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Abstract: Regions with great natural environmental complexity present a challenge for attaining 2 key properties of an ideal 
bioassessment index: 1) index scores anchored to a benchmark of biological expectation that is appropriate for the range of natural 
environmental conditions at each assessment site, and 2) deviation from the reference benchmark measured equivalently in all 
settings so that a given index score has the same ecological meaning across the entire region of interest. These properties are 
particularly important for regulatory applications like biological criteria where errors or inconsistency in estimating site-specific 
reference condition or deviation from it can lead to management actions with significant financial and resource-protection con-
sequences. We developed an index based on benthic macroinvertebrates for California, USA, a region with great environmental 
heterogeneity. We evaluated index performance (accuracy, precision, responsiveness, and sensitivity) throughout the region to 
determine if scores provide equivalent ecological meaning in different settings. Consistent performance across environmental 
settings was improved by 3 key elements of our approach: 1) use of a large reference data set that represents virtually all of the range 
of natural gradients in the region, 2) development of predictive models that account for the effects of natural gradients on biological 
assemblages, and 3) combination of 2 indices of biological condition (a ratio of observed-to-expected taxa [O/E] and a predictive 
multimetric index [pMMI]) into a single index (the California Stream Condition Index [CSCI]). Evaluation of index performance 
across broad environmental gradients provides essential information when assessing the suitability of the index for regulatory ap-
plications in diverse regions. 
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A major challenge for conducting bioassessment in envi-
ronmentally diverse regions is ensuring that an index pro-
vides consistent meaning in different environmental set-
tings. A given score from a robust index should indicate the 
same biological condition, regardless of location or stream 
type. However, the performance (e.g., accuracy, precision, 
responsiveness, and sensitivity) of an index may vary in dif-
ferent settings, complicating its interpretation (Hughes et al. 
1986, Yuan et al. 2008, Pont et al. 2009). Effective bioassess-
ment indices should account for naturally occurring varia-
tion in aquatic assemblages so that deviations from refer-
ence conditions resulting from anthropogenic disturbance 
are minimally confounded by natural variability (Hughes et al. 
1986, Reynoldson et al. 1997). When bioassessment indi-
ces are used in regulatory applications, such as measuring 

compliance with biocriteria (Davis and Simon 1995, Coun-
cil of European Communities 2000, USEPA 2002, Yoder 
and Barbour 2009), variable meaning of an index score may 
lead to poor stream management, particularly if the envi-
ronmental factors affecting index performance are unrec-
ognized. Those who develop bioassessment indices or the 
policies that rely on them should evaluate index perfor-
mance carefully across the different environmental gradients 
where an index will be applied. 
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A reference data set that represents the full range of 
environmental gradients where an index will be used is 
key for index development in environmentally diverse re-
gions. In addition, reference criteria should be consistently 
defined so that benchmarks of biological condition are 
equivalent across environmental settings. Indices based on 
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benthic macroinvertebrates (BMI) for use in California were 
developed with reference data sets that used different crite-
ria in different regions (e.g., Hawkins et al. 2000, Herbst and 
Silldorff 2009, Rehn 2009). For example, several reference 
sites used to calibrate an index for the highly urbanized 
South Coast region had more nonnatural land use than any 
reference site used to develop an index for the rural North 
Coast region (Ode et al. 2005, Rehn et al. 2005). Further-
more, lower-elevation settings were poorly represented in 
these reference data sets. In preparation for establishing 
statewide biocriteria, regulatory agencies and regulated par-
ties desired a new index based on a larger, more consistently 
defined reference data set that better represented all envi-
ronmental settings. Considerable effort was invested to ex-
pand the statewide pool of reference sites to support de-
velopment of a new index (Ode et al. 2016). The diversity 
of stream environments represented in the reference pool 
necessitated scoring tools that could handle high levels of 
complexity. 

Predictive modeling of the reference condition is an in-
creasingly common way to obtain site-specific expectations 
for diverse environmental settings (Hawkins et al. 2010b). 
Predictive models can be used to set biological expecta-
tions at test sites based on the relationship between bio-
logical assemblages and environmental factors at reference 
sites. Thus far, predictive modeling has been applied al-
most exclusively to multivariate indices focused on taxo-
nomic completeness of a sample, such as measured by the 
ratio of observed-to-expected taxa (O/E) (Moss et al. 1987, 
Hawkins et al. 2000, Wright et al. 2000), or location of sites 
in ordination space (e.g., BEnthic Assessment of SedimenT 
[BEAST]; Reynoldson et al. 1995). Applications of predic-
tive models to multimetric indices (i.e., predictive multi-
metric indices [pMMIs]) are relatively new (e.g., Cao et al. 
2007, Pont et al. 2009, Vander Laan and Hawkins 2014). 
MMIs include information on the life-history traits ob-
served within an assemblage (e.g., trophic groups, habitat 
preferences, pollution tolerances), so they may provide use-
ful information about biological condition that is not in-
corporated in an index based only on loss of taxa (Gerritsen 
1995). Predictive models that set site-specific expectations 
for biological metric values may improve the accuracy, pre-
cision, and sensitivity of MMIs when applied across diverse 
environmental settings (e.g., Hawkins et al. 2010a). 

