# CCLEAN

Central Coast Long-term Environmental Assessment Network www.cclean.org

City of Santa Cruz City of Watsonville (Lead Agency) Duke Energy Monterey Regional Water Pollution Control Agency Carmel Area Wastewater District Central Coast Regional Water Quality Control Board

APPLIED MAMARINE SCIENCES

## **CCLEAN Objectives**

- Obtain high-quality data for status and trends in nearshore waters, sediments, and associated beneficial uses
- Determine whether nearshore waters and sediments are in compliance with the Ocean Plan
- Determine sources and amounts of contaminants discharged to nearshore waters
   Ensure understandable and relevant data presentation

# **Program History**

Extensive stakeholder input for design
 Monitoring began in 2001
 Currently funded through June 2006

# **CCLEAN Design Process**

- 1. Establish List of Stakeholders
- 2. Prioritize Beneficial Uses
- 3. Determine Indicators of Impairment
- 4. Evaluate Possible Water-Quality Stressors
- 5. Design Monitoring Program

# **Priority Beneficial Uses**

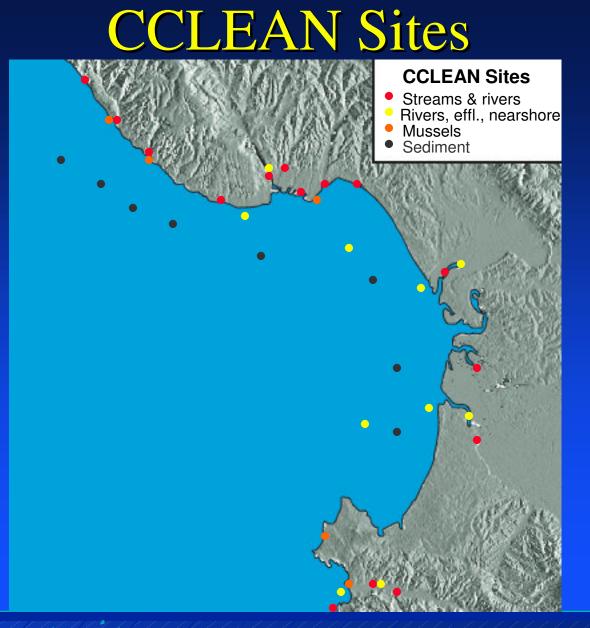
 Marine Habitat
 Rare, Threatened, or Endangered Species
 Water Contact Recreation
 Wildlife Habitat

#### **CCLEAN Measurements**

POPs in Water and Sed iment

**Nutrients** 

Pathoge ns


River Suspended Sed iment s Trends, Sources and Effects

APPLIED MMARINE SCIENCES

#### **Program Elements**

Rivers, effluent, nearshore water
Streams
Mussels
Sediment
Sea Otters

APPLIED MARTINE SCIENCES



APPLIED MARTINE SCIENCES

## **CCLEAN Monitoring Team**

Kinnetic Laboratories, Inc.

- River, Effluent, Nearshore Water Sampling
- Mussel Sampling
- MEC with ABA Consultants
  - Sediment Sampling
- Wastewater Plant Personnel
  - Effluent Sampling
- Counties of Santa Cruz and Monterey
  - Stream Sampling
- Axys Analytical
  - POP Analyses
- Biovir
  - Bivalve Bacteria

#### **Rivers and Effluent**

 Four rivers, four wastewater discharges
 Wet-season and dry-season sampling
 30-day flow-proportioned sampling using SPE (XAD-2 resin) methods

 PAHs, PCBs, chlorinated pesticides

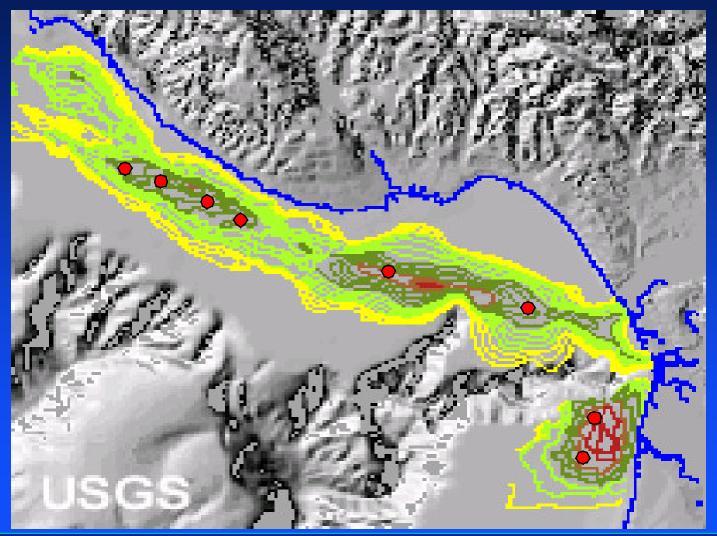
 TSS, silicate, nitrate, ammonia, urea, orthophosphate
 Estimate annual loads

