Microbial Water Quality at Reference Beaches In Southern California:
An Example Approach for ASBS

www.sccwrp.org

Background For Bacteria

- Many beaches suffer from bacterial contamination
 - 99 beaches in So Cal subject to TMDLs
- Not all bacteria come from human sources
- How clean is clean?
- Comparison to reference beaches

Study Questions

- What percent of samples from reference beaches exceed water quality thresholds?
 - Wet weather, winter dry, summer dry
- What is the level of bacteria along reference beaches with varying watershed factors?

Design Issues

- What constitutes a reference site?
- What factors influence discharge and receiving water characteristics?
- What and where to measure?
Reference Site Selection Criteria

- Open beach with freshwater input
- Watershed size within range of listed beaches
- Undeveloped (>95% open)
- Wet weather access (ability to rate flow)
- Sample in wave wash
 - Fecal indicator bacteria, salinity
- Sample in discharge
 - Flow, fecal indicator bacteria, and salinity
 - Human virus
San Onofre Ck

Storm Characterization Factors

- Goal is to capture a range of potential factors
- Three conditions (summer, winter, wet)
- Four days per storm (day of + three)
- Three sized sheds (large, med, small)
- Two types of seasons (early, late)
- Two types of storm events (large, small)

Effect of Weather Condition

<table>
<thead>
<tr>
<th>Effect of Weather Condition</th>
<th>0</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>12</th>
<th>14</th>
<th>16</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wet</td>
<td></td>
</tr>
<tr>
<td>Winter Dry</td>
<td></td>
</tr>
<tr>
<td>Summer Dry</td>
<td></td>
</tr>
</tbody>
</table>

AB411 Single Sample Thresholds
- Total > 10,000 /100 mL
- Fecal (E. coli) > 400 /100 mL
- Enterococcus > 104 /100 mL
- Total:Fecal ratio < 10 when Total > 1,000
- Any = cumulative of all thresholds

Effect of Weather Condition

<table>
<thead>
<tr>
<th>Effect of Weather Condition</th>
<th>0</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>12</th>
<th>14</th>
<th>16</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wet</td>
<td></td>
</tr>
<tr>
<td>Winter Dry</td>
<td></td>
</tr>
<tr>
<td>Summer Dry</td>
<td></td>
</tr>
</tbody>
</table>

Exceedances (%)
Effect of Time Since Rainfall

Effect of Watershed Size

Effect of Seasonality

Effect of Storm Size
Effect of Breaching

![Effect of Breaching Graph]

Relationship Between Discharge and Receiving Water

![Relationship Graph]

Effect of Lagoons In Wet Weather

![Effect of Lagoons Graph]

Effect Of Lagoon In Dry Weather

<table>
<thead>
<tr>
<th></th>
<th>Lagoon Breached</th>
<th>Lagoon Not Breached</th>
</tr>
</thead>
<tbody>
<tr>
<td># Storms</td>
<td># Storms</td>
<td></td>
</tr>
<tr>
<td># Birds</td>
<td>Avg.# Birds</td>
<td></td>
</tr>
<tr>
<td>Leo Carillo</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>San Onofre</td>
<td>4</td>
<td><1</td>
</tr>
<tr>
<td>San Mateo</td>
<td>-</td>
<td>4</td>
</tr>
</tbody>
</table>

5
Summary of Results

- Winter wet weather has greater frequency of exceedence than winter or summer dry weather
- Frequency of exceedence generally declines over the 3 days following rainfall
- Early season storms have greater exceedence frequencies than late season storms
 - Greater number of indicators exceed in early season

Summary of Results

- Big storms have greater frequency of exceedence than small storms
 - Function of breaching the sand berm
- Storm discharges effect wave wash concentrations