P$	-	R
O0A	$7 / 11 / 2013$	Issue for Estimate	$R P$	-	$R P$
Rev	Date	\quad Reason for Revision	Orignator	Checked	Approved

System Codes
PF Fire Protection

WL Circulating Water
 wo

Commodity Code

PV Valve
HV valve with motor or pneumatic operator used for on /off operation

Note:
1
Valves furnished with vendor packages are not included in this list. Some valves supplier by the cooling tower supplier have been included in the equipment list to help define the scope of supply by the cooling Tower Supplier

Description	Unit	Comm	System	$\begin{aligned} & \hline \text { Valve } \\ & \text { Seq. } \\ & \text { No. } \\ & \hline \end{aligned}$	Suffix	Dia (in)	Valve Type	Act. Type	End Prep.	Design Press (pisg)	Design Temp (${ }^{\circ} \mathrm{F}$)	$\begin{aligned} & \text { Service } \\ & \text { Press } \\ & \text { (psig) } \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline \text { Service } \\ \text { Temp } \\ \left({ }^{\circ} \mathrm{F}\right) \end{array}$	Rating	P\&ID	Heat Trace (Yes/No)	Bid	Remarks	Rev
Salt Water Cooling Pump WO-MP-001A discharge, HV 022A	1	HV	wo	022	A	24	Butterfly	Motor	flange	100	70	75	56		$\begin{aligned} & 25762-110-M 6 K \\ & \text { WL-00001 } \end{aligned}$	No	Valve Quote	Ductile iron, rubber lined, generai service, lug type,	00A
Salt Water Cooling Pump WO-MP-001B discharge, HV 022B	1	PV	Wo	022	B	24	Butterfly	Motor	flange	100	70	75	56		$\begin{aligned} & 25762-110-\mathrm{M} 6 \mathrm{~K} \\ & \text { WL-00001 } \end{aligned}$	No	Valve Quote	Ductile iron, rubber lined, general service, lug type,	00A
inlet to Pi021A	1	PV	wo			1	gate		flange	100	70	75	56		$\left\lvert\, \begin{aligned} & 25762-110-\mathrm{M} 6 \mathrm{~K} \\ & \mathrm{WL}-00001 \end{aligned}\right.$	No	Estimating	Super duplex material	00A
Outlet to WO-MP-001A auto vent isolation	1	PV	WO			2	ball		flange	100	70	75	56		$\left\lvert\, \begin{aligned} & 25762-110-\mathrm{M} 6 \mathrm{~K} \\ & \mathrm{WL}-00001 \end{aligned}\right.$	No	Estimating	Super duplex materiai	00A
Outlet to WO-MP-001A auto vent	1	PV	wo			2	AR		flange	100	70	75	56		$\begin{aligned} & 25762-110-\mathrm{M} 6 \mathrm{~K} \\ & \mathrm{WL}-00001 \end{aligned}$	No	Estimating	Super duplex materiai	00A
inlet to Pi021B	1	PV	wo			1	gate		flange	100	70	75	56		$\left\lvert\, \begin{aligned} & 25762-110-\mathrm{M} 6 \mathrm{~K} \\ & \mathrm{WL}-00001 \end{aligned}\right.$	No	Estimating	Super duplex material	00A
Outlet to WO-MP-001B auto vent isolation	1	PV	wo			2	ball		flange	100	70	75	56		$\begin{array}{\|l\|} 25762-110-M 6 K \\ \mathrm{WL}-00001 \end{array}$	No	Estimating	Super duplex materiai	00A
Outlet to WO-MP-001B auto vent	1	PV	wo			2	AR	-	flange	100	70	75	56		$\begin{aligned} & 25762-110-\mathrm{M} 6 \mathrm{~K} \\ & \mathrm{WL}-00001 \end{aligned}$	No	Estimating	Super duplex material	OOA
Upstream of HV009A to Makeup Water Line	1	PV	WL			6	gate		flange	100	70	50	56		$\begin{array}{\|l\|} 25762-110-M 6 K \\ \mathrm{WL}-00001 \end{array}$	No	Estimating	Duplex SS material	00A
On Makeup Water Line, HV009A	1	HV	WL	009	A	6	globe	Air	flange	100	70	50	56		$\begin{array}{\|l\|} \hline 25762-110-\mathrm{M} 6 \mathrm{~K} \\ \mathrm{WL}-00001 \end{array}$	No	Estimating	Duplex SS material	O0A
Downstream of HV009A isolation	1	PV	WL			6	gate		flange	100	70	50	56		$\begin{array}{\|l\|} \hline 25762-110-\mathrm{M} 6 \mathrm{~K} \\ \mathrm{WL}-00001 \end{array}$	No	Estimating	Duplex SS material	OOA
Upstream of HV009B to Makeup Water Line	1	PV	WL			6	gate		flange	100	70	50	56		$\left\lvert\, \begin{aligned} & 25762-110-\mathrm{M} 6 \mathrm{~K} \\ & \mathrm{WL}-00001 \end{aligned}\right.$	No	Estimating	Duplex SS materiai	00A
On Makeup Water Line, HV009B	1	PV	WL	009	B	6	globe	Air	flange	100	70	50	56		$\left\lvert\, \begin{aligned} & 25762-110-\mathrm{M} 6 \mathrm{~K} \\ & \mathrm{WL}-00001 \end{aligned}\right.$	No	Estimating	Duplex SS material	00A
Downstream of HV009B istolation	1	PV	WL			6	gate		flange	100	70	75	56		$\begin{aligned} & 25762-110-\mathrm{M} 6 \mathrm{~K} \\ & \mathrm{WL}-00001 \end{aligned}$	No	Estimating	Duplex SS material	00A
On PIT003A	1	PV	WL			1	gate			50	70	75	56		$\left\|\begin{array}{l} 25762-110-\mathrm{M} 6 \mathrm{~K} \\ \mathrm{WL}-00001 \end{array}\right\|$	No	Estimating	Duplex SS materiai	00A
On PIT003B	1	PV	WL			1	gate		flange	50	70	75	56		$\left\lvert\, \begin{aligned} & 25762-110-\mathrm{M} 6 \mathrm{~K} \\ & \mathrm{WL}-00001 \end{aligned}\right.$	No	Estimating	Super duplex materiai	OOA

Description	Unit	Comm	System	Valve Seq. No.	Suffix	Dia (in)	Valve Type	Act. Type	End Prep.	Design Press (pisg)	Design Temp (${ }^{\circ} \mathrm{F}$)	Service Press (psig)	Service Temp (${ }^{\circ} \mathrm{F}$)	Rating	P\&ID	Heat Trace (Yes/No)	Bid	Remarks	Rev
On PIT003C	1	PV	WL			1	gate		flange	50	70	75	56		25762-110-M6K WL-00001	No	Estimating	Duplex SS materiai	O0A
On PIT003D	1	PV	WL			1	Gate		flange	100	70	75	56		$\left\lvert\, \begin{aligned} & 25762-110-\mathrm{M} 6 \mathrm{~K} \\ & \mathrm{WL}-00001 \end{aligned}\right.$	No	Estimating	Duplex SS materiai	00A
Outlet from WL-MP-001A vent	1	PV	WL			2	globe		flange	50	70	75	56		$\begin{aligned} & 25762-110-\mathrm{M} 6 \mathrm{~K} \\ & \mathrm{WL}-00001 \end{aligned}$	No	Estimating	Duplex SS material	00A
Outlet from WL-MP-001B vent	1	.PV	WL			2	globe		flange	85	70	75	56		25762-110-M6K WL-00001	No	Estimating	Duplex SS material	00A
Outlet from WL-MP-001C vent	1	PV	WL			2	globe		flange	85	70	75	56		$\left\lvert\, \begin{aligned} & 25762-110-\mathrm{M6K} \\ & \mathrm{WL}-00001 \end{aligned}\right.$	No	Estimating	Dupiex SS material	OOA
Outlet from WL-MP-001D vent	1	PV	WL			2	globe		flange	85	70	75	56		$\left\lvert\, \begin{aligned} & 25762-110-\mathrm{M} 6 \mathrm{~K} \\ & \mathrm{WL}-00001 \end{aligned}\right.$	No	Estimating	Duplex SS materiai	OOA
Root connectlon to PI 001A	1	PV	WL			1	gate		flange	85	70	75	56		$\left\lvert\, \begin{aligned} & 25762-110-\mathrm{M} 6 \mathrm{~K} \\ & \mathrm{WL}-00001 \end{aligned}\right.$	No	Estimating	Duplex SS material	OOA
Root connection to PI 001B	1	PV	WL			1	gate		flange	85		75	56		$\left\lvert\, \begin{aligned} & 25762-110-\mathrm{M} 6 \mathrm{~K} \\ & \mathrm{WL}-00001 \end{aligned}\right.$	No	Estimating	Duplex SS material	00A
Root connection to PI 001C	1	PV	WL			1	gate		flange	85	70	75	56		25762-110-M6K WL-00001	No	Estimating	Duplex SS material	O0A
Root connection to PI 001 D	1	PV	WL			1	gate		flange	85	70	75	56		$\left\lvert\, \begin{aligned} & 25762-110-\mathrm{M} 6 \mathrm{~K} \\ & \mathrm{WL}-00001 \end{aligned}\right.$	No	Estimating	Dupiex SS material	00A
Salt Water Cooling Pump WO-MP-001A discharge, HV 022A	2	HV	wo	022	A	24	Butterfly	Motor	flange	100	70	75	56		$\left\lvert\, \begin{aligned} & 25762-110-\mathrm{M} 6 \mathrm{~K} \\ & \mathrm{WL}-00001 \end{aligned}\right.$	No	Valve Quote	Ductile iron, rubber lined, general service, lug type,	OOA
Salt Water Cooling Pump WO-MP-001B discharge, HV 022B	2	HV	Wo	022	B	24	Butterlly	Motor	flange	100	70	75	56		$\left\lvert\, \begin{aligned} & 25762-110-\mathrm{M} 6 \mathrm{~K} \\ & \mathrm{WL}-00001 \end{aligned}\right.$	No	Valve Quote	Ductile iron, rubber lined, generai service, lug type,	OOA
Inlet to PI021A	2	PV	WO			1	gate		flange	100	70	75	56		$\begin{aligned} & 25762-110-\mathrm{M} 6 \mathrm{~K} \\ & \mathrm{WL}-00001 \end{aligned}$	No	Estimating	Super dupiex material	00A
Outlet to WL-MP-001A auto vent isolation	2	PV	wo			2	baii		flange	100	70	75	56		$\begin{array}{\|l\|} 25762-110-M 6 K \\ \text { WL-00001 } \end{array}$	No	Estimating	Super duplex materiai	OOA
Outlet to WO-MP-001A auto vent	2	PV	Wo			2	AR		flange	100	70	75	56		$\begin{array}{\|l\|} 25762-110-M 6 K \\ W L-00001 \end{array}$	No	Estimating	Super duplex materiai	OOA
Inlet to PI021B	2	PV	wo			1	gate		flange	100	70	75	56		$\left\lvert\, \begin{aligned} & 25762-110-\mathrm{M} 6 \mathrm{~K} \\ & \mathrm{WL}-00001 \end{aligned}\right.$	No	Estimating	Super duplex materiai	OOA

Description	Unit	Comm	System	$\begin{array}{\|l\|} \hline \text { Valve } \\ \text { Seq. } \\ \text { No. } \\ \hline \end{array}$	Suffix	Dia (in)	Valve Type	Act. Type	End Prep.	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Design } \\ \text { Press } \\ \text { (pisg) } \end{array} \\ \hline \end{array}$	Design Temp (${ }^{\circ} \mathrm{F}$)	$\begin{array}{\|c\|} \hline \text { Service } \\ \text { Press } \\ \text { (psig) } \end{array}$	$\begin{array}{\|c\|} \hline \text { Service } \\ \text { Temp } \\ \text { (} \left.{ }^{\circ} \mathrm{F}\right) \\ \hline \end{array}$	Rating	P\&ID	Heat Trace (Yes/No)	Bid	Remarks	Rev
Outlet to WO-MP-001B auto vent isolation	2	PV	WO			2	ball		flange	100	70	75	56		$\begin{aligned} & 25762-110-\mathrm{M} 6 \mathrm{~K} \\ & \mathrm{WL}-00001 \end{aligned}$	No	Estimating	Super duplex material	00A
Outlet to WO-MP-001B auto vent	2	PV	Wo			2	AR		flange	100	70	75	56		$\left\lvert\, \begin{aligned} & 25762-110-\mathrm{M} 6 \mathrm{~K} \\ & \mathrm{WL}-00001 \end{aligned}\right.$	No	Estimating	Super duplex material	00A
Upstream of HV009A on Makeup Water LIne	2	PV	WL			6	gate		flange	100	70	75	56		$\left\lvert\, \begin{aligned} & 25762-110-\mathrm{M} 6 \mathrm{~K} \\ & \mathrm{WL}-00001 \end{aligned}\right.$	No	Estimating	Duplex SS material	00A
On Makeup Water Line, HV009A	2	HV	WL	009	A	6	giobe	Air	flange	100	70	75	56		$\left\lvert\, \begin{aligned} & 25762-110-\mathrm{M} 6 \mathrm{~K} \\ & \mathrm{WL}-00001 \end{aligned}\right.$	No	Estimating	Duplex SS material	OOA
Downstream of HV009A on the Makeup Water Pump	2	HV	WL	009	B	6	gate		flange	100	70	75	56		$\left\|\begin{array}{l} 25762-110-\mathrm{M} 6 \mathrm{~K} \\ \mathrm{WL}-00001 \end{array}\right\|$	No	Estimating	Duplex SS material	00A
Upstream of HV009B on Makeup Water Line	2	PV	WL			6	gate		flange	100	70	75	56		$\begin{aligned} & 25762-110-\mathrm{M} 6 \mathrm{~K} \\ & \mathrm{WL}-00001 \end{aligned}$	No	Estimating	Duplex SS material	OOA
On Makeup Water Line, HV009B	2	PV	WL			6	globe	Motor	flange	100	70	75	56		$\begin{array}{\|l\|} 25762-110-\mathrm{M} 6 \mathrm{~K} \\ \mathrm{WL}-00001 \end{array}$	No	Estimating	Duplex SS material	00A
Downstream of HV009B on the Makeup Water Pump	2	PV	WL			6	gate		flange	100	70	75	56		25762-110-M6K WL-00001	No	Estimating	Duplex SS material	O0A
On PIT003A	2	PV	WL			1	Gate		flange	50	130	30	125		$\left\lvert\, \begin{aligned} & 25762-110-\mathrm{M} 6 \mathrm{~K} \\ & \mathrm{WL}-00001 \end{aligned}\right.$	No	Estimating	Duplex SS material	00A
On PIT003B	2	PV	WL			1	Gate		flange	50	130	30	125		$\left\lvert\, \begin{aligned} & 25762-110-\mathrm{M} 6 \mathrm{~K} \\ & \mathrm{WL}-00001 \end{aligned}\right.$	No	Estimating	Duplex SS materiai	00A
On PIT003C	2	PV	WL			1	Gate		flange	50	130	30	125		$\left\lvert\, \begin{aligned} & 25762-110-\mathrm{M} 6 \mathrm{~K} \\ & \mathrm{WL}-00001 \end{aligned}\right.$	No	Estimating	Duplex SS material	00A
On PIT003D	2	PV	WL			1	Gate		flange	50	130	30	125		$\left\|\begin{array}{l} 25762-110-\mathrm{M} 6 \mathrm{~K} \\ \mathrm{WL}-00001 \end{array}\right\|$	No	Estimating	Duplex SS material	00A
Outlet from WL-MP-001A vent	2	PV	WL			2	globe		flange	85	130	75	125		$\begin{array}{\|l\|} 25762-110-M 6 K \\ \text { WL-00001 } \end{array}$	No	Estimating	Duplex SS material	00A
Outlet from WL-MP-001B vent	2	PV	WL			2	globe		fiange	85	130	75	125		$\begin{aligned} & 25762-110-\mathrm{M} 6 \mathrm{~K} \\ & \mathrm{WL}-00001 \end{aligned}$	No	Estimating	Duplex SS material	00A
Outlet from WL-MP-001C vent	2	PV	WL			2	globe		flange	85	130	75	125		$\begin{aligned} & 25762-110-\mathrm{M} 6 \mathrm{~K} \\ & \mathrm{WL}-00001 \end{aligned}$	No	Estimating	Duplex SS material	00A
Outlet from WL-MP-001D auto vent	2	PV	WL			2	globe		flange	85	130	75	125		$\left\lvert\, \begin{aligned} & 25762-110-M 6 \mathrm{~K} \\ & \mathrm{WL}-00001 \end{aligned}\right.$	No	Estimating	Duplex SS material	00A
Root connection to Pl 001A	2	PV	WL			1	gate		flange	85	130	75	125		$\begin{aligned} & 25762-110-\mathrm{M} 6 \mathrm{~K} \\ & \mathrm{WL}-00001 \end{aligned}$	No	Estimating	Duplex SS material	00A

Description	Unit	Comm	System	Valve Seq. No.	Suffix	Dia (in)	Valve Type	$\begin{aligned} & \text { Act. } \\ & \text { Type } \end{aligned}$	End Prep.	$\begin{array}{\|c\|} \hline \text { Design } \\ \text { Press } \\ \text { (pisg) } \\ \hline \end{array}$	Design Temp (${ }^{\circ} \mathrm{F}$)	Service Press (psig)	Service Temp (${ }^{\circ} \mathrm{F}$)	Rating	P\&ID	Heat Trace ($\mathrm{Yes} / \mathrm{No}$)	Bid	Remarks	Rev
Root connection to PI 001 B	2	PV	WL			1	gate		flange	85	130	75	125		$\begin{array}{\|l\|} \hline 25762-110-\mathrm{M} 6 \mathrm{~K} \\ \mathrm{WL}-00001 \end{array}$	No	Estimating	Duplex SS material	00A
Root connection to PI 001 C	2	PV	WL			1	gate		fiange	85	130	75	125		$\begin{array}{\|l\|} 25762-110-M 6 K \\ W L-00001 \end{array}$	No	Estimating	Duplex SS material	O0A
Root connection to PI 001D	2	PV	WL			1	gate		flange	85	130	75	125		$\left\lvert\, \begin{aligned} & 25762-110-\mathrm{M} 6 \mathrm{~K} \\ & \mathrm{WL}-00001 \end{aligned}\right.$	No	Estimating	Duplex SS materiai	OOA
inlet isolation WL-MP001A	1	HV	WL	002	A	120	Butterily	Motor	flange	50	130	30	125		$\left\lvert\, \begin{aligned} & 25762-110-\mathrm{M} 6 \mathrm{~K} \\ & \mathrm{WL}-00001 \end{aligned}\right.$		Valve Quote	Ductile iron, epoxy coated or rubber lined	
Inlet isolation WL-MP- 001 B	1	HV	WL	002	B	120	Butterily	Motor	flange	50	130	30	130		$\left\|\begin{array}{l} 25762-110-\mathrm{M} 6 \mathrm{~K} \\ \mathrm{WL}-00001 \end{array}\right\|$		Valve Quote	Ductile iron, epoxy coated or rubber lined	
Inlet isolation WL-MP- 001 C	1	HV	WL	002	C	120	Butterfly	Motor	flange	50	130	30	125		$\left\lvert\, \begin{aligned} & 25762-110-\mathrm{M} 6 \mathrm{~K} \\ & \mathrm{WL}-00001 \end{aligned}\right.$		Valve Quote	Ductile Iron, epoxy coated or rubber lined	
inlet isolation WL-MP001D	1	HV	WL	002	D	120	Butterfly	Motor	flange	50	130	30	125		25762-110-M6K WL-00001		Valve Quote	Ductile iron, epoxy coated or rubber lined	
Inlet isolation WL-MP- 001A	2	HV	WL	002	A	120	Butterfly	Motor	flange	50	130	30	125		$\left\lvert\, \begin{aligned} & 25762-110-\mathrm{M} 6 \mathrm{~K} \\ & \mathrm{WL}-00001 \end{aligned}\right.$		Valve Quote	Ductile Iron, epoxy coated or rubber lined	
inlet Isolation WL-MP001 B	2	HV	WL	002	B	120	Butterily	Motor	flange	50	130	30	125		$\begin{aligned} & 25762-110-\mathrm{M} 6 \mathrm{~K} \\ & \mathrm{WL}-00001 \end{aligned}$		Valve Quote	Ductile iron, epoxy coated or rubber lined	
Inlet Isolation WL-MP001 C	2	HV	WL	002	C	120	Butterily	Motor	flange	50	130	30	125		$\left\lvert\, \begin{aligned} & 25762-110-\mathrm{M} 6 \mathrm{~K} \\ & \mathrm{WL}-00001 \end{aligned}\right.$		Valve Quote	Ductile Iron, epoxy coated or rubber lined	

JUOTC WET NATURAL DRAFT CT OPTION

 DCPP
Valve List

00 B	$-7 / 2 y / 2 v s$	Issued for Estimate Report	\boldsymbol{F}^{P}	-	AP
00 A	$7 / 11 / 2013$	Issue for Estimate	RP	-	RP
Rev	Date	Reason for Revision	Orignator	Checked	Approved

System Codes
AD Condensate
PF Fire Protection
PI Plant Air
TL Circ. Wtr Chem Inj
WB Service water
WL Circulating Water
WO Sea Water
WR Raw Water (Grey water)

Note:
1 Valves furnished with vendor packages are not included in this list. Some valves supplier by the cooling tower supplier have been included in the equipment list to help define the scope of supply by

Bechtel Confidential. Copyright 2013 Bechtel Power Corporation. All rights reserved.