A combination of multiple indices (specifically, a pMMI 
and an O/E index) into a single index might provide more 
consistent measures of biological condition than just one 
index by itself. Variation in performance of an index would 
be damped by averaging it with a 2nd index, and poor per-
formance in particular settings might be improved. For ex-
ample, an O/E index may be particularly sensitive in moun-
tain streams that are expected to be taxonomically rich, 
whereas a pMMI might be more sensitive in lowland areas, 
where stressed sites may be well represented in calibration 
data. Moreover, pMMIs and O/E indices characterize as-

semblage data in fundamentally different ways. Thus, they 
provide complementary measures of stream ecological con-
dition and may contribute different types of diagnostic infor-
mation. Taxonomic completeness, as measured by an O/E 
index, and ecological structure, as measured by a pMMI, 
are both important aspects of stream communities, and cer-
tain stressors may affect these aspects differently. For ex-
ample, replacement of native taxa with invasive species may 
reduce taxonomic completeness, even if the invaders have 
ecological attributes similar to those of the taxa they dis-
placed (Collier 2009). Therefore, measuring both taxo-
nomic completeness and ecological structure may provide 
a more complete picture of stream health. 

Our goal was to construct a scoring tool for perennial 
wadeable streams that provides consistent interpretations 
of biological condition across environmental settings in 
California, USA. Our approach was to design the tool to 
maximize the consistency of performance across settings, 
as indicated by evaluations of accuracy, precision, respon-
siveness, and sensitivity. We first constructed predictive 
models for both a taxon loss index (O/E) and a pMMI. Sec-
ond, we compared the accuracy, precision, responsiveness, 
and sensitivity of the O/E, pMMI, and combined O/E + 
pMMI index across a variety of environmental settings. 
Our primary motivation was to develop biological indices 
to support regulatory applications in the State of California. 
However, our broader goal was to produce a robust assess-
ment tool that would support a wide variety of bioassess-
ment applications, such as prioritization of restoration proj-
ects or identification of areas with high conservation value. 

METHODS  
Study region 

California contains continental-scale environmental di-
versity within 424,000 km2 that encompass some of the 
most extreme gradients in elevation and climate found in 
the USA. It has temperate rainforests in the North Coast, 
deserts in the east, and chaparral, oak woodlands, and 
grasslands with a Mediterranean climate in coastal regions 
(Omernik 1987). Large areas of the state are publicly owned, 
but vast regions have been converted to agricultural (e.g., 
the Central Valley) or urban (e.g., the South Coast and the 
San Francisco Bay Area) land uses (Sleeter et al. 2011). For-
estry, grazing, mining, other resource extraction activities, 
and intensive recreation occur throughout rural regions of 
the state, and the fringes of urban areas are undergoing 
increasing development. For convenience, we divided the 
state into 6 regions and 10 subregions based on ecoregional 
(Omernik 1987) and hydrologic boundaries (California 
State Water Resources Control Board 2013) (Fig. 1). 

Compilation of data 
We compiled data from >20 federal, state, and regional 

monitoring programs. Altogether, we aggregated data from 
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4457 samples collected from 2352 unique sites between 
1999 and 2010 into a single database. We excluded BMI 
samples with insufficient numbers of organisms or taxo-
nomic resolution (described below) from analyses. We 
treated observations at sites in close proximity to each other 
(within 300 m) as repeat samples from a single site. For sites 
with multiple samples meeting minimum requirements, we 
randomly selected a single sample for use in all analyses 
described below, and we withheld repeat samples from all 
analyses, except where indicated below. We used 1318 sites 
sampled during probabilistic surveys (e.g., Peck et al. 2006) 
to estimate the ambient condition of streams (described 
below). 

Figure 1. Regions and subregions of California. Thick gray 
lines indicate regional boundaries, and thin white lines indicate 
subregional boundaries. NC = North Coast, CHco = Coastal 
Chaparral, Chin = Interior Chaparral, SCm = South Coast 
mountains, SCx = South Coast xeric, CV = Central Valley, 
SNws = Sierra Nevada-western slope, SNcl = Sierra Nevada-
central Lahontan, DMmo: Desert/Modoc-Modoc plateau, 
DMde =Desert/Modoc-deserts. 

