## **APPENDIX A** TAC Survey Results

California Drywell Guidance

#### TAC Member Survey Results Summary

Presented By

Brandon Steets, P.E. & Adam Questad, P.E. | August 28, 2018







## **TAC Member Overview**



- TAC member agencies/companies:
  - State Water Resources Control Board
  - Regional Water Quality Control Board(s)
  - Office of Environmental Health Hazard Assessment
  - National Water Research Institute
  - Sacramento State Office of Water Programs
  - Torrent Resources
  - City of Los Angeles
  - California Department of Water Resources
  - University of California, Davis
  - Orange County Water District



## **Drywell Experience**

#### Geosyntec<sup>⊳</sup> consultants

#### Please rate your level of experience with drywells according to the following categories



Interest

None



## **Drywell Experience**

#### 



Some experience

Interest

None

Extensive experience

#### Please rate your level of experience with drywells according to the following categories

#### Over 50% of responses show the following experience

- Siting and planning
- Stormwater quality monitoring
- Groundwater quality monitoring
- Water quality modeling
- Permitting



## **Drywell Experience**

#### 

#### Please rate your level of experience with drywells according to the following categories



Some experience

Interest

None

Extensive experience

# Over 50% of responses show the following interest

- Design (pre-treatment)
- Design (civil/wells)
- Construction



#### Existing Drywell Guidance Recommendations

What existing drywell guidance would you recommend following or building off of as a starting point for this project (multiple responses shown in parenthesis)?

- Portland UIC (2)
- Oregon UIC (4)
- American River Basin SWRP (3)
- Orange County (3)
- City of Chandler, AZ, Dept. of Environmental Quality (2)
- US EPA guidance on UIC
- Washington State Department of Ecology (3)
- Nevada Department of Environmental Protection
- NCHRP Report 802, Groundwater Quality Appendix
- CA DWR Well Design
- Torrent Resources Drywell Design Standards



Geosyntec<sup>D</sup>

#### Strengths and Weaknesses of Existing Guidance

What are the primary strengths and weaknesses of the guidance identified?

#### • Strengths

- Flexible, protective of groundwater, and follow common sense
- Straightforward and well presented
- Matrix to determine pretreatment needs based on input water quality and vadose zone treatment capacity

#### Weakness

- Lacking guidance following risk-based WQ impacts
- Lack of consideration of the volume drywells can manage (i.e., can handle small but not large storms)
- Lacking tools/models to simulate fate/transport of variety of pollutants (including organics)
- Lack of science-based data to categorize subsurface treatment potential
- Lack of monitoring guidelines/requirements
- Arbitrary standards for characterizing the vadose zone
- Lack of construction/monitoring guidance to prevent plugging, bio-fouling, and settling of lower sand/gravel material during initial rainfall



Geosyntec<sup>o</sup>



#### Highest Priority Critical Data/Information Gaps

What critical data/information gaps exist and need to be filled in order for CA to establish statewide drywell guidance?

- Decision Framework/Guidance for Drywell Implementation
  and GW Protection
  - Decision process for when modeling is required and when site-specific monitoring/modeling is <u>not</u> required
    - Drywell site eligibility based on land use and WQ risk
  - Fate and transport modeling guidance for GW protection (suggestion: modify US EPA funded GIFMod for drywells)
  - Guidance to determine vadose zone treatment potential
    - Site-specific soil evaluation requirements
  - Proper use of drywells in consideration with other BMPs



Geosyntec<sup>D</sup>

#### Highest Priority Critical Data/Information Gaps

What critical data/information gaps exist and need to be filled in order for CA to establish statewide drywell guidance?

#### • Monitoring/Modeling Studies

- Long term groundwater monitoring to assess impact from various drywell designs at different locations throughout the State
- Consider how the water table will fluctuate in smaller/perched aquifers
- Explore emerging contaminants including antibiotic resistant genes (ARGs)
- Regulatory
  - Clarify how DWR views dry wells in reference to the State Water Well Standards (Bulletins 74-81 & 74-90) to reduce overlay and treat drywells as a stormwater BMP
  - Harmonize dry well standards with the Industrial General Permit
  - Acceptance of drywells by the regulatory agencies as an appropriate means of storm water infiltration



Geosyntec<sup>D</sup>

#### Pollutants of Concern Risk

#### Geosyntec<sup>></sup> consultants



What are the relative risks of the following pollutants of concern?