Qty	Line Description	Unit	Comm	System	$\begin{array}{\|c\|} \hline \text { Vaive } \\ \text { Seq. } \\ \text { No. } \\ \hline \end{array}$	Suffix	$\begin{aligned} & \text { Dia } \\ & \text { (in) } \end{aligned}$	Valve Type	Act. Type	$\begin{aligned} & \text { End } \\ & \text { Prep. } \end{aligned}$	Valve Material Class	$\begin{array}{\|c\|} \hline \text { Design } \\ \text { Press } \\ \text { (pisg) } \end{array}$	$\begin{gathered} \text { Design } \\ \text { Temp } \end{gathered}$ $\left({ }^{\circ} \mathrm{F}\right)$	$\begin{array}{\|c} \text { Service } \\ \text { Press } \\ \text { (psig) } \\ \hline \end{array}$	$\begin{aligned} & \text { Service } \\ & \text { Temp } \\ & \left({ }^{\circ} \mathrm{F}\right) \end{aligned}$	Rating	P\&ID	Heat Trace (Yes/No)	Bid	Remarks	Rev
18	Post indicating valve	0	PIV	PF			12	gate		flange		175	90						estimating	Ductile iron	OOA
54	Curb Valve	0	PV	PF			6	gate		flange		175	90				-		estimating	Ductila iron	OOA
1	Inlet Isolation WL-MP001A	1	HV	WL	002	A	120	Butterfly	Motor	flange		50	130	30	125		$\begin{aligned} & 25762-110-\mathrm{M} 6 \mathrm{~K}- \\ & \mathrm{WL}-00001 \end{aligned}$		Valve Quote	Ductia Iron, epoxy coated or rubber lined	OOA
1	Inlet isolation WL-MP- 001 B	1	HV	WL	002	B	120	Butterily	Motor	flange		50	130	30	130		$\begin{aligned} & 25762-110-\mathrm{M} 6 \mathrm{~K}- \\ & \mathrm{WL}-00001 \end{aligned}$		Valve Quote	Ductile Iron. epoxy coated or rubber lined	00A
1	Iniet Isolation WL-MP001C	1	HV	WL	002	C	120	Butterfly	Motor	flange		50	130	30	125		$\begin{aligned} & 25762-1.10-\mathrm{M} 6 \mathrm{~K}- \\ & \mathrm{WL}-00001 \end{aligned}$		Valve Quote	Ductile Iron. epoxy coated or rubber lined	00A
1	Iniet Isolation WL-MP- 001 D	1	HV	WL	002	D	120	Butterfly	Motor	flange		50	130	30	125		25762-110-M6K- WL-00001		Valve Quote	Ductile iron. epoxy coated or rubber lined	00A
1	inlet isolation WL-MP001A	2	HV	WL	002	A	120	Butterly	Motor	flange		50	130	30	125		$\begin{aligned} & 25762-110-\mathrm{M} 6 \mathrm{~K}- \\ & \mathrm{WL}-00001 \end{aligned}$		Valve Quote	Ductile Iron. epoxy coated or rubber lined	OOA
1	Inlet isolation WL-MP- 001 B	2	HV	WL	002	B	120	Butterlly	Motor	flange		50	130	30	125		25762-110-M6K-WL-00001		Valve Quote	Ductile iron. epoxy coated or rubber lined	OOA
1	Inlet Isolation WL-MP001 C	2	HV	WL	002	C	120	Butterily	Motor	flange		50	130	30	125		$\begin{array}{\|l\|} 25762-110-M 6 K- \\ \text { WL-00001 } \end{array}$		Valve Quote	Ductile iron, epoxy coated or rubber lined	OOA
1	Iniet isolation WL-MP- 001 D	2	HV	WL	002	D	120	Butterily	Motor	flange		50	130	30	125		$\left\lvert\, \begin{aligned} & 25762-110-\mathrm{M} 6 \mathrm{~K}-\mid \\ & \mathrm{WL}-00001 \end{aligned}\right.$		Valve Quote	Ductio Iron. epoxy coated or rubber lined	00A
1	Outlet isolation WL-MP001A	1	HV	WL	004	A	108	Butterfly	Motor	flange		85	130	75	125		$\begin{aligned} & 25762-110-\mathrm{M} 6 \mathrm{~K}-\mid \\ & \mathrm{WL}-00001 \end{aligned}$		Valve Quote	Ductile iron epoxy coated or rubber lined	OOA
1	Outlet isolation WL-MP001B	1	HV	WL	004	B	108	Butterfly	Motor	flange		85	130	75	125		$\begin{array}{\|l\|} 25762-110-M 6 K-\mid \\ \text { WL-00001 } \end{array}$		Valve Quote	Ductile Iron, epoxy coated or rubber lined	00A
1	Outlet isolation WL-MP001 C	1	HV	WL	004	C	108	Butterfly	Motor	flange		85	130	75	125		$\begin{array}{\|l\|} 25762-110-\mathrm{M} 6 \mathrm{~K}- \\ \mathrm{WL}-00001 \end{array}$		Valve Quote	Ductile Iron, epoxy coated or rubber llined	OOA
1	Outlet isolation WL-MP001D	1	HV	WL	004	D	108	Butterily	Motor	flange		85	130	75	125		$\left.\begin{array}{\|l\|} 25762-110-\mathrm{M} 6 \mathrm{~K} \\ \mathrm{WL}-00001 \end{array} \right\rvert\,$		Valve Quote	Ductile Iron. opoxy coated or rubber ilned	00A
1	Outlet isolation WL-MP001A	2	HV	WL	004	A	108	Butterfly	Motor	flange		85	130	75	125		$\begin{aligned} & 25762-110-\mathrm{M} 6 \mathrm{~K}- \\ & \mathrm{WL}-00001 \end{aligned}$		Valve Quote	Ductile Iron. epoxy coated or rubber Ilned	00A
1	Outlet isolation WL-MP001 B	2	HV	WL	004	B	108	Butterlly	Motor	flange		85	130	75	125		$\begin{array}{\|l\|} 25762-1 ~ 10-M 6 K- \\ \mathrm{WL}-00001 \end{array}$		Valve Quote	Ductile Iron, apoxy coated or rubber llined	OOA
1	Outiet isolation WL-MP001 C	2	HV	WL	004	C	108	Butterily	Motor	flange		85	130	75	125		$\begin{aligned} & 25762-110-\mathrm{M} 6 \mathrm{~K}- \\ & \mathrm{WL}-00001 \end{aligned}$		Valve Quote	Ductile Iron. epoxy coated or rubber lined	00A
1	Outlet isolation WL-MP001 D	2	HV	WL	004	D	108	Butterfly	Motor	flange		85	130	75	125		$\begin{aligned} & 25762-110-\mathrm{M} 6 \mathrm{~K}- \\ & \mathrm{WL}-00001 \end{aligned}$		Valve Quote	Ductile Iron. epoxy coated or rubber lined	OOA
1	Isolation Valve for the Blowdown from CT WL-ME-001A	1	PV	WL			12	Butterily		flange		100	150	75	100		25762-110-M6K-WL-00003	No	estimating	Ductile Iron, seats EPDM amd 316 SS, 316 SS trim	00A

Qty	Line Description	Unit	Comm	System	Valve Seq. No.	Suffix	Dia (in)	Valve Type	$\begin{array}{\|l\|} \text { Act. } \\ \text { Type } \end{array}$	End Prep.	Vaive Material Class	$\begin{array}{\|c\|} \hline \text { Design } \\ \text { Press } \\ \text { (pisg) } \\ \hline \end{array}$	$\begin{aligned} & \text { Design } \\ & \text { Temp } \\ & { }^{\circ} \mathrm{F} \text {) } \\ & \hline \end{aligned}$	$\begin{gathered} \text { Service } \\ \text { Press } \\ \text { (psilg) } \end{gathered}$	Service Temp (${ }^{\circ} \mathrm{F}$)	Rating	P\&ID	Heat Trace (Yes/No)	Bid	Remarks	Rev
1	Isolation Valve for the Blowdown from CT WL-ME-001B	1	PV	WI			12	Butterly		flange		100	150	75	100		25762-110-M6K-WL-00003	No	estimating	Ductile iron, seats EPDM amd 316 SS, 316 SS trim	OOA
1	Upstream of HV017 on Blowdown Line	1	PV	WI			16	Butterly		flange		100	150	75	100		$\begin{aligned} & 25762-110-\mathrm{M} 6 \mathrm{~K}-\mid \\ & \mathrm{WL}-00003 \end{aligned}$	No	estimating	Ductlie iron, seats EPDM amd 316 SS, 316 SS trim	00A
1	HV017 on the Blowdown LIne	1	PV	WL			16	Butterfly	Motor	flange		100	150	75	100		25762-110-M6K WL-00003	No	estimating	$\begin{aligned} & \text { Ductlie iron, seats } \\ & \text { EPDM amd } 316 \\ & \text { SS, } 316 \text { SS trim } \end{aligned}$	00A
1	Downstream of HV017 on the Blowdown Line	1	PV	WL			16	Butterily		flange		100	150	75	100		25762-110-M6K WL-00003	No	estmating	Ductio iron, seats EPDM and 316 SS, 316 SS trim	OOA
1	By-pass fro HV017 on the Blowdown Line	1	PV	WL			16	Butterily		flange		100	150	75	100		$\begin{aligned} & 25762-110-\mathrm{M} 6 \mathrm{~K}- \\ & \mathrm{WL}-00003 \end{aligned}$	No	estimating	Ductlie iron, seats EPDM amd 316 SS, 316 SS trim	OOA
1	Upstream of LV009 on Makeup Water Line	1	PV	WL			24	Butterlly		flange		100	150	75	100		25762-110-M6K WL-00003	No	estimating	Ductie iron, seats EPDM amd 316 SS, 316 SS trim	OOA
1	On Makeup Water Line, LV009	1	PV	WL			24	Butterfly	Motor	flange		100	150	75	100		$\begin{aligned} & 25762-110-\mathrm{M} 6 \mathrm{~K}- \\ & \mathrm{WL}-00003 \end{aligned}$	No	estimating	Ductle iron, seats EPDM amd 316 SS, 316 SS trim	OOA
1	Downstream of LV009 on the Makeup Water Pump	1	PV	WL			24	Butterfly		flange		100	150	75	100		$\begin{aligned} & 25762-110-\mathrm{M} 6 \mathrm{~K}- \\ & \mathrm{WL}-00003 \end{aligned}$	No	estimating	Ductio iron, seats EPDM and 316 SS, 316 SS trim	00A
1	By-pass to LV009 on Makeup Water Line	1	PV	WL			24	Butterfly		flange		100	150	75	100		$\begin{aligned} & 25762-110-\mathrm{M6K} \text { - } \\ & \text { WL-00003 } \end{aligned}$	No	estimating	Ductlie iron, seats EPDM amd 316 SS, 316 SS trim	OOA
1	On PIT003A	1	PV	WL			1	Gate				100	150	75	100		$\begin{aligned} & \text { 25762-110-M6K- } \\ & \text { WL-00003 } \end{aligned}$	No	estlmating	$\begin{aligned} & \hline \text { Duplex stainiess } \\ & \text { steel } \\ & \hline \end{aligned}$	OOA
1	On PIT003B	1	PV	WL			1	Gate		flange		100	150	75	100		$\begin{aligned} & 25762-110-\mathrm{M} 6 \mathrm{~K}- \\ & \mathrm{WL}-00003 \end{aligned}$	No	estimating	Duplex stainless steel	00A
1	On PIT003C	1	PV	WL			1	Gate		flange		100	150	75	100		$\begin{aligned} & 25762-110-\mathrm{M} 6 \mathrm{~K}- \\ & \mathrm{WL}-00003 \end{aligned}$	No	estimating	Duplex stainiess steel	OOA
1	On PITO03D	1	PV	WL			1	Gate		flange		100	150	75	100		$\begin{aligned} & \begin{array}{l} 2-6762-110-\mathrm{M} 6 \mathrm{~K} \end{array} \\ & \mathrm{WL}-00003 \end{aligned}$	No	estimating	Duplex stainless steel	00A
1	$\begin{aligned} & \text { Outlet from WL-MP-001A } \\ & \text { auto vent } \end{aligned}$	1	PV	WL			2	bail	Motor	flange		100	150	75	100		$\begin{aligned} & 25762-110-\mathrm{M} 6 \mathrm{~K}- \\ & \mathrm{WL}-00003 \end{aligned}$	No	estimating	Duplex stainless steel	OOA
1	$\begin{aligned} & \text { Outlet from WL-MP-001A } \\ & \text { auto vent } \end{aligned}$	1	PV	WL			2	AR		flange		100	150	75	100		$\begin{aligned} & 252762-110-\mathrm{M} 6 \mathrm{~K}- \\ & \mathrm{WL}-00003 \end{aligned}$	No	estimating	Duplex stainless steel	00A
1	Outiet from WL-MP-001B auto vent	1	PV	WL			2	ball	Motor	flange		100	150	75	100		$\begin{aligned} & 25762-110-\mathrm{M} 6 \mathrm{~K}- \\ & \mathrm{WL}-00003 \end{aligned}$	No	estimating	Duplex stainless steel	OOA
1	Outlet from WL-MP-001B auto vent	1	PV	WL			2	AR		flange		100	150	75	100		$\begin{array}{\|l\|} \hline 25762-110-\mathrm{M} 6 \mathrm{~K}- \\ \mathrm{WL}-00003 \end{array}$	No	estimating	Duplex stainless stoel	OOA
1	$\begin{aligned} & \text { Outlet from WL-MP-001C } \\ & \text { auto vent } \end{aligned}$	1	PV	WL			2	ball	Motor	flange		100	150	75	100		$\begin{aligned} & 25762-110-\mathrm{M} 6 \mathrm{~K}- \\ & \mathrm{WL}-00003 \end{aligned}$	No	estimating	Duplex stainiess steel	00A
1	$\begin{aligned} & \text { Outlet from WL-MP-001C } \\ & \text { auto vent } \\ & \hline \end{aligned}$	1	PV	WL			2	AR		flange		100	150	75	100		$\begin{aligned} & 25762-110-\mathrm{M} 6 \mathrm{~K}- \\ & \mathrm{WL}-00003 \end{aligned}$	No	estimating	Duplex stainless steel	OOA