Biological data 
Fifty-five percent of the BMI samples were collected fol-

lowing a reach-wide protocol (Peck et al. 2006), and the 
other samples were collected with targeted riffle protocols, 
which produce comparable data (Gerth and Herlihy 2006, 
Herbst and Silldorff 2006, Rehn et al. 2007). For most sam-
ples, taxa were identified to genus, but this level of effort 
and the total number of organisms/sample varied among 

samples, necessitating standardization of BMI data. We 
used different data standardization approaches for the 
pMMI and the O/E. For the pMMI, we aggregated iden-
tifications to ‘Level 1’ standard taxonomic effort (most in-
sect taxa identified to genus, Chironomidae identified to 
family) as defined by the Southwest Association of Fresh-
water Invertebrate Taxonomists (SAFIT; Richards and Rog-
ers 2011) and used computer subsampling to generate 
500-count subsamples. We excluded samples with <450 in-
dividuals (i.e., not within 10% of target). For the O/E index, 
we used operational taxonomic units (OTUs) similar to 
SAFIT Level 1 except that we aggregated Chironomidae to 
subfamily. We excluded ambiguous taxa (i.e., those identi-
fied to a higher level than specified by the OTU). We also 
excluded samples with >50% ambiguous individuals from 
O/E development, no matter how many unambiguous indi-
viduals remained. We used computer subsampling to gener-
ate 400-count subsamples, and we excluded samples with 
<360 individuals. A smaller subsample size was used for 
the O/E index than for the pMMI because exclusion of 
ambiguous taxa often reduced sample size to <500 indi-
viduals. A final data set of 3518 samples from 1985 sites 
met all requirements and was used for development and 
evaluation of both the O/E and pMMI indices. 

Environmental data 
We collected environmental data from multiple sources 

to characterize natural and anthropogenic factors known 
to affect benthic communities, such as climate, elevation, 
geology, land cover, road density, hydrologic alteration, 
and mining (Tables 1, 2). We used geographic information 
system (GIS) variables that characterized natural, unalter-
able environmental factors (e.g., topography, geology, cli-
mate) as predictors for O/E and pMMI models and var-
iables related to human activity (e.g., land use) to classify 
sites as reference and to evaluate responsiveness of O/E 
and pMMI indices to human activity gradients. We calcu-
lated most variables related to human activity at 3 spatial 
scales (within the entire upstream drainage area [water-
shed], within the contributing area 5 km upstream of a site 
[5 km], and within the contributing area 1 km upstream 
of a site [1 km]) so that we could screen sites for local 
and catchment-scale impacts. We created polygons defin-
ing these spatial analysis units using ArcGIS tools (version 
9.0; Environmental Systems Research Institute, Redlands, 
California). 

Classification of sites along a human activity gradient 
We were unable to measure stress directly with this data 

set, so instead, we used a human activity gradient under 
the assumption that it was correlated with stress (Yates 
and Bailey 2010). We divided sites into 3 sets for develop-
ment and evaluation of indices: reference (i.e., low activity), 
moderate-, and high-activity sites. We defined reference 



Table 1. Natural gradients and their importance (Gini = mean decrease in Gini index), MSE = % increase in mean squared error) for random-forest models for the observed 
(O)/expected (E) taxa index and each metric used in the predictive multimetric index (pMMI). Predictors that were evaluated but not selected for any model include % 
sedimentary geology, nitrogenous geology, soil hydraulic conductivity, soil permeability, S-bearing geology, calcite-bearing geology, and magnesium oxide-bearing geology. 
Sources: A = National Elevation Dataset (http://ned.usgs.gov/), B = PRISM climate mapping system (http://www.prism.oregonstate.edu), C = generalized geology, mineralogy, 
and climate data derived for a conductivity prediction model (Olson and Hawkins 2012). Dashes indicate that the predictors were not used to model the metric. 

Variable Description 

O/E 
Taxonomic 
richness MSE 

% intolerant 
MSE 

# Shredder 
taxa MSE 

Clinger % 
taxa MSE 

Coleoptera % 
taxa MSE 

EPT % 
taxa MSE 

Data 
source Gini MSE

Location 
New lat Latitude 90.5 0.09 18.8 0.0063 1.26 0.0054 0.00079 0.0027  

New long Longitude – – 25.3 0.0058 0.99 0.0030 – 0.0024  

SITE_ELEV Elevation 89.5 0.11 11.8 – – – 0.00231 – A 
Catchment morphology 

LogWSA Log watershed area 86.6 0.06 – 0.0020 1.23 – – – A 
ELEV_RANGE Elevation range – – 2.4 – – 0.0026 – – A 

Climate 
PPT 10-y (2000–2009) average 

precipitation at the sampling point 
74.8 0.07 8.4 0.0063 0.92 – – 0.0016 B 

TEMP 10-y (2000–2009) average air 
temperature at the sampling point 

81.9 0.09 9.3 0.0052 – 0.0023 – 0.0019 B 

SumAve_P Mean June to September 1971–2000 
monthly precipitation, averaged 
across the catchment 

