### **HYDROMODIFICATION MODELING**

#### **OVERVIEW OF APPROACHES**



Eric Stein Biology Departments Southern California Coastal Water Research Project (SCCWRP)

## **Today's Presentation**

Hydromodification 101

Challenges of Hydromodification Monitoring

Types of Modeling Approaches
examples

Roadmap for the Day

### Hydromodification 101

Hydromodification = changes to the runoff hydrograph and sediment supply resulting from land use modifications







# **Hydromodification Effects**









#### The Challenge of Hydromodification

Change can occur rap

Streams are highly version

May be dealing with



Responses are difficult to predic



# **Modeling Tools**

Modeling tools have the potential to advance hydromodification management by:

- Providing a physical basis for making predictions of stream response to watershed development.
- Assessing alternative future states of streams under different management scenarios.
- □ Avoiding one-size-fits-all solutions through:
  - improved prediction of relative magnitude of potential channel change and proximity to response thresholds; and
  - tailoring mitigation strategies to streams with different levels of susceptibility.

#### Watershed Analysis/Mapping



- Current Land Use and Stream Conditions
- > Past Actions/Legacy Effects
- Proposed Future Actions/Changes in Land Use

#### Watershed Hydromodification Management

- Opportunities/Constraints
- Management Objectives
- > Framework for Determining Site Control Requirements
- > Valuation Method for Mitigation



### **Modeling and Assessment**

Modeling tools allow us to predict likely response to change in land use and to evaluate potential effect of management actions

#### ... but there are challenges:

- Geologic heterogeneity
- Unpredictable flow and sediment transport
- Limited calibration data (especially for sediment yield)
- Challenges of modeling mobile bed + mobile bank
- Challenges of split flow and other planform dynamics



Model Complexity

# **Summary of Modeling Tools**

- Report provides summary of modeling tools most relevant to hydromodification management in southern CA
  - Question(s) addressed
  - Scale
  - Relation to other tools
  - Data requirements
  - Relative uncertainty



Key considerations / questions in appropriate use

### **Modeling Tool Box**



Appropriate tool or combinations of tools based on information needs, desired level of certainty, data availability etc.

### **Guidance on Model Selection and Use**

- □ Is this model appropriate for the question(s) at hand?
- What are the key considerations associated with a particular tool (e.g., scale, vintage of data, parameterization, etc.)?
- What are the underlying assumptions about physical and hydrological processes that are used by the model
- □ What information and data are sufficient to drive the model?
- What is the simplest model that will provide adequate prediction accuracy?
- □ What is level of certainty associated with the output?

## **Modeling Tool Box**

#### **DESCRIPTIVE TOOLS**

- Conceptual Model
- Screening Tools
- Characterization Tools

Explicit Knowledge of Uncertainty

Cost / Time / Data

Ease of Use

- Questions of basic condition, susceptibility, etc.
- Once developed, relatively rapid and easy to apply
- Answers are generally qualitative or semiquantitative
- Appropriate for screening-level decisions
- Inform decisions about need/selection of more intensive models

# **Field Screening Tool**

#### Not all streams are created equal

- □ Classify streams by:
  - Likely severity of response
  - Likely direction of response
- Decision trees
  - Clear endpoints very high, high, medium, low
- Simple to apply field metrics
  - Does not rely on complex field measures
- Locally calibrated
- □ Rapid < 1 day in office + 1 day in field



# Channel Evolution Model (CEM) Quantification

- Descriptive but can be quantified using empirical information
- Identifies relationships between driving variables, channel states and geomorphic thresholds
- Provides a framework for:
  - interpreting past and present response trajectories
  - identifying the relative severity of potential response sequences
  - applying appropriate models in estimating future channel changes
  - developing strategies for mitigating the impacts of processes likely to dominate channel response in the future



# Relationships between CEM Stage, Planform, Q10, and Width



# Relationships between CEM Stage, Stream Power, and Grain Size



Constructed (Phase 5C) (n = 5)