Qty	Line Description	Unit	Comm	System	Valve Seq. No.	Suffix	Dia (in)	Valve Type	Act. Type	End Prep.	Valve Material Class	Design Press (pisg)	Design Temp (${ }^{\circ} \mathrm{F}$)	$\begin{array}{\|c} \hline \text { Service } \\ \text { Press } \\ \text { (psig) } \\ \hline \end{array}$	Service Temp (${ }^{\circ} \mathrm{F}$)	Rating	P\&ID	Heat Trace (Yes/No)	Bid	Remarks	Rev
1	$\begin{aligned} & \text { Ourtet from WL-MP-001D } \\ & \text { auto vent } \end{aligned}$	1	PV	WL			2	ball	Motor	flange		100	150	75	100		$\begin{aligned} & 25762-110-\mathrm{M} 6 \mathrm{~K}- \\ & \mathrm{WL}-00003 \end{aligned}$	No	estimating	$\begin{aligned} & \text { Duplex stainless } \\ & \text { steel } \end{aligned}$	OOA
1	$\begin{aligned} & \text { Outlet from WL-MP-001D } \\ & \text { auto vent } \end{aligned}$	1	PV	WL			2	AR		flange		100	150	75	100		$\begin{aligned} & \text { 25762-110-M6K- } \\ & \text { WL-00003 } \end{aligned}$	No	estimating	$\begin{aligned} & \text { Duplex stainless } \\ & \text { steel } \end{aligned}$	OOA
1	Root connection to PI 001A	1	PV	WL			1	gate		flange		100	150	75	100		$\begin{aligned} & 25762-110-\mathrm{M} 6 \mathrm{~K}- \\ & \mathrm{WL}-00003 \end{aligned}$	No	estimating	Duplex stainless steel	OOA
1	Root connection to Pl 0018	1	PV	WL			1	gate		flange		100	150	75	100		$\begin{aligned} & \text { 25762-110-M6K- } \\ & \text { WL-00003 } \end{aligned}$	No	estimating	Duplex stainless steel	00A
1	Root connection to Pi 001 C	1	PV	WL			1	gate		flange		100	150	75	100		$\begin{aligned} & 25762-110-\mathrm{M} 6 \mathrm{~K}- \\ & \mathrm{WL}-00003 \end{aligned}$	No	estimating	Duplex stainless stoel	OOA
1	Root connection to PI 001 D	1	PV	WL			1	gate		flange		100	150	75	100		$\begin{aligned} & \text { 25762-110-M6K- } \\ & \text { WL-00003 } \end{aligned}$	No	estimating	$\begin{aligned} & \text { Duplex stainless } \\ & \text { steel } \end{aligned}$	00A
1	isolation Valve for the Blowdown from CT WL-ME-001A	2	PV	WL			12	Butterily		flange		100	150	75	100		25762-110-M6K. WL-00003	No	estimating	$\begin{array}{\|l} \hline \text { Ductilig iron, seats } \\ \text { EPDM amd } 316 \\ \text { SS, } 316 \text { SS trim } \end{array}$	OOA
1	Isolation Valve for the Blowdown from CT WL-ME-001B	2	PV	WI			12	Buttertly		flange		100	150	75	100		$\begin{aligned} & 25762-110-\mathrm{M} 6 \mathrm{~K}- \\ & \mathrm{WL}-00003 \end{aligned}$	No	estimating	Ductlis iron, seats EPDM amd 316 SS, 316 SS trim SS, 316 SS trim	OOA
1	Upstream of HV017 on Blowdown Line	2	PV	Wi			16	Butterifly		flange		100	150	75	100		$\begin{aligned} & 25762-110-\mathrm{M} 6 \mathrm{~K} \\ & \mathrm{WL}-00003 \end{aligned}$	No	estimating	Ductile iron, seats EPDM amd 316 SS, 316 SS trim	OOA
1	HV017 on the Blowdown Line	2	PV	WL			16	Butterfly	Motor	flange		100	150	75	100		$\begin{aligned} & 25762-110-\mathrm{M} 6 \mathrm{~K}- \\ & \mathrm{WL}-00003 \end{aligned}$	No	estimating	Ductile iron, seats EPDM amd 316 SS, 316 SS trim	OOA
1	Downstream of HV017 on the Blowdown LIne	2	PV	WL			16	Butterly		flange		100	150	75	100		$\begin{aligned} & 25762-110-\mathrm{M} 6 \mathrm{~K}- \\ & \mathrm{WL}-00003 \end{aligned}$	No	estimating	Ductie iron, seats EPDM amd 316 SS, 316 SS trim	OOA
1	By-pass fro HV017 on the Blowdown Line	2	PV	WL			16	Butterfly		flange		100	150	75	100		$\begin{aligned} & 25762-110-\mathrm{M} 6 \mathrm{~K}- \\ & \mathrm{WL}-00003 \end{aligned}$	No	estimating	Ductile iron, seats EPDM amd 316 SS, 316 SS trim	OOA
1	Upstream of LV009 on Makeup Water Line	2	PV	WL			24	Butterly		flange		100	150	75	100		$\begin{aligned} & 25762-110-\mathrm{M} 6 \mathrm{~K}- \\ & \mathrm{WL}-00003 \end{aligned}$	No	estimating	Ductie îron, seats EPDM amd 316 SS, 316 SS trim	OOA
1	On Makeup Water Line, LV009	2	PV	WL			24	Butterfly	Motor	flange		100	150	75	100		$\begin{aligned} & 25762-110-\mathrm{M} 6 \mathrm{~K}- \\ & \mathrm{WL}-00003 \end{aligned}$	No	est/mating	Ductie iron, seats EPDM amd 316 SS, 316 SS trim	OOA
1	Downstream of LV009 on the Makeup Water Pump	2	PV	WL			24	Butterly		flange		100	150	75	100		25762-110-M6K- WL-00003	No	estimating	Ductio iron, seats EPDM amd 316 SS, 316 SS trim	OOA
1	By-pass to LV009 on Makeup Water Line	2	PV	WL			24	Butterfly		flange		100	150	75	100		25762-110-M6K- WL-00003	No	estimating	Ductie iron, seats EPDM amd 316 SS, 316 SS trim	00A
1	On PIT003A	2	PV	WL			1	Gate		flange		100	150	75	100		$\begin{aligned} & 25762-110-\mathrm{M} 6 \mathrm{~K}- \\ & \mathrm{WL}-00003 \end{aligned}$	No	estimating	Duplex stainless stael	OOA
1	On PIT003B	2	PV	WL			1	Gate		flange		100	150	75	100		$\begin{aligned} & 25762-110-\mathrm{M} 6 \mathrm{~K}- \\ & \mathrm{WL}-00003 \end{aligned}$	No	estimating	Duplex stainless steel	00A

Qty	Line Description	Unit	Comm	System	$\begin{array}{\|c\|} \hline \text { Valve } \\ \text { Seq. } \\ \text { No. } \\ \hline \end{array}$	Suffix	Dia (in)	Valve Type	Act. Type	End Prep.	Valve Material Class	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Design } \\ \text { Press } \\ \text { (pisg) } \end{array} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Design } \\ \text { Temp } \\ \left({ }^{\circ} \mathrm{F}\right) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Service } \\ \text { Press } \\ \text { (psig) } \end{array}$	Service Temp (${ }^{\circ} \mathrm{F}$)	Rating	P\&ID	Heat Trace (Yes/No)	Bid	Remarks	Rev
1	On PITOO3C	2	PV	WL			1	Gate		flange		100	150	75	100		$\begin{aligned} & 25762-110-\mathrm{M} 6 \mathrm{~K}- \\ & \mathrm{WL}-00003 \end{aligned}$	No	estimating	Duplex stainless 8teel	OOA
1	On PITOO3D	2	PV	WL			1	Gate		flange		100	150	75	100		$\begin{aligned} & 25762-110-\mathrm{M} 6 \mathrm{~K}- \\ & \mathrm{WL}-00003 \end{aligned}$	No	estimating	Duplex stainless steel	OOA
1	$\begin{aligned} & \text { Outlet from WL-MP-001A } \\ & \text { auto vent } \end{aligned}$	2	PV	WL			2	ball	Motor	flange		100	150	75	100		$\begin{aligned} & 25762-110-\mathrm{M} 6 \mathrm{~K}- \\ & \mathrm{WL}-00003 \end{aligned}$	No	estimating	$\begin{aligned} & \begin{array}{l} \text { Duplex stainless } \\ \text { stoal } \end{array} \\ & \hline \end{aligned}$	OOA
1	Outlet from WL-MP-001A auto vent	2	PV	WL			2	AR		flange		100	150	75	100		$\begin{aligned} & 25762-110-\mathrm{M} 6 \mathrm{~K}- \\ & \mathrm{WL}-00003 \end{aligned}$	No	estimating	Duplox stainless steel	OOA
1	Outler from WL-MP-001B auto vent	2	PV	WL			2	ball	Motor	flange		100	150	75	100		$\begin{aligned} & 25762-110-\mathrm{M} 6 \mathrm{~K}- \\ & \mathrm{WL}-00003 \end{aligned}$	No	estimating	Duplox stainless steel	OOA
1	Outlet from WL-MP-001B auto vent	2	PV	WL			2	AR		flange		100	150	75	100		$\begin{aligned} & 25762-110-\mathrm{M} 6 \mathrm{~K}- \\ & \mathrm{WL}-00003 \end{aligned}$	No	estimating	Duplex stainless steel	OOA
1	Outlet from WL-MP-001C auto vent	2	PV	WL			2	ball	Motor	flange		100	150	75	100		$\begin{aligned} & 25762-110-\mathrm{M} 6 \mathrm{~K}- \\ & \mathrm{WL}-00003 \end{aligned}$	No	estimating	Duplex stainiess stoel	OOA
1	Outlet from WL-MP-001C auto vent	2	PV	WL			2	AR		flange		100	150	75	100		$\begin{aligned} & 25762 \cdot 110-\mathrm{M} 6 \mathrm{~K}- \\ & \mathrm{WL}-00003 \end{aligned}$	No	estimating	Duplex stainiess steel	00A
1	Outlet from WL-MP-001D auto vent	2	PV	WL			2	ball	Motor	flange		100	150	75	100		$\begin{aligned} & 25762-110-\mathrm{M} 6 \mathrm{~K}- \\ & \mathrm{WL}-00003 \end{aligned}$	No	estimating	$\begin{aligned} & \text { Dupiox stainless } \\ & \text { steel } \end{aligned}$	OOA
1	Outlet from WL-MP-001D auto vent	2	PV	WL			2	AR		flange		100	150	75	100		$\begin{aligned} & 25762-110-\mathrm{M} 6 \mathrm{~K}- \\ & \mathrm{WL}-00003 \end{aligned}$	No	estimating	Duplex stainless steel	00A
1	Root connection to PI 001 A	2	PV	WL			1	gate		flange		100	150	75	100		$\begin{aligned} & 25762-110-\mathrm{M} 6 \mathrm{~K}- \\ & \mathrm{WL}-00003 \end{aligned}$	No	estimating	Duplex stainless stoel	OOA
1	Root connection to PI 001 B	2	PV	WL			1	gate		flange		100	150	75	100		$\begin{aligned} & 25762-110-\mathrm{M} 6 \mathrm{~K}- \\ & \mathrm{WL}-00003 \end{aligned}$	No	estimating	$\begin{aligned} & \text { Duplex stainless } \\ & \text { steol } \\ & \hline \end{aligned}$	00A
1	Root connection to PI 001 C	2	PV	WL			1	gate		flange		100	150	75	100		$\begin{aligned} & 25762-110-\mathrm{M} 6 \mathrm{~K}- \\ & \mathrm{WL}-00003 \end{aligned}$	No	estimating	Duplex stainless steel	00A
1	Root connection to PI 001 D	2	PV	WL			1	gate		flange		100	150	75	100		$\begin{aligned} & \text { 25762-110-M6K- } \\ & \text { WL-00003 } \end{aligned}$	No	estimating	Duplex stainless steel	OOA
3	Pump MP001A, B, \& C isolation valves	0	HV	wo	032		42	Butterily	Motor	flange		320	70				$\left\lvert\, \begin{aligned} & 25762-110-\mathrm{M} 6 \mathrm{~K} \\ & \mathrm{WO} 0-00001 \end{aligned}\right.$		Valve Quote	Ductile iron, rubber lined, general service, Iug type,	OOA
1	FEO43 outlet isolation valve	0	HV	wo			42	butterlly	Motor	flange		320	70				25762-110-M6K-W0-00001		Valve Quote	Ductle iron, rubber lined, general service, lug type,	OOA
1	Desal brine outlet control valve	0	HV	wo			42	butterlly	Motor	flange		320	70				$\left\|\begin{array}{l} 25762-110-\mathrm{M} 6 \mathrm{~K} \\ \mathrm{WO}-00001 \end{array}\right\|$		Valve Quote	Ductile Iron, rubber lined, general service, lug type,	00A
2	Pump MP002A\&B outlet valve	0	HV	wo			6	butterly	motor	flange		320	70				25762-110-M6K- W0-00001		estimating	Ductile iron, rubber lined, general service, lug type,	00A
2	Pump MP002A\&B outlet valve	0	HV	wo			8	butterfly	motor	flange		320	70				25762-110-M6K W0-00001		estimating	Ductile iron, rubber lined, general service, lug type,	00B
3	Pump MP001A, B, \& C air release valve	0	PY	wo			2	AR		flange		320	70				$\begin{aligned} & 25762-110-\mathrm{M} 6 \mathrm{~K}- \\ & \mathrm{W0} 0-00001 \end{aligned}$		estimating	Super duplex ss	OOA
3	Pump MP001A, B, \& C alr release valve isolation valves	0	PY	wo			2	ball		flange		320	70				$\begin{aligned} & 25762-110-\mathrm{M} 6 \mathrm{~K} \\ & \mathrm{Wo} 0-00001 \end{aligned}$		estimating	Super duplex ss	OOA
3	Pl 031 isolation valve	0	PY	wo			1	ball		flange		320	70				$\begin{aligned} & 25762-110-\mathrm{M} 6 \mathrm{~K}- \\ & \mathrm{WO}-00001 \end{aligned}$		estimating	Super duplex ss	OOA

Qty	Line Description	Unit	Comm	System	Valve Seq. No.	Suffix	Dia (in)	Valve Type	Act. Type	End Prep.	Valve Material Class	$\begin{gathered} \text { Design } \\ \text { Press } \\ \text { (pisg) } \end{gathered}$	Design Temp (${ }^{\circ} \mathrm{F}$)	Service Press (psig)	Service Temp (${ }^{\circ} \mathrm{F}$)	Rating	P\&ID	Heat Trace (Yes/No)	Bid	Remarks	Rev
1	Pump MP001A, B, \& C recirc isolation valve	0	PY	wo			30	butterily		flange		320	70				$\begin{aligned} & 25762-110-\mathrm{M} 6 \mathrm{~K}- \\ & \mathrm{W} 0-00001 \end{aligned}$		est/mating	Ductila iron, rubber lined, general service, Iug type.	OOA
2	FT034 root valves	0	PY	wo			1	ball		flange		320	70				$\begin{aligned} & \text { 25762-110-M6K- } \\ & \text { W0-00001 } \end{aligned}$		estimating	Super duplex 88	00A
1	PT033 isolation valve	0	PY	wo			1	ball		flange		320	70				$\begin{aligned} & 25762-110-\mathrm{M} 6 \mathrm{~K}- \\ & \mathrm{W} 0-00001 \end{aligned}$		estimating	Super duplex ss	OOA
1	Desal outlet isolation valve	0	PY	wo			42	butterily		flange		320	70				25762-110-M6K W0-00001		Valve Quote	Ductile iron, rubber lined, general service, lug type,	OOA
1	FT043 inlet isolation valve	0	PY	wo			42	butterlly		flange		320	70				25762-110-M6K W0-00001		Valve Quote	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Ductile iron, rubber } \\ \text { lined, generai } \\ \text { service, lug type, } \end{array} \\ \hline \end{array}$	O0A
2	FT043 root valves	0	PY	wo			1	ball		flange		320	70				$\begin{aligned} & \text { 25762-110-M6K- } \\ & \text { WO-00001 } \end{aligned}$		estimating		OOA
1	FEO43 outiet isolation valve	0	HV	wo			42	butterily	Motor	flange		320	70				25762-110-M6K W0-00001		Valve Quote	Ductile Iron, rubber lined, general service, lug type,	OOB
1	Desal brine outlet isolation valve	0	PY	wo			42	butterily		flange		320	70				25762-110-M6K wo-00001		Valve Quote	Ductile iron, rubber lined, general service, lug type	OOA
1	Brine outlet PI root valve	0	PY	wo			1	gate		flange		320	70				$\begin{aligned} & \text { 25762-1.10-M6K- } \\ & \text { W0-00001 } \end{aligned}$		estimating	Super duplex ss	OOA
2	Pump MP002A\&B outtet valve	0	HV	wo			8	butterity	motor	flange		320	70				$\left\lvert\, \begin{aligned} & 25762-110-\mathrm{M} 6 \mathrm{~K}- \\ & \mathrm{WO} 0-00001 \end{aligned}\right.$		estimating	Ductile iron, rubber lined, general service, lug type,	008
2	Pump MP002A\&B outlet check valve	0	PY	wo			8	wafer check		flange		320	70				25762-110-M6K-W0-00001		estimating	Ductile iron, rubber Ilined, general service, lug type	OOA
2	Pump MP002A\&B outlat air release valve	0	PY	wo			1	AR		flange		320	70				$\begin{aligned} & 25762-110-\mathrm{M} 6 \mathrm{~K} \\ & \text { WO-00001 } \end{aligned}$		estimating	Super duplex ss	00A
2	Pump MPOO2A\&B outlet air release isolation valve	0	PY	wo			1	ball		flange		320	70				$\begin{aligned} & 25762-110-\mathrm{M} 6 \mathrm{~K}- \\ & \mathrm{wo-00001} \end{aligned}$		estimating	Super duplex ss	00A
2	Pump MPOO2A\&B PI isolation valve	0	PY	wo			1	ball		flange		320	70				$\begin{aligned} & \begin{array}{l} 25762-110-\mathrm{M} 6 \mathrm{~K} \\ \text { W0-00001 } \end{array} \end{aligned}$		estimating	Super duplex ss	00A
2	SL Grey Water Supply pump 4A \& 4B check valves	0	PV	WR			6	wafer check		flanged		325	90				25762-110-M6K WR-00003		estimating	Ductile Iron	00A
2	SL Grey Water Supply pump 5A \& 5B check valves	0	PV	WR			6	wafer check		flanged		325	90				$\begin{aligned} & 25762-110-\mathrm{M} 6 \mathrm{~K}- \\ & \text { WR-00003 } \end{aligned}$		estimating	Ductile Iron	00A
2	SL Grey Water Supply pump 4A \& 4B discharge valves	0	PV	WR			6	butterily				325	90				$\begin{aligned} & 25762-110-\mathrm{M} 6 \mathrm{~K}- \\ & \mathrm{WR}-00003 \end{aligned}$		estimating	Ductile iron, seats EPDM amd 316 SS, 316 SS trim	00A
2	SL Grey Water Supply pump 4A \& 4B air release valve	0	PV	WR			2	AR				325	90				$\begin{aligned} & 25762-110-\mathrm{M} 6 \mathrm{~K}- \\ & \text { WR-00003 } \end{aligned}$		estimating	Ductile Iron	00A