– – 5.5 – – – – 0.0033 B 

Geology 
BDH_AVE Average bulk soil density – – 5.7 – – 0.0021 – – C 
KFCT_AVE Average soil erodibility factor (k) – – 6.2 – – 0.0027 – 0.0025 C 
Log_P_MEAN Log % P geology – – 3.7 – – – – – C 
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sites as ‘minimally disturbed’ sensu Stoddard et al. (2006) 
and selected them by applying screening criteria based pri-
marily on landuse variables calculated at multiple spatial 
scales (i.e., 1 km, 5 km, watershed; Table 2). We calculated 
some screening criteria at only 1 spatial scale (e.g., in-stream 
gravel mine density at the 5-km scale and W1_HALL, a 
proximity-weighted index of human activity based on field 
observations made within 50 m of a sampling reach; Kauf-
mann et al. 1999). We excluded sites thought to be affected 
by grazing or recreation from the reference data set, even 
if they passed all reference criteria. Identification of high-
activity sites was necessary for pMMI calibration (described 
below) and for performance evaluation of both pMMI and 
O/E. We defined high-activity sites as meeting any of the 
following criteria: ≥50% developed land (i.e., % agricul-
tural + % urban) at all spatial scales, ≥5 km/km2 road den-
sity, or W1_HALL ≥ 5. We defined sites not identified as 
either reference or high-activity as moderate-activity sites. 
We further divided sites in each set into calibration (80%) 
and validation (20%) subsets and stratified assignment to 
calibration and validation sets by subregion to ensure repre-
sentation of all environmental settings in both sets (Fig. 1). 

Table 2. Stressor and human-activity gradients used to identify reference sites and evaluate index performance. Sites that did not 
exceed the listed thresholds were used as reference sites. Sources A = National Landcover Data Set (http://www.epa.gov/mrlc/nlcd
-2006.html), B = custom roads layer, C = National Hydrography Dataset Plus (http://www.horizon-systems.com/nhdplus), D = Na-
tional Inventory of Dams (http://geo.usace.army.mil), E = Mineral Resource Data System (http://tin.er.usgs.gov/mrds), F = predicted 
specific conductance (Olson and Hawkins 2012), G = field-measured variables. WS = watershed, 5 km = watershed clipped to a 5-km 
buffer of the sampling point, 1 km = watershed clipped to a 1-km buffer of the sampling point, W1_HALL = proximity-weighted 
human activity index (Kaufmann et al. 1999), Code 21 = landuse category that corresponds to managed vegetation, such as roadsides, 
lawns, cemeteries, and golf courses. * indicates variable used in the random-forest evaluation of index responsiveness. 

 Variable Scale Threshold Unit Data source 

* % agricultural 1 km, 5 km, WS <3 % A 
* % urban 1 km, 5 km, WS <3 % A 
* % agricultural + % urban 1 km, 5 km, WS <5 % A 
* % Code 21 1 km and 5 km <7 % A 
*  WS <10 % A 
* Road density 1 km, 5 km, WS <2 km/km2 B 
* Road crossings 1 km <5 crossings B, C 
*  5 km <10 crossings B, C 
*  WS <50 crossings B, C 
* Dam distance WS <10 km D 
* % canals and pipelines WS <10 % C 
* Instream gravel mines 5 km <0.1 mines/km C, E 
* Producer mines 5 km 0 mines E 

 Specific conductance Site 99/1a prediction interval F 
 W1_HALL Reach <1.5 NA G 

 % sands and fines Reach  % G 
 Slope Reach  % G 

a The 99th and 1st percentiles of predictions were used to generate site-specific thresholds for specific conductance. The model underpredicted at 
higher levels of specific conductance (data not shown), so a threshold of 2000 μS/cm was used as an upper bound if the prediction interval included 
1000 μS/cm. 

 

 

Only 1 reference site was found in the Central Valley, so that 
region was combined with the Interior Chaparral (whose 
boundary was within 500 m of the site) for stratification 
purposes. 

