TABLE OF CONTENTS

I. BACKGROUND ... 1
 A. History .. 1
 B. Legal Challenges and Court Decisions ... 1
 C. Blue Ribbon Panel of Experts and Feasibility of Numeric Effluent Limitations 3
 D. Summary of Panel Findings on Construction Activities .. 4
 E. How the Panel’s Findings are Used in this General Permit .. 5
 F. Summary of Significant Changes in This General Permit ... 5

II. RATIONALE .. 7
 A. General Permit Approach .. 7
 B. Construction Activities Covered .. 7
 C. Construction Activities Not Covered ... 9
 D. Obtaining and Terminating Permit Coverage .. 11
 E. Discharge Prohibitions ... 12
 F. Effluent Standards for All Types of Discharges .. 13
 G. Receiving Water Limitations ... 18
 H. Training Qualifications and Requirements ... 19
 I. Sampling, Monitoring, Reporting and Record Keeping ... 19
 J. Risk Determination ... 26
 K. ATS Requirements ... 34
 L. Post Construction Requirements ... 35
 M. Storm Water Pollution Prevention Plans ... 43
 N. Regional Water Board Authorities ... 46
LIST OF TABLES

Table 1 - Regional Water Board Basin Plans, Water Quality Objectives for Turbidity .. 15
Table 2 - Results of Ecoregion Analysis .. 16
Table 3 - Sampling Data taken by Regional Water Board Staff .. 16
Table 4 - Required Monitoring Elements for Risk Levels ... 20
Table 5 - Storm Water Effluent Monitoring Requirements by Risk Level .. 22
Table 6 - Receiving Water Monitoring Requirements by Risk Level ... 23
Table 7 - Combined Risk Level Matrix .. 28
Table 8 - National Oceanic and Atmospheric Administration (NOAA) Definition of Probability of Precipitation (PoP) .. 30
Table 9 - Qualified SWPPP Developer/ Qualified SWPPP Practitioner Certification Criteria 45

LIST OF FIGURES

Figure 1 - Statewide Map of K * LS .. 27
Figure 2 - Suite of Storm Events ... 36
Figure 3 - Northern CA (current) Counties / Cities With SUSMP-Plus Coverage ... 37
Figure 4 - Southern CA (current) Counties / Cities With SUSMP-Plus Coverage .. 38
Figure 5 - Schematic of the Lane Relationship .. 40
Figure 6 - Channel Changes Associated with Urbanization ... 41
I. BACKGROUND

A. History

In 1972, the Federal Water Pollution Control Act (also referred to as the Clean Water Act [CWA]) was amended to provide that the discharge of pollutants to waters of the United States from any point source is unlawful unless the discharge is in compliance with a National Pollutant Discharge Elimination System (NPDES) permit. The 1987 amendments to the CWA added Section 402(p), which establishes a framework for regulating municipal and industrial storm water discharges under the NPDES Program. On November 16, 1990, the U.S. Environmental Protection Agency (USEPA) published final regulations that established storm water permit application requirements for specified categories of industries. The regulations provide that discharges of storm water to waters of the United States from construction projects that encompass five or more acres of soil disturbance are effectively prohibited unless the discharge is in compliance with an NPDES Permit. Regulations (Phase II Rule) that became final on December 8, 1999 lowered the permitting threshold from five acres to one acre.

While federal regulations allow two permitting options for storm water discharges (Individual Permits and General Permits), the State Water Board has elected to adopt only one statewide General Permit at this time that will apply to most storm water discharges associated with construction activity.

On August 19, 1999, the State Water Board reissued the General Construction Storm Water Permit (Water Quality Order 99-08-DWQ). On December 8, 1999 the State Water Board amended Order 99-08-DWQ to apply to sites as small as one acre.

The General Permit accompanying this fact sheet regulates storm water runoff from construction sites. Regulating many storm water discharges under one permit will greatly reduce the administrative burden associated with permitting individual storm water discharges. To obtain coverage under this General Permit, dischargers shall electronically file the Permit Registration Documents (PRDs), which includes a Notice of Intent (NOI), Storm Water Pollution Prevention Plan (SWPPP), and other compliance related documents required by this General Permit and mail the appropriate permit fee to the State Water Board. It is expected that as the storm water program develops, the Regional Water Quality Control Boards (Regional Water Boards) may issue General Permits or Individual Permits containing more specific permit provisions. When this occurs, this General Permit will no longer regulate those dischargers.

B. Legal Challenges and Court Decisions

1. Early Court Decisions

Shortly after the passage of the CWA, the USEPA promulgated regulations exempting most storm water discharges from the NPDES permit requirements. (See 40 C.F.R. § 125.4 (1975); see also Natural Resources Defense Council v. Costle (D.C. Cir. 1977) 568 F.2d 1369, 1372 (Costle); Defenders of Wildlife v. Browner (9th Cir. 1999) 191 F.3d 1159, 1163 (Defenders of Wildlife).) When environmental groups challenged this exemption in federal court, the District of Columbia Court of Appeals invalidated the regulation, holding that the USEPA “does not have authority to exempt categories of point sources from the permit requirements of [CWA] § 402.” (Costle, 568 F.2d at 1377.) The Costle court rejected the USEPA’s argument that effluent-based storm sewer regulation was administratively infeasible because of the variable nature of storm water pollution and the number of affected storm sewers throughout the country. (Id. at 1377-82.) Although the court acknowledged the practical problems relating to storm sewer regulation, the court found the USEPA had the flexibility under the CWA to design regulations that would overcome these problems. (Id. at 1379-83.) In particular, the court pointed to general permits and permits based on requiring best management practices (BMPs).
During the next 15 years, the USEPA made numerous attempts to reconcile the statutory requirement of point source regulation with the practical problem of regulating possibly millions of diverse point source discharges of storm water. (See Defenders of Wildlife, 191 F.3d at 1163; see also Gallagher, Clean Water Act in Environmental Law Handbook (Sullivan, edit., 2003) p. 300 (Environmental Law Handbook); Eisen, Toward a Sustainable Urbanism: Lessons from Federal Regulation of Urban Storm Water Runoff (1995) 48 Wash. U.J. Urb. & Contemp. L.1, 40-41 [Regulation of Urban Storm Water Runoff].)

In 1987, Congress amended the CWA to require NPDES permits for storm water discharges. (See CWA § 402(p), 33 U.S.C. § 1342(p); Defenders of Wildlife, 191 F.3d at 1163; Natural Resources Defense Council v. USEPA (9th Cir. 1992) 966 F.2d 1292, 1296.) In these amendments, enacted as part of the Water Quality Act of 1987, Congress distinguished between industrial and municipal storm water discharges. With respect to industrial storm water discharges, Congress provided that NPDES permits "shall meet all applicable provisions of this section and section 1311 [requiring the USEPA to establish effluent limitations under specific timetables]." (CWA § 402(p)(3)(A), 33 U.S.C. § 1342(p)(3)(A); see also Defenders of Wildlife, 191 F.3d at 1163-64.)

In 1990, USEPA adopted regulations specifying what activities were considered "industrial" and thus required discharges of storm water associated with those activities to obtain coverage under NPDES permits. (55 Fed. Reg. 47,990 (1990); 40 C.F.R. § 122.26(b)(14).) Construction activities, deemed a subset of the industrial activities category, must also be regulated by an NPDES permit. (40 C.F.R. § 122.26(b)(14)(x).) In 1999, USEPA issued regulations for "Phase II" of storm water regulation, which required most small construction sites (1-5 acres) to be regulated under the NPDES program. (64 Fed. Reg. 68,722; 40 C.F.R. § 122.26(b)(15)(i).)

2. Court Decisions on Public Participation

Two recent federal court opinions have vacated USEPA rules that denied meaningful public review of NPDES permit conditions. On January 14, 2003, the Ninth Circuit Court of Appeals held that certain aspects of USEPA's Phase II regulations governing MS4s were invalid primarily because the general permit did not contain express requirements for public participation. (Environmental Defense Center v. USEPA (9th Cir. 2003) 344 F.3d 832.) Specifically, the court determined that applications for general permit coverage (including the Notice of Intent (NOI) and Storm Water Management Program (SWMP)) must be made available to the public, the applications must be reviewed and determined to meet the applicable standard by the permitting authority before coverage commences, and there must be a process to accommodate public hearings. (Id. at 852-54.) Similarly, on February 28, 2005, the Second Circuit Court of Appeals held that the USEPA's confined animal feeding operation (CAFO) rule violated the CWA because it allowed dischargers to write their own nutrient management plans without public review. (Waterkeeper Alliance v. USEPA (2d Cir. 2005) 399 F.3d 486.) Although neither decision involved the issuance of construction storm water permits, the State Water Board's Office of Chief Counsel has recommended that the new General Permit address the courts' rulings where feasible.

1 In Texas Independent Producers and Royalty Owners Assn. v. USEPA (7th Cir. 2005) 410 F.3d 964, the Seventh Circuit Court of Appeals held that the USEPA's construction general permit was not required to provide the public with the opportunity for a public hearing on the Notice of Intent or Storm Water Pollution Prevention Plan. The Seventh Circuit briefly discussed why it agreed with the Ninth Circuit's dissent in Environmental Defense Center, but generally did not discuss the substantive holdings in Environmental Defense Center and Waterkeeper Alliance, because neither court addressed the initial question of whether the plaintiffs had standing to challenge the permits at issue. However, notwithstanding the Seventh Circuit's decision, it is not binding or controlling on the State Water Board because California is located within the Ninth Circuit.
The CWA and the USEPA’s regulations provide states with the discretion to formulate permit terms, including specifying best management practices (BMPs), to achieve strict compliance with federal technology-based and water quality-based standards. \((Natural\ Resources\ Defense\ Council\ v.\ USEPA\ (9th\ Cir.\ 1992)\ 966\ F.2d\ 1292,\ 1308.\) Accordingly, this General Permit has developed specific BMPs as well as numeric action levels (NALs) and numeric effluent limitations (NELs) in order to achieve these minimum federal standards. In addition, the General Permit requires a SWPPP and REAP (another dynamic, site-specific plan) to be developed but has removed all language requiring the discharger to implement these plans – instead, the discharger is required to comply with specific requirements. By requiring the dischargers to implement these specific BMPs, NALs, and NELs, this General Permit ensures that the dischargers do not “write their own permits.” As a result this General Permit does not require each discharger’s SWPPP and REAP to be reviewed and approved by the Regional Water Boards.

This General Permit also requires dischargers to electronically file all permit-related compliance documents. These documents include, but are not limited to, NOIs, SWPPPs, annual reports, Notice of Terminations (NOTs), and numeric action level (NAL) exceedance reports. Electronically submitted compliance information is immediately available to the public, as well as the Regional Water Quality Control Board (Regional Water Board) offices, via the Internet. In addition, this General Permit enables public review and hearings on permit applications when appropriate. Under this General Permit, the public clearly has a meaningful opportunity to participate in the permitting process.

C. Blue Ribbon Panel of Experts and Feasibility of Numeric Effluent Limitations

In 2005 and 2006, the State Water Board convened an expert panel (panel) to address the feasibility of numeric effluent limitations (NELs) in California’s storm water permits. Specifically, the panel was asked to address:

“Is it technically feasible to establish numeric effluent limitations, or some other quantifiable limit, for inclusion in storm water permits? How would such limitations or criteria be established, and what information and data would be required?”

“The answers should address industrial general permits, construction general permits, and area-wide municipal permits. The answers should also address both technology-based limitations or criteria and water quality-based limitations or criteria. In evaluating establishment of any objective criteria, the panel should address all of the following:

The ability of the State Water Board to establish appropriate objective limitations or criteria;

How compliance determinations would be made;

The ability of dischargers and inspectors to monitor for compliance; and

The technical and financial ability of dischargers to comply with the limitations or criteria.”

Through a series of public participation processes (State Water Board meetings, State Water Board workshops, and the solicitation of written comments), a number of water quality, public process and overall program effectiveness problems were identified. Some of these problems are addressed through this General Permit.
D. Summary of Panel Findings on Construction Activities

The panel’s final report can be downloaded and viewed through links at www.waterboards.ca.gov or by clicking here.2

The panel made the following observations:

“Limited field studies indicate that traditional erosion and sediment controls are highly variable in performance, resulting in highly variable turbidity levels in the site discharge.”

“Site-to-site variability in runoff turbidity from undeveloped sites can also be quite large in many areas of California, particularly in more arid regions with less natural vegetative cover and steep slopes.”

“Active treatment technologies involving the use of polymers with relatively large storage systems now exist that can provide much more consistent and very low discharge turbidity. However, these technologies have as yet only been applied to larger construction sites, generally five acres or greater. Furthermore, toxicity has been observed at some locations, although at the vast majority of sites, toxicity has not occurred. There is also the potential for an accidental large release of such chemicals with their use.”

“To date most of the construction permits have focused on TSS and turbidity, but have not addressed other, potentially significant pollutants such as phosphorus and an assortment of chemicals used at construction sites.”

“Currently, there is no required training or certification program for contractors, preparers of soil erosion and sediment control Storm Water Pollution Prevention Plans, or field inspectors.”

“The quality of storm water discharges from construction sites that effectively employ BMPs likely varies due to site conditions such as climate, soil, and topography.”