Qty	LIne Description	Unit	Comm	System	$\begin{array}{\|c} \hline \text { Valve } \\ \text { Seq. } \\ \text { No. } \end{array}$	Suftix	Dla (In)	Valve Type	Act. Type	End Prep.	Valve Material Class	$\begin{gathered} \text { Design } \\ \text { Pross } \\ \text { (pisg) } \end{gathered}$	$\begin{gathered} \text { Design } \\ \text { Temp } \\ \left({ }^{\circ} \mathrm{F}\right) \end{gathered}$	Service Press (psig)	Service Temp (${ }^{\circ} \mathrm{F}$)	Rating	P\&ID	Heat Trace (Yes/No)	Bid	Remarks	Rev
2	SL Grey Water Supply pump 5A \& 5B air release valve	0	PV	WR			2	AR				325	90				25762-110-M6K- WR-00003		estimating	Ductile Iron	OOA
2	SL Grey Water Supply pump 4A \& 4B air release Isolation valve	0	PV	WR			2	ball				325	90				25762-110-M6K-WR-00003		estimating	Ductile Iron	00A
2	SL Grey Water Supply pump 5A \& 5B air release isolation valve	0	PV	WR			2	ball				325	90				25762-110-M6K WR-00003		estimating	Ductile iron	00A
2	SL Grey Water Supply pump 4A \& 4B PI isolation valve	0	PV	WR			1	ball				325	90				25762-110-M6K WR-00003		estimating	Ductile iron	00A
2	SL Grey Water Supply pump 5A \& 5B Plisolation valve	0	PV	WR			1	ball				325	90				$\begin{aligned} & 25762-110-M 6 K- \\ & \text { WR-00003 } \end{aligned}$		estimating	Ductile iron	OOA
1	SL Grey Water Supply pump 4A \& 4B recire valve isolation valve	0	PV	WR			6	butterfly				325	90				$\begin{aligned} & 25762-110-M 6 K- \\ & \text { WR-00003 } \end{aligned}$		estimating	Ductiie iron, seats EPDM amd 316 SS, 316 SS trim	OOA
1	SL Grey Water Supply pump 5A\&5B recirc valve isolation valve	0	PV	WR			6	butterily				325	90				$\begin{aligned} & 25762-110-\mathrm{M} 6 \mathrm{~K}-- \\ & \text { WR-00003 } \end{aligned}$		estimating	Ductioe iron, seats EPDM and 316 SS, 316 SS trim	OOA
26	Supply Inne auto vent valves	0	PV	WR			2	gate				325	90				$\begin{aligned} & 25762-110-\mathrm{M} 6 \mathrm{~K}- \\ & \text { WR-00003 } \end{aligned}$		estimating	duplex 88 Assumes approximately 1 per mille	OOA
26	supply line auto vent valve isolation valves	0	PV	WR			2	AR				325	90				$\begin{aligned} & \text { 25762-110-M6K- } \\ & \text { WR-00003 } \end{aligned}$		estimating	Ductila Iron	OOA
26	supply line drain valves	0	PV	WR			3	gate				325	90				$\begin{aligned} & \text { 25762-110-M6K- } \\ & \text { WR-00003 } \\ & \hline \end{aligned}$		estimating	Ductile Iron	OOA
1	flow element Isolation valve	0	PV	WR			12	butterily				325	90				25762-110-M6K-WR-00003		estimating	Ductie iron, seats EPDM amd 316 SS, 316 SS trim	OOA
1	tank Isolation valve	0	PV	WR			12	butterily				325	90				$\begin{array}{\|l\|} 25762-110-M 6 K- \\ \text { WR-00003 } \end{array}$		estimating	$\begin{array}{\|l} \hline \text { Ductile iron, seats } \\ \text { EPDM amd } 316 \\ \text { SS, } 316 \text { SS trim } \end{array}$	OOA
1	tank outlet valve	0	PV	WR			16	butterity				325	90				25762-110-M6K-WR-00003		estimating	Ductio iron, seats EPDM amd 316 SS, 316 SS trim	OOA
2	Pump MP 002A \& B inlet valves	0	PV	WR			16	butterily	\checkmark			65	90				$\begin{aligned} & 25762-110-\mathrm{M} 6 \mathrm{~K}- \\ & \mathrm{WR}-00003 \end{aligned}$		estimating	Ductie Iron, seals EPDM amd 316 SS, 316 SS trim	OOA
2	Pump MP002A \& 2B check valve	0	PV	WR			12	wafer check				65	90				$\begin{array}{\|l\|} 25762-110-M 6 K- \\ \text { WR-00003 } \end{array}$		estimating	Ductlie iron, seats EPDM amd 316 SS, 316 SS trim	OOA
2	Pump MP002A \& $2 B$ isolation valve	0	PV	WR			12	butterily				65	90				$\begin{aligned} & 25762-110-M 6 \mathrm{~K}- \\ & \text { WR-00003 } \end{aligned}$		estimating	Ductlie iron, seats EPDM and 316 SS, 316 SS trim	OOA

Qty	LIne Description	Unit	Comm	System	$\begin{gathered} \hline \text { Valve } \\ \text { Seq. } \\ \text { No. } \end{gathered}$	Suffix	$\begin{aligned} & \text { Dia } \\ & (\mathrm{n}) \end{aligned}$	Valve Type	Act. Type	End Prep.	Valve Material Class	$\begin{gathered} \hline \text { Design } \\ \text { Press } \\ \text { (plsg) } \end{gathered}$	$\begin{gathered} \text { Design } \\ \text { Temp } \\ \left({ }^{\circ} \mathrm{F}\right) \\ \hline \end{gathered}$	$\left.\begin{array}{\|c\|} \hline \text { Service } \\ \text { Press } \\ (p s i g) \end{array} \right\rvert\,$	Service Temp (${ }^{\circ} \mathrm{F}$)	Rating	P\&ID	Heat Trace (Yes/No)	Bid	Remarks	Rev
2	Pump MP002A \& 2B PI isolation valve	0	PV	WR			1	gate				65	90				$\begin{aligned} & 25762-110-\mathrm{M} 6 \mathrm{~K}- \\ & \text { WR-00003 } \end{aligned}$		estimating	Ductile iron	OOA
2	Pump MP003A \& B check valves	0	PV	WR			8	wafer check				65	90				$\begin{aligned} & 25762-110-\mathrm{M} 6 \mathrm{~K}- \\ & \text { WR-00003 } \end{aligned}$		estimating	Ductile Iron	OOA
2	Pump MP003A \& B isiolation valves	0	PV	WR			8	butterily				65	90				$\begin{aligned} & 25762-110-\mathrm{M} 6 \mathrm{~K}- \\ & \text { WR-00003 } \end{aligned}$		estimating	Ductio iron, seats EPDM amd 316 SS, 316 SS trim	O0A
2	Pump MP 001 \& B Inlet valves	0	PV	WR				butterily				65	90		\checkmark		$\begin{array}{\|l\|} 25762-110-\mathrm{M} 6 \mathrm{~K} \\ \text { WR-00003 } \end{array}$		estimating	$\begin{aligned} & \text { Ductie iron, seats } \\ & \text { EPDM amd } 316 \\ & \text { SS, } 316 \text { SS trim } \end{aligned}$	OOA
2	Pump MP001A \& 1B check valve	0	PV	WR				wafer check				65	90				$\begin{aligned} & 25762-110-\mathrm{M} 6 \mathrm{~K}- \\ & \text { WR-00003 } \end{aligned}$		estimating	Ductio Iron	OOA
2	Pump MP001A \& $1 B$ isolation valve	0	PV	WR				butterfly				65	90				$\begin{array}{\|l\|} \hline 25762-110-M 6 K- \\ \text { WR-00003 } \\ \hline \end{array}$		estimating	Ductie Iron	OOA
2	Pump MP001A \& 1B PI isolation valve	0	PV	WR			1	gate				30	90				$\begin{array}{\|l\|} \left\|\begin{array}{l} 2762-110-M 6 K- \\ \text { WR-00003 } \end{array}\right\| \end{array}$		estimating	Ductile Iron	OOA
1	storage pond outtet valve	0	PV	WR			36	butterily				30	90				$\begin{aligned} & 25762-110-\mathrm{M} 6 \mathrm{~K}- \\ & \text { WR-00003 } \end{aligned}$		estimating	Ductile iron, seats EPDM amd 316 SS, 316 SS trim	00B
															,						

JUOTC WET MECHANICAL DRAFT CT OPTION

DCPP

Valve List

00 B	$7 / 2 y / 2,13$	Issued for Estimate Report	R	-	CP
00 A	$7 / 11 / 2013$	Issue for Estimate	RP	-	RP
Rev	Date	Reason for Revision	Orignator	Checked	Approved

System Codes

AD Condensate
PF Fire Protection
PI Plant Air
TL Circ. Wtr Chem Inj
WB Service water
WL Circulating Water
WO Sea Water
WR Raw Water (Grey water)

Note:
1 Valves furnished with vendor packages are not included in this list. Some valves supplier by the cooling tower supplier have been included in the equipment list to help define the scope of supply by

Qty	Line Description	Unit	Comm	System	$\begin{gathered} \hline \text { Valve } \\ \text { Seq. } \\ \text { No. } \end{gathered}$	Suffix	Dia (in)	Valve Type	Act. Type	$\begin{aligned} & \text { End } \\ & \text { Prep. } \end{aligned}$	Valve Material Class	$\begin{gathered} \text { Design } \\ \text { Press } \\ \text { (plsg) } \end{gathered}$	Design Temp (${ }^{\circ} \mathrm{F}$)	$\begin{array}{\|c\|} \hline \text { Service } \\ \text { Press } \\ \text { (psig) } \end{array}$	$\begin{gathered} \hline \text { Service } \\ \text { Temp } \\ \left({ }^{\circ} \mathrm{F}\right) \\ \hline \end{gathered}$	Rating	P\&ID	Heat Trace (Yes/No)	Bid	Remarks	Rev
18	Post Indicating valve	0	PIV.	PF			12	gate		flange		175	90				-		estimating	Ductile Iron	00A
54	Curb Valve	0	PV	PF			12	gate		flange		175	90				-		estimating	Ductila Iron	OOA
1	Inles isolation WL-MP. 001 A	1	HV	WL	002	A	120	Butterlly	Motor	flange		50	130	30	125		$\begin{aligned} & 25762-110- \\ & \text { M6K-WL-00001 } \end{aligned}$		Valve Quote	Ductile Iron. epoxy coated or rubber lined	00A
1	Inlet isolation WL-MP- 001 B	1	HV	WL	002	B	120	Butterifly	Motor	flange		50	130	30	130		$\left\|\begin{array}{l} 25762-110- \\ \text { M } 6 \text { K-WL-00001 } \end{array}\right\|$		Valve Quote	Ductie Iron. epoxy coated or rubber lined	OOA
1	Inlet Isolation WL-MP001 C	1	HV	WL	002	C	120	Butterlly	Motor	flange		50	130	30	125		$\begin{aligned} & 25762-110- \\ & \text { M6K-WL-00001 } \end{aligned}$		Valve Quote	Ductile Iron. epoxy coated or rubber lined	OOA
1	Inlet isolation WL-MP001 D	1	HV	WL	002	D	120	Butterfly	Motor	flange		50	130	30	125		$\begin{aligned} & 25762-110- \\ & \text { MSK-WL-0000 } \end{aligned}$		Valve Quote	Ductile Iron, epoxy coated or rubber lined	OOA
1	Inlet Isolation WL-MP001 A	2	HV	WL	002	A	120	Butterfly	Motor	flange		50	130	30	125		25762-110-M6K-WL-00001		Valve Quote	Ductile Iron. epoxy coated or rubber lined	00A
1	Inlet isolation WL-MP- 001 B	2	HV	WL	002	B	120	Butterly	Motor	flange		50	130	30	125		$\begin{aligned} & 25762-110- \\ & \text { M6K-WL-00001 } \end{aligned}$		Valve Quote	Ductile Iron. epoxy coated or rubber lined	OOA
1	Inlet isolation WL-MP001 C	2	HV	WL	002	C	120	Butterly	Motor	flange		50	130	30	125		$\begin{aligned} & 25762-110- \\ & \text { M6K-WL-00001 } \end{aligned}$		Valve Quote	Ductile Iron. apoxy coaled or rubber lined	OOA
1	Inlet isolation WL-MP- 001 D	2	HV	WL	002	D	120	Butterfly	Motor	flange		50	130	30	125		$\left\lvert\, \begin{aligned} & 25762-110- \\ & \text { M6K-WL-00001 } \end{aligned}\right.$		Valve Quote	Ductile Iron. epoxy coated or rubber llined	OOA
1	Outiet isolation WL-MP001A	1	HV	WL	004	A	108	Butterily	Motor	flange		85	130	75	125		$\left\lvert\, \begin{aligned} & 25762-110- \\ & \text { M6K-WL-00001 } \end{aligned}\right.$		Valve Quote	Ductile iron. epoxy coated or rubber lined	OOA
1	Outlet isolation WL-MP001 B	1	HV	WL	004	B	108	Butterfly	Molor	flange		85	130	75	125		25762-110-M6K-WL-00001		Valve Quote	Ductila Iron, epoxy coaled or rubber lined	OOA
1	Outlet Isolation WL-MP001 C	1	HV	WL	004	C	108	Butterfly	Motor	flange		85	130	75	125		25762-110-M6K-WL-00001		Valve Quote	Ductile Iron, epoxy coated or rubber lined	00A
1	Outlet Isolation WL-MP001 D	1	HV	WL	004	D	108	Butterly	Motor	flange		85	130	75	125		$\left\lvert\, \begin{aligned} & 25762-110- \\ & \text { M6K-WL-00001 } \end{aligned}\right.$		Valve Quote	Ductile Iron. epoxy coated or rubber lined	OOA
1	Outlet isolation WL-MP001A	2	HV	WL	004	A	108	Butterly	Motor	flange		85	130	75	125		$\left\lvert\, \begin{aligned} & 25762-110- \\ & \text { M6K-WL-00001 } \end{aligned}\right.$		Valve Quote	Ductile Iron. epoxy coated or rubber lined	00A
1	Outlet Isolation WL-MP0018	2	HV	WL	004	B	108	Butterfly	Motor	flange		85	130	75	125		$\left\|\begin{array}{l} 25762-110- \\ \text { M6K-WL-00001 } \end{array}\right\|$		Valve Quote	Ductile Iron. epoxy coated or rubber lined	OOA
1	Outlet isolation WL-MP001 C	2	HV	WL	004	c	108	Butterily	Motor	flange		85	130	75	125		25762-110-M6K-WL-00001		Valve Quote	Ductile Iron. epoxy coated or rubber lined	OOA
1	Outlet isolation WL-MP001 D	2	HV	WL	004	D	108	Butterly	Motor	flange		85	130	75	125		$\left\|\begin{array}{l} 25762-110- \\ \text { M6K-WL-00001 } \end{array}\right\|$		Vaive Quote	Ductile Iron, epoxy coated or rubber lined	OOA
1	Isolation Valve for the Blowdown from CT WL-ME-001A	1	PV	WL			12	Butterly		flange		100	150	75	100		25762-110-M6K-WL-00004	No		Ductile iron, seats EPDM and 316 SS, 316 SS trim	OOA

Qty	LIne Description	Unit	Comm	System	Valve Seq. No.	Suffix	Dia (in)	Valve Type	$\begin{aligned} & \text { Act. } \\ & \text { Type } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { End } \\ & \text { Prep. } \end{aligned}$	Valve Material Class	$\begin{array}{\|c} \text { Design } \\ \text { Press } \\ \text { (pisg) } \end{array}$	Design Temp (${ }^{\circ} \mathrm{F}$)	$\begin{aligned} & \text { Sevice } \\ & \text { Press } \\ & \text { (psig) } \end{aligned}$	Service Temp (${ }^{\circ} \mathrm{F}$)	Rating	P\&ID	Heat Trace (Yes/No)	Bid	Remarks	Rev
1	Isolation Valve for the Blowdown from CT WL-ME-001B	1	PV	WI			12	Butterlly		flange		100	150	75	100		$\begin{aligned} & 25762-110- \\ & \text { M6K-WL-00004 } \end{aligned}$	No		Ductiie iron, seats EPDM amd 316 SS, 316 SS trim	OOA
1	Upstream of HVO17 on Blowdown Line	1	PV	WI			16	Butterfly		flange		100	150	75	100		$\begin{aligned} & 25762-110- \\ & \text { M6K-WL-00004 } \end{aligned}$	No		Ductlie iron, seats EPDM amd 316 SS, 316 SS trim	00A
1	HV017 on the Blowdown Line	1	PV	WL			16	Butterly	Motor	flange		100	150	75	100		$\begin{aligned} & 25762-110- \\ & \text { M6K-WL-00004 } \end{aligned}$	No		Ductlie iron, seats EPDM amd 316 SS, 316 SS 1rim	OOA
1	Downstream of HV017 on the Blowdown Line	1	PV	WL			16	Butterfly		flange		100	150	75	100		25762-110-M6K-WL-00004	No		Ductle iron, seats EPDM and 316 SS, 316 SS trim	OOA
1	By-pass fro HV017 on the Blowdown Line	1	PV	WL			16	Butterily		flange		100	150	75	100		25762-110-M6K-WL-00004	No		Ductlie iron, seats EPDM amd 316 SS, 316 SS trim	00A
1	Upstream of LV009 on Makeup Waler Line	1	PV	WL			24	Butterfly		flange		100	150	75	100		$\begin{array}{\|l\|} 25762-110- \\ \text { M6K-WL-00004 } \end{array}$	No		Ductie iron, seats EPDM amd 316 SS, 316 SS trim	OOA
1	On Makeup Water Line, LVo09	1	PV	WL			24	Butterfly	Motor	flange		100	150	75	100		25762-110-M6K-WL-00004	No		Ductlie iron, seats EPDM amd 316 SS, 316 SS trim	OOA
1	Downstream of LVOO9 on the Makeup Water Pump	1	PV	WL			24	Butterly		flange		100	150	75	100		25762-110-M6K-WL-00004	No		Ductlie Iron, seats EPDM amd 316 SS, 316 SS trim	OOA
1	By-pass to LV009 on Makeup Water Line	1	PV	WL			24	Butterfly		flange		100	150	75	100		25762-110-M6K-WL-00004	No		$\begin{aligned} & \hline \text { Ductlie iron, seats } \\ & \text { EPDM amd } 316 \\ & \text { SS, } 316 \text { SS trim } \end{aligned}$	OOA
1	On PIT003A	1	PV	WL			1	Gate				100	150	75	100		25762-110- M6K-WL-00004	No		Duplex Stalnless Steel	00A
1	On PIT003B	1	PV	WL			1	Gate		flange		100	150	75	100		25762-110-M6K-WL-00004	No		$\begin{aligned} & \text { Duplex Stainless } \\ & \text { Steel } \end{aligned}$	OOA
1	On PIT003C	1	PV	WL			1	Gate		flange		100	150	75	100		25762-110-M6K-WL-00004	No		Duplex Stainless Steel	00A
1	On PIT003D	1	PV	WL			1	Gate		flange		100	150	75	100		25762-110-M6K-WL-00004	No		Duplex Stainless Steel	OOA
1	Outlet from WL-MP-001A auto vent	1	PV	WL			2	ball	Motor	flange		100	150	75	100		25762-110-M6K-WL-00004	No		Duplex Stainless Steel	00A
1	Outiet from WL-MP-001A auto vent	1	PV	WL			2	AR		flange		100	150	75	100		25762-110-M6K-WL-00004	No		Duplex Stainless Steel	OOA

