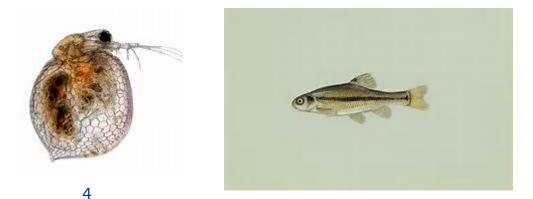
Toxicity Provisions

Proposed Toxicity Provision to the Water Quality Control Plan for Inland Surface Waters, Enclosed Bays, and Estuaries of California

Presentation Overview


- * Current Toxicity Framework
- * Proposed Toxicity Framework
 - * Goals
 - * Interaction with the Basin Plans
 - * Water Quality Objectives
 - * Test Methods
 - * Analysis of Test Results

Presentation Overview

- * Proposed Toxicity Framework (Continued)
 - Non-Storm water NPDES Dischargers (includes Industry and POTWs)
 - * Species Sensitivity Screening
 - * Reasonable Potential Analysis
 - * Routine Monitoring
 - * Effluent Limits
 - * Toxicity Reduction Evaluations
 - * Exceptions
 - * Storm water & Nonpoint Source Dischargers

Toxicity Control Requirements

- Chemical Specific Monitoring: Measure directly the amount of that substance (e.g., lead, copper, chlorine)
- Aquatic Toxicity Monitoring: Effect on aquatic organisms compared to control

What is Aquatic Toxicity Monitoring

* Expose organisms to test & control water

- o Invertebrate
- o Vertebrate
- o Plant
- * Measure effects
 - Survival
 - o Growth
 - Reproduction
- * Look for a statistical significant difference

Current Aquatic Toxicity Protections

- Inconsistent Implementation of Toxicity testing in permits:
 - * Reasonable Potential
 - * Species Sensitivity Screening
 - * Effluent Limitations
 - * Monitoring Frequency
 - * Statistical Approach

What is the Project? Goals of New Toxicity Provisions

- * Consistent protection of Waters of the State
- Statewide water quality objectives
- * Consistent Toxicity Testing and Statistical Approach
- * Consistent application in permits

Interaction with Basin Plans

* Supersedes

- Methods for assessing compliance with water quality objectives (acute & chronic)
- * Toxicity testing & Interpretation of results
- * Does not Supersede
 - Narrative objectives
 - * Chemical specific limits, targets, or thresholds
 - * Site specific Water Quality Objectives
 - * Total Maximum Daily Loads (TMDLs)

Null Hypothesis

A hypothesis which the investigator tries to disprove, reject or nullify or a hypothesis to be tested.

The Alternative Hypothesis is an alternative to the Null Hypothesis, and is generally the opposite statement.

- The power lies in the ability to reject the Null Hypothesis
 - Rejecting the Null Hypothesis confirms the Alternative Hypothesis

Example of Null Hypothesis

Toxicity Water Quality Objectives

Null Hypothesis

* chronic

H_o: Mean RESPONSE (ambient receiving water) ≤ 0.75 • mean RESPONSE (control)

* Acute

H_o: Mean RESPONSE (ambient receiving water) ≤ 0.80 • mean RESPONSE (control)

* Attainment = rejecting the null hypothesis

Toxicity Test Methods

- * Species selected from Table 1 (in the Provisions)
- * Methods established in the U.S. EPA Methods Manuals
- * At the Instream Waste Concentration

Analysis of Test Results

- * Statistical Approach
 - * Test of Significant Toxicity (TST)
 - * Results in either a "pass" or "fail"
- * Percent Effect
- * Must report both (pass/fail & percent effect)

Implementation For Non-Storm Water NPDES Dischargers

Species Sensitivity Screening

Reasonable Potential Analysis

- Routine Monitoring
- Effluent Limitations
- Toxicity Reduction Evaluation
- Exceptions

