ATTACHMENT F:
Active Treatment System (ATS) Requirements

Table 1 – Numeric Effluent Limitations, Numeric Action Levels, Test Methods, Detection Limits, and Reporting Units

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Method</th>
<th>Discharge Type</th>
<th>Min. Detection Limit</th>
<th>Units</th>
<th>Numeric Action Level</th>
<th>Numeric Effluent Limitation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turbidity</td>
<td>EPA 0180.1 and/or field test with portable instrument</td>
<td>For ATS discharges</td>
<td>Not specified</td>
<td>NTU</td>
<td>N/A</td>
<td>10 NTU for Daily Flow-Weighted Average & 20 NTU for Any Single Sample</td>
</tr>
</tbody>
</table>

A. Dischargers choosing to implement an Active Treatment System (ATS) on their site shall comply with all of the requirements in this Attachment.

B. The discharger shall maintain a paper copy of each ATS specification onsite in compliance with the record retention requirements in the Special Provisions of this General Permit.

C. ATS Design, Operation and Submittals

1. The ATS shall be designed and approved by a Certified Professional in Erosion and Sediment Control (CPESC), a Certified Professional in Storm Water Quality (CPSWQ); a California registered civil engineer; or any other California registered engineer.

2. The discharger shall design the ATS in a manner to preclude the accidental discharge of settled floc\(^1\) during floc pumping or related operations.

3. The discharger shall design outlets to dissipate energy from concentrated flows.

4. The discharger shall install and operate an ATS by assigning a lead person (or project manager) who has either a minimum of five years construction storm

\(^1\) Floc is defined as a clump of solids formed by the chemical action in ATS systems.
water experience or who is a licensed contractors specifically holding a California Class A Contractors license.²

5. The discharger shall prepare an ATS Plan that combines the site-specific data and treatment system information required to safely and efficiently operate an ATS. The ATS Plan shall be electronically submitted to the State Water Board at least 14 days prior to the planned operation of the ATS and a paper copy shall be available onsite during ATS operation. At a minimum, the ATS Plan shall include:

a. ATS Operation and Maintenance Manual for All Equipment
b. ATS Monitoring, Sampling & Reporting Plan, including Quality Assurance/Quality Control (QA/QC)
c. ATS Health and Safety Plan
d. ATS Spill Prevention Plan

6. The ATS shall be designed to capture and treat (within a 72-hour period) a volume equivalent to the runoff from a 10-year, 24-hour storm event using a watershed runoff coefficient of 1.0.

D. Treatment – Chemical Coagulation/Flocculation

1. Jar tests shall be conducted using water samples selected to represent typical site conditions and in accordance with ASTM D2035-08 (2003).

2. The discharger shall conduct, at minimum, six site-specific jar tests (per polymer with one test serving as a control) for each project to determine the proper polymer and dosage levels for their ATS.

3. Single field jar tests may also be conducted during a project if conditions warrant, for example if construction activities disturb changing types of soils, which consequently cause change in storm water and runoff characteristics.

E. Residual Chemical and Toxicity Requirements

1. The discharger shall utilize a residual chemical test method that has a method detection limit (MDL) of 10% or less than the maximum allowable threshold

² Business and Professions Code Division 3, Chapter 9, Article 4, Class A Contractor: A general engineering contractor is a contractor whose principal contracting business is in connection with fixed works requiring specialized engineering knowledge and skill. [see http://www.cslb.ca.gov/General-Information/library/licensing-classifications.asp]
concentration\(^3\) (MATC) for the specific coagulant in use and for the most sensitive species of the chemical used.

2. The discharger shall utilize a residual chemical test method that produces a result within one hour of sampling.

3. The discharger shall have a California State certified laboratory validate the selected residual chemical test. Specifically the lab will review the test protocol, test parameters, and the detection limit of the coagulant. The discharger shall electronically submit this documentation as part of the ATS Plan.

4. If the discharger cannot utilize a residual chemical test method that meets the requirements above, the discharger shall operate the ATS in Batch Treatment\(^4\) mode.