Qty	Line Description	Unit	Comm	System	$\begin{gathered} \text { Valve } \\ \text { Seq. } \\ \text { No. } \end{gathered}$	Suffix	$\begin{aligned} & \text { Dia } \\ & \text { (in) } \end{aligned}$	Valve Type	$\begin{array}{\|l\|} \hline \text { Act. } \\ \text { Type } \\ \hline \end{array}$	End Prep.	Valve Material Class	Design Press (pisg)	Design Temp (${ }^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Service } \\ \text { Press } \\ \text { (psig) } \end{gathered}$	Service Temp (${ }^{\circ} \mathrm{F}$)	Rating	P\&ID	Heat Trace (Yes/No)	Bid	Remarks	Rev
1	Outlet from WL-MP-001B auto vent	1	PV	WL			2	ball	Motor	flange		100	150	75	100		$\left\|\begin{array}{l} 25762-110- \\ \text { M6K-WL-00004 } \end{array}\right\|$	No		Duplex Stainless Steel	00A
1	Outlet from WL-MP-001B auto vent	1	PV	WL			2	AR		flange		100	150	75	100		$\left\|\begin{array}{l} 25762-110- \\ \text { M6K-WL-00004 } \end{array}\right\|$	No		Duplex StaIniess Steel	00A
1	Outlet from WL-MP-001C auto vent	1	PV	WL			2	ball	Motor	flange		100	150	75	100		$\left\|\begin{array}{l} 25762-110- \\ \text { M6K-WL-00004 } \end{array}\right\|$	No		Duplex Stainless Steel	OOA
1	Outlet from WL-MP-001C auto vent	1	PV	WL			2	AR		flange		100	150	75	100		$\left\|\begin{array}{l} 25762-110- \\ \text { M6K-WL-00004 } \end{array}\right\|$	No		Duplex Stainless Steel	00A
1	Outlet from WL-MP-001D auto vent	1	PV	WL			2	ball	Motor	flange		100	150	75	100		25762-110-M6K-WL-00004	No		Duplex Stainless Steel	OOA
1	Outlet from WL-MP-001D auto vent	1	PV	WL			2	AR		flange		100	150	75	100		25762-110-M6K-WL-00004	No		Duplex StaInless Steel	OOA
1	Root connection to PI 001 A	1	PV	WL			1	gate		flange		100	150	75	100		$\left\|\begin{array}{l} 25762-110- \\ \text { M6K-WL-00004 } \end{array}\right\|$	No		Duplex Stainless Steel	00A
1	Root connection to PI 0018	1	PV	WL			1	gate		flange		100	150	75	100		$\left\|\begin{array}{l} 25762-110- \\ \text { M6K-WL-00004 } \end{array}\right\|$	No		Duplex Stainless Steel	OOA
1	Root connection to PI 001 C	1	PV	WL			1	gate		flange		100	150	75	100		25762-110-M6K-WL-00004	No		Duplex Stainless Steel	OOA
1	Root connection to PI 001D	1	PV	WL			1	gate		flange		100	150	75	100		25762-110-M6K-WL-00004	No		Dupiex Stainless Steel	OOA
1	Isolation Valve for the Blowdown from CT WL-ME-001A	2	PV	WL			12	Butterly		flange		100	150	75	100		25762-110-M6K-WL-00004	No		Ductie iron, seats EPDM and 316 SS, 316 SS trim	OOA
1	Isolation Valve for the Blowdown from CT WL-ME-001B	2	PV	WI			12	Butterfly		flange		100	150	75	100		25762-110-M6K-WL-00004	No		Ductie iron, seats EPDM amd 316 SS, 316 SS trim	00A
1	Upstream of HVO17 on Blowdown Line	2	PV	WI			16	Butterily		flange		100	150	75	100		25762-110-M6K-WL-00004	No		Ductie iron, seats EPDM amd 316 SS, 316 SS trim	OOA
1	HV017 on the Blowdown Line	2	PV	WL			16	Butterily	Motor	flange		100	150	75	100		$\left\|\begin{array}{l} 25762-110- \\ \text { M6K-WL-00004 } \end{array}\right\|$	No		Ductie iron, seats EPDM amd 316 SS, 316 SS trim	00A
1	Downstream of HV017 on the Blowdown Line	2	PV	WL			16	Butterfly		flange		100	150	75	100		25762-110-M6K-WL-00004	No		Ductie iron, seats EPDM amd 316 SS, 316 SS trim	OOA
1	By-pass fro HVO17 on the Blowdown Line	2	PV	WL			16	Butterfly		flange		100	150	75	100		25762-110-M6K-WL-00004	No		Ductie iron, seats EPDM amd 316 SS, 316 SS trim	OOA

Qty	Line Description	Unit	Comm	System	$\begin{array}{\|c\|} \hline \text { Valve } \\ \text { Seq. } \\ \text { No. } \\ \hline \end{array}$	Suffix	Dla (in)	Valve Type	Act. Type	End Prep.	Valve Material Class	$\begin{array}{\|c} \hline \text { Design } \\ \text { Press } \\ \text { (plsg) } \end{array}$	$\begin{gathered} \hline \text { Design } \\ \text { Temp } \\ \left({ }^{\circ} \mathrm{F}\right) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Service } \\ \text { Press } \\ \text { (psig) } \\ \hline \end{gathered}$	Service Temp (${ }^{\circ} \mathrm{F}$)	Rating	P\&ID	Heat Trace (Yes/No)	Bld	Remarks	Rev
1	Upstream of LV009 on Makeup Water Line	2	PV	WL			24	Butterlly		flange		100	150	75	100		$\left\|\begin{array}{l} 25762-110- \\ \text { M6K-WL-00004 } \end{array}\right\|$	No		Ductlie iron, seats EPDM amd 316 SS, 316 SS trim	OOA
1	On Makeup Water Line, LV009	2	PV	WL			24	Butterlly	Motor	flange		100	150	75	100		$\left\|\begin{array}{l} 25762-110- \\ \text { M6K-WL-00004 } \end{array}\right\|$	No		Ductie iron, seats EPDM amd 316 SS, 316 SS trim	00A
1	Downstream of LV009 on the Makeup Water Pump	2	PV	WL			24	Butterly		flange		100	150	75	100		25762-110-M6K-WL-00004	No		Ductio iron, seats EPDM amd 316 SS, 316 SS trim	00A
1	By-pass to LV009 on Makeup Water Line	2	PV	WL			24	Butterly		flange		100	150	75	100		$\begin{aligned} & 25762-110 \\ & \text { M6K-WL-00004 } \end{aligned}$	No		Ductlie iron, seats EPDM amd 316 SS, 316 SS trim	00A
1	On PIT003A	2	PV	WL			1	Gate		flange		100	150	75	100		25762-110-M6K-WL-00004	No		Super duplex material	OOA
1	On PIT0038	2	PV	WL			1	Gate		flange		100	150	75	100		25762-110-M6K-WL-00004	No		Super duplex matarial	OOA
1	On PITOO3C	2	PV	WL			1	Gate		flange		100	150	75	100		25762-110-M6K-WL-00004	No		Duplex Stainless Steel	OOA
1	On PIT003D	2	PV	WL			1	Gate		flange		100	150	75	100		$\left\|\begin{array}{l} 25762-110- \\ \text { M6K-WL-00004 } \end{array}\right\|$	No		Duplex Stalnless Sleel	OOA
1	Outiet from WL-MP-001A auto vent	2	PV	WL			2	ball	Motor	flange		100	150	75	100		$\left\lvert\, \begin{aligned} & 25762-110- \\ & \text { M6K-WL-00004 } \end{aligned}\right.$	No		Duplex Stainiess Steel	00A
1	Outlet from WL-MP-001A auto vent	2	PV	WL			2	AR		flange		100	150	75	100		$\left\|\begin{array}{l} 25762-110- \\ \text { M6K-WL-00004 } \end{array}\right\|$	No		Duplex Stainless Steel	00A
1	Outlet from WL-MP-001B auto vent	2	PV	WL			2	ball	Motor	flange		100	150	75	100		$\left\|\begin{array}{l} 25762-110- \\ \text { M6K-WL-00004 } \end{array}\right\|$	No		Duplex Stainless Steel	00A
1	Outiet from WL-MP-001B auto vent	2	PV	WL			2	AR		flange		100	150	75	100		$\left\|\begin{array}{\|c\|} 25762-110- \\ \text { M } 6 \text { K-WL-00004 } \end{array}\right\|$	No		Duplex Staliness Steel	00A
1	Outlet from WL-MP-001C auto vent	2	PV	WL			2	ball	Motor	flange		100	150	75	100		25762-110-M6K-WL-00004	No		Duplex Stainless Steel	00A
1	Outiet from WL-MP-001C auto vent	2	PV	WL			2	AR	,	flange		100	150	75	100		$\left\|\begin{array}{\|l\|} 25762-110- \\ \text { M6K-WL-00004 } \end{array}\right\|$	No		Duplex Stainless Steel	OOA
1	Outiet from WL-MP-001D auto vent	2	PV	WL			2	ball	Motor	flange		100	150	75	100		25762-110-M6K-WL-00004	No		Duplex Stainless Steol	OOA
1	Outlet from WL-MP-001D auto vent	2	PV	WL			2	AR		flange		100	150	75	100		$\left\|\begin{array}{l} 25762-110- \\ \text { M6K-WL-00004 } \end{array}\right\|$	No		Duplex Stainless Steel	00A
1	Root connection to PI 001A	2	PV	WL			1	gate		flange		100	150	75	100		25762-110-M6K-WL-00004	No		Duplex Stainless Steel	00A

Qty	Line Description	Unit	Comm	System	$\begin{array}{\|c\|} \hline \text { Valve } \\ \text { Seq. } \\ \text { No. } \\ \hline \end{array}$	Suffix	Dia (in)	Valve Type	$\begin{aligned} & \text { Act. } \\ & \text { Type } \end{aligned}$	End Prep.	Valve Material Class	$\begin{array}{\|c} \begin{array}{c} \text { Design } \\ \text { Press } \\ \text { (plsg) } \end{array} \\ \hline \end{array}$	$\begin{gathered} \text { Design } \\ \text { Temp } \\ \left({ }^{\circ} \mathrm{F}\right) \end{gathered}$	Service Press (psig)	Service Temp (${ }^{\circ} \mathrm{F}$)	Rating	P\&ID	Heat Trace (Yes/No)	Bid	Remarks	Rev
1	Root connection to PI 0018	2	PV	WL			1	gate		flange		100	150	75	100		25762-110-M6K-WL-00004	No		$\begin{array}{\|l\|} \hline \text { Duplex Stainless } \\ \text { Stoel } \end{array}$	OOA
1	Root connection to PI 001 C	2	PV	WL			1	gate		flange		100	150	75	100		25762-110- M6K-WL-C0004	No		Duplex Stainless Steel	OOA
1	Root connection to PI 001D	2	PV	WL			1	gate		flange		100	150	75	100		25762-110- M6K-WL-00004	No		Duplex Stainless Steel	O0A
3	Pump MP001A, B, \& C isolation valves	0	HV	wo	032		42	Butterily	Motor	flange		320	70				25762-110-M6K-WO-00001		Valve Quote	Ductile Iron, rubber Ined, general service, lug type,	00B
1	FE043 outlet isolation vaive	0	HV	wo			42	buttertly	Motor	flange		320	70				25762-110-M6K-W0-00001		Valve Quote	Ductile iron, rubber lined, general service, lug type,	00B
1	Desal brine outlet control valve	0	HV	wo			42	butterly	Motor	flange		320	70				25762-110-M6K-W0-00001		Valve Quote	Ductile Iron, rubber lined, general service, lug type	OOB
2	Pump MP002A\&B outler valve	0	HV	wo			8	butterly	motor	flange		320	70				25762-110-M6K-W0-00001		estimating	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Ductile iron, rubber } \\ \text { lined, general } \\ \text { service, lug type, } \end{array} \end{array}$	00B
3	Pump MP001A, B, \& C alr release valve	0	PY	wo			2	AR		flange		320	70				25762-110-M6K-W0-00001		estimating	Super duplex ss	O0B
3	Pump MP001A, B, \& C air release valve isolation valves	0	PY	wo			2	ball		flange		320	70				25762-110- M6K-W0-00001		estimating	Super duplex ss	00B
3	PI 031 Isolation valve	0	PY	wo			1	ball		flange		320	70				25762-110-M6K-W0-00001		estimating	Super duplex ss	OOB
1	Pump MP001A, B, \& C recirc lsolatlon valve	0	PY	wo			30	butterfly		flange		320	70				25762-110-M6K-W0-00001		estimating	Ductile Iron, rubber lined, general service, lug type.	OOB
2	FT034 root valves	0	PY	wo			1	ball		flange		320	70				25762-110-M6K-W0-00001		estimating	Super duplex ss	O0A
1	PT033 Isolation valve	0	PY	wo			1	ball		flange		320	70				25762-110-M6K-W0-00001		estimaling	Super duplex ss	00A
1	Desal outlat isolation valve	0	PY	wo			42	butterly		flange		320	70				25762-110- M6K-W0-00001		Valve Quote	Ductile iron, rubber llined, general service, lug type,	OOA
1	FT043 inlet isolation valve	0	PY	wo			42	butterfly		flange		320	70				25762-110-M6K-W0-00001		Valve Quote	Ductile Iron, rubber lined, general service. lug type.	00A
2	FT043 root valves	0	PY	wo			1	ball		flange		320	70				25762-110-M6K-W0-00001		estimating		OOA

Qty	Line Description	Unit	Comm	System	Valve Seq. No.	Suffix	Dia (in)	Valve Type	Act. Type	End Prep.	Valve Material Class	$\begin{array}{\|c\|} \hline \text { Design } \\ \text { Press } \\ \text { (pisg) } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Design } \\ \text { Temp } \\ \left({ }^{\circ} \mathrm{F}\right) \end{array}$	Service Press (psig)	Service Temp $\left({ }^{\circ} \mathrm{F}\right)$	Rating	P\&ID	Heat Trace (Yes/No)	Bld	Remarks	Rev
1	FE043 outlet isolation valve	0	HV	wo			42	butterily	Motor	flange		320	70				25762-110-M6K-W0-00001		Valve Quote	Ductlie Iron, rubber lined, general service, lug type,	00A
1	Desal brine outlet isolation valve	0	PY	wo			42	butterly		flange		320	70				25762-110-M6K-W0-00001		Valve Quote	Ductlie iron, nubber Ithed, general service, lug type,	00A
1	Desal brine outiet control valve	0	HV	wo			42	butterlly	Motor	flange		320	70				$\begin{aligned} & 25762-\mathrm{f10-M6K} \\ & \mathrm{Wo-00001} \end{aligned}$		Valve Quote	Ductile iron, rubber lined, general service, lug type,	OOA
1	Brine outlet PI root valve	0	PY	wo			1	gate		flange		320	70				25762-110-M6K-W0-00001		estimating	Super duplex ss	00A
2	Pump MP002A\&B outlet valve	0	HV	wo			8	butterily	motor	flange		320	70				25762-110-M6K-W0-00001		estimating	Ducille iron, rubber lined, general service, lug type	00A
2	Pump MP002A\&B outlet check valve	0	PY	wo			8	wafer check		flange		320	70				25762-110-M6K-W0-00001		estimating	Ductile iron, rubber lined, general service, lug type	00A
2	Pump MP002A\&B outlet alr release valve	0	PY	wo			1	AR		flange		320	70				25762-110-M6K-W0-00001		estimating	Super duplex ss	OOA
2	Pump M P002A\&B outlet air release isolation valve	0	PY	wo			1	ball		flange		320	70				$\begin{aligned} & 25762-110- \\ & \text { M6K-W0-00001 } \end{aligned}$		estimating	Super duplex ss	00A
2	Pump MP002A\&B PI isolation valve	0	PY	wo			1	ball		flange		320	70				$\begin{aligned} & 25762-110- \\ & \text { M6K-W0-00001 } \end{aligned}$		estimating	Super duplex ss	O0A
2	SL Grey Water Supply pump 4A \& 4B check valves	0	PV	WR			6	wafer check		flanged		325	90				$\begin{aligned} & \text { 25762-110- } \\ & \text { M6K-WR- } \\ & 00003 \end{aligned}$		estlmating	Ductile Iron	OOA
2	SL Grey Water Supply pump 5A \& 5B check valves	0	PV	WR			6	wafer check		flanged		325	90				$\begin{aligned} & \text { 25762-110- } \\ & \text { M6K-WR- } \\ & 00003 \end{aligned}$		estimating	Ductile Iron	00A
2	SL Grey Water Supply pump 4A \& 4B discharge valves	0	PV	WR			6	butterfly				325	90				25762-110-M6K-WR00003		estimating	Ductioe iron, seats EPDM amd 316 SS, 316 SS 1rim	OOA
2	SL Grey Water Supply pump 4A \& 4B air release valve	0	PV	WR			2	AR				325	90				$\begin{aligned} & \text { 25762-110- } \\ & \text { M6K-WR- } \\ & 00003 \end{aligned}$		estimating	Ductile Iron	00A
2	SL Grey Water Supply pump 5A \& 5B air release valve	0	PV	WR			2	AR				325	90				$\begin{aligned} & 25762-110- \\ & \text { M6K-WH- } \\ & 00003 \end{aligned}$		estimating	Ductile Iron	OOA
2	SL Grey Water Supply pump 4A \& 4B alr release isolation valve	0	PV	WR			2	ball				325	90				$\begin{aligned} & 25762-110- \\ & \text { M6K-WH- } \\ & 00003 \end{aligned}$		estimating	Ductile Iron	O0A
2	SL Grey Water Supply pump 5A \& 5B alr release isolation valve	0	PV	WR			2	ball				325	90				$\begin{aligned} & \text { 25762-110- } \\ & \text { M6K-WR- } \\ & 00003 \end{aligned}$		estimating	Ductile İron	OOA
2	SL Grey Water Supply pump 4A \& 4B Pl isolation valve	0	PV	WR			1	ball				325	90				25762-110-M6K-WR00003		estimating	Ductile Iron	OOA

Qty	Line Description	Unit	Comm	System	$\begin{gathered} \hline \text { Valve } \\ \text { Seq. } \\ \text { No. } \end{gathered}$	Suffix	$\begin{aligned} & \text { Dla } \\ & \text { (in) } \end{aligned}$	Valve Type	Act. Type	End Prep.	Valve Material Class	$\begin{array}{\|c\|} \hline \text { Design } \\ \text { Press } \\ \text { (pisg) } \\ \hline \end{array}$	$\begin{array}{\|c} \text { Design } \\ \text { Temp } \\ \left({ }^{\circ F}\right) \end{array}$	$\begin{aligned} & \text { Service } \\ & \text { Press } \\ & \text { (psig) } \end{aligned}$	Service Temp $\left({ }^{\circ} \mathrm{F}\right)$	Pating	P\&ID	Heat Trace (Yes/No)	Bld	Pemarks	Rev
2	SL Grey Water Supply pump 5A \& 5B PI Isolation valve	0	PV	WR			1	ball				325	90				$\begin{aligned} & \text { 25762-110- } \\ & \text { M6K-WR- } \\ & 00003 \end{aligned}$		estimating	Ductile Iron	OOA
1	SL Grey Water Supply pump 4A \& 4B recirc valve Isolation valve	0	PV	WR			6	butterfly				325	90				$\begin{aligned} & 25762-110- \\ & \text { M6K-WR- } \\ & 00003 \end{aligned}$		estimating	Ductio Iron, seats EPDM amd 316 SS, 316 SS trim	OOA
1	SL Gray Water Supply pump 5A \& 5B recirc vaive isolation valve	0	PV	WR			6	butterly				325	90				$\begin{aligned} & 25762-110- \\ & \text { M6K-WR- } \\ & 00003 \end{aligned}$		estimating	Ductlie iron, seats EPDM amd 316 SS, 316 SS trim	00A
26	Supply line auto vent valves	0	PV	WR			2	gate				325	90				25762-110-M6K-WR00003		estimating	duplex ss Assumes approximately 1 per mille	00A
26	supply line auto vent valve isolation valves	0	PV	WR			2	AR				325	90				$\begin{aligned} & \text { 25762-110- } \\ & \text { M6K-WR- } \\ & 00003 \end{aligned}$		estimating	Ductila Iron	OOA
26	supply line draln valves	0	PV	WR			3	gate				325	90				$\begin{aligned} & \text { 25762-110- } \\ & \text { M6K-WR- } \\ & 00003 \end{aligned}$		estimating	Ductile Iron	OOA
1	flow element isolation valve	0	PV	WR			12	butterly				325	90				25762-110-M6K-WR00003		estimating	Ductie iron, seats EPDM amd 316 SS, 316 SS 1rim	00A
1	tank isolation valve	0	PV	WR			12	butterlly				325	90				25762-110-M6K-WR00003		estimating	Duclie iron, seats EPDM amd 316 SS, 316 SS 1rim	OOA
1	tank outlet valve	0	PV	WR			16	butterily				325	90				25762-110-M6K-WR00003		estimating	$\begin{array}{\|l\|} \hline \text { Ductie Iron, seats } \\ \text { EPDM amd } 316 \\ \text { SS, } 316 \text { SS trim } \end{array}$	00A
2	Pump MP 002 A \& B Inlet valves	0	PV	WR			16	butterly				65	90				25762-110-M6K-WR00003		estimating	Ductie Iron, seats EPDM amd 316 SS, 316 SS trim	OOA
2	Pump MP002A \& $2 B$ check valve	0	PV	WR			12	wafer check				65	90				25762-110-M6K-WR00003		estimating	$\left\lvert\, \begin{aligned} & \text { Ductlie fron, seats } \\ & \text { EPDM amd } 316 \\ & \text { SS, } 316 \text { SS trim } \end{aligned}\right.$	00A
2	Pump MP002A \& 2B isolatlon valve	0	PV	WR			12	butterity				65	90	.			25762-110-M6K-WR00003		estimating	Ductlie iron, seats EPDM and 316 SS, 316 SS trim	00A
2	Pump MP002A \& $2 B$ PI isolation valve	0	PV	WR			1	gate				65	90				25762-110-M6K-WR00003		estimating	Ductile Iron	00A
2	Pump MP003A \& B check valves	0	PV	WR			8	wafer check				65	90				$\begin{aligned} & 25762-110- \\ & \text { M6K-WR- } \\ & 00003 \end{aligned}$		estimating	Ductile firon	OOA
2	Pump MPOO3A \& B istolatlon valves	0	PV	WR			8	butterfly				65	90				$\begin{aligned} & 25762-110- \\ & \text { M6K-WR- } \\ & 00003 \end{aligned}$		estimating	$\begin{array}{\|l} \hline \text { Ductie iron, seats } \\ \text { EPDM amd } 316 \\ \text { SS, } 316 \text { SS trim } \end{array}$	O0A