Species Sensitivity Screening

* Chronic

- * 4 sets of tests over 1 year
- * 3 species (plant, vertebrate, invertebrate)
- * Acute
 - * 4 sets of tests over 1 year
 - * 2 species (vertebrate, invertebrate)
- * Highest percent effect (typically)

Reasonable Potential Analysis

Applicability	Required	Not Required
Chronic Toxicity	POTWs < 5 MGD Other non-storm water NPDES Dischargers	POTWs ≥ 5 MGD
Acute Toxicity	Other non-storm water NPDES dischargers	* POTWs

¹⁶ * Permitting Authority has the discretion to require Reasonable Potential Analysis

Reasonable Potential Analysis (continued)

- * All data over the past 5 years
 - * As long as it is representative of effluent quality
- * A minimum of 4 tests analyzed using the Test of Significant Toxicity (TST)
- * Reasonable Potential if:
 - * Any test results in a "Fail" or
 - * 10% effect at the Instream Waste Concentration
 - * Other information or data

Routine Monitoring Frequency

Channais		Other NPDES		Other NPDES
Chronic		dischargers > 5	POTWs < 5 MGD	dischargers < 5
Toxicity	POTWs ≥ 5 MGD	MGD with RP	with RP	MGD with RP
Frequency	Monthly	Monthly	Quarterly	Quarterly
o Permi	tting Authority may	increase or decre	ease frequency	

mitting Authority may increase of decrease nequency

Acuto		Other NPDES		Other NPDES
Acute	POTWs > 5 MGD	dischargers <u>></u> 5	POTWs < 5 MGD	dischargers < 5
Toxicity	with RP	MGD with RP	with RP	MGD with RP
	Determined by	Determined by	Determined by	Determined by
	Permitting	Permitting	Permitting	Permitting
Frequency	Authority	Authority	Authority	Authority

Chronic Toxicity

"No {most sensitive species} chronic toxicity test may result in a "fail" at the Instream Waste Concentration for the survival endpoint and a percent effect for the survival endpoint greater than or equal to 50 percent."

Survival Endpoint & Ceriodaphnia

Variations:

- The survival endpoint is not available for some test species (e.g. plants)
- * The Test of Significant Toxicity (TST) cannot analyze for the survival endpoint for *Ceriodaphnia dubia*

Chronic Toxicity Variation 1:

If the most sensitive species chronic toxicity test does not include the survival endpoint, then the permitting authority shall include the following Maximum Daily Effluent Limit:

"No {most sensitive species} chronic toxicity test may result in a "fail" at the Instream Waste Concentration for any endpoint measured in the test and a percent effect for that endpoint greater than or equal to 50 percent."

Chronic Toxicity Variation 2:

If *Ceriodaphnia dubia* is the most sensitive species, then the permitting authority shall include the following Maximum Daily Effluent Limit:

"No Ceriodaphnia dubia chronic toxicity test may result in percent effect for the survival endpoint greater than or equal to 50 percent."

Acute Toxicity

"No {most sensitive species} acute toxicity test may result in a "fail" at the Instream Waste Concentration for the survival endpoint and a percent effect for the survival endpoint greater than or equal to 50 percent."

Median Monthly Compliance Monitoring

MMEL Compliance

Routine	Compliance	Compliance	
Monitoring	Test 1	Test 2	Violation
Pass	* NA	* NA	No
Fail	Pass	Pass	No
Fail	Pass	Fail	Yes
Fail	Fail	* NA	Yes

* Tests are not required

Median Monthly Effluent Limit

Chronic Toxicity

"No more than one {most sensitive species} chronic toxicity test initiated in a calendar month may result in a "fail" at the Instream Waste Concentration for any endpoint."