- Confined, mountain headwaters (CEM Type I) (n = 11)
- Unstable states (CEM Types II, III; Phases B2, B3, 2B, 4B) (n = 43)
- Dynamic equilibrium multi-thread (Phase B1) (n = 11)

Dynamic equilibrium single-thread, unconfined (CEM Types I, IV, V; Phase 1Veg) (n = 13)

Regression of braided equilibrium

### **Modeling Tool Box**

#### MECHANISTIC / DETERMINISTIC MODELS

- Hydrology & Hydraulics
- Sediment Transport
- Regime Diagrams
- Appropriate for predicting likely responses
- Familiar and commonly used for other water quality analyses
- Expli Unce
- Cost Potential for fairly high and possibly unknown levels of uncertainty

Ease

• May be limited by availability of data to parameterize or calibrate

# **Mobile Boundary Modeling**

- □ Tested:
  - HEC-6 (now in HEC-RAS)
  - CONCEPTS
  - FLUVIAL-12
- Difficult to apply and high prediction uncertainty
  - Critical flow
  - Split flow conditions
  - Lack of fidelity to complex widening, bank failure, and bedarmoring processes
- May not be sufficient to address all hydromodification management questions

# **Regime Diagrams Overview**

Purpose: assessing potential channel responses to changing Q, Qs

- Plot of physical control variables overlain with isoclines of geometric parameters
- Predict relative or absolute magnitude of potential adjustment in slope, depth, and width
- Mechanistic combination of several governing equations
- Physically-based but provide managers with a relatively simple form of output from analytical channel design models without performing additional modeling



Buffington and Parker (2005)



#### S. California Derived Regime Diagrams



Diagrams for changes in width, depth, slope

# **Regime Diagrams**

- Bracket the maximum lateral or vertical response that might be expected given a particular combination of altered discharge and sediment supply.
- Can provide additional resolution to channel susceptibility ratings by comparing the projected change in discharge of water and sediment based on watershed characteristics between streams in the same susceptibility class
- Should not be used in isolation difficulties with selecting Q, braiding thresholds, etc.

### Modeling Tool Box

Can be used to predict likely response

•Once developed, relatively rapid and easy to apply

Based on empirical observations

• Known level of confidence in the relationships

 Do not explicitly represent physical processes or response mechanisms

STATISTICAL MODELS

Multiple Linear Regression

Random Forest Analysis

Explicit Knowl Uncertainty

Cost/Time/[ • Inform need for more detailed analysis

Ordination

Ease of Use

# **Regional Hydrologic Models**

Empirical / statistical models based on regional streamflow data

- Improved predictions in ungaged basins compared to USGS regional equations
- Provide both peak flows and flow durations
- Support a variety of geomorphic modeling tools that require projected change in flow peaks and durations

#### 52 unregulated gauges > ~20 yrs. < ~ 250 km<sup>2</sup> (100 mi<sup>2</sup>)



## **Revised Regional Rating Curve**



Hawley and Bledsoe 2011

### **Effect of Urbanization**



1934-1958:  $Imp_{av}$  = 2.6%,  $Imp_{max}$  = 4.7% 1959-1983:  $Imp_{av}$  = 7.3%,  $Imp_{max}$  = 8.6%

# **Modeling Tool Box**

- Predict **probability** of potential responses
- Incorporate or complement traditional deterministic models
- Account more explicitly for uncertainty
- Better able to accommodate missing or limited input data
- May be more difficult to develop and communicate due to unfamiliarity

#### PROBABILISTIC MODELS

- Neural Networks
- Logistic Regression
- Bayesian Decisions
- Monte Carlo
- Random Forest



# **Channel Enlargement Models**

Channel enlargement =

post-development cross-sectional area

pre-development cross-sectional area

- Indicate strong associations between channel enlargement and
  - Erosion potential
  - Bed material size
  - Distance to grade control
  - Increase in Q2
- Importance of balancing the post-development sediment transport to the pre-development setting over the entire range of erosive flows rather than a single flow
  - Load ratio, a.k.a. <u>erosion potential</u> -explained nearly 60% of the variance

Risk of channel shifting to undesirable state based probabilistic model linking field data with erosion potential (Ep)