Qty	Line Description	Unit	Comm	System	$\begin{array}{\|c\|} \hline \text { Valve } \\ \text { Seq. } \\ \text { No. } \\ \hline \end{array}$	Suffix	$\begin{aligned} & \text { Dia } \\ & \text { (in) } \end{aligned}$	Valve Type	Act. Type	$\begin{aligned} & \text { End } \\ & \text { Prep. } \end{aligned}$	Valve Material Class	$\begin{array}{\|c\|} \hline \text { Design } \\ \text { Press } \\ \text { (pisg) } \end{array}$	$\begin{gathered} \text { Design } \\ \text { Temp } \\ \left({ }^{\circ} \mathrm{F}\right) \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Service } \\ \text { Press } \\ \text { (psig) } \end{array}$	Service Temp (${ }^{\circ} \mathrm{F}$)	Rating	P\&ID	Heat Trace (Yes/No)	Bid	Remarks	Rev
2	Pump MP 001 \& B Inlet valves	0	PV	WR				butterly				65	90				$\begin{aligned} & 25762-110- \\ & \text { M6K-WR- } \\ & 00003 \end{aligned}$		estimating	Ductlle iron, seats EPDM amd 316 SS, 316 SS trim	OOA
2	Pump MP001A \& $1 B$ check valve	0	PV	WR				wafer check				65	90				25762-110-M6K-WR00003		estimating	Ductile Iron	00A
2	Pump MP001A \& 1B isolation valve	0	PV	WR				butterily				65	90				$\begin{aligned} & 25762-110- \\ & \text { M6K-WR- } \\ & 00003 \end{aligned}$		estimating	Ductile Iron	00A
2	Pump MP001A \& 1 BPI isolation valve	0	PV	WR			1	gate				30	90				$\begin{aligned} & 25762-110- \\ & M 6 K-W R- \\ & 00003 \end{aligned}$		estimating	Ductile Iron	00A
1	storage pond outlet valve	0	PV	WR			36	butterlly				30	90				25762-110-M6K-WR00003		estimating	Ductlie iron, seats EPDM amd 316 SS, 316 SS trim	

JUOTC HYBRID CT OPTION
 DCPP

Valve List

0					
$00 B$	$7 / 2 / 2013$	Issued for Estimate Report	$R P$	-	$R P$
$00 A$	$7 / 11 / 2013$	Issue for Estimate	$R P$	-	$R P$
Rev	Date	Reason for Revision	Orignator	Checked	Approved

Commodity Code
AD Condensate
PF Fire Protection
PI
Plant Air
TL Circ. Wtr Chem Inj
WB Service water
WL Circulating Water
WO Sea Water
WR Raw Water (Grey water)

Note:
1 Valves furnished with vendor packages are not included in this list. Some valves supplier by the cooling tower supplier have been included in the equipment list to help define the scope of supply by

Bechtel Confidential. Copyright 2013 Bechtel Power Corporation. All rights reserved.

Qty	Line Description	Unit	Comm	System	$\begin{array}{\|c\|} \hline \text { Valve } \\ \text { Seq. } \\ \text { No. } \end{array}$	Sufflx	$\begin{aligned} & \text { Dia } \\ & \text { (in) } \end{aligned}$	Valve Type	Act. Type	$\begin{aligned} & \text { End } \\ & \text { Prep. } \end{aligned}$	Valve Material Class	Design Press (pisg)	Design Temp (Service Press (psig)	$\begin{gathered} \text { Service } \\ \text { Temp } \\ \left({ }^{\circ} \mathrm{F}\right) \end{gathered}$	Rating	P\&ID	Heat Trace (Yes/No)	Bid	Remarks	Rev
18	Post indicating valve	0	PIV	PF			12	gate		flange		175	90				-		estimating	Ductile Iron	OOA
54	Curb Valve	0	PV	PF			6	gato		flange		175	90				-		estimating	Ductila Iron	OOA
$1{ }^{r}$	Inlet isolation WL-MP- 001 A	1	HV	WL	002	A	120	Butterily	Motor	flange		50	130	30	125		25762-110-M6K-WL-00001		Valve Quote	Ductile Iron. epoxy coated or rubber lined	00A
1	Inlet isolation WL-MP- 001 B	1	HV	WL	002	B	120	Butterfly	Motor	flange		50	130	30	130		25762-110-M6K-WL-00001		Valve Quote	Ductlie Iron. epoxy coated or rubber lined	OOA
1	inlet isolation WL-MP001 C	1	HV	WL	002	C	120	Butterily	Motor	flange		50	130	30	125		$\left\lvert\, \begin{aligned} & 25762-110- \\ & \text { M6K-WL-00001 } \end{aligned}\right.$		Valve Quote	Ductile Iron, epoxy coated or rubber lined	O0A
1	Inlet isolation WL-MP- 0010	1	HV	WL	002	D	120	Butterly	Motor	flange		50	130	30	125		$\left\|\begin{array}{l} 25762-110- \\ \text { M6K-WL-00001 } \end{array}\right\|$		Valve Quote	Ductila Iron , epoxy coated or rubber lined	O0A
1	Inlet isolation WL-MP001A	2	HV	WL	002	A	120	Butterily	Motor	flange		50	130	30	125		25762-110-M6K-WL-00001		Valve Quote	Ductila Iron. epoxy coated or rubber lined	OOA
1	Inlet isolation WL-MP0018	2	HV	WL	002	B	120	Butterly	Motor	flange		50	130	30	125		25762-110-M6K-WL-00001		Valve Quote	Ductile Iron, epoxy coated or rubber lined	00A
1	Iniet Isolation WL-MP001 C	2	HV	WL	002	C	120	Butterlly	Motor	flange		50	130	30	125		$\left\|\begin{array}{l} 25762-110- \\ \text { M6K-WL-00001 } \end{array}\right\|$		Valve Quote	Ductile Iron, epoxy coated or rubber lined	00A
1	Inlet isolation WL-MP- 001 D	2	HV	WL	002	D	120	Buttertly	Motor	flange		50	130	30	125		$\left\lvert\, \begin{aligned} & 25762-110- \\ & \text { M6K-WL-00001 } \end{aligned}\right.$		Valve Quote	Ductile İron. epoxy coated or rubber lined	00A
1	Outiet isolation WL-MP001 A	1	HV	WL	004	A	108	Butterify	Motor	Hlange		85	130	75	125		25762-110-M6K-WL-00001		Valve Quote	Ductile Iron. epoxy coated or rubber lined	00A
1	Outlet isolation WL-MP001 B	1	HV	WL	004	B	108	Butterily	Motor	flange		85	130	75	125		$\left\lvert\, \begin{aligned} & 25762-110- \\ & \text { M6K-WL-00001 } \end{aligned}\right.$		Valve Quote	Ductile Iron epoxy coated or rubber lined	00A
1	Outiet isolation WL-MP001C	1	HV	WL	004	C	108	Butterily	Motor	flange		85	130	75	125		25762-110-M6K-WL-00001		Valve Quote	Ductile Iron, epoxy coated or rubber lined	00A
1	Outiet Isolation WL-MP001 D	1	HV	WL	004	D	108	Butterfly	Motor	flange		85	130	75	125		$\left\lvert\, \begin{aligned} & 25762-110- \\ & M 6 K-W L-00001 \end{aligned}\right.$		Valve Quote	Ductile Iron, epoxy coated or rubber lined	00A
1	Outlet isolation WL-MP001 A	2	HV	WL	004	A	108	Butterily	Motor	flange		85	130	75	125		25762-110-M6K-WL-00001		Valve Quote	Ductile iron, epoxy coated or rubber lined	00A
1	Outiet isolation WL-MP001B	2	HV	WL	004	B	108	Butterily	Motor	flange		85	130	75	125		25762-110-M6K-WL-00001		Valve Quote	Ductlie Iron, epoxy coated or rubber lined	00A
1	Outlet Isolation WL-MP001C	2	HV	WL	004	C	108	Butterily	Motor	flange		85	130	75	125		25762-110-M6K-WL-00001		Valve Quote	Ductile Iron. epoxy coated or rubber lined	00A
1	Outlet isolation WL-MP001 D	2	HV	WL	004	D	108	Butterfly	Motor	flange		85	130	75	125		25762-110-M6K-WL-00001		Valve Quote	Ductile iron. epoxy coated or rubber lined	00A
1	Isolatlon Valve for the Blowdown from CT WL-ME-001A	1	PV	WL			12	Butterily		flange		100	150	75	100		25762-110-M6K-WL-00005	No		Ductlie iron, seats EPDM and 316 SS, 316 SS trim	00A

Qty	Line Description	Unit	Comm	System	Valve Seq. No.	Suffix	$\begin{aligned} & \text { Dia } \\ & \text { (in) } \end{aligned}$	Valve Type	$\begin{array}{\|l\|} \text { Act. } \\ \text { Type } \end{array}$	End Prep.	$\begin{gathered} \hline \text { Valve } \\ \text { Malverial } \\ \text { Class } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Design } \\ \text { Press } \\ \text { (pisg) } \end{array}$	$\begin{gathered} \text { Design } \\ \text { Temp } \\ \left({ }^{\circ} \mathrm{F}\right) \end{gathered}$	Service Press (psig)	Service Temp (${ }^{\circ} \mathrm{F}$)	Rating	P\&ID	Heat Trace (Yes/No)	Bid	Remarks	Rev
1	isolation Valve for the Blowdown from CT WL-ME-001B	1	PV	WL			12	Butterly		flange		100	150	75	100		25762-110-M6K-WL-00005	No		Ductile iron, seats EPDM and 316 SS, 316 SS trim	00A
1	Upstream of HVO17 on Blowdown Line	1	PV	WL			16	Butterly		flange		100	150	75	100		$\left\|\begin{array}{\|c\|} 25762-110- \\ \text { M6K-WL-00005 } \end{array}\right\|$	No		$\begin{aligned} & \text { Ductioe iron, seats } \\ & \text { EPDM amd } 316 \\ & \text { SS, } 316 \text { SS trim } \end{aligned}$	00A
1	HV017 on the Blowdown Line	1	PV	WL			16	Butterily	Mator	flange		100	150	75	100		25762-110-M6K-WL-00005	No		Ductlie iron, seats EPDM amd 316 SS, 316 SS trim	00A
1	Downstream of HV017 on the Blowdown Line	1	PV	WL			16	Butterily		flange		100	150	75	100		$\begin{aligned} & 25762-110- \\ & \text { M6K-WL-00005 } \end{aligned}$	No		Ductlie iron, seats EPDM amd 316 SS, 316 SS trim	00A
1	By-pass fro HV017 on the Blowdown Line	1	PV	WL			16	Butterly		flange		100	150	75	100		$\left\lvert\, \begin{aligned} & 25762-110- \\ & \text { M6K-WL-00005 } \end{aligned}\right.$	No		Ductle iron, seats EPDM amd 316 SS, 316 SS trim	O0A
1	Upstream of LV009 on Makeup Water Line	1	PV	WL			24	Butterfly		flange		100	150	75	100		$\begin{aligned} & 25762-110- \\ & \text { M6K-WL-00005 } \end{aligned}$	No		$\begin{array}{\|l} \hline \text { Ductlie iron, seats } \\ \text { EPDM amd } 316 \\ \text { SS, } 316 \text { SS trim } \end{array}$	OOA
1	On Makeup Water Line, LV009	1	PV	WL			24	Butterfly	Motor	flange		100	150	75	100		25762-110-M6K-WL-00005	No		Ductlie iron, seats EPDM and 316 SS, 316 SS trim	OOA
1	Downstream of LV009 on the Makeup Water Pump	1	PV	WL			24	Butterfly		flange		100	150	75	100		$\left\lvert\, \begin{aligned} & 25762-110- \\ & \text { M6K-WL-00005 } \end{aligned}\right.$	No		Ductlie iron, seats EPDM and 316 SS, 316 SS trim	OOA
1	By-pass to LV009 on Makeup Water Line	1	PV	WL			24	Butterily		flange		100	150	75	100		$\begin{aligned} & 25762-110- \\ & \text { M6K-WL-00005 } \end{aligned}$	No		Ductlie iron, seats EPDM amd 316 SS, 316 SS trim	00A
1	On PIT003A	1	PV	WL			1	Gate				100	150	75	100		$\left\lvert\, \begin{aligned} & 25762-110- \\ & \text { M6K-WL-00005 } \end{aligned}\right.$	No		Duplex Stailess Steel	OOA
1	On PIT003B	1	PV	WL			1	Gate		flange		100	150	75	100		$\begin{aligned} & 25762-110- \\ & \text { M6K-WL-00005 } \end{aligned}$	No		Duplex Stailess Steel	O0A
1	On PIT003C	1	PV	WL			1	Gate		flange		100	150	75	100		$\left\|\begin{array}{l} 25762-110- \\ \text { M6K-WL-00005 } \end{array}\right\|$	No		Duplex Stailess Steel	00A
1	On PIT003D	1	PV	WL			1	Gate		flange		100	150	75	100		25762-110-M6K-WL-00005	No		Duplex Stailess Steel	OOA
1	Outlet from WL-MP-001A auto vent	1	PV	WL			2	ball	Motor	flange		100	150	75	100		$\left\lvert\, \begin{aligned} & 25762-110- \\ & \text { M6K-WL-00005 } \end{aligned}\right.$	No		Duplex Stailess Steel	OOA
1	Outlet from WL-MP-001A auto vent	1	PV	WL			2	AR		flange		100	150	75	100		$\left\|\begin{array}{l} 25762-110- \\ \text { M6K-WL-00005 } \end{array}\right\|$	No		Duplex Stailess Steel	OOA

Qty	Line Description	Unit	Comm	System	Valve Seq. No.	Suffix	$\begin{aligned} & \mathrm{Dla} \\ & (\mathrm{In}) \end{aligned}$	Valve Type	$\begin{aligned} & \text { Act. } \\ & \text { Type } \end{aligned}$	$\begin{aligned} & \text { End } \\ & \text { Prep. } \end{aligned}$	Valve Material Class	Design Press (plsg)	Design Temp (${ }^{\circ} \mathrm{F}$)	Service Press (psig)	Service Temp (${ }^{\circ} \mathrm{F}$)	Rating	P\&ID	Heat Trace (Yes/No)	Bid	Remarks	Rev
1	Outlet from WL-MP-001B auto vent	1	PV	WL			2	ball	Motor	flange		100	150	75	100		$\begin{aligned} & 25762-110- \\ & \text { M6K-WL-00005 } \end{aligned}$	No		Duplex Stailess Steel	00A
1	Outlet from WL-MP-001B auto vent	1	PV	WL			2	AR		fiange		100	150	75	100		25762-110-M6K-WL-00005	No		Dupiex Stailess Steel	00A
1	Outlet from WL-MP-001C auto vent	1	PV	WL			2	ball	Mator	flange		100	150	75	100		25762-110- M6K-WL-00005	No		Duplex Stailess Steel	00A
1	Outiet from WL-MP-001C auto vent	1	PV	WL			2	AR		flange		100	150	75	100		$\left\lvert\, \begin{aligned} & 25762-110- \\ & \text { M6K-WL-00005 } \end{aligned}\right.$	No		Duplex Stalless Steel	00A
1	Outlet from WL-MP-001D auto vent	1	PV	WL			2	ball	Motor	flange		100	150	75	100		25762-110- M6K-WL-00005	No		Duplex Stailess Steel	00A
1	Outlet from WL-MP-001D auto vent	1	PV	WL			2	AR		flange		100	150	75	100		25762-110-M6K-WL-00005	No		$\begin{aligned} & \text { Duplex Stailess } \\ & \text { Steel } \end{aligned}$	00A
1	Root connection to Pi 001 A	1	PV	WL			1	gate		flange		100	150	75	100		$\left\lvert\, \begin{aligned} & 25762-110- \\ & \text { M6K-WL-00005 } \end{aligned}\right.$	No		$\begin{array}{\|l\|} \hline \text { Duplex Stalless } \\ \text { Stoel } \end{array}$	00A
1	Root connection to Pl 001B	1	PV	WL			1	gate		flange		100	150	75	100		$\left\lvert\, \begin{aligned} & 25762-110- \\ & \text { M6K-WL-00005 } \end{aligned}\right.$	No		$\begin{array}{\|l} \hline \text { Duplex Stailess } \\ \text { Steel } \end{array}$	OOA
1	Root connection to PI 001 C	1	PV	WL			1	gate		flange		100	150	75	100		25762-110-M6K-WL-00005	No		$\begin{array}{\|l} \hline \text { Duplex Stailess } \\ \text { Steel } \end{array}$	00A
1	Root connection to PI 001 D	1	PV	WL			1	gate		flange		100	150	75	100		25762-110-M6K-WL-00005	No		Duplex Staliess Steel	00A
1	Isolation Valve for the Blowdown from CT WL-ME-001A	2	PV	WL			12	Butterily		flange		100	150	75	100		25762-110-M6K-WL-00005	No		Ductio iron, seats EPDM and 316 SS, 316 SS trim	00A
1	Isolation Valve for the Blowdown from CT WL-ME-001B	2	PV	WI			12	Butterily		flange		100	150	75	100		25762-110-M6K-WL-00005	No		Ductlie iron, seats EPDM and 316 SS, 316 SS trim	00A
1	Upstream of HV017 on Blowdown Line	2	PV	WI			16	Butterily		flange		100	150	75	100		25762-110- M6K-WL-00005	No		Ductie iron, seats EPDM amd 316 SS, 316 SS trim	OOA
1	HV017 on the Blowdown Line	2	PV	WL			16	Butterily	Motor	flange		100	150	75	100		25762-110-M6K-WL-00005	No		Ductlie Iron, seats EPDM amd 316 SS, 316 SS trim	OOA
1	Downstream of HV017 on the Blowdown Line	2	PV	WL			16	Butterly		flange		100	150	75	100		25762-110-M6K-WL-00005	No		Ductie Iron, seats EPDM amd 316 SS, 316 SS trim	00A
1	By-pass tro HV017 on the Blowdown Line	2	PV	WL			16	Butterily		flange		100	150	75	100		25762-110-M6K-WL-00005	No		Ductia iron, seats EPDM and 316 SS, 316 SS trim	00A