“The States of Oregon and Washington have recently adopted similar concepts to the Action Levels described earlier.”

In addition, the panel made the following conclusions:

“It is the consensus of the Panel that active treatment technologies make Numeric Limits technically feasible for pollutants commonly associated with storm water discharges from construction sites (e.g. TSS and turbidity) for larger construction sites. Technical practicalities and cost-effectiveness may make these technologies less feasible for smaller sites, including small drainages within a larger site, as these technologies have seen limited use at small construction sites. If chemical addition is not permitted, then Numeric Limits are not likely feasible.”

“The Board should consider Numeric Limits or Action Levels for other pollutants of relevance to construction sites, but in particular pH. It is of particular concern where fresh concrete or wash water from cement mixers/equipment is exposed to storm water.”

“The Board should consider the phased implementation of Numeric Limits and Action Levels, commensurate with the capacity of the dischargers and support industry to respond.”

2 http://www.waterboards.ca.gov/stormwtr/docs/numeric/swpanel_final_report.pdf
E. How the Panel's Findings are Used in this General Permit

The State Water Board carefully considered the findings of the panel and related public comments. The State Water Board also reviewed and considered the comments regarding statewide storm water policy and the reissuance of the Industrial General Permit. From the input received the State Water Board identified some permit and program performance gaps that are addressed in this General Permit. The Summary of Significant Changes (below) in this General Permit are a direct result of this process.

F. Summary of Significant Changes in This General Permit

The State Water Board has proposed significant changes to Order 99-08-DWQ. This General Permit differs from Order 99-08-DWQ in the following significant ways:

- **Rainfall Erosivity Waiver:** this General Permit includes the option allowing a small construction site (>1 and <5 acres) to self-certify if the rainfall erosivity value (R value) for their project’s given location and time frame compute to be less than or equal to 5.

- **Technology-Based Numeric Action Levels:** this General Permit includes NALs for pH and turbidity.

- **Technology-Based Numeric Effluent Limitations:** this General Permit contains daily average NELs for pH during any construction phase where there is a high risk of pH discharge and daily average NELs turbidity for all discharges in Risk Level 3. The daily average NEL for turbidity is set at 500 NTU to represent the minimum technology that sites need to employ (to meet the traditional Best Available Technology Economically Achievable (BAT)/ Best Conventional Pollutant Control Technology (BCT) standard) and the traditional, numeric receiving water limitations for turbidity.

- **Risk-Based Permitting Approach:** this General Permit establishes three levels of risk possible for a construction site. Risk is calculated in two parts: 1) Project Sediment Risk, and 2) Receiving Water Risk.

- **Minimum Requirements Specified:** this General Permit imposes more minimum BMPs and requirements that were previously only required as elements of the SWPPP or were suggested by guidance.

- **Project Site Soil Characteristics Monitoring and Reporting:** this General Permit provides the option for dischargers to monitor and report the soil characteristics at their project location. The primary purpose of this requirement is to provide better risk determination and eventually better program evaluation.

- **Effluent Monitoring and Reporting:** this General Permit requires effluent monitoring and reporting for pH and turbidity in storm water discharges. The purpose of this monitoring is to determine compliance with the NELs and evaluate whether NALs included in this General Permit are exceeded.

- **Receiving Water Monitoring and Reporting:** this General Permit requires some Risk Level 3 dischargers to monitor receiving waters and conduct bioassessments.

- **Post-Construction Storm Water Performance Standards:** this General Permit specifies runoff reduction requirements for all sites not covered by a Phase I or Phase II MS4 NPDES permit, to avoid, minimize and/or mitigate post-construction storm water runoff impacts.

- **Rain Event Action Plan:** this General Permit requires certain sites to develop and implement a Rain Event Action Plan (REAP) that must be designed to protect all exposed portions of the site within 48 hours prior to any likely precipitation event.

- **Annual Reporting:** this General Permit requires all projects that are enrolled for more than one continuous three-month period to submit information and annually certify that their site is in compliance
with these requirements. The primary purpose of this requirement is to provide information needed for overall program evaluation and public information.

Certification/Training Requirements for Key Project Personnel: this General Permit requires that key personnel (e.g., SWPPP preparers, inspectors, etc.) have specific training or certifications to ensure their level of knowledge and skills are adequate to ensure their ability to design and evaluate project specifications that will comply with General Permit requirements.

Linear Underground/Overhead Projects: this General Permit includes requirements for all Linear Underground/Overhead Projects (LUPs).
II. RATIONALE

A. General Permit Approach

A general permit for construction activities is an appropriate permitting approach for the following reasons:

1. A general permit is an efficient method to establish the essential regulatory requirements for a broad range of construction activities under differing site conditions;

2. A general permit is the most efficient method to handle the large number of construction storm water permit applications;

3. The application process for coverage under a general permit is far less onerous than that for individual permit and hence more cost effective;

4. A general permit is consistent with USEPA’s four-tier permitting strategy, the purpose of which is to use the flexibility provided by the CWA in designing a workable and efficient permitting system; and

5. A general permit is designed to provide coverage for a group of related facilities or operations of a specific industry type or group of industries. It is appropriate when the discharge characteristics are sufficiently similar, and a standard set of permit requirements can effectively provide environmental protection and comply with water quality standards for discharges. In most cases, the proposed general permit will provide sufficient and appropriate management requirements to protect the quality of receiving waters from discharges of storm water from construction sites.

6. There may be instances where a general permit is not appropriate for a specific construction project. A Regional Water Board may require any discharger otherwise covered under the General Permit to apply for and obtain an Individual Permit or apply for coverage under a more specific General Permit. The Regional Water Board must determine that this General Permit does not provide adequate assurance that water quality will be protected, or that there is a site-specific reason why an individual permit should be required.

B. Construction Activities Covered

1. Construction activity subject to this General Permit:

Any construction or demolition activity, including, but not limited to, clearing, grading, grubbing, or excavation, or any other activity that results in a land disturbance of equal to or greater than one acre.

Construction activity that results in land surface disturbances of less than one acre if the construction activity is part of a larger common plan of development or the sale of one or more acres of disturbed land surface.

Construction activity related to residential, commercial, or industrial development on lands currently used for agriculture including, but not limited to, the construction of buildings related to agriculture that are considered industrial pursuant to USEPA regulations, such as dairy barns or food processing facilities.

Construction activity associated with LUPs including, but not limited to, those activities necessary for the installation of underground and overhead linear facilities (e.g., conduits, substructures, pipelines, towers, poles, cables, wires, connectors, switching, regulating and transforming equipment and associated ancillary facilities) and include, but are not limited to, underground utility mark-out, potholing, concrete
and asphalt cutting and removal, trenching, excavation, boring and drilling, access road and pole/tower pad and cable/wire pull station, substation construction, substructure installation, construction of tower footings and/or foundations, pole and tower installations, pipeline installations, welding, concrete and/or pavement repair or replacement, and stockpile/borrow locations.

Discharges of sediment from construction activities associated with oil and gas exploration, production, processing, or treatment operations or transmission facilities.3

Storm water discharges from dredge spoil placement that occur outside of U.S. Army Corps of Engineers jurisdiction4 (upland sites) and that disturb one or more acres of land surface from construction activity are covered by this General Permit. Construction projects that intend to disturb one or more acres of land within the jurisdictional boundaries of a CWA § 404 permit should contact the appropriate Regional Water Board to determine whether this permit applies to the project.

2. Linear Underground/Overhead Projects (LUPs) subject to this General Permit:

Underground/overhead facilities typically constructed as LUPs include, but are not limited to, any conveyance, pipe, or pipeline for the transportation of any gaseous, liquid (including water, wastewater for domestic municipal services), liquefied, or slurry substance; any cable line or wire for the transmission of electrical energy; any cable line or wire for communications (e.g., telephone, telegraph, radio or television messages); and associated ancillary facilities. Construction activities associated with LUPs include, but are not limited to, those activities necessary for the installation of underground and overhead linear facilities (e.g., conduits, substructures, pipelines, towers, poles, cables, wires, connectors, switching, regulating and transforming equipment and associated ancillary facilities) and include, but are not limited to, underground utility mark-out, potholing, concrete and asphalt cutting and removal, trenching, excavation, boring and drilling, access road and pole/tower pad and cable/wire pull station, substation construction, substructure installation, construction of tower footings and/or foundations, pole and tower installations, pipeline installations, welding, concrete and/or pavement repair or replacement, and stockpile/borrow locations.

Water Quality Order 2003-0007-DWQ regulated construction activities associated with small LUPs that resulted in land disturbances greater than one acre, but less than five acres. These projects were considered non-traditional construction projects. Attachment A of this Order now regulates all construction activities from LUPs resulting in land disturbances greater than one acre.

3. Common Plan of Development or Sale

USEPA regulations include the term “common plan of development or sale” to ensure that acreage within a common project does not artificially escape the permit requirements because construction activities are phased, split among smaller parcels, or completed by different owners/developers. In the absence of an exact definition of “common plan of development or sale,” the State Water Board is required to exercise its regulatory discretion in providing a common sense interpretation of the term as it applies to construction projects and permit coverage. An overbroad interpretation of the term would render meaningless the clear “one acre” federal permitting threshold and would potentially trigger permitting of almost any construction activity that occurs within an area that had previously received area-wide utility or road improvements.

3 Pursuant to the Ninth Circuit Court of Appeals’ decision in NRDC v. EPA (9th Cir. 2008) 526 F.3d 591, and subsequent denial of the USEPA’s petition for reconsideration in November 2008, oil and gas construction activities discharging storm water contaminated only with sediment are no longer exempt from the NPDES program.

4 A construction project that includes a dredge and/or fill discharge to any water of the United States (e.g., wetland, channel, pond, or marine water) requires a CWA Section 404 permit from the U.S. Army Corps of Engineers and a CWA Section 401 Water Quality Certification from the Regional Water Board or State Water Board.
Construction projects generally receive grading and/or building permits (Local Permits) from local authorities prior to initiating construction activity. These Local Permits spell out the scope of the project, the parcels involved, the type of construction approved, etc. Referring to the Local Permit helps define “common plan of development or sale.” In cases such as tract home development, a Local Permit will include all phases of the construction project including rough grading, utility and road installation, and vertical construction. All construction activities approved in the Local Permit are part of the common plan and must remain under the General Permit until construction is completed. For custom home construction, Local Permits typically only approve vertical construction as the rough grading, utilities, and road improvements were already independently completed under the a previous Local Permit. In the case of a custom home site, the homeowner must submit plans and obtain a distinct and separate Local Permit from the local authority in order to proceed. It is not the intent of the State Water Board to require permitting for an individual homeowner building a custom home on a private lot of less than one acre if it is subject to a separate Local Permit. Similarly, the installation of a swimming pool, deck, or landscaping that disturbs less than one acre that was not part of any previous Local Permit are not required to be permitted.

The following are several examples of construction activity of less than one acre that would require permit coverage:

a. A landowner receives a building permit(s) to build tract homes on a 100-acre site split into 200 one-third acre parcels, (the remaining acreage consists of streets and parkways) which are sold to individual homeowners as they are completed. The landowner completes and sells all the parcels except for two. Although the remaining two parcels combined are less than one acre, the landowner must continue permit coverage for the two parcels.

b. One of the parcels discussed above is sold to another owner who intends to complete the construction as already approved in the Local Permit. The new landowner must file Permit Registration Documents (PRDs) to complete the construction even if the new landowner is required to obtain a separate Local Permit.

c. Landowner in (1) above purchases 50 additional one half-acre parcels adjacent to the original 200-acre project. The landowner seeks a Local Permit (or amendment to existing Local permit) to build on 20 parcels while leaving the remaining 30 parcels for future development. The landowner must amend PRDs to include the 20 parcels 14 days prior to commencement of construction activity on those parcels.

C. Construction Activities Not Covered

1. Traditional Construction Projects Not Covered

This General Permit does not apply to the following construction activity:

a. Emergency construction activities required to immediately protect public health and safety.

b. Routine maintenance to maintain original line and grade, hydraulic capacity, or original purpose of the facility. Routine maintenance only applies to road shoulder work, dirt or gravel road re-grading, or ditch clean-outs. For municipal operators, repaving of asphalt roads is routine maintenance except where the underlying and/or surrounding soil is cleared, graded, or excavated as part of the repaving operation.
c. Disturbances to land surfaces solely related to agricultural operations such as disking, harrowing, terracing and leveling, and soil preparation.

d. Discharges of storm water from areas on tribal lands; construction on tribal lands is regulated by a federal permit.

e. Discharges of storm water within the Lake Tahoe Hydrologic Unit. The Lahontan Regional Water Board has adopted its own permit to regulate storm water discharges from construction activity in the Lake Tahoe Hydrologic Unit (Regional Water Board 6SLT). Owners of construction projects in this watershed must apply for the Lahontan Regional Water Board permit rather than the statewide Construction General Permit. Construction projects within the Lahontan region must also comply with the Lahontan Region Project Guideline for Erosion Control (R6T-2005-0007 Section), which can be found at http://www.waterboards.ca.gov/lahontan/Adopted_Orders/2005/r6t_2005_0007.pdf

f. Construction activity that disturbs less than one acre of land surface, unless part of a larger common plan of development or the sale of one or more acres of disturbed land surface.

g. Construction activity covered by an individual NPDES Permit for storm water discharges.

h. Discharges from small (1 to 5 acre) construction activities with an approved Rainfall Erosivity Waiver (authorized by the USEPA Phase II regulations) certifying to the State Water Board that small construction activites will only occur when the rainfall R factor (erosivity value from the Revised Universal Soil Loss Equation) is less than 5.

i. Landfill construction activity that is subject to the Industrial General Permit.

j. Construction activity that discharges to Combined Sewer Systems.

k. Conveyances that discharge storm water runoff combined with municipal sewage.