5. A discharger planning to operate in Batch Treatment mode shall perform toxicity testing in accordance with the following:

 a. The discharger shall initiate acute toxicity testing on effluent samples representing effluent from each batch prior to discharge\(^5\). All bioassays shall be sent to a laboratory certified by the Department of Health Services (DHS) Environmental Laboratory Accreditation Program (ELAP). The required field of testing number for Whole Effluent Toxicity (WET) testing is E113.\(^6\)

 b. Acute toxicity tests shall be conducted with the following species and protocols. The methods to be used in the acute toxicity testing shall be those outlined for a 96-hour acute test in “Methods for Measuring the Acute Toxicity of Effluents and Receiving Water to Freshwater and Marine Organisms, USEPA-841-R-02-012” for Fathead minnow, *Pimephales promelas* (fathead minnow). Acute toxicity for *Oncorhynchus mykiss* (Rainbow Trout) may be used as a substitute for testing fathead minnows.

 c. All toxicity tests shall meet quality assurance criteria and test acceptability criteria in the most recent versions of the EPA test method for WET testing.

 d. The discharger shall electronically report all acute toxicity testing.

\(^3\) The Maximum Allowable Threshold Concentration (MATC) is the allowable concentration of residual, or dissolved, coagulant/flocculant in effluent. The MATC shall be coagulant/flocculant-specific, and based on toxicity testing conducted by an independent, third-party laboratory. A typical MATC would be:

The MATC is equal to the geometric mean of the NOEC (No Observed Effect Concentration) and LOEC (Lowest Observed Effect Concentration) Acute and Chronic toxicity results for most sensitive species determined for the specific coagulant. The most sensitive species test shall be used to determine the MATC.

\(^4\) Batch Treatment mode is defined as holding or recirculating the treated water in a holding basin or tank(s) until treatment is complete or the basin or storage tank(s) is full.

\(^5\) This requirement only requires that the test be initiated prior to discharge.

F. Filtration

1. The ATS shall include a filtration step between the coagulant treatment train and the effluent discharge. This is commonly provided by sand, bag, or cartridge filters, which are sized to capture suspended material that might pass through the clarifier tanks.

2. Differential pressure measurements shall be taken to monitor filter loading and confirm that the final filter stage is functioning properly.

G. Residuals Management

1. Sediment shall be removed from the storage or treatment cells as necessary to ensure that the cells maintain their required water storage (i.e., volume) capability.

2. Handling and disposal of all solids generated during ATS operations shall be done in accordance with all local, state, and federal laws and regulations.

H. ATS Instrumentation

1. The ATS shall be equipped with instrumentation that automatically measures and records effluent water quality data and flow rate.

2. The minimum data recorded shall be consistent with the Monitoring and Reporting requirements below, and shall include:

 a. Effluent Turbidity

 b. Effluent pH

 c. Residual Chemical

 d. Flow rate

 e. Flow volume

3. Systems shall be equipped with a data recording system, such as data loggers or webserver-based systems, which records each measurement on a frequency no longer than once every 15 minutes.

4. Cumulative flow volume shall be recorded daily. The data recording system shall have the capacity to record a minimum of seven days continuous data.
5. Instrumentation systems shall be interfaced with system control to provide auto
shutoff or recirculation in the event that effluent measurements exceed turbidity or pH.

6. The system shall also assure that upon system upset, power failure, or other
catastrophic event, the ATS will default to a recirculation mode or safe shut
down.

7. Instrumentation (flow meters, probes, valves, streaming current detectors,
controlling computers, etc.) shall be installed and maintained per manufacturer’s
recommendations, which shall be included in the QA/QC plan.

8. The QA/QC plan shall also specify calibration procedures and frequencies,
instrument method detection limit or sensitivity verification, laboratory duplicate
procedures, and other pertinent procedures.

9. The instrumentation system shall include a method for controlling coagulant
dose, to prevent potential overdosing. Available technologies include
flow/turbidity proportional metering, periodic jar testing and metering pump
adjustment, and ionic charge measurement controlling the metering pump.