## Pollutants of Concern Risk

#### 

What are the relative risks of the following pollutants of concern?

#### Comments



Antibiotic resistant bacteria and genes

Risk dependent on availability of organic soils/amendments in order to absorb organics

Water soluble contaminants and NAPLs are the major risks to groundwater



High risk

Medium risk

Low risk

#### Highest POC Risk

- Nutrients
- Metals
- PFOS/PFOA
- Pesticides
- Spills



What are the most important elements for CA's drywell guidance to evaluate and address?

## • Siting based on:

- Underlying GW quality
- GW separation (especially for agricultural runoff contributing nitrates)
- Distance from drinking wells
- Setbacks from contaminated sites
- Consideration of contamination plumes and GW contamination
- Consideration of stormwater sources and GWQ standards to determine contamination risk



Geosyntec<sup>D</sup>

What are the most important elements for CA's drywell guidance to evaluate and address?

- Design
  - Guidance
    - Based on depth to GW, soil type, and GW fluctuation
    - Include suggested sizing calculations/assumptions
    - Recommendations to minimize clogging
    - Recommendations to determine drywell/pretreatment size to maintain treatment standards
    - Consider "time to clogging" based on pretreatment, source area, and factor of safety



Geosyntec<sup>D</sup>

What are the most important elements for CA's drywell guidance to evaluate and address?

## • Siting based on:

- Underlying GW quality
- GW separation (especially for agricultural runoff contributing nitrates)
- Distance from drinking wells
- Setbacks from contaminated sites
- Consideration of contamination plumes and GW contamination
- Consideration of stormwater sources and GWQ standards to determine contamination risk



Geosyntec<sup>D</sup>

What are the most important elements for CA's drywell guidance to evaluate and address?

## • Siting based on:

- Underlying GW quality
- GW separation (especially for agricultural runoff contributing nitrates)
- Distance from drinking wells
- Setbacks from contaminated sites
- Consideration of contamination plumes and GW contamination
- Consideration of stormwater sources and GWQ standards to determine contamination risk



Geosyntec<sup>D</sup>

What are the most important elements for CA's drywell guidance to evaluate and address?

# • Design Cont.

- Testing
  - Evaluate percolation test results for soil types in CA
  - Recommend capacity testing of completed drywells
- Standards and design components
  - Develop pretreatment standards/design guidance
  - Develop standard details and specs
  - Recommend/Require shutoff mechanisms



Geosyntec<sup>D</sup>

What are the most important elements for CA's drywell guidance to evaluate and address?

#### Installation

- General consensus = lower priority
- Include in-situ full-scale testing to determine if reduction in total # of wells is appropriate
- Control the materials used
- Drilling method should allow strata continuous sampling (coring) and detection of GW (aquifer or perched/seasonal)
- Provide guidance on preventing sidewalls from invading drywell after construction



Geosyntec<sup>D</sup>

What are the most important elements for CA's drywell guidance to evaluate and address?

- O&M
  - Routine inspection frequency/type
  - Procedures to minimize clogging
  - Periodic rehabilitation recommendations
  - Efficiency of pretreatment system
  - Consider O&M in system setup/design to allow for drywell modification, simplicity, and low cost maintenance
  - Address bio-fouling and sediment trap cleanout



Geosyntec<sup>D</sup>

What are the most important elements for CA's drywell guidance to evaluate and address?

#### Monitoring

- Include priority pollutants
- Consider which bacterial indicators are appropriate and whether ARG/ARB are identified separately
- Monitor groundwater elevation (monitoring wells)
- Consider that extensive monitoring may make drywells unattractive to designers; could apply similar standard to all infiltration devices
- Include sufficient # of wells up/downgradient to capture GW quality
- Recommendations should include selecting monitoring levels/locations accounting for changes in GW flow direction/elevation



Geosyntec<sup>o</sup>

#### **Pretreatment Criteria**

With respect to pretreatment criteria, would you prefer to see:

Geosyntec<sup>▷</sup>