2. Linear Projects Not Covered

a. LUP construction activity does not include linear routine maintenance projects. Routine maintenance projects are projects associated with operations and maintenance activities that are conducted on existing lines and facilities and within existing right-of-way, easements, franchise agreements, or other legally binding agreements of the discharger. Routine maintenance projects include, but are not limited to projects that are conducted to:

i. Maintain the original purpose of the facility or hydraulic capacity.

ii. Update existing lines and facilities to comply with applicable codes, standards, and regulations regardless if such projects result in increased capacity.

iii. Repairing leaks.

5Update existing lines includes replacing existing lines with new materials or pipes.
Routine maintenance does not include construction of new\(^6\) lines or facilities resulting from compliance with applicable codes, standards, and regulations.

Routine maintenance projects do not include those areas of maintenance projects that are outside of an existing right-of-way, franchise, easements, or agreements. When a project must secure new areas, those areas may be subject to this General Permit based on the area of disturbed land outside the original right-of-way, easement, or agreement.

b. LUP construction activity does not include field activities associated with the planning and design of a project (e.g., activities associated with route selection).

c. Tie-ins conducted immediately adjacent to “energized” or “pressurized” facilities by the discharger or their authorized representative are not considered construction activities where all other LUP construction activities associated with the tie-in are covered by an NOI and SWPPP of a third party or municipal agency.

d. LUP construction activity does not include activities associated with responding to emergencies to protect public health and safety and restoration of public services after natural or manmade disasters.

3. EPA’s Small Construction Rainfall Erosivity Waiver

EPA’s Storm Water Phase II Final Rule provides the option for a Small Construction Rainfall Erosivity Waiver. This waiver applies to small construction sites between 1 and 5 acres, and allows permitting authorities to waive those sites that do not have adverse water quality impacts.

Dischargers eligible for this waiver are exempt from Construction General Permit Coverage. In order to obtain the waiver, the discharger must certify to the State Water Board that small construction activity will occur only when the rainfall erosivity factor is less than 5 (“R” in the Revised Universal Soil Loss Equation). The period of construction activity begins at initial earth disturbance and ends with final stabilization. Where vegetation will be used for final stabilization, the date of installation of a practice that provides interim non-vegetative stabilization can be used for the end of the construction period. The operator must agree (as a condition waiver eligibility) to periodically inspect and properly maintain the area until the criteria for final stabilization as defined in the General Permit have been met. If use of this interim stabilization eligibility condition was relied on to qualify for the waiver, signature on the waiver with a certification statement constitutes acceptance of and commitment to complete the final stabilization process. The discharger must submit a waiver certification to the State Board prior to commencing construction activities.

USEPA funded a cooperative agreement with Texas A&M University to develop an online rainfall erosivity calculator. Dischargers can access the calculator from EPA’s website at: www.epa.gov/npdes/stormwater/cgp. Use of the calculator allows the discharger to determine potential eligibility for the rainfall erosivity waiver. It may also be useful in determining the time periods during which construction activity could be waived from permit coverage.

D. Obtaining and Terminating Permit Coverage

The landowner must obtain coverage under this General Permit, except in two limited circumstances. First, where the construction of pipelines, utility lines, fiber-optic cables, or other linear

\(^6\)New lines are those that are not associated with existing facilities and are not part of a project to update or replace existing lines.
underground/overhead projects will occur across several properties, the utility company, municipality, or
other public or private company or agency that owns or operates the linear underground/overhead project
is responsible for obtaining coverage under the General Permit. Second, where there is a lease of a
mineral estate (oil, gas, geothermal, aggregate, precious metals, and/or industrial metals), the lessee is
responsible for obtaining coverage under the General Permit. To obtain coverage, the landowner or other
entity described above must file Permit Registration Documents (PRDs) prior to the commencement of
construction activity. Failure to obtain coverage under this General Permit for storm water discharges to
waters of the United States is a violation of the CWA and the California Water Code.

To obtain coverage under this General Permit, dischargers must electronically file the PRDs, which
include a Notice of Intent (NOI), Storm Water Pollution Prevention Plan (SWPPP), and other documents
required by this General Permit, and mail the appropriate permit fee to the State Water Board. It is
expected that as the storm water program develops, the Regional Water Boards may issue General
Permits or Individual Permits that contain more specific permit provisions. When this occurs, this General
Permit will no longer regulate those dischargers that obtain coverage under Individual Permits.

The application requirements of the General Permit establish a mechanism to clearly identify the
responsible parties, locations, and scope of operations of dischargers covered by the General Permit and
to document the discharger’s knowledge of the General Permit’s requirements.

This General Permit provides a grandfathering exception to existing dischargers subject to Water Quality
Order No. 99-08-DWQ. Construction projects covered under Water Quality Order No. 99-08-DWQ that
are beyond the design stages shall obtain permit coverage at the Risk Level 1. The Regional Water
Boards have the authority to require Risk Determination to be performed on projects currently covered
under Water Quality Order No. 99-08-DWQ where they deem necessary.

Dischargers must file a Notice of Termination (NOT) with the Regional Water Board when construction is
complete or ownership has been transferred. The discharger must certify that all State and local
requirements have been met in accordance with this General Permit. In order for construction to be
found complete, the discharger must install post-construction storm water management measures and
establish a long-term maintenance plan. This requirement is intended to ensure that the post-
construction conditions at the project site do not cause or contribute to direct or indirect water quality
impacts (i.e., pollution and/or hydromodification) upstream and downstream. Specifically, the discharger
must demonstrate compliance with the post-construction standards set forth in this General Permit
(Section XIII). The owner/discharger is responsible for all compliance issues including all annual fees
until the NOT has been filed and approved by the local Regional Water Board.

E. Discharge Prohibitions

This General Permit authorizes the discharge of storm water to surface waters from construction activities
that result in the disturbance of one or more acres of land, provided that the discharger satisfies all permit
conditions set forth in the Order. This General Permit prohibits the discharge of pollutants other than
storm water and authorized non-storm water discharges, and prohibits all discharges which contain a
hazardous substance in excess of reportable quantities established in 40 C.F.R. §§ 117.3 and 302.4,
unless a separate NPDES Permit has been issued to regulate those discharges. In addition, this General
Permit incorporates discharge prohibitions contained in water quality control plans, as implemented by
the nine Regional Water Boards. Discharges to Areas of Special Biological Significance (ASBS) are
prohibited unless covered by an exception that the State Water Board has approved.

This General Permit prohibits the discharge of any pollutants other than storm water and authorized non-
storm water discharges. Non-storm water discharges include a wide variety of sources, including
improper dumping, spills, or leakage from storage tanks or transfer areas. Non-storm water discharges
may contribute significant pollutant loads to receiving waters. Measures to control spills, leakage, and
dumping, and to prevent illicit connections during construction must be addressed through structural as
well as non-structural BMPs. The State Water Board recognizes, however, that certain non-storm water
discharges may be necessary for the completion of construction projects. Authorized non-storm water
discharges may include those from non-chlorinated potable water sources such as: fire hydrant flushing, irrigation of vegetative erosion control measures, pipe flushing and testing, water to control dust, uncontaminated ground water dewatering, and other discharges not subject to a separate general NPDES permit adopted by a region. Therefore this General Permit authorizes such discharges provided they meet the following conditions.

These authorized non-storm water discharges must:

1. be infeasible to eliminate;
2. comply with BMPs as described in the SWPPP;
3. filter or treat, using appropriate technology, all dewatering discharges from sedimentation basins;
4. meet the NELs and NALs for pH and turbidity; and
5. not cause or contribute to a violation of water quality standards.

Additionally, authorized non-storm water discharges must not used to clean up failed or inadequate construction or post-construction BMPs designed to keep materials onsite. Authorized non-storm water dewatering discharges may require a permit because some Regional Water Boards have adopted General Permits for dewatering discharges.

This General Permit prohibits the discharge of storm water that causes or threatens to cause pollution, contamination, or nuisance; but it also allows the discharger to determine the most economical, effective, and innovative BMPs.

F. Effluent Standards for All Types of Discharges

1. Technology-Based Effluent Limitations

Permits for storm water discharges associated with construction activity must meet all applicable provisions of Sections 301 and 402 of the CWA. These provisions require controls of pollutant discharges that utilize best available technology economically achievable (BAT) for toxic pollutants and non conventional pollutants and best conventional pollutant control technology (BCT) for conventional pollutants. Additionally, these provisions require controls of pollutant discharges to reduce pollutants and any more stringent controls necessary to meet water quality standards. The USEPA has already established such limitations, known as effluent limitation guidelines (ELGs), for some industrial categories. This is not the case with construction discharges. In instances where there are no ELGs the permit writer is to use best professional judgment (BPJ) to establish requirements that the discharger must meet using BAT/BCT technology. This General Permit contains both narrative effluent limitations and new numeric effluent limitations for pH and turbidity, set using the best professional judgment (BPJ) equivalent to BAT and BCT (respectively).

BAT/BCT technologies not only include passive systems such as conventional runoff and sediment control, but also treatment systems such as coagulation/flocculation using sand filtration, when appropriate. Such technologies allow for effective treatment of soil particles less 0.02 mm (medium silt) in diameter. The discharger must install structural controls, as necessary, such as erosion and sediment controls that meet BAT and BCT to achieve compliance with water quality standards. The narrative effluent limitations constitute compliance with the requirements of the CWA.
The numeric effluent limitations for pH and turbidity are based upon BPJ, which authorizes the State Water Board to issue a permit containing “such conditions as the Administrator determines are necessary to carry out the provisions of this Chapter” (CWA § 402(a)(1), 33 U.S.C. § 1342(a)(1).) To the extent that EPA-promulgated effluent limitations are inapplicable, the State Water Board must consider the appropriate technology for the category or class of point sources, based upon all available information and any unique factors relating to the sources. In addition, the permitting authority must consider a number of factors including the cost of achieving effluent reductions in relation to the effluent reduction benefits, the age of the equipment and facilities, the processes employed and any required process changes, engineering aspects of the control technologies, non-water quality environmental impacts (including energy requirements), and other such other factors as the State Water Board deems appropriate (CWA 304(b)(1)(B)).

The State Water Board has concluded that the establishment of BAT/BCT will not create or aggravate other environmental problems through increases in air pollution, solid waste generation, or energy consumption. While there may be a slight increase in non-water quality impacts due to the implementation of additional monitoring or the construction of additional BMPs, these impacts will be negligible in comparison with the construction activities taking place on site and would be justified by the water quality benefits associated with compliance.

Considerations related to the processes employed and the changes necessitated by the adoption of the BAT/BCT effluent limits have been assessed throughout the stakeholder process (e.g., the Blue Ribbon Panel and the March 2007 preliminary draft) and are discussed in detail in Section I.C of this Fact Sheet. The following sections set forth the engineering aspects of the control technologies and the rationale for the determination of the numeric effluents for pH and turbidity.

In consideration of the costs for the establishment of BAT and BCT limits for pH and turbidity, existing requirements for the control of storm water pollution from construction sites have been established by USEPA and the previous Construction General Permit (State Water Board Order No. 99-08-DWQ) issued by the State Water Board. The General Permit establishes one, consistent set of performance standards for all levels and types of discharges (i.e., risk, linear utility, and ATS). The only difference is that for each level or type of discharge there may be more or less specific effluent limitations (e.g., the addition of numeric effluent limitations for turbidity applies to level/type 3 discharges). And the numeric effluent limitations themselves represent a minimum technology standard. In other words, the additional numeric effluent limitations, compared to the existing permit's narrative effluent limitations, do not increase compliance requirements; rather, they simply represent a point where one can quantitatively measure compliance with the lower end of the range of required technologies. Therefore, the compliance costs associated with the BAT/BCT numeric effluent limitations in this permit only differ by the costs required to measure compliance with the NELs when compared to the baseline compliance costs to comply with the limitations already established through EPA regulations and the existing Construction General Permit.

The State Water Board estimates these measurement costs to be approximately $1000 per construction site for the duration of the project. This represents the estimated cost of purchasing (or renting) monitoring equipment, in this case a turbidimeter (~$600) and a pH meter (~$400). In some cases the costs may be higher or lower. Costs could be lower if the discharger chooses to design and implement the project in a manner where effluent monitoring is likely to be avoided (e.g., no exposure during wet weather seasons, no discharge due to containment, etc.). Costs could be more if the project is subject to many effluent monitoring events or if the discharger exceeds NALs and/or NELs, resulting in additional monitoring requirements.

i. **pH NELs**

Given the potential contaminants, the minimum standard method for control of pH in runoff requires the use of preventive measures such as avoiding concrete pours during rainy weather, covering concrete and directing flow away from fresh concrete if a pour occurs during rain, covering scrap drywall and stucco materials when stored outside and potentially exposed to rain, and other housekeeping measures. If necessary, pH-impaired storm water from construction sites can be treated in a filter or settling pond or basin, with additional natural or chemical treatment required to meet pH limits set forth in this permit. The
basin or pond acts as a collection point and holds storm water for a sufficient period for the contaminants to be settled out, either naturally or artificially, and allows any additional treatment to take place. The State Water Board considers these techniques to be equivalent to BCT. In determining the proposed pH concentration limit for discharges, the State Water Board used BPJ to set these limitations.