Likelihood of Channel Instability

Erosion Potential (Ep)- Existing/ Pre-Urban

# Artificial Neural Network (ANN)

- Series of iteratively solved equations:
  - Adaptive Learning
  - Ability to model nonlinear relationships
  - Identification of variables that most affect uncertainty in model output
  - Ability to use surrogate variables
  - Easier parameter optimization



# Support for Selecting Appropriate Tool(s)

Table I.3. Summary of the models that are currently considered most relevant to hydromodification management.

|                 | Models                                         | Example(c)                                          | Туре | Question(s) Addressed                                                                                                                                                                                                                                                                                                             | Scale                 | Relation to Other Tools                                                                                                                                                                                                                                                                                     | Data Requirements                                                                                                                                                                                                                                 | Relative<br>Uncertainty                                                          | Key Considerations / Questions In<br>Appropriate Use <sup>5</sup>                                                                                                                                                                                                     |
|-----------------|------------------------------------------------|-----------------------------------------------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Descriptive (D) | Rapid<br>riparian/wetland<br>assessments       | CRAM                                                | D    | Level of wetland / riparian function?                                                                                                                                                                                                                                                                                             | reach to segment      | Complements geomorphic<br>assessment tools.                                                                                                                                                                                                                                                                 | Field visit, readily<br>available GIS and desktop<br>data.                                                                                                                                                                                        | Low -<br>Moderate                                                                | Were protocols properly followed?                                                                                                                                                                                                                                     |
|                 | Rapid channel<br>susceptibility<br>assessments | Biedsoe et<br>al. (2010,<br>2012)                   | D    | Relative channel susceptibility<br>to hydromodification High,<br>Medium, or Low?                                                                                                                                                                                                                                                  | reach to<br>segment   | Complements riparian<br>assessment tools, vertical<br>and lateral rating point to<br>additional modeling tools,<br>suggests in a coarse sense<br>the level of mitigation that<br>may be required.                                                                                                           | Field visit, readily<br>available GIS and desktop<br>data.                                                                                                                                                                                        | Low -<br>Moderate                                                                | Were protocols properly followed? For relative<br>comparisons of susceptibility.                                                                                                                                                                                      |
|                 | Geomorphic<br>Landscape<br>Units               | Booth et al.<br>(2011)                              | D    | Where will development most<br>affect runoff processes?<br>Where are key sources of<br>coarse sediment supply to<br>stream channels? Where are<br>priority areas for restricting<br>development to maintain<br>watershed processes? Where<br>might "over-control" be<br>necessary to mitigation<br>reductions in sediment supply? | watershed<br>- region | Complements channel<br>stability assessments, land<br>use planning.                                                                                                                                                                                                                                         | Readity available GIS<br>data.                                                                                                                                                                                                                    | Low -<br>Moderate                                                                | Were protocols properly followed? For relative<br>comparisons of potential sediment delivery.                                                                                                                                                                         |
|                 | Channél<br>Evolution<br>Model                  | Schumm et<br>al. (1984),<br>Hawley et al.<br>(2012) | D    | What is the sequence of<br>indision and/or braiding that<br>can be expected over decades<br>in disturbed channels? What<br>geomorphic thresholds are<br>most relevant to understanding<br>channel response? How can<br>unstable channels be<br>classified for targeting<br>rehabilitation measures?                               | reach to<br>watershed | Identifies geomorphic<br>thresholds quantified by<br>braiding/incision predictors,<br>highlights key processes<br>that models of channel<br>response may need to<br>account for.                                                                                                                            | Fleid visit, expertise in<br>fluvial geomorphology.                                                                                                                                                                                               | Low -<br>Moderate                                                                | Are the predictions of other channel response<br>models consistent with this framework, which<br>processes / thresholds in the CEM are not<br>accounted for in a modeling analysis?                                                                                   |
| Mechanistic (M) | / Empirical-Static                             |                                                     |      |                                                                                                                                                                                                                                                                                                                                   |                       |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                   |                                                                                  |                                                                                                                                                                                                                                                                       |
|                 | Rainfai-runoff<br>models                       | HSPF,<br>SWMM,<br>HECHMS                            | м    | What are the estimated<br>streamflows at an ungaged<br>site? How will different types of<br>land use change affect<br>streamflow? How will be long-<br>term streamflow regime<br>change in terms of magnitude,<br>frequency, duration,<br>flashiness, etc. (continuous<br>modeling)?                                              | watershed             | Provide inputs in hydraulic<br>models, shear stress and<br>effective discharge<br>calculators, SIAM, mobile<br>boundary models.<br>Continuous simulation<br>outputs necessary to create<br>flow-duration curves and to<br>estimate important metrics<br>like erosion potential for<br>probabilistic models. | Several watershed GIS<br>layers (e.g., precipitation,<br>land cover, soils),<br>streamflow data needed<br>for calibration - long-term<br>records of precipitation,<br>land use change,<br>calibration data required<br>for continuous simulation. | Low - High,<br>depends on<br>data<br>availability,<br>calibration<br>and testing | Is there match in the spatial and temporal scale<br>and vintage of input data, are infiltration<br>parameters consistent with standardized values<br>for the study region, were 15-min data generate<br>for flashy streams, was the model calibrated an<br>validated? |
|                 | Regional<br>streamflow<br>regressions          | Hawley and<br>Bledsoe<br>(2011)                     | E/S  | What are estimates of<br>streamfow metrics at ungaged<br>stee? How will urbanization<br>affect streamfow at this<br>ungaged site? How will peak<br>flows and flow durations<br>change in response to<br>urbanization?                                                                                                             | watershed             | Complement rainfail-runoff<br>models by providing an<br>additional estimate of flow<br>characteristics that is<br>relatively straightforward to<br>estimate. Can be used as a<br>check of more detailed<br>hydrology models.                                                                                | Watershed GIS layers.                                                                                                                                                                                                                             | Moderate If<br>not<br>extrapolated<br>beyond<br>calibration<br>data              | Are the regressions applied within the range of<br>conditions used to develop the model?                                                                                                                                                                              |