Two or more most sensitive species chronic toxicity tests initiated in a calendar month resulting in a "fail" at the Instream Waste Concentration for any endpoint is a violation of the Median Monthly Effluent Limit

Median Monthly Effluent Limit

Acute Toxicity

"No more than one {most sensitive species} acute toxicity test initiated in a calendar month may result in a "fail" at the Instream Waste Concentration for the survival endpoint"

Two or more most sensitive species acute toxicity tests initiated in a calendar month resulting in a "fail" at the Instream Waste Concentration for the survival endpoint is a violation of the Median Monthly Effluent Limit

Toxicity Reduction Evaluation (TRE)

A study conducted in a step-wise process designed to:

- Identify the causative agents of effluent or ambient toxicity,
- * Isolate the sources of toxicity,
- Evaluate the effectiveness of toxicity control options,
- * Confirm the reduction in toxicity.

Toxicity Reduction Evaluation (TRE)

- * A Toxicity Reduction Evaluation is required when:
 - * Two violations in the same month OR
 - * Two violations in successive months
- * Violations can be any combination
 - * Maximum Daily
 - * Median Monthly
 - * Chronic
 - * Acute

Exceptions

- * Small disadvantaged communities
 - * Specific to Publicly Owned Treatment Works (POTWs)
 - * Finding of No Reasonable Potential
- * Insignificant dischargers
 - * Finding of No Reasonable Potential

Nonpoint Source & Storm Water

- If Toxicity monitoring requirements with species in Table 1
 - * Issue order (within 1 year)
 - Use Test of Significant Toxicity (TST) for analysis (within 1 year of order)

Schedule

Task Name	Target Date
Outreach	April 11, 12, 24th, 2017
Public Comment	Summer 2017
Period	
Workshop	Mid to late Summer
	2017
Hearing	Fall 2017
Board Consideration	By end of 2017

Contact Information

	Name	email	phone
Lead Staff	Steve Camacho	steve.camacho@waterboards.ca.gov	(916) 341-5561
Supervisor	Zane Poulson	zane.poulson@waterboards.po.gov	(916) 341-5488
Manager	Rik Rasmussen	rik.rasmussen@waterboards.ra.gov	(916) 341-5549

Questions/Comments

Table 1 Species

EPA Toxicity Test Method	Bioequivalence Value (b)	Tier	False Negative (α Error)
Chronic Freshwater Methods			
Ceriodaphnia dubia (water flea) survival and reproduction	0.75	I	0.20
Pimephales promelas (fathead minnow) survival and growth	0.75	I	0.25
Selenastrum capricornutum (green alga) Growth	0.75	I	0.25
Chronic West Coast Marine Methods			
Atherinops affinis (topsmelt) survival and growth	0.75	I	0.25
Dendraster excentricus (sand dollar); Strongylocentrotus purpuratus (purple urchin) fertilization	0.75	1	0.05
Dendraster excentricus (sand dollar); Strongylocentrotus purpuratus (purple urchin) Iarval development	0.75	1	0.05
Haliotis rufescens (red abalone) larval development	0.75	I	0.05
Mytilus sp. (mussels); Crassostrea gigas (oyster) larval development 34	0.75	I	0.05

Table 1 Species (Cont.)

Macrocystis pyrifera (giant kelp) germination and germ-tube length	0.75	I.	0.05
Chronic East Coast Marine Methods			
Menidia beryllina (inland silverside) survival and growth	0.75	II	0.25
Americamysis bahia (mysid) survival and growth	0.75	н	0.15
Acute Freshwater Methods			
Ceriodaphnia dubia (water flea); Daphnia magna (water flea); Daphnia pulex (water flea); Hyalella azteca (amphipod) Survival	0.80	1	0.10
Pimephales promelas (fathead minnow); Oncorhynchus mykiss (rainbow trout); Salvelinus fontinalis (brook trout) Survival	0.80	1	0.10
Acute Marine Methods			
Atherinops affinis (topsmelt) Survival	0.80	I	0.10
Americamysis bahia (mysid) Survival	0.80	П	0.10
Menidia beryllina (inland silverside) Survival 35	0.80	н	0.10