The chosen proposed limits were established by calculating three standard deviations above and below the mean pH of runoff from highway construction sites\(^7\) in California. Proper implementation of BMPs should result in discharges that are within the range of 6.0 to 8.5 pH Units.

\[\text{ii. Turbidity NEL}\]

The Turbidity NEL of 500 NTU was developed using an ecoregion-specific dataset developed by Simon et. al. (2004)\(^8\) and Statewide Regional Water Quality Control Board Enforcement Data. A 1:3 relationship between turbidity (expressed as NTU) and suspended sediment concentration (expressed as mg/L) is assumed based on a review of suspended sediment and turbidity data from three gages used in the USGS National Water Quality Assessment Program:

USGS 11074000 SANTA ANA R BL PRADO DAM CA
USGS 11447650 SACRAMENTO R A FREEPORT CA
USGS 11303500 SAN JOAQUIN R NR VERNALIS CA

In addition to representing the minimal technology expected, the turbidity NEL represents a bridge between the narrative effluent limitations and receiving water limitations. To support this NEL staff analyzed construction site discharge information (some monitoring data, some estimates) and receiving water monitoring information.

Since the turbidity NEL represents the minimal technology expected at a site, compliance with this value does not necessarily represent compliance with either the narrative effluent limitations (as enforced through the BAT/BCT standard) or the receiving water limitations. In the San Diego region, some inland surface waters have a receiving water objective for turbidity equal to 20 NTU. Obviously a discharge up to, but not exceeding, the turbidity NEL of 500 NTU may still cause or contribute to the exceedance of the 20 NTU standard. Most of the waters of the State are protected by turbidity objectives based on background conditions.

Table 1 - Regional Water Board Basin Plans, Water Quality Objectives for Turbidity

<table>
<thead>
<tr>
<th>REGIONAL WATER BOARD</th>
<th>WQ Objective</th>
<th>Background/Natural Turbidity</th>
<th>Maximum Increase</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Based on background</td>
<td>All levels</td>
<td>20%</td>
</tr>
<tr>
<td>2</td>
<td>Based on background</td>
<td>> 50 NTU</td>
<td>10%</td>
</tr>
<tr>
<td>3</td>
<td>Based on background</td>
<td>0-50 JTU 50-100 JTU > 100 JTU</td>
<td>20% 10% 10%</td>
</tr>
<tr>
<td>4</td>
<td>Based on background</td>
<td>0-50 NTU > 50 NTU</td>
<td>20% 10%</td>
</tr>
<tr>
<td>5</td>
<td>Based on background</td>
<td>0-5 NTU 5-50 NTU</td>
<td>1 NTU 20%</td>
</tr>
</tbody>
</table>

Table 2 shows the suspended sediment concentrations at the 1.5 year flow recurrence interval for the 12 ecoregions in California from Simon et al. (2004).

Table 2 - Results of Ecoregion Analysis

<table>
<thead>
<tr>
<th>Ecoregion</th>
<th>Percent of California Land Area</th>
<th>Median Suspended Sediment Concentration (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9.1</td>
<td>874</td>
</tr>
<tr>
<td>4</td>
<td>0.2</td>
<td>120</td>
</tr>
<tr>
<td>5</td>
<td>8.8</td>
<td>35.6</td>
</tr>
<tr>
<td>6</td>
<td>20.7</td>
<td>1530</td>
</tr>
<tr>
<td>7</td>
<td>7.7</td>
<td>122</td>
</tr>
<tr>
<td>8</td>
<td>3.0</td>
<td>47.4</td>
</tr>
<tr>
<td>9</td>
<td>9.4</td>
<td>284</td>
</tr>
<tr>
<td>13</td>
<td>5.2</td>
<td>143</td>
</tr>
<tr>
<td>14</td>
<td>21.7</td>
<td>5150</td>
</tr>
<tr>
<td>78</td>
<td>8.1</td>
<td>581</td>
</tr>
<tr>
<td>80</td>
<td>2.4</td>
<td>199</td>
</tr>
<tr>
<td>81</td>
<td>3.7</td>
<td>503</td>
</tr>
<tr>
<td></td>
<td>Area-weighted average</td>
<td>1633</td>
</tr>
</tbody>
</table>

If a 1:3 relationship between turbidity and suspended sediment is assumed, the median turbidity is 544 NTU.

Table 3 - Sampling Data taken by Regional Water Board Staff

<table>
<thead>
<tr>
<th>WDID#</th>
<th>Region</th>
<th>Site Name</th>
<th>NTU Value Measured</th>
</tr>
</thead>
<tbody>
<tr>
<td>5S34C331884</td>
<td>5S</td>
<td>Bradshaw Interceptor Section 6B</td>
<td>1800</td>
</tr>
<tr>
<td>5S05C325110</td>
<td>5S</td>
<td>Bridal wood Subdivision</td>
<td>1670</td>
</tr>
<tr>
<td>5S48C336297</td>
<td>5S</td>
<td>Cheyenne at Browns Valley</td>
<td>1629</td>
</tr>
</tbody>
</table>
The results of the Simon et. al dataset and construction site administrative civil liability (ACL) data suggest that an appropriate turbidity numeric effluent limit may fall in the range of 500 to 1650 NTU. It also bears mentioning that turbidimeters commonly used for field measurement tend to have an effective measurement range of 0-1000 NTU. To keep this parameter and the costs of compliance as low as possible, staff has determined, using its BPJ, that it is most cost effective to set the numeric effluent limitation for turbidity at 500 NTU.

a. Compliance Storm

In response to public comments on the last draft and the recommendations of the expert panel, this General Permit contains “compliance storm event” exceptions from the technology-based NELs. The rationale is that technology-based requirements are developed assuming a certain design storm (defined as the storm producing a rainfall amount for a specified BMPs capacity). Compliance thresholds are needed for storm events above and beyond the design storms assumed to determine the technology-based NELs. For Risk Level 3 project sites applicable to NELs, this General Permit establishes a compliance storm event as the equivalent rainfall in a 5-year, 24-hour storm. This compliance storm was chosen due to it’s relative infrequent occurrence and the fact that the runoff volume associated with it is not as large as a 10-year, 24-hour storm event. The discharger shall determine this value using Western Regional Climate Center Precipitation Frequency Maps9 for 5-year 24-hour storm events in Northern and Southern California (note that these are expressed in tenths of inches – multiply by 10 to get inches).

b. TMDLs and Waste Load Allocations

Dischargers located within the watershed of a CWA § 303(d) impaired water body, for which a TMDL for sediment has been adopted by the Regional Water Board or USEPA, must comply with the approved TMDL if it identifies “construction activity” or land disturbance as a source of sediment. If it does, the TMDL should include a specific waste load allocation for this activity/source. The discharger, in this case, may be required by a separate Regional Water Board order to implement additional BMPs, conduct additional monitoring activities, and/or comply with an applicable waste load allocation and implementation schedule. If a specific waste load allocation has been established that would apply to a specific discharge, the Regional Water Board may adopt an Order requiring specific implementation actions necessary to meet that allocation. In the instance where an approved TMDL has specified a general waste load allocation to construction storm water discharges, but no specific requirements for construction sites have been identified in the TMDL, dischargers must consult with the state TMDL authority10 to confirm that adherence to a SWPPP that meets the requirements of the General Permit will be consistent with the approved TMDL.

2. Determining Compliance with Effluent Standards

a. Technology-Based Numeric Action Levels (NALs)

This General Permit contains technology-based NALs for pH and turbidity, and requirements for effluent monitoring at all sites. Numeric action levels are essentially numeric benchmark values for certain parameters that, if exceeded in effluent sampling, trigger the discharger to take actions. Exceedance of an NAL does not itself constitute a violation of the General Permit. If the discharger fails to take the corrective action required by the General Permit, though, that may constitute a violation.

9 http://www.wrcc.dri.edu/pcpnfreq/nca5y24.gif & http://www.wrcc.dri.edu/pcpnfreq/sca5y24.gif
10 http://www.waterboards.ca.gov/tmdl/tmdl.html
The primary purpose of NALs is to assist dischargers in evaluating the effectiveness of their on-site measures. Construction sites need to employ many different systems that must work together to achieve compliance with the permit's requirements. The NALs chosen should indicate whether the systems are working as intended.

Another purpose of NALs is to provide information regarding construction activities and water quality impacts. This data will provide the State and Regional Water Boards and the rest of the storm water community with more information about levels and types of pollutants present in runoff and how effective the dischargers BMPs are at reducing pollutants in effluent. The State Water Board also hopes to learn more about the linkage between effluent and receiving water quality. In addition, these requirements will provide information on the mechanics needed to establish compliance monitoring programs at construction sites in future permit deliberations.

i. pH

The chosen proposed limits were established by calculating one standard deviation above and below the mean pH of runoff from highway construction sites\(^\text{11}\) in California. Proper implementation of BMPs should result in discharges that are within the range of 6.5 to 8.5 pH Units.

The Caltrans study included 33 highway construction sites throughout California over a period of four years, which included 120 storm events. All of these sites had typical BMPs in place that would be conventional at all types of construction sites in California.

ii. Turbidity

BPJ was used to develop an NAL that can be used as a learning tool to help dischargers improve their site controls, and to provide meaningful information on the effectiveness of storm water controls. A statewide turbidity NAL has been set at 250 NTU.

G. Receiving Water Limitations

Construction-related activities that cause or contribute to an exceedance of water quality standards must be addressed. The dynamic nature of construction activity allows the discharger the ability to quickly identify and monitor the source of the exceedances. This is because when storm water mobilizes sediment, it provides visual cues as to where corrective actions should take place and how effective they are once implemented.

This General Permit requires that storm water discharges and authorized non-storm water discharges must not contain pollutants that cause or contribute to an exceedance of any applicable water quality objective or water quality standards. The monitoring requirements in this General Permit for sampling and analysis procedures will help determine whether BMPs installed and maintained are preventing pollutants in discharges from the construction site that may cause or contribute to an exceedance of water quality standards.

Water quality standards consist of designated beneficial uses of surface waters and the adoption of ambient criteria necessary to protect those uses. When adopted by the State Water Board or a Regional Water Board, the ambient criteria are termed “water quality objectives.” If storm water runoff from construction sites contains pollutants, there is a risk that those pollutants could enter surface waters and cause or contribute to an exceedance of water quality standards. For that reason, dischargers should be aware of the applicable water quality standards in their receiving waters. (The best method to ensure

compliance with receiving water limitations is to implement BMPs that prevent pollutants from contact with storm water or from leaving the construction site in runoff.

In California, water quality standards are published in the Basin Plans adopted by each Regional Water Board, the California Toxics Rule (CTR), the National Toxics Rule (NTR), and the Ocean Plan.

Dischargers can determine the applicable water quality standards by contacting Regional Water Board staff or by consulting one of the following sources. The actual plans that contain the water quality standards can be viewed at the site of the appropriate Regional Water Board for Basin Plans (http://www.waterboards.ca.gov/regions.html), the State Water Board site for statewide plans (http://www.waterboards.ca.gov/plnspols/index.html), or the USEPA regulations for the NTR and CTR (40 C.F.R. §§ 131.36-38). Basin Plans and statewide plans are also available by mail from the appropriate Regional Water Board or the State Water Board. The USEPA regulations are available at http://www.epa.gov/. Additional information concerning water quality standards can be accessed through http://www.waterboards.ca.gov/stormwtr/gen_const.html

H. Training Qualifications and Requirements

The Blue Ribbon Panel (BRP) made the following observation about the lack of industry-specific training requirements:

“Currently, there is no required training or certification program for contractors, preparers of soil erosion and sediment control Storm Water Pollution Prevention Plans, or field inspectors.”

Order 99-08-DWQ does require that all dischargers train their employees on how to comply with the permit. But there is no specific curriculum or certification program required by Order 99-08-DWQ. This has resulted in inconsistent implementation by all affected parties - the dischargers, the local governments where the construction activity occurs, and the regulators required to enforce 99-08-DWQ. This General Permit requires SWPPP developers and practitioners to obtain appropriate training and makes this curriculum mandatory two years after adoption, to allow time for all to complete the course(s). State and Regional Water Board staff are working with many stakeholders to develop the curriculum and mechanisms needed to develop and deliver the courses.

To ensure that the preparation, implementation, and oversight of the SWPPP is sufficient for effective pollution prevention, the Qualified SWPPP Developer and Qualified SWPPP Practitioners responsible for creating, revising, overseeing, and implementing the SWPPP must attend a State Water Board sponsored or approved Qualified SWPPP Developer and Qualified SWPPP Practitioner training course.