Development of the O/E index 
Development of an O/E index or pMMI follows the 

same basic steps: biological characterization, modeling of 
reference expectations from environmental factors, selec-
tion of metrics or taxa, and combining of metrics or taxa 
into an index. pMMI development has an additional inter-
mediate step to set biological expectations for sites with 
high levels of activity (Fig. 2). Taxonomic completeness, 
as measured by O/E, quantifies degraded biological condi-
tion as loss of expected native taxa (Hawkins 2006). E rep-
resents the number of taxa expected in a specific sample, 
based on its environmental setting, and O represents the 
number of those expected taxa that were actually observed. 
We developed models to calculate the O/E index follow-
ing the general approach of Moss et al. (1987). First, we de-
fined groups of reference calibration sites based on their 

http://tin.er.usgs.gov/mrds
http://geo.usace.army.mil
http://www.horizon-systems.com/nhdplus
http://www.epa.gov/mrlc/nlcd-2006.html
http://www.epa.gov/mrlc/nlcd-2006.html
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dividing by reference mean calculate 0/E 

Calculate combined 
index (CSCI) 

Figure 2. Summary of steps in developing the predictive multimetric index (pMMI) and observed (O)/expected (E) taxa index. 
Pc = probability of observing a taxon at a site, CSCI = California State Condition Index. 
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taxonomic similarity. Second, we developed a random-forest 
model (Cutler et al. 2007) to predict group membership 
based on naturally occurring environmental factors mini-
mally affected by human activities. We used this model to 
predict cluster membership for test sites based on their 
natural environmental setting. The probability of observ-
ing a taxon at a test site (i.e., the capture probability) was 
calculated as the cluster-membership-probability-weighted 
frequencies of occurrence summed across clusters: 

Pc j ¼ ∑k
i¼1ðGiFiÞ; (Eq. 1) 

where Pcj is the probability of observing taxon j at a site, 
Gi is the probability that a site is a member of group i, Fi is 
the relative frequency of the taxon in group i,  and  k is the 
number of groups used in modeling. The sum of the cap-
ture probabilities is the expected number of taxa (E) in  a  
sample from a site: 

E ¼ ∑m
j ¼ 1Pcj; (Eq. 2) 

where m is the number of taxa observed across all refer-
ence sites. We used Pc values ≥ 0.5 when calculating O/E 
because excluding locally rare taxa generally improves pre-
cision of O/E indices (Hawkins et al. 2000, Van Sickle et al. 
2007). This model was used to predict E at reference and 
nonreference sites based on their natural environmental 
setting. 

We used presence/absence-transformed BMI data from 
reference calibration sites to identify biologically similar 
groups of sites. We excluded taxa occurring in <5% of 
reference calibration samples from the cluster analysis be-
cause inclusion of regionally rare taxa can obscure patterns 
associated with more common taxa (e.g., Gauch 1982, 
Clarke and Green 1988, Ostermiller and Hawkins 2004). 
We created a dendrogram with Sørensen’s distance mea-
sure and flexible β (β = −0.25) unweighted pair group 
method with arithmetic mean (UPGMA) as the linkage 
algorithm in R (version 2.15.2; R Project for Statistical 
Computing, Vienna, Austria) with the cluster package 
(Maechler et al. 2012) and scripts written by J. Van Sickle 
(US Environmental Protection Agency, personal commu-
nication). We identified groups containing ≥10 sites and 
subtended by relatively long branches (to maximize differ-
ences in taxonomic composition among clusters) by visual 
inspection of the dendrogram. We retained rare taxa that 
were excluded from the cluster analysis for other steps in 
index development. 

We constructed a 10,000-tree random-forest model 
with the randomForest package in R (Liaw and Wiener 
2002) to predict cluster membership for new test sites. 
We excluded predictors that were moderately to strongly 
correlated with one another (|Pearson’s r| ≥ 0.7). When 

we observed correlation among predictors, we selected 
the predictor that was simplest to calculate (e.g., calcu-
lated from point data rather than delineated catchments) 
as a candidate predictor. We used an initial random-forest 
model based on all possible candidate predictors to iden-
tify those predictors that were most important for pre-
dicting new test sites into biological groups as measured 
by the Gini index (Liaw and Wiener 2002). We evaluated 
different combinations of the most important variables to 
identify a final, parsimonious model that minimized the 
standard deviation (SD) of reference site O/E scores at cal-
ibration reference sites with the fewest predictors. 

We evaluated O/E index performance in 2 ways. First, 
we compared index precision with the lowest and high-
est precision possible given the sampling and sample-
processing methods used (Van Sickle et al. 2005). SD of 
O/E index scores produced by a null model (i.e., all sites 
are in a single group, and capture probabilities for each 
taxon are the same for all sites) estimates the lowest pre-
cision possible for an O/E index. SD of O/E values based 
on estimates of variability among replicate samples (SDRS) 
estimates the highest attainable precision possible for the 
index. Second, we evaluated the index for consistency by 
regressing O against E for reference sites. Slopes close to 1 
and intercepts close to 0 indicate better performance. 