Qty	Line Description	Unit	Comm	System	Vaive Seq. No.	Suffix	Dia (in)	Valve Type	$\begin{aligned} & \text { Act. } \\ & \text { Type } \end{aligned}$	End Prep.	$\begin{gathered} \text { Valve } \\ \text { Material } \\ \text { Class } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Design } \\ \text { Press } \\ \text { (pisg) } \end{array}$	$\begin{aligned} & \text { Design } \\ & \text { Temp } \\ & \text { (}{ }^{\circ} \mathrm{F} \text {) } \end{aligned}$	$\begin{gathered} \hline \text { Service } \\ \text { Press } \\ \text { (psig) } \end{gathered}$	Service Temp (${ }^{\circ} \mathrm{F}$)	Rating	P\&ID	Heat Trace (Yes/No)	Bid	Remarks	Rev
1	Upstream of LV009 on Makeup Water Line	2	PV	WL			24	Butterily		flange		100	150	75	100		25762-110-M6K-WL-00005	No		Ductios iron, seats EPDM amd 316 SS, 316 SS trim	OOA
1	On Makeup Water Line, LV009	2	PV	WL			24	Butterfly	Motor	flange		100	150	75	100		$\left\|\begin{array}{\|c\|} 25762-110- \\ \text { M6K-WL-00005 } \end{array}\right\|$	No		Ductie iron, seats EPDM and 316 SS, 316 SS trim	00A
1	Downstream of LV009 on the Makeup Water Pump	2	PV	WL			24	Butterifly		flange		100	150	75	100		$\left\|\begin{array}{l} 25762-110- \\ \text { M6K-WL-00005 } \end{array}\right\|$	No		Ductie iron, seats EPDM amd 316 SS, 316 SS trim	O0A
1	By-pass to LV009 on Makeup Water Line	2	PV	WL			24	Butterily		flange		100	150	75	100		25762-110-M6K-WL-00005	No		Ductlle iron, seats EPDM amd 316 SS, 316 SS trim	O0A
1	On PIT003A	2	PV	WL			1	Gate		flange		100	150	75	100		25762-110-M6K-WL-00005	No		Duplex Stailess Steel	00A
1	On PIT003B	2	PV	WL			1	Gate		flange		100	150	75	100		25762-110-M6K-WL-00005	No		Duplex Staliess Steel	OOA
1	On PIT003C	2	PV	WL			1	Gate		flange		100	150	75	100		$\left\|\begin{array}{l} 25762-110- \\ \text { M6K-WL-00005 } \end{array}\right\|$	No		Dupiex Stalless Steel	00A
1	On PIT003D	2	PV	WL			1	Gate		flange		100	150	75	100		25762-110-M6K-WL-00005	No		Duplex Stailess Sleel	00A
1	Outlet from WL-MP-001A auto vent	2	PV	WL			2	ball	Motor	flange		100	150	75	100		\|25762-110- M6K-WL-00005	No		Duplex Stailess Steei	00A
1	Outlet from WL-MP-001A auto vent	2	PV	WL			2	AR		flange		100	150	75	100		$\left\|\begin{array}{l} 25762-110- \\ \text { M6K-WL-00005 } \end{array}\right\|$	No		Duplex Stalless Steel	00A
1	Outlet from WL-MP-001B auto vent	2	PV	WL			2	ball	Motor	flange		100	150	75	100		25762-110- M6K-WL-00005	No		Duplex Stailess Steei	00A
1	Outlet from WL-MP-001B auto vent	2	PV	WL			2	AR		flange		100	150	75	100		25762-110-M6K-WL-00005	No.		Duplex Stailess Stsel	OOA
1	Outlet from WL-MP-001C auto vent	2	PV	WL			2	ball	Motor	flange		100	150	75	100		\|25762-110- M6K-WL-00005	No		Duplex Stailess Steel	00A
1	Outlet from WL-MP-001C auto vent	2	PV	WL			2	AR	\checkmark	flange		100	150	75	100		$\left\|\begin{array}{l} 25762-110- \\ \text { M6K-WL-00005 } \end{array}\right\|$	No		Duplex Stailess Steel	OOA
1	Outlet from WL-MP-001D auto vent	2	PV	WL			2	ball	Motor	flange		100	150	75	100		\|25762-110- M6K-WL-00005	No		Duplex Stailess Steel	OOA
1	Outlet from WL-MP-001D auto vent	2	PV	WL			2	AR		flange		100	150	75	100		25762-110-M6K-WL-00005	No		Duplex Stailess Steel	O0A
1	Root connection to PI 001A	2	PV	WL			1	gate		flange		100	150	75	100		25762-110-M6K-WL-00005	No		Dupiex Stailess Steel	00A

Qty	Line Description	Unit	Comm	System	$\begin{array}{\|l\|} \hline \text { Valve } \\ \text { Seq. } \\ \text { No. } \\ \hline \end{array}$	Suffix	$\begin{aligned} & \text { Dia } \\ & \text { (in) } \end{aligned}$	Valve Type	Act. Type	End Prep.	Valve Material Class	$\begin{array}{\|c\|} \hline \text { Design } \\ \text { Press } \\ \text { (pisg) } \end{array}$	Design Temp (${ }^{\circ} \mathrm{F}$)	Service Press (psig)	Service Temp (${ }^{\circ} \mathrm{F}$)	Rating	P\&ID	Heat Trace (Yes/No)	Bid	Remarks	Rev
1	Root connection to PI 001B	2	PV	WL			1	gate		flange		100	150	75	100		$\begin{aligned} & 25762-110- \\ & \text { M6K-WL-00005 } \end{aligned}$	No		$\begin{aligned} & \text { Duplex Staliess } \\ & \text { Steel } \end{aligned}$	OOA
1	Root connection to PI 001 C	2	PV	WL			1	gate		flange		100	150	75	100		$\left\lvert\, \begin{aligned} & 25762-110- \\ & \text { M6K-WL-00005 } \end{aligned}\right.$	No		Duplex Stailess Steel	00A
1	Root connection to PI 001D	2	PV	WL			1	gate		flange		100	150	75	100		$\left\lvert\, \begin{aligned} & 25762-110- \\ & \text { M6K-WL-00005 } \end{aligned}\right.$	No		Duplex Stalless Stael	00A
3	Pump MP001A, B, \& C Isolation valves	0	HV	wo	032		42	Butterfly	Motor	flange		320	70				25762-110-M6K-W0-00001		Valve Quote	Ductile Iron, rubber lined, general service, lug type	00A
1	FE043 outiet isolation valve	0	HV	wo			42	butterily	Motor	flange		320	70				25762-110-M6K-W0-00001		Valve Quote	Ductile iron, rubber lined, general service, lug type	00A
1	Desal brine outlet control valve	0	HV	wo			42	butterfly	Motor	flange		320	70				25762-110-M6K-W0-00001		Valve Quote	Ductile iron, rubber lined, general service, lug type	OOA
2	Pump MPOO2A\&B outiet valve	0	HV	wo			8	butterily	motor	flange		320	70				25762-110-M6K-W0-0000		estimating	Ductile Iron, rubber lined, general service, lug type	OOA
1	Desal brine outlet control valve	0	HV	wo			42	buttertly	Motor	flange		320	70				25762-110-M6K-W0-00001		Valve Quote	Ductile Iron, nubber lined, general service, lug type,	00A
2	Pump MP002A\&B outlet valve	0	HV	wo			8	butterly	motor	flange		320	70				25762-110-M6K-W0-00001		estimating	Ductile Iron, rubber lined, genera! service, lug type,	OOA
3	Pump MP001A, B, \& C alr release valve	0	PY	wo			2	AR		flange		320	70				25762-110-M6K-W0-00001		estimating	Super duplex ss	OOA
3	Pump MP001A, B, \& C alr release valve Isolation valves	0	PY	wo			2	ball		flange		320	70				25762-110-M6K-WO-00001		estimating	Super duplex ss	O0A
3	PI 031 Isolation valve	0	PY	wo			1	ball		flange		320	70				25762-110-M6K-W0-00001		estimating	Super duplex ss	OOA
1	Pump MP001A, B, \& C recirc isolation valve	0	PY	wo			30	butterily		flange		320	70				25762-110-M6K-W0-00001		estimating	Ductile Iron, rubber llned, general service, Iug type,	00A
2	FT034 root valves	0	PY	wo			1	ball		flange		320	70				25762-110-M6K-WO-00001		estimating	Super duplex ss	OOA
1	PT033 isolation valve	0	PY	wo			1	ball		flange		320	70				25762-110-M6K-W0-00001		estimating	Super duplex ss	00A
1	Desal outtet isolation valve	0	PY	wo			42	butterifly		flange		320	70				25762-110-M6K-W0-00001		Valve Quote	Ductile iron, rubber lined, general service, lug type,	00A

Qty	Line Description	Unit	Comm	System	$\begin{array}{\|c\|} \hline \text { Valve } \\ \text { Seq. } \\ \text { No. } \\ \hline \end{array}$	Suffix	$\begin{aligned} & \text { Dia } \\ & \text { (In) } \end{aligned}$	Valve Type	Act. Type	End Prep.	Valve Materlal Class	$\begin{array}{\|c\|} \hline \text { Design } \\ \text { Press } \\ \text { (pisg) } \\ \hline \end{array}$	Design Temp (${ }^{\circ} \mathrm{F}$)	$\begin{array}{\|c\|} \hline \text { Service } \\ \text { Press } \\ (\text { psig }) \\ \hline \end{array}$	Service Temp (${ }^{\circ} \mathrm{F}$)	Rating	P\&ID	Heat Trace (Yes/No)	Bld	Remarks	Rev
1	FT043 inlet isolation valve	0	PY	wo			42	butterfly		flange		320	70				25762-110-M6K-W0-00001		Valve Quote	Ductile iron, rubber lined, general service, lug type,	00A
2	FT043 root valves	0	PY	wo			1	ball		flange		320	70				25762-110- M6K-W0-00001		estimating		00A
1	Desal brine outlet control valve	0	HV	wo			42	butterlly	Motor	flange		320	70				$\begin{aligned} & \text { 25762-110-M6K- } \\ & \text { WO-00001 } \end{aligned}$		Valve Quote	Ductile iron, nubber lined, general service, lug type	00A
1	Desal brine outlet Isolation valve	0	PY	wo			42	butterlfy		flange		320	70				25762-110-M6K-W0-00001		Valve Quote	Ductile iron, rubber lined, general service, lug type,	O0A
1	Brine outlet Pl root valve	0	PY	wo			1	gate		flange		320	70				25762-110-M6K-W0-00001		estimating	Super duplex ss	00A
2	Pump MP002A\&B outlet check valve	0	PY	wo			8	wafer check		flange		320	70				25762-110-M6K-W0-00001		estimating	Ductile iron, rubber lined, general service, lug type,	OOA
2	Pump MP002A\&B outlet air release valve	0	PY	wo			1	AR		flange		320	70				25762-110-M6K-W0-00001		estimating	Super duplex ss	O0A
2	Pump MP002A\&B outlet alr release isolation valve	0	PY	wo			1	ball		flange		320	70				$\begin{aligned} & 25762-110- \\ & \text { M6K-W0-00001 } \end{aligned}$		estimating	Super duplex ss	00A
2	Pump MP002A\&B PI isolation valve	0	PY	wo			1	ball		flange		320	70				$\left\|\begin{array}{l} 25762-110- \\ \text { M6K-WO-00001 } \end{array}\right\|$		estimating	Super duplex ss	OOA
2	SL Grey Water Supply pump 4A \& 4B check valves	0	PV	WR			6	wafer check		flanged		325	90				$\begin{aligned} & 25762-110- \\ & \text { M6K-WR- } \\ & 00003 \end{aligned}$		estimating	Ductile iron	O0A
2	SL Grey Water Supply pump 5A \& 5B check valves	0	PV	WR			6	wafer check		flanged		325	90				$\begin{aligned} & 25762-110- \\ & \text { M6K-WR- } \\ & 00003 \end{aligned}$		estimating	Ductlie iron	00A
2	SL Grey Water Supply pump 4A \& 4B dlscharge valves	0	PV	WR			6	butterily				325	90				$\begin{aligned} & 25762-110- \\ & \text { M6K-WR- } \\ & 00003 \end{aligned}$		estimating	Ductlie iron, seats EPDM amd 316 SS, 316 SS trim	O0A
2	SL Grey Water Supply pump 4A \& 4B air release valve	0	PV	WR			2	AR				325	90				25762-110-M6K-WR00003		estimating	Ductle Iron	O0A
2	SL Grey Water Supply pump 5A \& 5B alr release valve	0	PV	WR			2	AR				325	90				$\begin{aligned} & 25762-110- \\ & \text { M6K-WR- } \\ & 00003 \end{aligned}$		estimating	Ductie iron	00A
2	SL Grey Water Supply pump 4A \& 4B air release isolation valve	0	PV	WR			2	ball				325	90				25762-110-M6K-WR00003		estimating	Ductile fron	00A
2	SL Grey Water Supply pump 5A \& 5B air release isolation valve	0	PV	WR			2	ball				325	90				$\begin{aligned} & 25762-110- \\ & \text { M6K-WR- } \\ & 00003 \end{aligned}$		estimating	Ductile Iron	00A
2	SL Grey Water Supply pump 4A \& 4B PI isolation valve	0	PV	WR			1	ball				325	90				$\begin{aligned} & \text { 25762-110- } \\ & \text { M6K-WR- } \\ & 00003 \end{aligned}$		estimating	Ductile Iron	00A
2	SL Grey Water Supply pump 5A \& 5B PI isolation valve	0	PV	WR			1	ball				325	90				$\begin{aligned} & 25762-110- \\ & \text { M6K-WR- } \\ & 00003 \end{aligned}$		estimating	Ductile Iron	00A

Qty	Line Description	Unit	Comm	System	$\begin{array}{\|c\|} \hline \text { Valve } \\ \text { Seq. } \\ \text { No. } \end{array}$	Suffix	Dia (in)	Valve Type	Act. Type	End Prep.	Valve Materlal Class	$\begin{gathered} \text { Design } \\ \text { Press } \\ \text { (pisg) } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Design } \\ \text { Temp } \\ \left({ }^{\circ} \mathrm{F}\right) \end{array}$	Service Press (psig)	Service Temp (${ }^{\circ} \mathrm{F}$)	Rating	P\&ID	Heat Trace (Yes/No)	Bid	Remarks	Rev
1	SL Grey Water Supply pump 4A \& 4B recirc valve isolation valve	0	PV	WR			6	butterity				325	90				25762-110-M6K-WR00003		estimating	Ductlle iron, seats EPDM amd 316 SS, 316 SS trim	00A
1	SL Grey Water Supply pump 5A \& 5B recirc valve isolation valve	0	PV	WR			6	butterly				325	90				25762-110-M6K-WR00003		estimating	Ductio iron, seats EPDM and 316 SS, 316 SS trim	O0A
26	Supply line auto vent valves	0	PV	WR			2	gate				325	90				25762-110-M6K-WR00003		estimating	duplex ss Assumes approximately 1 per mile	OOB
26	supply line auto vent valve isolation valves	0	PV	WR			2	AR				325	90				$\begin{aligned} & \text { 25762-110- } \\ & \text { M6K-WR- } \\ & 00003 \end{aligned}$		estimating	Ductile Iron	OOA
26	supply llne drain valves	0	PV	WR			3	gate				325	90				$\begin{aligned} & 25762-110- \\ & \text { M6K-WR- } \\ & 00003 \\ & \hline \end{aligned}$		estimating	Ductilie Iron	O0A
1	flow element isolation valve	0	PV	WR			12	butterfly				325	90				25762-110-M6K-WR00003		estimating	Ductlie iron, seats EPDM amd 316 SS, 316 SS trim	00A
1	tank isolation valve	0	PV	WR			12	butterily				325	90				25762-110-M6K-WR00003		estimating	Ductlie Iron, seats EPDM and 316 SS, 316 SS trim	OOA
1	tank outlet valve	0	PV	WR			16	butterly				325	90				25762-110-M6K-WR00003		estimating	Ductlie iron, seats EPDM amd 316 SS, 316 SS trim	00A
2	Pump MP 002A \& B inlet valves	0	PV	WR			16	butterily				65	90				25762-110-M6K-WR00003		estimating	Ductlie iron, seats EPDM and 316 SS, 316 SS trim	OOA
2	Pump MP002A \& 2B check valve	0	PV	WA			12	wafer check				65	90				$\begin{aligned} & \text { 25762-110- } \\ & \text { M6K-WR- } \\ & 00003 \end{aligned}$		estimating	Ductiie Iron, seats EPDM amd 316 SS, 316 SS trim	OOA
2	Pump MP002A \& 2B Isolation valve	0	PV	WR			12	butterily				65	90				25762-110-M6K-WR00003		estimating	Ductlie Iron, seats EPDM amd 316 SS, 316 SS trim	00A
2	Pump MP002A \& 2B PI isolation valve	0	PV	WR			1	gate				65	90				25762-110-M6K-WR00003		estimating	Ductile Iron	00A
2	Pump M P003A \& B check valves	0	PV	WR			8	wafer check				65	90				$\begin{aligned} & 25762-110- \\ & \text { M6K-WR- } \\ & 00003 \end{aligned}$,	estimating	Ductile fron	00A
2	Pump MP003A \& 日 islolation valves	0	PV	WR			8	butterfly				65	90				25762-110-M6K-WR00003		estimating	Ductlie iron, seats EPDM amd 316 SS, 316 SS trim	00A
2	Pump MP 001 \& B Iniet valves	0	PV	WR			12	buttertly				65	90				25762-110-M6K-WR00003		estimating	Ductie iron, seats EPDM amd 316 SS, 316 SS trim	OOA

Qty	Line Description	Unit	Comm	System	$\begin{array}{\|c\|} \hline \text { Valve } \\ \text { Seq. } \\ \text { No. } \end{array}$	Suffix	$\begin{aligned} & \text { Dia } \\ & \text { (in) } \end{aligned}$	Valve Type	Act. Type	End Prep.	Valve Material Class	$\left\lvert\, \begin{gathered} \text { Designg } \\ \text { Press } \\ \text { (pisg) } \end{gathered}\right.$	Design Temp (${ }^{\circ} \mathrm{F}$)	Service Press (psig)	Service Temp (${ }^{\circ} \mathrm{F}$)	Rating	P\&ID	Heat Trace (Yes/No)	Bid	Remarks	Rev
2	Pump MP001A \& 1B check valve	0	PV	WR			12	wafer check				65	90				25762-110-M6K-WR00003		estimating	Ductile Iron	00A
2	Pump MP001A \& 1B isolation valve	0	PV	WR			12	butterfly				65	90				$\begin{aligned} & \text { 25762-110- } \\ & \text { M6K-WR- } \\ & 00003 \end{aligned}$		estimating	Ductile fron	00A
2	Pump MP001A \& 1B PI isolation valve	0	PV	WR			1	gate				30	90				25762-110 M6K-WR00003		estimating	Ductile fron	00A
1	storage pond outlet valve	0	PV	WR			36	butterlly				30	90				25762-110-M6K-WR00003		estimating	Ductie iron, seats EPDM amd 316 SS, 316 SS trim	00A

JUOTC STUDY FINE MESH OPTION

Diablo Canyon Power Plant
 Valve List
 25762-110-M6X-YA-00006

$00 B$		Issued for Estimate Report	8	-	R^{∞}
00A	$5 / 8 / 3013$	Issued for estimating	RP	-	RP
Rev	Date	Reason for Revision	Orignator	Checked	Approved

System Codes

WT Traveling Screen Wash
 PP Personnel Protection

Note:
1 System Codes are Bechtel standard codes. Bechtel system codes may be assigned to exisiting plant equipment numbers to aid in list sorts.