I. Sampling, Monitoring, Reporting and Record Keeping

1. Monitoring Requirements

This General Permit requires visual and effluent water quality monitoring at all sites. It requires receiving water monitoring at some Risk Level 3 sites. All sites are required to submit annual reports, which contain various types of information, depending on the site characteristics and events. A summary of the monitoring and reporting requirements is found in Table 4.
Table 4 - Required Monitoring Elements for Risk Levels

<table>
<thead>
<tr>
<th>Risk Level</th>
<th>Visual</th>
<th>Non-visible Pollutant</th>
<th>Effluent</th>
<th>Receiving Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk Level 1</td>
<td>four types required: non-storm water, pre-rain and post-rain</td>
<td>not required</td>
<td>not required</td>
<td></td>
</tr>
<tr>
<td>Risk Level 2</td>
<td>three types required: non-storm water, pre-rain and post-rain</td>
<td>As needed (see below)</td>
<td>pH, turbidity</td>
<td>not required</td>
</tr>
<tr>
<td>Risk Level 3</td>
<td>three types required: non-storm water, pre-rain and post-rain</td>
<td>pH, turbidity, and SSC if turbidity NEL exceeded</td>
<td>pH, turbidity, SSC, and bioassessment</td>
<td></td>
</tr>
</tbody>
</table>

a. Visual

All dischargers are required to conduct quarterly, non-storm water visual inspections. For these inspections, the discharger must visually observe each drainage area for the presence of (or indications of prior) unauthorized and authorized non-storm water discharges and their sources. For storm-related inspections, dischargers must visually observe storm water discharges at all discharge locations within one business day after a qualifying event. For this requirement, a qualifying rain event is one producing precipitation of ½ inch or more at the time of discharge. Dischargers must conduct a post-storm event inspection to (1) identify whether BMPs were adequately designed, implemented, and effective, and (2) identify any additional BMPs necessary and revise the SWPPP accordingly. Dischargers must maintain on-site records of all visual observations, personnel performing the observations, observation dates, weather conditions, locations observed, and corrective actions taken in response to the observations.

b. Non-Visible Pollutant Monitoring

This General Permit requires that all dischargers develop a sampling and analysis strategy for monitoring pollutants that are not visually detectable in storm water. Monitoring for non-visible pollutants must be required at any construction site when the exposure of construction materials occurs and where a discharge can cause or contribute to an exceedance of a water quality objective.

Of significant concern for construction discharges are the pollutants found in materials used in large quantities at construction sites throughout California and exposed throughout the rainy season, such as cement, flyash, and other recycled materials or by-products of combustion. The water quality standards that apply to these materials will depend on their composition. Some of the more common storm water pollutants from construction activity are not CTR pollutants. Examples of non-visible pollutants include glyphosate (herbicides), diazinon and chlorpyrifos (pesticides), nutrients (fertilizers), and molybdenum (lubricants). The use of diazinon and chlorpyrifos is a common practice among landscaping professionals and may trigger sampling and analysis requirements if these materials come into contact with storm water. High pH values from cement and gypsum, high pH and SSC from wash waters, and chemical/fecal contamination from portable toilets, also are not CTR pollutants. Although some of these constituents do have numeric water quality objectives in individual Basin Plans, many do not and are subject only to narrative water quality standards (i.e. not causing toxicity). Dischargers are encouraged to discuss these issues with Regional Water Board staff and other storm water quality professionals.

The most effective way to avoid the sampling and analysis requirements, and to ensure permit compliance, is to avoid the exposure of construction materials to precipitation and storm water runoff. Materials that are not exposed do not have the potential to enter storm water runoff, and therefore receiving waters sampling is not required. Preventing contact between storm water and construction materials is one of the most important BMPs at any construction site.
Preventing or eliminating the exposure of pollutants at construction sites is not always possible. Some materials, such as soil amendments, are designed to be used in a manner that will result in exposure to storm water. In these cases, it is important to make sure that these materials are applied according to the manufacturer’s instructions and at a time when they are unlikely to be washed away. Other construction materials can be exposed when storage, waste disposal or the application of the material is done in a manner not protective of water quality. For these situations, sampling is required unless there is capture and containment of all storm water that has been exposed. In cases where construction materials may be exposed to storm water, but the storm water is contained and is not allowed to run off the site, sampling will only be required when inspections show that the containment failed or is breached, resulting in potential exposure or discharge to receiving waters.

The discharger must develop a list of potential pollutants based on a review of potential sources, which will include construction materials soil amendments, soil treatments, and historic contamination at the site. The discharger must review existing environmental and real estate documentation to determine the potential for pollutants that could be present on the construction site as a result of past land use activities.

Good sources of information on previously existing pollution and past land uses include:

i. Environmental Assessments;
ii. Initial Studies;
iii. Phase 1 Assessments prepared for property transfers; and
iv. Environmental Impact Reports or Environmental Impact Statements prepared under the requirements of the National Environmental Policy Act or the California Environmental Quality Act.

In some instances, the results of soil chemical analyses may be available and can provide additional information on potential contamination.

The potential pollutant list must include all non-visible pollutants that are known or should be known to occur on the construction site including, but not limited to, materials that:

i. are being used in construction activities;
ii. are stored on the construction site;
iii. were spilled during construction operations and not cleaned up;
iv. were stored (or used) in a manner that created the potential for a release of the materials during past land use activities;
v. were spilled during previous land use activities and not cleaned up; or
vi. were applied to the soil as part of past land use activities.

C. Water Quality – Effluent

Federal regulations require effluent monitoring for discharges subject to numeric action levels and numeric effluent limitations. Subsequently, all Risk Level 2 and 3 dischargers must perform sampling and analysis of storm water discharges to characterize discharges associated with construction activity from

12 40 C.F.R. § 122.44
the entire area disturbed by the project. Dischargers must collect samples of stored or contained storm water that is discharged subsequent to a storm event producing precipitation of ½ inch or more at the time of discharge.

Table 5- Storm Water Effluent Monitoring Requirements by Risk Level

<table>
<thead>
<tr>
<th>Risk Level</th>
<th>Frequency</th>
<th>Effluent Monitoring (Section E, below)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk Level 1</td>
<td>no monitoring required</td>
<td>non-visible pollutant parameters (if applicable)</td>
</tr>
<tr>
<td>Risk Level 2</td>
<td>samples beginning the first hour of any new discharge and samples during the first and last hour of every day of normal operations characterizing discharges associated with construction activity from the entire project disturbed area. (Minimum of 3 samples per day)</td>
<td>turbidity, pH, and non-visible pollutant parameters (if applicable)</td>
</tr>
<tr>
<td>Risk Level 3</td>
<td>samples beginning the first hour of any new discharge and samples during the first and last hour of every day of normal operations characterizing discharges associated with construction activity from the entire project disturbed area. (Minimum of 3 samples per day)</td>
<td>turbidity, pH, suspended sediment concentration (SSC)(^{14}) (only if turbidity NEL exceeded), plus non-visible pollutant parameters (if applicable)</td>
</tr>
</tbody>
</table>

Risk Level 1 dischargers must analyze samples for:

i. any parameters indicating the presence of pollutants identified in the pollutant source assessment required in Attachment C contained in the General Permit.

Risk Level 2 dischargers must analyze samples for:

i. pH and turbidity;

ii. any parameters indicating the presence of pollutants identified in the pollutant source assessment required in Attachment D contained in the General Permit, and

iii. any additional parameters for which monitoring is required by the Regional Water Board.

Risk Level 3 dischargers must analyze samples for:

i. pH, turbidity and SSC;

ii. any parameters indicating the presence of pollutants identified in the pollutant source assessment required in Attachment E contained in the General Permit, and

iii. any additional parameters for which monitoring is required by the Regional Water Board.

\(^{13}\) A new discharge is defined here as any type of discharge (storm water or non-storm water) that goes beyond the property boundary after at least a 48 hour period of no discharge.

\(^{14}\) Suspended Sediment Concentration monitoring is required for any Level 2 site that exceeds its turbidity NEL.
d. Water Quality – Receiving Water

In order to ensure that receiving water limitations are met, discharges subject to numeric effluent limitations (i.e., Risk Level 3 and ATS) must also monitor the downstream receiving water(s) for turbidity, SSC (if NEL exceeded) and pH.

i. Bioassessment Monitoring

This General Permit requires a bioassessment of receiving waters for dischargers of Risk Level 3 construction projects equal to or larger than 30 acres. Benthic macroinvertebrate samples will be taken upstream and downstream of the site’s discharge point in the receiving water. Bioassessments measure the quality of the stream by analyzing the aquatic life present. Higher levels of appropriate aquatic species tend to indicate a healthy stream; whereas low levels of organisms can indicate stream degradation. Active construction sites have the potential to discharge large amounts of sediment and pollutants into receiving waters. Requiring a bioassessment for large project sites, with the most potential to impact water quality, provides a snapshot of the health of the receiving water prior to initiation of construction activities. This snapshot can be used in comparison to the health of the receiving water after construction has commenced.

Each ecoregion (biologically and geographically related area) in the State has a specific yearly peak time where stream biota is in a stable and abundant state. This time of year is called an Index Period. The bioassessment requirements in this General Permit, requires benthic macroinvertebrate sampling within a sites index period. The State Water Board has developed a map designating index periods for the ecoregions in the State (Appendix 5).

This General Permit requires the bioassessment methods to be in accordance with the Surface Water Ambient Monitoring Program (SWAMP) in order to provide data consistency within the state as well as generate useable biological stream data.

Table 6- Receiving Water Monitoring Requirements by Risk Level

<table>
<thead>
<tr>
<th>Trigger</th>
<th>Receiving Water Monitoring Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk Level 1 not required</td>
<td>not required</td>
</tr>
<tr>
<td>Risk Level 2 not required</td>
<td>not required</td>
</tr>
<tr>
<td>Risk Level 3 none - all sampling events must include effluent and receiving water monitoring</td>
<td>turbidity, pH, SSC (if NEL exceeded) and bioassessment</td>
</tr>
</tbody>
</table>

2. Linear Monitoring and Sampling Requirements

Attachment A, establishes minimum monitoring and reporting requirements for all LUPs. It establishes different monitoring requirements depending on project complexity and risk to water quality. The monitoring requirements for Type 1 LUPs are less than Type 2 & 3 projects because of the lower potential these types of projects to impact water quality.

A discharger or its authorized representative shall prepare a monitoring program prior to the start of construction and immediately implement the program at the start of construction for LUPs. The monitoring program must be implemented at the appropriate level to protect water quality at all times throughout the life of the project.

a. Type 1 LUP Monitoring Requirements

A discharger or its authorized representative must conduct daily visual inspections of Type 1 LUPs during working hours while construction activities are occurring. Inspections are to be conducted by qualified
personnel and can be conducted in conjunction with other daily activities. Inspections will be conducted to ensure the BMPs are adequate, maintained, and in place at the end of the construction day. The discharger or its authorized representative will revise the SWPPP, as appropriate, based on the results of the daily inspections. Inspections can be discontinued in non-active construction areas where soil disturbing activities have been completed and final stabilization has been achieved (e.g., trench has been paved, substructures have been installed, and successful final vegetative cover or other stabilization criteria have been met).

A discharger or its authorized representative will implement the monitoring program for inspecting Type 1 LUPs. This program requires temporary and permanent stabilization BMPs after active construction is completed. Inspection activities will continue until adequate permanent stabilization has been established and will continue in areas where revegetation is chosen until minimum vegetative coverage has been established. Photographs shall be taken during site inspections and submitted to the State Water Board.

b. Type 2 & 3 LUP Monitoring Requirements

A discharger or its authorized representative must conduct daily visual inspections of Type 2 & 3 LUPs during working hours while construction activities are occurring. Inspections are to be conducted by qualified personnel and can be in conjunction with other daily activities.

All dischargers or their authorized representatives of Type 2 & 3 LUPs are required to conduct inspections by qualified personnel of the construction site during normal working hours prior to all anticipated storm events and after actual storm events. During extended storm events, the discharger or its authorized representative shall conduct inspections during normal working hours for each 24-hour period. Inspections can be discontinued in non-active construction areas where soil disturbing activities have been completed and final stabilization has been achieved (e.g., trench has been paved, substructures installed, and successful vegetative cover or other stabilization criteria have been met).

The goals of these inspections are (1) to identify areas contributing to a storm water discharge; (2) to evaluate whether measures to reduce pollutant loadings identified in the SWPPP are adequate and properly installed and functioning in accordance with the terms of the General Permit; and (3) to determine whether additional control practices or corrective maintenance activities are needed. Equipment, materials, and workers must be available for rapid response to failures and emergencies. All corrective maintenance to BMPs shall be performed as soon as possible, depending upon worker safety.

All dischargers or their authorized representatives shall develop and implement a monitoring program for inspecting Type 2 & 3 LUPs that require temporary and permanent stabilization BMPs after active construction is completed. Inspections will be conducted to ensure the BMPs are adequate and maintained. Inspection activities will continue until adequate permanent stabilization has been established and will continue in areas where revegetation is chosen until minimum vegetative coverage has been established.

A log of inspections conducted before, during, and after the storm events must be maintained in the SWPPP. The log will provide the date and time of the inspection and who conducted the inspection. Photographs must be taken during site inspections and submitted to the State Water Board.

c. Sampling Requirements for all LUP Project Types

This permit contains sampling and analysis requirements for visible pollutants (i.e., sedimentation/siltation, turbidity) and for non-visible pollutants.