Development of the pMMI 
We followed the approach of Vander Laan and Haw-

kins (2014) to develop a pMMI. In contrast to traditional 
MMIs, which typically attempt to control for the effects 
of natural factors on biological metrics via landscape clas-
sifications or stream typologies, a pMMI accounts for these 
effects by predicting the expected (i.e., naturally occurring) 
metric values at reference sites given their specific  environ-
mental setting. A pMMI uses the difference between the 
observed and predicted metric values when scoring biolog-
ical condition, whereas a traditional MMI uses the raw 
metric for scoring. Traditional approaches to MMI devel-
opment may reduce the effects of natural gradients on met-
ric values through classification (e.g., regionalization or ty-
pological approaches; see Ode et al. 2005 for a California 
example), but they seldom produce site-specific expecta-
tions for different environmental settings (Hawkins et al. 
2010b). 

We developed the pMMI in 5 steps (Fig. 2): 1) metric 
calculation, 2) prediction of metric values at reference 
sites, 3) metric scoring, 4) metric selection, and 5) assem-
bly of the pMMI. Apart from step 2, the process for de-
veloping a pMMI is comparable to that used for a tradi-
tional MMI (e.g., Stoddard et al. 2008). We developed a 
null MMI based on raw values of the selected metrics to 
allow us to estimate how much predictive modeling im-
proved pMMI performance. The process was intended to 
produce a pMMI that was unbiased, precise, responsive, 
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and able to characterize a large breadth of ecological at-
tributes of the BMI assemblage. 

Metric calculation We calculated biological metrics that 
characterized the ecological structure of BMI assemblages 
for each sample in the data set. We used custom scripts in 
R and the vegan package (Oksanen et al. 2013) to calcu-
late a suite of 48 widely used bioassessment metrics, cho-
sen because they quantify important ecological attributes, 
such as taxonomic richness or trophic diversity (a subset 
of which is presented in Table 3). Many of these metrics 
are widely used in other bioassessment indices (e.g., Royer 

et al. 2001, Stribling et al. 2008). Different formulations 
of metrics based on taxonomic composition (e.g., Diptera 
metrics) or traits (e.g., predator metrics) were assigned to 
thematic metric groups representing different ecological 
attributes (Table 3). These thematic groups were used to 
help ensure that the metrics included in the pMMI were 
ecologically diverse. 

Table 3. Metrics evaluated for inclusion in the predictive multimetric index (pMMI). Only metrics that met all evaluation criteria are 
shown. EPT = Ephemeroptera, Plecoptera, and Trichoptera; Resp = direction of response; I = metric increases with human-activity 
gradients; D = metric decreases with human-activity gradients; Var Exp = % variance explained by the random-forest model; r 2 

(cal) = squared Pearson correlation coefficient between predicted and observed values at reference calibration sites; r2 

;
(val) = squared 

Pearson correlation coefficient between predicted and observed values at reference validation sites  t (null) = t-statistic for the 
comparison of the raw metric between the reference and high-activity samples within the calibration data set; t (mod) = t-statistic for 
the comparison of the residual metric between the reference and high-activity samples within the calibration data set; F = F-statistic 
for an analysis of variance of metric residual values from reference calibration sites among regions shown in Fig. 1; S:N = signal-to-
noise ratio; Freq = frequency of the metric among the best-performing combinations of metrics. Tolerance, functional feeding group, 
and habit data were from CAMLnet (2003). * indicates metric selected for inclusion in the pMMI. 

Metric Resp Var Exp r2 (cal) r2 (val) t (null) t (mod) F S : N Freq 

Taxonomic diversity 
*Taxonomic richness D 0.27 0.27 0.15 21.6 23.7 1.0 6.7 0.83 

Functional feeding group 
Scrapers 
No. Scraper taxa D 0.40 0.40 0.29 15.3 19.1 1.2 7.6 0.17 

Shredders 
% Shredder taxa D 0.27 0.27 0.46 17.6 10.6 1.0 4.1 0.33 
* No. Shredder taxa D 0.39 0.39 0.35 19.2 15.2 1.9 5.4 0.50 

Habit 
Clingers 
* % Clinger taxa D 0.34 0.34 0.42 21.7 14.6 0.2 4.8 1.00 
No. Clinger taxa D 0.39 0.40 0.32 26.0 25.3 0.5 11.1 0 

Taxonomy 
Coleoptera 
* % Coleoptera taxa D 0.30 0.31 0.22 10.3 15.8 1.0 5.0 0.83 
No. Coleoptera taxa D 0.34 0.34 0.29 13.6 20.9 0.6 6.2 0.17 

EPT 
* % EPT taxa D 0.31 0.32 0.46 30.0 23.1 0.4 6.0 0.67 
No. EPT taxa D 0.40 0.40 0.31 27.8 25.3 1.4 10.0 0.17 

Tolerance 
* % Intolerant taxa D 0.23 0.23 0.15 21.7 15.6 0.5 5.1 0.67 
% Intolerant taxa D 0.51 0.51 0.58 32.7 25.3 1.5 6.9 0.17 
No. Intolerant taxa D 0.52 0.52 0.53 28.4 21.8 1.5 9.6 0 
Tolerance value I 0.22 0.25 0.20 −21.5 −17.0 0.4 5.0 0 
% Tolerant taxa I 0.22 0.24 0.38 −26.1 −22.3 1.4 4.9 0.17 