### **Suites of Modeling Tools**

How do tools fit together to provide predictive scientific assessment?

Use combinations of tools
Baseline stability assessment
Channel forming discharge
Erosion potential
Sediment transport analysis

## **Modeling Tools - Conclusions**

- These tools have a clear physical basis; however, their efficacy has not been widely demonstrated for hydromodifcation management
- This underscores the need for carefully designed monitoring and adaptive management programs.
- Models should account for hydraulic characteristics through physically-based metrics that integrate variables like stream power or shear stress (relative to boundary material size) over time.
- This critical information comes at a cost—the tools require more time and effort to apply than has been the norm in hydromodification management.

### **Modeling Tools - Conclusions**

- Deterministic representations (such as those derived from continuous simulation modeling) can mask uncertainties and be misleadingly precise unless prediction uncertainty is explicitly characterized.
- Given the uncertainty associated with predicting hydromodification impacts, development of probabilistic models is recommended.
- Focus should be on the decisions (or objectives) associated with the resource and not on building more-detailed models with the hope that they will provide the answers that elude us.

# **Roadmap for the Rest of Today**

- Flow monitoring and Introduction to Continuous Simulation Modeling
  - Chris Bowles
- Application of Continuous Simulation Modeling for Decision Making and "BMP" Design
  - Judd Goodman
- Application of GLU approach for protecting sediment supply areas
  - Papantzin Cid
- Machine Learning (Beyond Probabilistic Modeling) for Assessing Hydromodification Effects
  - Ashmita Sengupta
- Future Directions for Integrated/Expanded Flow Monitoring
  - Felicia Federico



*Eric D. Stein -* erics@sccwrp.org www.sccwrp.org

Potential CART example from bio-objectives

### **Channel Enlargement Models**



(a) enlargement vs. erosion potential

(b) risk of enlargement associated with d<sub>50</sub> and erosion potential

#### Parameter Reduction through ANN

#### **Predictor Variables**



Distance to Hardpoint

Sengupta et al., in review