### Mussels

Five locations
 Wet-season and dry-season sampling

 PAHs, PCBs, chlorinated pesticides
 Total coliform, fecal coliform, enterococcus

 Determine sources and contamination of sea otter prey


## Sediment

Eight locations
 Annual (late summer-fall) sampling

 PAHs, PCBs, chlorinated pesticides
 Grain size, TOC
 Infaunal abundance

 Determine benthic trends and effects of POPs

# Sediment Sites



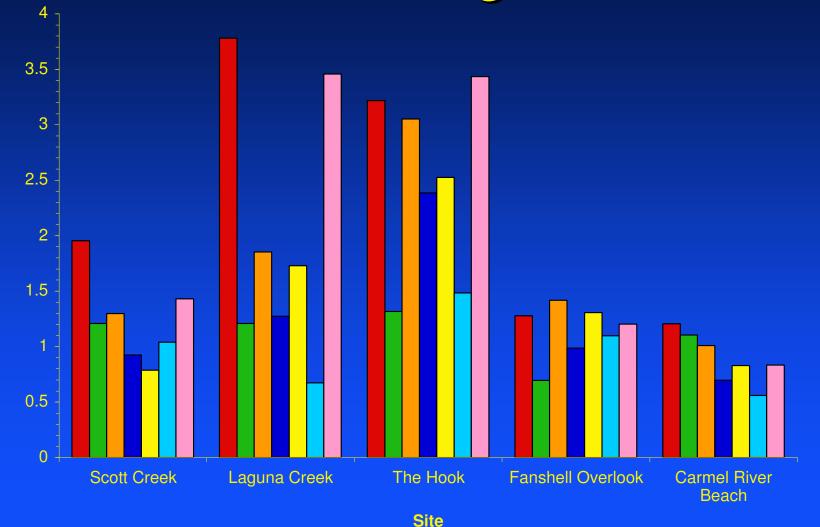
APPLIED MARANE SCIENCES

#### Streams

15 streams, rivers and coastal locations
 Monthly sampling
 Counties of Santa Cruz and Monterey

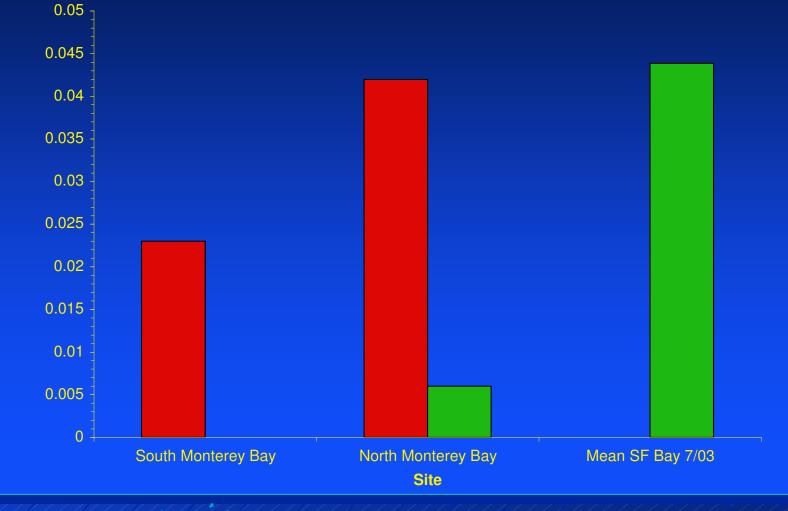
 TSS, silicate, nitrate, ammonia, urea, orthophosphate
 Total coliform, fecal coliform, enterococcus *Estimate annual loads*

## **Nearshore Sampling**


#### Two locations

- Wet-season and dry-season sampling
- 30-day flow-proportioned sampling using SPE (XAD-2 resin) methods
  - PAHs, PCBs, chlorinated pesticides
- TSS, silicate, nitrate, ammonia, urea, orthophosphate
- Total coliform, fecal coliform, enterococcus Compare to Ocean Plan

#### Sea Otters


Proposition 13 funding
 Collaboration with CDF&G
 Measure POPs in sea otter tissues
 Compare POPs with cause of death and indicators of health
 Determine effects of POPs on otter health and mortality

# Mussel POPs are High & Seasonal



APPLIED MAMARINE SCIENCES

# Nearshore Waters Exceed Ocean Plan



APPLIED MARTINE SCIENCES

## **Other Findings**

Pajaro and Salinas rivers contribute highest loads of pesticides and most nutrients, but there are other unknown sources

Sediment DDTs exceed the average for San Francisco Bay and are not declining

## What is Working Well

Multidisciplinary approach
 Flow-proportioned solid-phase extraction of POPs
 Cooperation and collaboration among multiple agencies

# Challenges

Designing cohesive multidisciplinary program with limited funding
 Coordination among multiple agencies
 Methods development
 Estimating flow from ungauged streams