Prediction of metric values at reference sites We used 
random-forest models to predict values for all 48 metrics 
at reference calibration sites based on the same GIS-
derived candidate variables that were used for O/E devel-
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opment (Table 1). Manual refinement was impractical 
because of the large number of models that were devel-
oped, so we used an automated approach (recursive fea-
ture elimination [RFE]) to select the simplest model (the 
model with the fewest predictors) whose root mean 
square error (RMSE) was ≤2% greater than the RMSE of 
the optimal model (the model with the lowest RMSE). 
We considered only models with ≤10 predictors. Limit-
ing the complexity of the model typically reduces over-
fitting and improves model validation (Strobl et al. 2007). 
We implemented RFE with the caret package in R using 
the default settings for random-forest models (Kuhn et al. 
2012). We used the randomForest package (Liaw and 
Wiener 2002) to create a final 500-tree model for each 
metric based on the predictors used in the model selected 
by RFE. We then used these models to predict metric val-
ues for all sites. We used out-of-bag predictions for the 
reference calibration set (an out-of-bag prediction is based 
only on the subset of trees in which a calibration site was 
excluded during model training). To evaluate how well 
each model predicted metric values, we regressed raw ob-
served values against predicted values for reference sites. 
Slopes close to 1 and intercepts close to 0 indicate better 
model performance. If the pseudo-R2 of the model (calcu-
lated as 1 – mean squared error [MSE]/variance) was >0.2, 
we used the model to adjust metric values (i.e., observed – 
predicted), otherwise we used the observed metric values. 
Hereafter, ‘metric’ is used to refer to both raw and adjusted 
metric values. 

Metric scoring Scoring is required for MMIs because 
metrics have different scales and different responses to 
stress (Blocksom 2003). Scoring transforms metrics to a 
standard scale ranging from 0 (i.e., most stressed) to 1 
(i.e., identical to reference sites). We scored metrics fol-
lowing Cao et al. (2007). We scored metrics that de-
crease with human activity as 

ðObserved−MinÞ=ðMax−MinÞ; (Eq. 3) 

where Min is the 5th percentile of high-activity calibration 
sites and Max is the 95th percentile of reference calibra-
tion sites. We scored metrics that increase with human 
activity as 

ðObserved−MaxÞ=ðMin−MaxÞ; (Eq. 4) 

where Min is the 5th percentile of reference calibration 
sites, and Max is the 95th percentile of high-activity sites. 
We trimmed scores outside the range of 0 to 1 to 0 or 1. 
We used 5th and 95th percentiles instead of minimum or 
maximum values because they are more robust estimates 
of metric range than minima and maxima (Blocksom 2003, 
Stoddard et al. 2008). 

Metric selection We selected metrics in a 2-phase pro-
cess: 1) based on their individual performance, and 2) based 
on their frequency in high-performing prototype pMMIs. 
Evaluating the performance of many prototype pMMIs avoids 
selection of metrics with spuriously good performance and 
is preferable to selecting metrics or pMMIs based on per-
formance evaluations conducted 1 metric at a time (Hughes 
et al. 1998, Roth et al. 1998, Angradi et al. 2009, Van Sickle 
2010). Initial elimination of metrics based on their indi-
vidual performance alleviates the computational challenge 
of evaluating large numbers of prototype pMMIs. 

We used several performance criteria to eliminate met-
rics from further analysis. We assessed responsiveness to 
human activity by computing t-statistics based on com-
parisons of mean metric values at reference sites and sites 
with high levels of activity and eliminated metrics with a 
t-statistic < 10. We assessed bias by determining whether 
metric values varied among predefined geographic regions 
(Fig. 1). We considered metrics with an F-statistic > 2 
derived from analysis of variance (ANOVA) by geographic 
region to have high regional bias and eliminated them. 
Other screening criteria were modified from Stoddard et al. 
(2008). We excluded metrics with >⅔ zero values across 
samples and richness metrics with range < 5. We also elimi-
nated metrics with a signal-to-noise ratio (ratio of between-
site to within-site variance estimated from data collected 
at sites with multiple samples) < 3. 