Sampling for visible pollutants is required for Type 2 & 3 LUPs.

Non-visible pollutant monitoring is required for pollutants associated with construction sites and activities that (1) are not visually detectable in storm water discharges, and (2) are known or should be known to occur on the construction site, and (3) could cause or contribute to an exceedance of water quality objectives in the receiving waters. Sample collection for non-visible pollutants must only be required; (1)
during a storm event when pollutants associated with construction activities may be discharged with storm water runoff due to a spill, or in the event there was a breach, malfunction, failure, and/or leak of any BMP, and (2) the discharger or its authorized representative has failed to adequately clean the area of material and pollutants. Also a failure to implement appropriate BMPs will trigger sampling requirements the same as those required for a breach, malfunction and/or leak, when the discharger or its authorized representative has failed to implement appropriate BMPs prior to the next storm event.

Additional monitoring parameters may be required by the Regional Water Boards.

It is not anticipated that many LUPs will be required to collect samples for pollutants not visually detected in runoff due to the nature and character of the construction site and activities as previously described in this fact sheet. Most LUPs are constructed in urban areas with public access (e.g., existing roadways, road shoulders, parking areas, etc.). This raises a concern regarding the potential contribution of pollutants from vehicle use and/or from normal activities of the public (e.g., vehicle washing, landscape fertilization, pest spraying, etc.) in runoff from the project site. Since the dischargers are not the land owners of the project area and are not able to control the presence of these pollutants in the storm water that runs through their projects, it is not the intent of this General Permit to require dischargers to sample for these pollutants. This General Permit does not require the discharger or its authorized representative to sample for these types of pollutants except where the discharger or its authorized representative has brought materials onsite that contain these pollutants and when a condition (e.g., breach, failure, etc.) described above occurs.

3. Reporting Requirements

a. NEL Violation Report

All Risk Level 3 and LUP Type 3 dischargers must electronically submit all storm event sampling results to the State and Regional Water Boards, via the electronic data system, no later than 5 days after the conclusion of the storm event. The purpose of this is to notify the State and Regional Water Board, stakeholder agencies and organizations and the general public of the exceedance so that they can determine whether any followup (e.g., inspection, enforcement, etc.) is necessary to bring the site into compliance.

Specifically, the NEL Exceedance Report is required to contain:

- the analytical method(s), method reporting unit(s), and method detection limit(s) of each analytical parameter (analytical results that are less than the method detection limit are to be reported as "less than the method detection limit"); and
- the date, place, and time of sampling; visual observation (inspections); any measurements, including precipitation.
- description of the current BMPs associated with the effluent sample that exceeded the NEL and any proposed corrective actions taken

b. NAL Exceedance Report

In the event that any effluent sample exceeds an applicable NAL, all Risk Level 2 and LUP Type 2 dischargers must electronically submit all storm event sampling results to the State and Regional Water Boards no later than 10 days after the conclusion of the storm event. The Regional Water Boards have the authority to require the submittal of an NAL Exceedance Report.

Specifically, the NAL Exceedance Report is required to contain:
• the analytical method(s), method reporting unit(s), and method detection limit(s) of each analytical parameter (analytical results that are less than the method detection limit are to be reported as "less than the method detection limit");

• the date, place, and time of sampling; visual observation (inspections); any measurements, including precipitation; and

• a description of the current BMPs associated with the effluent sample that exceeded the NAL and any proposed corrective actions taken.

C. **Annual Report**

All dischargers must prepare and electronically submit an annual report no later than September 1 of each year using the Storm Water Annual Report Module (SWARM). The Annual Report must include a summary and evaluation of all sampling and analysis results, original laboratory reports, a summary of all corrective actions taken during the compliance year, and identification of any compliance activities or corrective actions that were not implemented.

4. **Record Keeping**

According to 40 C.F.R. Parts 122.21(p) and 122.41(j), the discharger is required to retain paper or electronic copies of all records required by this General Permit for a period of at least three years from the date generated or the date submitted to the State Water Board or Regional Water Boards. A discharger must retain records for a period beyond three years as directed by Regional Water Board.

J. Risk Determination

1. **Traditional Projects**

 a. **Overall Risk Determination**

 There are two major requirements related to site planning and risk determination in this General Permit. The project’s overall risk is broken up into two elements – (1) project sediment risk (the relative amount of sediment that can be discharged, given the project and location details) and (2) receiving water risk (the risk sediment discharges pose to the receiving waters).

 Project Sediment Risk:
 Project Sediment Risk is determined by multiplying the R, K, and LS factors from the Revised Universal Soil Loss Equation (RUSLE) to obtain an estimate of project-related bare ground soil loss expressed in tons/acre. The RUSLE equation is as follows:

 \[A = (R)(K)(LS)(C)(P) \]

 Where:
 \(A \) = the rate of sheet and rill erosion
 \(R \) = rainfall-runoff erosivity factor
 \(K \) = soil erodibility factor
 \(LS \) = length-slope factor
 \(C \) = cover factor (erosion controls)
 \(P \) = management operations and support practices (sediment controls)

 The C and P factors are given values of 1.0 to simulate bare ground conditions.

 There is a map option and a manual calculation option for determining soil loss. For the map option, the R factor for the project is calculated using the online calculator at http://cfpub.epa.gov/npdes/stormwater/LEW/lewCalculator.cfm. The product of K and LS are shown on
Figure 1. To determine soil loss in tons per acre, the discharger multiplies the R factor times the value for K times LS from the map.

For the manual calculation option, the R factor for the project is calculated using the online calculator at http://cfpub.epa.gov/npdes/stormwater/LEW/lewCalculator.cfm. The K and LS factors are determined using Appendix 1.
Soil loss of less than 15 tons/acre is considered **low** risk.
Soil loss between 15 and 75 is **medium** risk.
Soil loss over 75 acres is considered **high** risk.

The soil loss values and risk categories were obtained from mean and standard deviation RKLS values from the USEPA EMAP program. High risk is the mean RKLS value plus two standard deviations. Low risk is the mean RKLS value minus two standard deviations.

Receiving Water Risk:
Receiving water risk is based on whether a project drains to a sediment-sensitive waterbody. A sediment-sensitive waterbody is either

- on the most recent 303d list for waterbodies impaired for sediment;
- has a USEPA-approved Total Maximum Daily Load implementation plan for sediment; or
- has the beneficial uses of COLD, SPAWN, and MIGRATORY.

A project that meets at least one of the three criteria has a high receiving water risk. A list of sediment-sensitive waterbodies will be posted on the State Water Board’s website. It is anticipated that an interactive map of sediment sensitive water bodies in California will be available in the future.

The Risk Levels have been altered by eliminating the possibility of a Risk Level 4, and expanding the constraints for Risk Levels 1, 2, and 3. Therefore, projects with high receiving water risk and high sediment risk will be considered a Risk Level 3 risk to water quality.

In response to public and executive level comments, the Risk Level requirements have also been changed such that Risk Level 1 projects will be subject to minimum BMP and visual monitoring requirements, Risk Level 2 projects will be subject to NALs and some additional monitoring requirements, and Risk Level 3 projects will be subject to NELs, and more rigorous monitoring requirements such as receiving water monitoring and in some cases bioassessment.

Table 7 - Combined Risk Level Matrix

| Receiving Water Risk | Sediment Risk | |
|----------------------|---------------|
| **Low** | **Medium** | **High** |
| **Low** | **Level 1** | **Level 2** |
| **High** | **Level 2** | **Level 3** |

b. Effluent Standards

All dischargers are subject to the narrative effluent limitations specified in the General Permit. The narrative effluent limitations require storm water discharges associated with construction activity to meet all applicable provisions of Sections 301 and 402 of the CWA. These provisions require controls of pollutant discharges that utilize BAT and BCT to reduce pollutants and any more stringent controls necessary to meet water quality standards.

Risk Level 2, and 3 dischargers are subject to numeric effluent standards comparable to the project’s risk to water quality. Risk Level 2 dischargers that pose an intermediate risk to water quality are subject to technology-based NALs for pH and turbidity. Risk Level 3 dischargers that pose a high risk to water quality are subject to technology based NALs and technology-based NELs for pH and turbidity.
c. **Good Housekeeping**

Proper handling and managing of construction materials can help minimize threats to water quality. The discharger must consider good housekeeping measures for: construction materials, waste management, vehicle storage & maintenance, landscape materials, and potential pollutant sources. Examples include; conducting an inventory of products used, implementing proper storage & containment, and properly cleaning all leaks from equipment and vehicles.

d. **Non-Storm Water Management**

Non-storm water discharges directly connected to receiving waters or the storm drain system have the potential to negatively impact water quality. The discharger must implement measures to control all non-storm water discharges during construction. Examples include; properly washing vehicles in contained areas, cleaning streets, and minimizing irrigation runoff.

e. **Erosion Control**

The best way to minimize the risk of creating erosion and sedimentation problems during construction is to disturb as little of the land surface as possible by fitting the development to the terrain. When development is tailored to the natural contours of the land, little grading is necessary and, consequently, erosion potential is lower. Other effective erosion control measures include: preserving existing vegetation where feasible, limiting disturbance, and stabilizing and re-vegetating disturbed areas as soon as possible after grading or construction activities. Particular attention must be paid to large, mass-graded sites where the potential for soil exposure to the erosive effects of rainfall and wind is great and where there is potential for significant sediment discharge from the site to surface waters. Until permanent vegetation is established, soil cover is the most cost-effective and expeditious method to protect soil particles from detachment and transport by rainfall. Temporary soil stabilization can be the single most important factor in reducing erosion at construction sites. The discharger is required to consider measures such as: covering disturbed areas with mulch, temporary seeding, soil stabilizers, binders, fiber rolls or blankets, temporary vegetation, and permanent seeding. These erosion control measures are only examples of what should be considered and should not preclude new or innovative approaches currently available or being developed. Erosion control BMPs should be the primary means of preventing storm water contamination, and sediment control techniques should be used to capture any soil that becomes eroded.

Risk Level 3 dischargers pose a higher risk to water quality and are therefore additionally required to ensure that post-construction soil loss is equivalent to or less than the pre-construction levels.

f. **Sediment Control**

Sediment control BMPs should be the secondary means of preventing storm water contamination. When erosion control techniques are ineffective, sediment control techniques should be used to capture any soil that becomes eroded. The discharger is required to consider perimeter control measures such as: installing silt fences or placing hay bales or straw wattles below slopes. These sediment control measures are only examples of what should be considered and should not preclude new or innovative approaches currently available or being developed.

Because Risk Level 2 and 3 dischargers pose a higher risk to water quality, additional requirements for the application sediment controls are imposed on these projects. This General Permit also authorizes the Regional Water Boards to require Risk Level 3 dischargers to implement additional site-specific sediment control requirements if the implementation of other erosion or sediment controls are not adequately protecting the receiving waters.

g. Run-on and Runoff Control

Inappropriate management of run-on and runoff can result in excessive physical impacts to receiving waters from sediment and increased flows. The discharger is required to evaluate the quantity and quality of run-on and runoff from their project site through observation and sampling. Examples include; installing berms and other temporary run-on and runoff diversions.

Risk Level 1 dischargers with lower risks to impact water quality are not subject to the run-on and runoff control requirements unless an evaluation deems them necessary or visual inspections show that such controls are required.

h. Inspection, Maintenance and Repair

All measures must be periodically inspected, maintained and repaired to ensure that receiving water quality is protected. Frequent inspections coupled with thorough documentation and timely repair is necessary to ensure that all measures are functioning as intended.

i. Rain Event Action Plan (REAP)

A Rain Event Action Plan (REAP) is a written document, specific for each rain event. A REAP should be designed that when implemented it protects all exposed portions of the site within 48 hours of any likely precipitation event.

This General Permit requires Risk Level 2 and 3 dischargers to develop and implement a REAP designed to protect all exposed portions of their sites within 48 hours prior to any likely precipitation event. The REAP requirement is designed to ensure that the discharger has adequate materials, staff, and time to implement erosion and sediment control measures that are intended to reduce the amount of sediment and other pollutants generated from the active site. A REAP must be developed when there is a forecast of 50% or greater chance of precipitation in the project area. (The National Oceanic and Atmospheric Administration (NOAA) defines a change of precipitation as a probability of precipitation of 30% to 50% chance of producing precipitation in the project area. 16 NOAA defines the probability of precipitation (PoP) as the likelihood of occurrence (expressed as a percent) of a measurable amount (0.01 inch or more) of liquid precipitation (or the water equivalent of frozen precipitation) during a specified period of time at any given point in the forecast area.) Forecasts are normally issued for 12-hour time periods. Descriptive terms for uncertainty and aerial coverage are used as follows:

Table 8 -National Oceanic and Atmospheric Administration (NOAA) Definition of Probability of Precipitation (PoP)

<table>
<thead>
<tr>
<th>PoP</th>
<th>Expressions of Uncertainty</th>
<th>Aerial Coverage</th>
</tr>
</thead>
<tbody>
<tr>
<td>0%</td>
<td>none used</td>
<td>none used</td>
</tr>
<tr>
<td>10%</td>
<td>none used</td>
<td>isolated</td>
</tr>
<tr>
<td>20%</td>
<td>slight chance</td>
<td>isolated</td>
</tr>
<tr>
<td>30-50%</td>
<td>chance</td>
<td>scattered</td>
</tr>
<tr>
<td>60-70%</td>
<td>likely</td>
<td>numerous</td>
</tr>
<tr>
<td>80-100%</td>
<td>none used</td>
<td>none used</td>
</tr>
</tbody>
</table>

16 http://www.crh.noaa.gov/lot/severe/wxterms.php
The discharger must obtain the precipitation forecast information from the National Weather Service Forecast Office (http://www.srh.noaa.gov/).