I. ATS Effluent Discharge

1. ATS effluent shall comply with all provisions and prohibitions in this General
Permit, specifically the NELs.

2. NELs for discharges from an ATS:

 a. Turbidity of all ATS discharges shall be less than 10 NTU for daily flow-
 weighted average of all samples and 20 NTU for any single sample.

 b. Residual Chemical shall be < 10% of MATC7 for the most sensitive species of
 the chemical used.

3. If an analytical effluent sampling result is outside the range of pH NELs (i.e., is
below the lower NEL for pH or exceeds the upper NEL for pH) or exceeds the
turbidity NEL (as listed in Table 1), the discharger is in violation of this General
Permit and shall electronically file the results in violation within 3 business days
of obtaining the results.

7 The Maximum Allowable Threshold Concentration (MATC) is the allowable concentration of residual, or dissolved,
coagulant/flocculant in effluent. The MATC shall be coagulant/flocculant-specific, and based on toxicity testing
conducted by an independent, third-party laboratory. The MATC is equal to the geometric mean of the NOEC (No
Observed Effect Concentration) and LOEC (Lowest Observed Effect Concentration) Acute and Chronic toxicity
results for most sensitive species determined for the specific coagulant. The most sensitive species test shall be
used to determine the MATC.
4. If ATS effluent is authorized to discharge into a sanitary sewer system, the discharger shall comply with any pre-treatment requirements applicable for that system. The discharger shall include any specific criteria required by the municipality in the ATS Plan.

5. Compliance Storm Event:

Discharges of storm water from ATS shall comply with applicable NELs (above) unless the storm event causing the discharges is determined after the fact to be equal to or larger than the Compliance Storm Event (expressed in inches of rainfall). The Compliance Storm Event for ATS discharges is the 10 year, 24 hour storm, as determined using these maps:

http://www.wrcc.dri.edu/pcpnfreq/nca10y24.gif
http://www.wrcc.dri.edu/pcpnfreq/sca10y24.gif

This exemption is dependent on the submission of rain gauge data verifying the storm event is equal to or larger than the Compliance Storm.

J. Operation and Maintenance Plan

1. Each Project shall have a site-specific Operation and Maintenance (O&M) Manual covering the procedures required to install, operate and maintain the ATS.

2. The O&M Manual shall only be used in conjunction with appropriate project-specific design specifications that describe the system configuration and operating parameters.

3. The O&M Manual shall have operating manuals for specific pumps, generators, control systems, and other equipment.

K. Sampling and Reporting Quality Assurance/ Quality Check (QA/QC) Plan

4. A project-specific QA/QC Plan shall be developed for each project. The QA/QC Plan shall include at a minimum:

 a. Calibration – Calibration methods and frequencies for all system and field instruments shall be specified.

 b. Method Detection Limits (MDLs) – The methods for determining MDLs shall be specified for each residual coagulant measurement method. Acceptable minimum MDLs for each method, specific to individual coagulants, shall be specified.

8 The manual is typically in a modular format covering generalized procedures for each component that is utilized in a particular system.
c. Laboratory Duplicates – Requirements for monthly laboratory duplicates for residual coagulant analysis shall be specified.

L. Personnel Training

1. Operators shall have training specific to using an ATS and liquid coagulants for storm water discharges in California.

2. The training shall be in the form of a formal class with a certificate and requirements for testing and certificate renewal.

3. Training shall include a minimum of eight hours classroom and 32 hours field training. The course shall cover the following topics:
 a. Coagulation Basics –Chemistry and physical processes
 b. ATS System Design and Operating Principles
 c. ATS Control Systems
 d. Coagulant Selection – Jar testing, dose determination, etc.
 e. Aquatic Safety/Toxicity of Coagulants, proper handling and safety
 f. Monitoring, Sampling, and Analysis
 g. Reporting and Recordkeeping
 h. Emergency Response

M. Active Treatment System (ATS) Monitoring Requirements

Any discharger who deploys an ATS on their site shall conduct the following:

1. Visual Monitoring
 a. A designated responsible person shall be on site daily at all times during treatment operations.
 b. Daily on-site visual monitoring of the system for proper performance shall be conducted and recorded in the project data log.
 i. The log shall include the name and phone number of the person responsible for system operation and monitoring
ii. The log shall include documentation of the responsible person’s training.