Line Description	Unit	Comm	System	$\begin{gathered} \hline \text { Valve } \\ \text { Seq. } \\ \text { No. } \\ \hline \end{gathered}$	Suffix	$\begin{aligned} & \text { Dia } \\ & \text { (in) } \end{aligned}$	Valve Type	Act. Type	End Prep.	Valve Material Class	$\begin{array}{\|c\|} \hline \text { Design } \\ \text { Press } \\ \text { (pisg) } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { Design } \\ \text { Temp } \\ \left({ }^{\circ} \mathrm{F}\right) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Service } \\ \text { Press } \\ \text { (psig) } \\ \hline \end{array}$	$\begin{gathered} \hline \text { Service } \\ \text { Temp } \\ \left({ }^{\circ} \mathrm{F}\right) \\ \hline \end{gathered}$	Rating	P\&ID	Heat Trace (Yes/No)	Remarks	Rev
Screen Wash Pump MP03 discharge	1	PV	WT			10	Wafer check		flange		150	70	90	56.5		$\begin{aligned} & 25762-11-\mathrm{M} 6 \mathrm{~K}-\mid \\ & \text { WT-00001 } \end{aligned}$	No	$\begin{aligned} & \text { Super duplex } \\ & \text { material } \end{aligned}$	00A
Screen Wash Pump MP03 dlscharge	1	PV	WT			10	Butterfly		flange		150	70	90	56.5		$\left\lvert\, \begin{aligned} & 25762-11--M 6 K- \\ & \text { WT-00001 } \end{aligned}\right.$	No	Ductile iron, rubber lined, general service, lug type,	OOA
inlet to pump discharge PI 03 03	1	PV	WT			1	gate		flange		150	70	90	56.5		$\begin{aligned} & 25762-11-M 6 K- \\ & \text { WT-00001 } \end{aligned}$	No	Super duplex material	00A
Inlet to automatic vent	1	PV	WT			2	ball		flange		150	70	90	56.5			No	Super duplex material	OOA
Inlet to automatic vent	1	PV	WT			2	AR		flange		150	70	90	56.5			No	Super duplex material	00A
Inlet to Strainer ML09	1	PV	WT			16	Butterfly		flange		150	70	90	56.5		$\left\lvert\, \begin{array}{l\|} 25762-11-\mathrm{M} 6 \mathrm{~K} \\ \text { WT-00001 } \end{array}\right.$	No	Ductile iron, rubber Ilned, general service, lug type,	OOB
Outiet to Strainer ML09	1	PV	WT			16	Butterfly		flange		150	70	90	56.5		$\begin{aligned} & 25762-11-\mathrm{M} 6 \mathrm{~K}- \\ & \mathrm{WT}-00001 \end{aligned}$	No	Ductile iron, rubber Uned, general service, lug type,	00B
Strainer ML09 bypass	1	PV	WT			16	Butterfly		flange		150	70	90	56.5		$\begin{aligned} & 25762-11--M 6 K- \\ & \text { WT-00001 } \end{aligned}$	No	Ductile iron, rubber lined, general service, lug type,	OOB
To PDIS 006	1	PV	WT			1	globe		flange		150	70	90	56.5		$\begin{aligned} & 25762-11-\mathrm{M} 6 \mathrm{~K} \\ & \text { WT-00001 } \end{aligned}$	No	Super duplex material	O0A
To PDIS 006	1	PV	WT			1	globe		flange		150	70	90	56.5		$\begin{aligned} & 25762-11-\mathrm{M} 6 \mathrm{~K}- \\ & \mathrm{WT}-00001 \end{aligned}$	No	Super duplex material	00A
Stralner waste discharge	1	PV	WT			8	ball	Mtr	flange		150	70	90	56.5		$\begin{aligned} & 25762-11--\mathrm{M} 6 \mathrm{~K}- \\ & \mathrm{WT}-00001 \end{aligned}$	No	Super duplex material	00A
Root connection to PS 008	1	PV	WT			1	gate		flange		150	70	90	56.5		$\begin{aligned} & 25762-11-\mathrm{M} 6 \mathrm{~K} \\ & \mathrm{WT}-00001 \end{aligned}$	No	Super duplex material	00A
Root connection to PS 009A	1	PV	WT			1	gate		flange		150	70	90	56.5		$\begin{aligned} & \text { 25762-11--M6K- } \\ & \text { WT-00001 } \end{aligned}$	No	Super duplex material	00A
Root connection to PS 0098	1	PV	WT			1	gate		flange		150	70	90	56.5		$\begin{array}{\|l\|} 25762-11--M 6 K- \\ \text { WT-00001 } \end{array}$	No	Super duplex material	00A
Root connection to PS 009 C	1	PV	WT			1	gate		flange		150	70	90	56.5		$\left\|\begin{array}{l} 25762-11-\mathrm{M} 6 \mathrm{~K}- \\ \mathrm{WT}-00001 \end{array}\right\|$	No	Super duplex material	00A
Inlet to PCV 011A	1	PV	WT			6	butterily		flange		150	70	90	56.5			No	Ductile iron, rubber ilned, general service, lug type,	00A

Line Description	Unit	Comm	System	$\begin{array}{\|c\|} \hline \text { Valve } \\ \text { Seq. } \\ \text { No. } \\ \hline \end{array}$	Suffix	Dia (in)	Valve Type	Act. Type	End Prep.	Valve Material Class	Design Press (pisg)	Deslgn Temp (${ }^{\circ} \mathrm{F}$)	Service Press (psig)	Service Temp (${ }^{\circ} \mathrm{F}$)	Rating	P\&ID	Heat Trace (Yes/No)	Remarks	Rev
Y-strainer Screen ML001 blow off	1	PV	WT			2	ball		flange		150	70	90	56.5			No	Super duplex material	00B
Inlet to PCV 011B	1	PV	WT			6	butterily	-	flange		150	70	90	56.5			No	Ductile iron, rubber ilned, general service, lug type,	00A
Y-strainer Screen ML002 blow off	1	PV	WT			2	ball		flange		150	70	90	56.5			No	Super duplex material	OOB
Inlet to PCV 011C	1	PV	WT			6	butterly		flange		150	70	90	56.5			No	Ductile iron, rubber Inned, general service, Iug type,	OOA
Y-strainer Screen ML003 blow off	1	PV	WT			2	ball		flange		150	70	90	56.5			No	Super duplex material	OOB
Inlet to PCV 0110	1	PV	WT			6	butterily		flange		150	70	90	56.5			No	Ductile iron, rubber uned, general service, lug type,	OOA
Y-stralner Screen MLOO4 blow off	1	PV	WT			2	ball		flange		150	70	90	56.5			No	Super duplex material	OOB
Inlet to PCV 011E	1	PV	WT			6	butterily		flange		150	70	90	56.5			No	Ductile iron, rubber lined, general service, lug type,	OOA
Y-stralner Screen ML005 blow off	1	PV	WT			2	ball		flange		150	70	90	56.5			No	Super duplex material	OOB
Inlet to PCV 011F	1	PV	WT			6	butterily		flange		150	70	90	56.5			No	Ductile iron, rubber lined, general service, lug type,	OOA
Y-strainer Screen ML006 blow off	1	PV	WT			2	ball		flange		150	70	90	56.5			No	Super duplex material	00B
Root connection to PI 011A	1	PV	WT			1	gate		flange		150	70	90	56.5		$\begin{array}{\|l\|} 25762-11--M 6 K- \\ \text { WT-00001 } \end{array}$	No	Super duplex material	OOA
Root connection to PI 011B	1	PV	WT			1	gate		flange		150	70	90	56.5		$\begin{array}{\|l\|} 25762-11-\mathrm{M} 6 \mathrm{~K}- \\ \text { WT-00001 } \end{array}$	No	Super duplex material	OOA
Root connection to PI 011C	1	PV	WT			1	gate		flange		150	70	90	56.5		$\begin{aligned} & 25762-11-\text { M6K }-\mid \\ & \text { WT-00001 } \end{aligned}$	No	Super duplex material	00A
Root connection to PI 011 D	1	PV	WT			1	gate		flange		150	70	90	56.5		$\begin{aligned} & 25762-11--M 6 K- \\ & \text { WT-00001 } \end{aligned}$	No	Super duplex material	00A
Root connection to PI 011E	1	PV	WT			1	gate		flange		150	70	90	56.5		$\begin{array}{\|l\|} 25762-11--M 6 K- \\ \text { WT-00001 } \end{array}$	No	Super duplex material	OOA
Root connection to PI 011F	1	PV	WT			1	gate		flange		150	70	90	56.5		$\begin{aligned} & \text { 25762-11--M6K- } \\ & \text { WT-00001 } \end{aligned}$	No	Super duplex material	00A

LIne Description	Unit	Comm	System	Valve Seq. No.	Suffix	Dia (in)	Valve Type	Act. Type	End Prep.	Valve Material Class	$\begin{array}{\|l} \hline \text { Design } \\ \text { Press } \\ \text { (pisg) } \\ \hline \end{array}$	Deslgn Temp (${ }^{\circ} \mathrm{F}$)	$\begin{array}{\|l\|} \hline \text { Service } \\ \text { Press } \\ \text { (psig) } \\ \hline \end{array}$	Service Temp (${ }^{\circ} \mathrm{F}$)	Rating	P\&ID	Heat Trace (Yes/No)	Remarks	Rev
Root connection to PI 012F	1	PV	WT			1	gate		flange		150	70	90	56.5		$\begin{aligned} & 25762-11-\mathrm{M} 6 \mathrm{~K}- \\ & \mathrm{WT}-00001 \end{aligned}$	No	Super duplex material	00A
Screen Wash Pump MP03 discharge	2	PV	WT			10	Wafer check		flange		150	70	90	56.5		$\begin{aligned} & 25762-11--\mathrm{M} 6 \mathrm{~K}- \\ & \text { WT-00001 } \end{aligned}$	No	Super duplex material	00A
Screen Wash Pump MP03 discharge	2	PV	WT			10	Butterfly		flange		150	70	90	56.5		$\begin{aligned} & 25762-11-\text { M6K }-\mid \\ & \text { WT-00001 } \end{aligned}$	No	Ductile iron, rubber uned, general service, lug type	00A
Inlet to pump discharge PI 03	2	PV	WT			1	gate		flange		150	70	90	56.5		$\begin{aligned} & 25762-11 \text {-M6K- } \\ & \text { WT-00001 } \end{aligned}$	No	Super duplex material	00A
Inlet to automatic vent	2	PV	WT			2	ball		flange		150	70	90	56.5			No	Super duplex material	00A
Inlet to automatic vent	2	PV	WT			2	AR		flange		150	70	90	56.5			No	Super duplex material	00A
Inlet to Strainer ML09	2	PV	WT			16	Butterly		flange		150	70	90	56.5		$\begin{array}{\|l\|} 25762-11--M 6 K \\ \text { WT-00001 } \end{array}$	No	Ductile iron, rubber uned, general service, lug type	00B
Outlet to Strainer ML09	2	PV	WT			16	Butterlly		flange		150	70	90	56.5	\%	$\begin{array}{\|l\|} 25762-11--M 6 K- \\ \text { WT-00001 } \end{array}$	No	Ductile iron, rubber Ilned, general service, lug type	00B
Strainer ML09 bypass	2	PV	WT			16	Butterily		flange		150	70	90	56.5		$\begin{aligned} & \text { 25762-11-M6K- } \\ & \text { WT-00001 } \end{aligned}$	No	Ductile iron, rubber ilned, general service, lug type	00B
To PDIS 006	2	PV	WT			1	globe		flange		150	70	90	56.5		$\left\|\begin{array}{l\|} 25762-11--M 6 K \\ \text { WT-00001 } \end{array}\right\|$	No	Super duplex material	00A
To PDIS 006	2	PV	WT			1	globe		flange		150	70	90	56.5		$\left\lvert\, \begin{aligned} & 25762-11--M 6 K-\mid \\ & \text { WT-00001 } \end{aligned}\right.$	No	Super duplex material	00A
Strainer waste discharge	2	PV	WT			8	ball	Mtr	flange		150	70	90	56.5		$\begin{array}{\|l\|} 25762-11--M 6 K- \\ \text { WT-00001 } \end{array}$	No	Super duplex material	00A
Root connection to PS 008	2	PV	WT			1	gate		flange		150	70	90	56.5		$\begin{aligned} & 25762-11--M 6 K- \\ & \text { WT-00001 } \end{aligned}$	No	Super duplex material	00A
Root connection to PS 009A	2	PV	WT			1	gate		flange		150	70	90	56.5		$\left\|\begin{array}{l\|} 25762-11--M 6 K \\ \text { WT-00001 } \end{array}\right\|$	No	Super duplex material	00A
Root connection to PS 009B	2	PV	WT			1	gate		flange		150	70	90	56.5		$\left\lvert\, \begin{aligned} & 25762-11--M 6 K-\mid \\ & \text { WT-00001 } \end{aligned}\right.$	No	Super duplex material	00A
Root connection to PS 009C	2	PV	WT			1	gate		flange		150	70	90	56.5		$\begin{array}{\|l\|} 25762-11--M 6 K- \\ \text { WT-00001 } \end{array}$	No	Super duplex material	00A

Line Description	Unit	Comm	System		Suffix	Dia (in)	Valve Type	Act. Type	End Prep.	Valve Material Class	Design Press (pisg)	Design Temp (${ }^{\circ} \mathrm{F}$)	Service Press (psig)	Service Temp (${ }^{\circ} \mathrm{F}$)	Rating	P\&ID	Heat Trace (Yes/No)	Remarks	Rev
Inlet to PCV 011A	2	PV	WT			6	butterfly		flange		150	70	90	56.5			No	Ductile iron, rubber ilned, general service, Iug type,	OOA
Y-strainer Screen ML001 blow off	2	PV	WT			2	ball		flange		150	70	90	56.5			No	Super duplex material	OOB
Inlet to PCV 011B	2	PV	WT			6	butterfly		flange		150	70	90	56.5			No	Ductile iron, rubber lined, general service, Iug type,	00A
Y-strainer Screen ML002 blow off	2	PV	WT			2	ball		flange		150	70	90	56.5			No	Super duplex material	00B
Inlet to PCV 011C	2	PV	WT			6	butterfly		flange		150	70	90	56.5			No	Ductile iron, rubber lined, general service, lug type,	00A
Y-strainer Screen ML003 blow off	2	PV	WT			2	ball		flange		150	70	90	56.5			No	Super duplex material	00B
Inlet to PCV 011D	2	PV	WT			6	butterily		flange		150	70	90	56.5			No	Ductile iron, rubber llined, general service, lug type,	00A
Y-strainer Screen ML004 blow off	2	PV	WT			2	ball		flange		150	70	90	56.5			No	Super duplex material	00B
Inlet to PCV 011E	2	PV	WT			6	butterfly		flange		150	70	90	56.5			No	Ductile iron, rubber lined, general service, lug type,	00A
Y-strainer Screen ML005 blow off	2	PV	WT			2	ball		flange		150	70	90	56.5			No	Super duplex material	OOB
Inlet to PCV 011F	2	PV	WT			6	butterfly		flange		150	70	90	56.5			No	Ductile iron, rubber llined, general service, lug type,	OOA
Y-strainer Screen ML006 blow off	2	PV	WT			2	ball		flange		150	70	90	56.5			No	Super duplex material	OOB
Root connection to PI 011A	2	PV	WT			1	gate		flange		150	70	90	56.5		$\left\lvert\, \begin{array}{l\|} 25762-11--M 6 K \\ \text { WT-00001 } \end{array}\right.$	No	Super duplex material	00A
Root connection to PI 011B	2	PV	WT			1	gate		flange		150	70	90	56.5		$\left\lvert\, \begin{aligned} & 25762-11--M 6 K- \\ & \text { WT-00001 } \end{aligned}\right.$	No	Super duplex material	00A
Root connection to PI 011C	2	PV	WT			1	gate		flange		150	70	90	56.5		$\begin{array}{\|l\|} 25762-11--M 6 K- \\ \text { WT-00001 } \end{array}$	No	Super duplex material	00A
Root connection to PI 011D	2	PV	WT			1	gate		flange		150	70	90	56.5		$\begin{aligned} & 25762-11-\text { M6K- } \\ & \text { WT-00001 } \end{aligned}$	No	Super duplex material	00A
Root connection to PI 011E	2	PV	WT			1	gate		flange		150	70	90	56.5		$\begin{array}{\|l\|} 25762-11--M 6 K- \\ \text { WT-00001 } \end{array}$	No	Super duplex material	00A

Line Descriptlon	Unit	Comm	System	$\begin{array}{\|c\|} \hline \text { Valve } \\ \text { Seq. } \\ \text { No. } \\ \hline \end{array}$	Suffix	$\begin{aligned} & \text { Dia } \\ & \text { (in) } \end{aligned}$	Valve Type	$\left\|\begin{array}{c} \text { Act. } \\ \text { Type } \end{array}\right\|$	End Prep.	Valve Material Class	$\begin{array}{\|c\|} \hline \text { Design } \\ \text { Press } \\ \text { (pisg) } \\ \hline \end{array}$	$\left.\begin{array}{\|c\|} \hline \text { Design } \\ \text { Temp } \\ \hline \\ \left.\hline{ }^{\circ} \mathrm{FF}\right) \end{array} \right\rvert\,$	$\begin{array}{\|c} \hline \text { Service } \\ \text { Press } \\ \text { (psig) } \end{array}$	$\begin{array}{\|c\|} \hline \text { Service } \\ \text { Temp } \\ \left({ }^{\circ} \mathrm{F}\right) \\ \hline \end{array}$	Rating	P\&ID	$\left\|\begin{array}{c} \text { Heat Trace } \\ (\mathrm{Yes} / \mathrm{No}) \end{array}\right\|$	Remarks	Rev
Root connection to PI 011F	2	PV	WT			1	gate		flange		150	70	90	56.5		$\begin{aligned} & \text { 25762-11--M6K- } \\ & \text { WT-00001 } \end{aligned}$	No	Super duplex material	OOA

[^0]: JOB NO. : 25762-110
 DRAWING NO. : EIK-000000003
 REVISION/DATE: B $\quad 7 / 25 / 13$
 reason for issue : for estimation
 TTTLE : ONE LINE DIAGRAM : DCPP CIRCULATING Watter system natural draft cooling (wet originated by : 5.5
 verifiep by:
 res: ól