2. Linear Projects

 a. Linear Risk Determination

LUPs vary in complexity and water quality concerns based on the type of project. This General Permit has varying application requirements based on the project's risk to water quality. Factors that lead to the characterization of the project include location, sediment risk, and receiving water risk.

Once a project type for the LUP has been established, the complexity of the project must be determined. As described below, LUPs have been categorized into three project types.

 i. **Type 1 LUPs**

Type 1 LUPs are those construction projects where:

1. \(70\% \) or more of the construction activity occurs on a paved surface and where areas disturbed during construction will be returned to preconstruction conditions or equivalent protection established at the end of the construction activities for the day, or

2. greater than \(30\% \) of construction activities occur within the non-paved shoulders or land immediately adjacent to paved surfaces, or where construction occurs on unpaved improved roads, including their shoulders or land immediately adjacent to them where:

 - Areas disturbed during construction will be returned to pre-construction conditions or equivalent protection established at the end of the construction activities for the day to minimize the potential for erosion and sediment deposition, or

 - Areas where established vegetation was disturbed during construction will be stabilized and re-vegetated by the end of project. When required, adequate temporary stabilization Best Management Practices (BMPs) will be installed and maintained until vegetation is established to meet minimum cover requirements established in this General Permit for final stabilization.

Type 1 LUPs typically do not have a high potential to impact storm water quality because (1) these construction activities are not typically conducted during a rain event, (2) these projects are normally constructed over a short period of time\(^\text{17}\), minimizing the duration that pollutants could potentially be exposed to rainfall; and (3) disturbed soils such as those from trench excavation are required to be hauled away, backfilled into the trench, and/or covered (e.g., metal plates, pavement, plastic covers over spoil piles) at the end of the construction day.

\[^{17}\text{Short period of time refers to a project duration of weeks to months, but typically less than one year in duration.}\]
ii. **Type 2 LUPs:**

Type 2 projects are assumed to have a combination of High, Medium, and Low project sediment risk along with High, Medium, and Low receiving water risk. Like Type 1 projects, Type 2 projects are typically constructed over a short period of time. However, these projects have a higher potential to impact water quality because they:

1. typically occur outside the more urban/developed areas
2. have larger areas of soil disturbance that are not closed or restored at the end of the day;
3. may have onsite stockpiles of soil, spoil and other materials;
4. cross or occur in close proximity to a wide variety of sensitive resources that may include, but are not limited to, steep topography and/or water bodies; and
5. have larger areas of disturbed soils that may be exposed for a longer time interval before final stabilization, cleanup and/or reclamation occurs.

This General Permit requires the discharger or its LRP to develop and implement an SWPPP for these construction activities that are specific for project type, location and characteristics.

iii. **Type 3 LUPs:**

Type 3 projects are assumed to have a combination of High and Medium project sediment risk along with High and Medium receiving water risk. Similar to Type 2 projects, Type 3 projects have a higher potential to impact water quality because they:

1. typically occur outside of the more urban/developed areas
2. have larger areas of soil disturbance that are not closed or restored at the end of the day;
3. may have onsite stockpiles of soil, spoil and other materials;
4. cross or occur in close proximity to a wide variety of sensitive resources that may include, but are not limited to, steep topography and/or water bodies; and
5. have larger areas of disturbed soils that may be exposed for a longer time interval before final stabilization, cleanup and/or reclamation occurs.

This General Permit requires the discharger or its authorized representative to develop and implement a SWPPP for these construction activities that are specific for project type, location, and characteristics.

b. **Linear Effluent Standards**

All LUPs are subject to the narrative effluent limitations specified in the General Permit.

Type 2 and 3 LUPs are subject to numeric effluent limitations comparable to the project type’s risk to water quality. Type 2 projects that pose an intermediate risk to water quality are subject to technology-based NALs for pH and turbidity. Type 3 projects posing a high risk to water quality are subject to technology based NALs and NELs for pH and turbidity.
c. **Linear Good Housekeeping**

Improper use and handling of construction materials could potentially cause a threat to water quality. In order to ensure proper site management of these construction materials, all LUP dischargers must comply with a minimum set of Good Housekeeping measures specified in this General Permit. These requirements are identical to the good housekeeping requirements applicable to traditional construction projects.

d. **Linear Non-Storm Water Management**

In order to ensure control of all non-storm water discharges during construction, all LUP dischargers must comply with the Non-Storm Water Management measures specified in this General Permit. These requirements are identical to the non-storm water management requirements applicable to traditional construction projects.

e. **Linear Erosion Control**

This General Permit requires all LUP dischargers to implement effective wind erosion control measures, and soil cover for inactive areas. These requirements are identical to the erosion control requirements applicable to traditional construction projects. Type 3 LUPs posing a higher risk to water quality are additionally required to ensure the post-construction soil loss is equivalent to or less than the pre-construction levels.

f. **Linear Sediment Control**

In order to ensure control and containment of all sediment discharges, all LUP dischargers must comply with the general Sediment Control measures specified in this General Permit. These requirements are identical to the sediment control requirements applicable to traditional construction projects. Additional requirements for sediment controls are imposed on Type 2 & 3 LUPs due to their higher risk to water quality.

g. **Linear Run-on and Runoff Control**

Discharges originating outside of a projects perimeter and flowing onto the property can adversely affect the quantity and quality of discharges originating from a project site. In order to ensure proper management of run-on and runoff, all LUPs must comply with the Run-on and Runoff Control measures specified in this General Permit. These requirements are identical to the run-on and runoff control requirements applicable to traditional construction projects.

h. **Linear Inspection, Maintenance and Repair**

Proper inspection, maintenance, and repair activities are important to ensure the effectiveness of on-site measures to control water quality. In order to ensure that inspection, maintenance, and repair activities are adequately performed, the all LUP dischargers are required to comply with the Inspection, Maintenance, and Repair requirements specified in this General Permit. These requirements are identical to the inspection, maintenance and repair requirements applicable to traditional construction projects.
K. ATS18 Requirements

There are instances on construction sites where traditional erosion and sediment controls do not effectively control accelerated erosion. Under such circumstances, or under circumstances where storm water discharges leaving the site may cause or contribute to an exceedance of a water quality standard, the use of an ATS may be necessary. Additionally, it may be appropriate to use an ATS when site constraints inhibit the ability to construct a correctly sized sediment basin, when clay and/or highly erosive soils are present, or when the site has very steep or long slope lengths.19

Although treatment systems have been in use in some form since the mid-1990s, the ATS industry in California is relatively young, and detailed regulatory standards have not yet been developed. Many developers are using these systems to treat storm water discharges from their construction sites and there are a number of reasons why an ATS may be necessary. The new ATS requirements set forth in this General Permit are based on those in place for small wastewater treatment systems, ATS regulations from the Central Valley Regional Water Quality Control Board (September 2005 memorandum “2005/2006 Rainy Season – Monitoring Requirements for Storm Water Treatment Systems that Utilize Chemical Additives to Enhance Sedimentation”), the Construction Storm Water Program at the State of Washington’s Department of Ecology, as well as recent advances in technology and knowledge of coagulant performance and aquatic safety.

The effective design of an ATS requires a detailed survey and analysis of site conditions. All factors and statistical analysis of potential complications must be considered. With efficient planning, ATS performance can provide exceptional water quality discharge and prevent significant impacts to surface water quality, even under extreme environmental conditions.

These systems can be very effective in reducing the sediment in storm water runoff, but the systems that use additives/polymers to enhance sedimentation also pose a potential risk to water quality (e.g., operational failure, equipment failure, additive/polymer release, etc.). The State Water Board is concerned about the potential acute and chronic impacts that the polymers and other chemical additives may have on fish and aquatic organisms if released in sufficient quantities or concentrations. In addition to anecdotal evidence of polymer releases causing aquatic toxicity in California, the literature supports this concern.20 For example, cationic polymers have been shown to bind with the negatively charged gills of fish, resulting in mechanical suffocation.21 Due to the potential toxicity impacts, which may be caused by the release of additives/polymers into receiving waters, this General Permit establishes residual polymer monitoring and toxicity requirements have been established in this General Permit for discharges from construction sites that utilize an ATS in order to protect receiving water quality and beneficial uses.

The primary treatment process in an ATS is coagulation/flocculation. ATS’s operate on the principle that the added coagulant is bound to suspended sediment, forming floc, which is gravitationally settled in tanks or a basin, or removed by sand filters. A typical installation utilizes an injection pump upstream from the clarifier tank, basin, or sand filters, which is electronically metered to both flow rate and suspended solids level of the influent, assuring a constant dose. The coagulant mixes and reacts with the influent, forming a dense floc. The floc may be removed by gravitational settling in a clarifier tank or basin, or by filtration. Water from the clarifier tank, basin, or sand filters may be routed through cartridge(s) and/or bag filters for final polishing. Vendor-specific systems use various methods of dose control, sediment/floc removal, filtration, etc., that are detailed in project-specific documentation. The

18 An ATS is a treatment system that employs chemical coagulation, chemical flocculation, or electrocoagulation in order to reduce turbidity caused by fine suspended sediment.

particular coagulant/flocculant to be used for a given project is determined based on the water chemistry of the site because the coagulants are specific in their reactions with various types of sediments. Appropriate selection of dosage must be carefully matched to the characteristics of each site.

ATS’s are operated in two differing modes, either Batch or Flow-Through. Batch treatment can be defined as Pump-Treat-Hold-Test-Release. In Batch treatment, water is held in a basin or tank, and is not discharged until treatment is complete. Batch treatment involves holding or recirculating the treated water in a holding basin or tank(s) until treatment is complete or the basin or storage tank(s) is full. In Flow-Through treatment, water is pumped into the ATS directly from the runoff collection system or storm water holding pond, where it is treated and filtered as it flows through the system, and is then directly discharged. “Flow-Through Treatment” is also referred to as Continuous treatment.”

1. Effluent Standards

This General Permit establishes NELs for discharges from construction sites that utilize an ATS. These systems lend themselves to NELs for turbidity and pH because of their known reliable treatment. Advanced systems have been in use in some form since the mid-1990s. At this time there are two general types of systems. Both types are considered reliable, can consistently produce a discharge less than 10 NTU and have been used successfully at many sites in several states since 1995 to reduce turbidity to very low levels.22

This General Permit contains “compliance storm event” exceptions from the technology-based NELs for ATS discharges. The rationale is that technology-based requirements are developed assuming a certain design storm. In the case of ATS the industry-standard design storm is 10-year, 24-hour (as stated in Attachment F of this General Permit), so the compliance storm event has been established as the 10-year 24-hour event as well to provide consistency.

2. Training

Operator training is critical to the safe and efficient operation and maintenance of the ATS, and to ensure that all State Water Board monitoring and sampling requirements are met. The General Permit requires that all ATS operators have training specific to using ATS’s liquid coagulants.

L. Post Construction Requirements

Under past practices, new and redevelopment construction activities have resulted in modified natural watershed and stream processes. This is caused by altering the terrain, modifying the vegetation and soil characteristics, introducing impervious surfaces such as pavement and buildings, increasing drainage density through pipes and channels, and altering the condition of stream channels through straightening, deepening, and armoring. These changes result in a drainage system where sediment transport capacity is increased and sediment supply is decreased. A receiving channel’s response is dependent on dominant channel materials and its stage of adjustment.

Construction activity can lead to impairment of beneficial uses in two main ways. First, during the actual construction process, storm water discharges can negatively affect the chemical, biological, and physical properties of downstream receiving waters. Due to the disturbance of the landscape, the most likely pollutant is sediment, however pH and other non-visible pollutants are also of great concern. Second, after most construction activities are completed at a construction site, the finished project may result in significant modification of the site’s response to precipitation. Due to the general lack of any post-construction storm water management practices in the past, new development and redevelopment

projects have almost always resulted permanent post-construction water quality impacts because more precipitation ends up as runoff and less precipitation is intercepted, evapotranspired, and infiltrated.

General Permit 99-08-DWQ did not specifically address post-construction controls. An effective storm water management strategy must address the full suite of storm events (water quality, channel protection, overbank flood protection, extreme flood protection) (Figure 2).

Figure 2 - Suite of Storm Events

The post-construction storm water performance standards in this General Permit specifically address water quality and channel protection events. Overbank flood protection and extreme flood protection events are traditionally dealt with in local drainage and flood protection ordinances. However, measures in this General Permit to address water quality and channel protection also reduce overbank and extreme flooding impacts. This General Permit aims to match post-construction runoff to pre-construction runoff for the 85th percentile storm event, which not only reduces the risk of impact to the receiving water’s channel morphology but also provides some protection of water quality.