2. Operational and Compliance Monitoring

a. Flow shall be continuously monitored and recorded at not greater than 15-minute intervals for total volume treated and discharged.

b. Influent and effluent pH must be continuously monitored and recorded at not greater than 15-minute intervals.

c. Influent and effluent turbidity (expressed in NTU) must be continuously monitored and recorded at not greater than 15-minute intervals.

d. The type and amount of chemical used for pH adjustment, if any, shall be monitored and recorded.

e. Dose rate of chemical used in the ATS system (expressed in mg/L) shall be monitored and reported 15-minutes after startup and every 8 hours of operation.

f. Laboratory duplicates – monthly laboratory duplicates for residual coagulant analysis must be performed and records shall be maintained onsite.

g. Effluent shall be monitored and recorded for residual chemical/additive levels.

h. If a residual chemical/additive test does not exist and the ATS is operating in a batch treatment mode of operation refer to the toxicity monitoring requirements below.

3. Toxicity Monitoring

A discharger operating in batch treatment mode shall perform toxicity testing in accordance with the following:

a. The discharger shall initiate acute toxicity testing on effluent samples representing effluent from each batch prior to discharge.\(^9\) All bioassays shall be sent to a laboratory certified by the Department of Health Services (DHS) Environmental Laboratory Accreditation Program (ELAP). The required field of testing number for Whole Effluent Toxicity (WET) testing is E113.\(^10\)

b. Acute toxicity tests shall be conducted with the following species and protocols. The methods to be used in the acute toxicity testing shall be those outlined for a 96-hour acute test in “Methods for Measuring the Acute Toxicity

\(^9\) This requirement only requires that the test be initiated prior to discharge.

of Effluents and Receiving Water to Freshwater and Marine Organisms, USEPA-841-R-02-012" for Fathead minnow, *Pimephales promelas* or Rainbow trout *Oncorhynchus mykiss* may be used as a substitute for fathead minnow.

c. All toxicity tests shall meet quality assurance criteria and test acceptability criteria in the most recent versions of the EPA test method for WET testing.\(^{11}\)

4. Reporting and Recordkeeping

At a minimum, every 30 days a legally responsible person\(^{12}\) (LRP) representing the discharger shall access the State Water Boards Storm water Multi-application and Report Tracking system (SMARTS) and electronically upload field data from the ATS. Records must be kept for three years after the project is completed.

5. Non-compliance Reporting

a. Any indications of toxicity or other violations of water quality objectives shall be reported to the appropriate regulatory agency as required by this General Permit.

b. Upon any measurements that exceed water quality standards, the system operator shall immediately notify his supervisor or other responsible parties, who shall notify the Regional Water Board.

c. If any monitoring data exceeds any applicable NEL in this General Permit, the discharger shall electronically submit a NEL Violation Report to the State Water Board within 24 hours after the NEL exceedance has been identified.

i. ATS dischargers shall certify each NEL Violation Report in accordance with the Special Provisions for Construction Activity in this General Permit.

ii. ATS dischargers shall retain an electronic or paper copy of each NEL Violation Report for a minimum of three years after the date the annual report is filed.

iii. ATS dischargers shall include in the NEL Violation Report:

 (1) the analytical method(s), method reporting unit(s), and method detection limit(s) of each analytical parameter (analytical results that are less than the method detection limit shall be reported as “less than the method detection limit”).

\(^{11}\) http://www.epa.gov/waterscience/methods/wet/

\(^{12}\) Person possessing the title of the land on which the construction activities will occur for the regulated site.
(2) the date, place, time of sampling, visual observation (inspections), and/or measurements, including precipitation; and

(3) Description of the current onsite BMPs, and the proposed corrective actions taken to manage the NEL exceedance.

iv. Compliance Storm Exemption - In the event that an applicable NEL has been exceeded during a storm event equal to or larger than the Compliance Storm Event, ATS dischargers shall report the on-site rain gauge reading and nearby governmental rain gauge readings for verification.