This General Permit clarifies that its runoff reduction requirements only apply to projects that lie outside of jurisdictions covered by a Standard Urban Storm water Management Plan (SUSMP) (or other more protective) post-construction requirements in either Phase I or Phase II permits.

Figures 3 and 4, below, show the General Permit enrollees (to Order 99-08-DWQ, as of March 10, 2008) overlaid upon a map with SUSMP (or more protective) areas in blue and purple. Areas without blue or purple indicate where the General Permit’s runoff reduction requirements would actually apply.
Figure 3 - Northern CA (current) Counties / Cities With SUSMP-Plus Coverage
Water Quality:
This General Permit requires dischargers to replicate the pre-project runoff water balance (for this permit, defined as the amount of rainfall that ends up as runoff) for the smallest storms up to the 85th percentile storm event, or the smallest storm event that generates runoff, (whichever is larger). Contemporary storm water management generally routes these flows directly to the drainage system, increasing pollutant loads and potentially causing adverse effects on receiving waters. These smaller water quality events happen much more frequently than larger events and generate much higher pollutant loads on an annual basis. There are other adverse hydrological impacts that result from not designing according to the site’s pre-construction water balance. In Maryland, Klein23 noted that baseflow decreases as the extent of urbanization increases. Ferguson and Suckling24 noted a similar relation in watersheds in Georgia. On Long Island, Spinello and Simmons25 noted substantial decreases in base flow in intensely urbanized watersheds.

The permit emphasizes runoff reduction through on-site storm water reuse, interception, evapotranspiration and infiltration through non-structural controls and conservation design measures (e.g., downspout disconnection, soil quality preservation/enhancement, interceptor trees). Employing these measures close to the source of runoff generation is the easiest and most cost-effective way to comply with the pre-construction water balance standard. Using low-tech runoff reduction techniques close to the source is consistent with a number of recommendations in the literature.26, 27,28 In many cases, BMPs implemented close to the source of runoff generation cost less than end-of-the-pipe measures.29 Dischargers are given the option of using Appendix 4 to calculate the required runoff volume or a watershed process-based, continuous simulation model such as the EPA’s Storm Water Management Model (SWMMM) or Hydrologic Simulation Program Fortran (HSPF).

Channel Protection:
In order to address channel protection, a basic understanding of fluvial geomorphic concepts is necessary. A dominant paradigm in fluvial geomorphology holds that streams adjust their channel dimensions (width and depth) in response to long-term changes in sediment supply and bankfull discharge (1.5 to 2 year recurrence interval). The bankfull stage corresponds to the discharge at which channel maintenance is the most effective, that is, the discharge at which the moving sediment, forming or removing bars, forming or changing bends and meanders, and generally doing work that results in the average morphologic characteristics of channels.30 Lane (1955 as cited in Rosgen 199631) showed the generalized relationship between sediment load, sediment size, stream discharge and stream slope in Figure 5. A change in any one of these variables sets up a series of mutual adjustments in the companion variables with a resulting direct change in the physical characteristics of the stream channel.

Stream slope times stream discharge (the right side of the scale) is essentially an approximation of stream power, a unifying concept in fluvial geomorphology (Bledsoe 1999). Urbanization generally increases stream power and affects the resisting forces in a channel (sediment load and sediment size represented on the left side of the scale).

During construction, sediment loads can increase from 2 to 40,000 times over pre-construction levels. Most of this sediment is delivered to stream channels during large, episodic rain events. This increased sediment load leads to an initial aggradation phase where stream depths may decrease as sediment fills the channel, leading to a decrease in channel capacity and increase in flooding and overbank deposition. A degradation phase initiates after construction is completed.

Schumm et. al (1984) developed a channel evolution model that describes the series of adjustments from initial downcutting, to widening, to establishing new floodplains at lower elevations (Figure 6).

Figure 6 - Channel Changes Associated with Urbanization
After Incised Channel Evolution Sequence in Schumm et. al 1984

Channel incision (Stage II) and widening (Stages III and to a lesser degree, Stage IV) are due to a number of fundamental changes on the landscape. Connected impervious area and compaction of pervious surfaces increase the frequency and volume of bankfull discharges. Increased drainage density (miles of stream length per square mile of watershed) also negatively impacts receiving stream channels. Increased drainage density and hydraulic efficiency leads to an increase in the frequency and volume of bankfull discharges because the time of concentration is shortened. Flows from engineered pipes and channels are also often “sediment starved” and seek to replenish their sediment supply from the channel.

Encroachment of stream channels can also lead to an increase in stream slope, which leads to an increase in stream power. In addition, watershed sediment loads and sediment size (with size generally represented as the median bed and bank particle size, or \(d_{50}\)) decrease during urbanization. This means that even if pre- and post-development stream power are the same, more erosion will occur in the post-development stage because the smaller particles are less resistant (provided they are non-cohesive).

As shown in Stages II and III, the channel deepens and widens to accommodate the increased stream power and decrease in sediment load and sediment size. Channels may actually narrow as entrained...
sediment from incision is deposited laterally in the channel. After incised channels begin to migrate laterally (Stage III), bank erosion begins, which leads to general channel widening. At this point, a majority of the sediment that leaves a drainage area comes from within the channel, as opposed to the background and construction related hillslope contribution. Stage IV is characterized by more aggradation and localized bank instability. Stage V represents a new quasi-equilibrium channel morphology in balance with the new flow and sediment supply regime. In other words, stream power is in balance with sediment load and sediment size.

The magnitude of the channel morphology changes discussed above varies along a stream network as well as with the age of development, slope, geology (sand-bedded channels may cycle through the evolution sequence in a matter of decades whereas clay-dominated channels may take much longer), watershed sediment load and size, type of urbanization, and land use history. It is also dependent on a channel’s stage in the channel evolution sequence when urbanization occurs. Management strategies must take into account a channel’s stage of adjustment and account for future changes in the evolution of channel form (Stein and Zaleski 2005).

Traditional structural water quality BMPs (e.g. detention basins and other devices used to store volumes of runoff) unless they are highly engineered to provide adequate flow duration control, do not adequately protect receiving waters from accelerated channel bed and bank erosion, do not address post-development increases in runoff volume, and do not mitigate the decline in benthic macroinvertebrate communities in the receiving waters suggest that structural BMPs are not as effective in protecting aquatic communities as a continuous riparian buffer of native vegetation. This is supported by the

findings of Zucker and White44, where instream biological metrics were correlated with the extent of forested buffers.

This General Permit requires dischargers to maintain pre-development drainage densities and times of concentration in order to protect channels and encourages dischargers to implement setbacks to reduce channel slope and velocity changes that can lead to aquatic habitat degradation.

There are a number of other approaches for modeling fluvial systems, including statistical and physical models and simpler stream power models.45 The use of these models in California is described in Stein and Zaleski (2005).46 Rather than prescribe a specific one-size-fits-all modeling method in this permit, the State Water Board intends to develop a stream power and channel evolution model-based framework to assess channels and develop a hierarchy of suitable analysis methods and management strategies. In time, this framework may become a State Water Board water quality control policy.

 Permit Linkage to Overbank and Extreme Flood Protection

Site design BMPs (e.g. rooftop and impervious disconnection, vegetated swales, setbacks and buffers) filter and settle out pollutants and provide for more infiltration than is possible for traditional centralized structural BMPs placed at the lowest point in a site. They provide source control for runoff and lead to a reduction in pollutant loads. When implemented, they also help reduce the magnitude and volume of larger, less frequent storm events (e.g., 10-yr, 24-hour storm and larger), thereby reducing the need for expensive flood control infrastructure. Nonstructural BMPs can also be a landscape amenity, instead of a large isolated structure requiring substantial area for ancillary access, buffering, screening and maintenance facilities.25 The multiple benefits of using non-structural benefits will be critically important as the state’s population increases and imposes strains upon our existing water resources.

Maintaining predevelopment drainage densities and times of concentration will help reduce post-development peak flows and volumes in areas not covered under a municipal permit. The most effective way to preserve drainage areas and maximize time of concentration is to implement landform grading, incorporate site design BMPs and implement distributed structural BMPs (e.g., bioretention cells, rain gardens, rain cisterns).

\section*{M. Storm Water Pollution Prevention Plans}

USEPA’s Construction General Permit requires that qualified personnel conduct inspections. USEPA defines qualified personnel as “a person knowledgeable in the principles and practice of erosion and sediment controls who possesses the skills to assess conditions at the construction site that could impact storm water quality and to assess the effectiveness of any sediment and erosion control measures selected to control the quality of storm water discharges from the construction activity.”47 USEPA also suggests that qualified personnel prepare SWPPPs and points to numerous states that require certified professionals to be on construction sites at all times. States that currently have certification programs are Washington, Georgia, Florida, Delaware, Maryland, and New Jersey. The Permit 99-08-DWQ did not require that qualified personnel prepare SWPPPs or conduct inspections. However, to ensure that water quality is being protected, this General Permit requires that all SWPPPs be written, amended, and certified by a Qualified SWPPP Developer. A Qualified SWPPP Developer must possess one of the eight certifications and or registrations specified in this General Permit and effective two years after the

adoption date of this General Permit, must have attended a State Water Board-sponsored or approved Qualified SWPPP Developer training course. Table 9 provides an overview of the criteria used in determining qualified certification titles for a QSD and QSP.
<table>
<thead>
<tr>
<th>Certification/ Title</th>
<th>Registered By</th>
<th>QSD/QSP</th>
<th>Certification Criteria</th>
</tr>
</thead>
</table>
| Professional Civil Engineer | California | Both | 1. Approval Process
 2. Code of Ethics
 3. Accountability
 4. Pre-requisites |
| Professional Geologist or Engineering Geologist | California | Both | 1. Approval Process
 2. Code of Ethics
 3. Accountability
 4. Pre-requisites |
| Landscape Architect | California | Both | 1. Approval Process
 2. Code of Ethics
 3. Accountability
 4. Pre-requisites |
| Professional Hydrologist | American Institute of Hydrology | Both | 1. Approval Process
 2. Code of Ethics
 3. Accountability
 4. Pre-requisites |
| Erosion, Sediment and Storm Water Inspector | Certified Professional in Erosion and Sediment Control, Inc. (CPESC) | QSP | 1. Approval Process
 2. Code of Ethics
 3. Accountability
 4. Pre-requisites
 5. Continuing Education |
| Certified Inspector of Sediment and Erosion Control (CISEC) | Certified Inspector of Sediment and Erosion Control, Inc. | QSP | 1. Approval Process
 2. Code of Ethics
 3. Accountability
 4. Pre-requisites
 5. Continuing Education |
| Certified Erosion, Sediment, Storm Water Inspector (CESSWI) | CPESC, inc | QSP | 1. Approval Process
 2. Code of Ethics
 3. Accountability
 4. Pre-requisites
 5. Continuing Education |
| Certified Professional in Storm Water Quality (CPSWQ) | CPESC, inc | Both | 1. Approval Process
 2. Code of Ethics
 3. Accountability
 4. Pre-requisites
 5. Continuing Education |
| Certified Professional Soil Scientist/Classifier (CPSS/C) | Soil Science Society of America
 www.soils.org/certifications | Both | 1. Approval Process
 2. Code of Ethics
 3. Accountability
 4. Pre-requisites
 5. Continuing Education |
| Minimum 5 years experience developing SWPPPs | None | Both | 1. Accountability |
The previous versions of the General Permit required development and implementation of a SWPPP as the primary compliance mechanism. The SWPPP has two major objectives: (1) to help identify the sources of sediment and other pollutants that affect the quality of storm water discharges; and (2) to describe and ensure the implementation of BMPs to reduce or eliminate sediment and other pollutants in storm water and non-storm water discharges. The SWPPP must include BMPs that address source control, BMPs that address pollutant control, and BMPs that address treatment control.

This General Permit shifts some of the measures that were covered by this general requirement to specific permit requirements, each individually enforceable as a permit term. This General Permit emphasizes the use of appropriately selected, correctly installed and maintained pollution reduction BMPs. This approach provides the flexibility necessary to establish BMPs that can effectively address source control of pollutants during changing construction activities. These specific requirements also improve both the clarity and the enforceability of the General Permit so that the dischargers understand, and the public can determine whether the discharges are in compliance with, permit requirements.

The SWPPP must be implemented at the appropriate level to protect water quality at all times throughout the life of the project. The SWPPP must remain on the site during construction activities, commencing with the initial mobilization and ending with the termination of coverage under the General Permit.

A SWPPP must be appropriate for the type and complexity of a project and will be developed and implemented to address project specific conditions. Some projects may have similarities or complexities, yet each project is unique in its progressive state that requires specific description and selection of BMPs needed to address all possible generated pollutants.

N. Regional Water Board Authorities

Because this General Permit will be issued to thousands of construction sites across the State, the Regional Water Boards retain discretionary authority over certain issues that may arise from the discharges in their respective regions. This General Permit does not grant the Regional Water Boards any authority they do not otherwise have; rather, it merely emphasizes that the Regional Water Boards can take specific actions related to this General Permit. For example, the Regional Water Boards will be enforcing this General Permit and may need to adjust some requirements for a discharger based on the discharger’s compliance history.