We further screened metrics by evaluating the perfor-
mance of all possible combinations as prototype pMMIs 
and selecting metrics that were frequent among proto-
types with the best performance. First, we assembled all 
nonredundant combinations of metrics that met mini-
mum performance criteria into prototype pMMIs. Lim-
iting the redundancy of metrics increases the number of 
thematic groups included in prototypes, thereby improv-
ing the ecological breadth of the pMMI. Redundant com-
binations of metrics included those with multiple metrics 
from a single metric group (e.g., tolerance metrics; Table 3) 
or correlated metrics (|Pearson’s r ≥ |0.7|). Prototype pMMIs 
ranged in size from a minimum of 5 to a maximum of 
10 metrics, a range that is typical of MMIs used for stream 
bioassessment (e.g., Royer et al. 2001, Fore and Grafe 2002, 
Ode et al. 2005, Stoddard et al. 2008, Van Sickle 2010). We 
calculated scores for these prototype pMMIs by averaging 
metric scores and rescaling by the mean of reference cali-
bration sites, which allows comparisons among prototype 
pMMIs. 

Subsequently, we ranked prototype pMMIs to identify 
those with the best responsiveness and precision. Biased 
metrics already had been eliminated from consideration, 
and none of the prototypes exhibited geographic bias (re-
sults not shown), so we did not use accuracy to rank proto-
type pMMIs. We estimated responsiveness as the t-statistic 
based on mean scores at reference and high-activity cali-
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bration sites and precision as the SD of scores from refer-
ence calibration sites. We identified the best subset of pro-
totype pMMIs as those appearing in the top quartile for 
both criteria. Therefore, prototype pMMIs in the best sub-
set possessed several desirable characteristics: ecological 
breadth, high responsiveness, and high precision. 

We assembled the final pMMI by selecting metrics in 
order of their frequency in the best subset of prototype 
pMMIs. We added metrics in order of decreasing fre-
quency and avoided adding metrics from the same the-
matic group or correlated (Pearson’s r ≥ 0.7) metrics. We 
excluded metrics that appeared in <⅓ of the best proto-
type pMMIs from the final pMMI. 

Aggregation of the pMMI We calculated scores for the 
final pMMI by averaging metric scores and rescaling by 
the mean of reference calibration sites (as for prototype 
pMMIs). Rescaling of pMMI scores ensures that pMMI 
and O/E are expressed in similar scales (i.e., as a ratio of 
observed to reference expectations) and improves com-
parability of the 2 indices. 

We calculated scores for a combined index (the Califor-
nia Stream Condition Index [CSCI]) by averaging pMMI 
and O/E scores. We calculated a null combined index by 
averaging null MMI and null O/E scores. 

Performance evaluation Evaluation of index performance 
focused on accuracy, precision, responsiveness, and sensi-
tivity (Table 4). We compared the performance of each in-
dex to that of its null counterpart. Many of our approaches 
to measuring performance also have been used widely in 
index development (e.g., Hawkins et al. 2000, 2010a, Clarke 

et al. 2003, Ode et al. 2008, Cao and Hawkins 2011). We 
scored all indices on similar scales (i.e., a minimum of 0, 
with a reference expectation of 1), so no adjustments were 
required to make comparisons (Herbst and Silldorff 2006, 
Cao and Hawkins 2011). We conducted all performance 
evaluations separately on calibration and validation data 
sets. 

We regarded indices as accurate if scores at reference 
sites were not influenced by environmental setting or time 
of sampling. Precise indices were those with low variabil-
ity among reference sites and among samples from re-
peated visits within sites. Responsive indices were those 
that showed large decreases in response to human activ-
ity. Sensitive indices were those that frequently found non-
reference sites to be below an impairment threshold (e.g., 
10th percentile of scores at reference sites). 

Table 4. Summary of performance evaluations. SD = standard deviation. 

Aspect Description Indication of good performance 

Accuracy and bias Scores are minimally influenced 
by natural gradients 

• Approximately 90% of validation reference sites have scores 
>10th percentile of calibration reference sites 

• Landscape-scale natural gradients explain little variability in 
scores at reference sites, as indicated by a low pseudo-R2 

for a 500-tree random-forest model 
• No visual relationship evident in plots of scores at reference 

sites against field measurements of natural gradients 
Precision Scores are similar when measured 

under similar settings 
• Low SD of scores among reference sites (1 sample/site) 
• Low pooled SD of scores among samples at reference sites 

with multiple sampling events 
Responsiveness Scores change in response to 

human activity gradients 
• Large t-statistic in comparison of mean scores at reference 

and high-activity sites 
• Landscape-scale human activity gradients explain variability 

in scores, as indicated by a high pseudo-R2 for a 500-tree 
random-forest model 

Sensitivity Scores indicate poor condition 
at high-activity sites 

• High percentage of high-activity sites have scores <10th 

percentile of calibration reference sites 

Performance of the indices along a gradient of expected 
numbers of common taxa (E) The performance of an 
ideal index should not vary with E. For example, index 
accuracy should not be influenced by the expected rich-
ness of a site. We evaluated the accuracy, precision, and 
sensitivity of the indices against E by grouping sites into 
bins that ranged in the number of expected taxa (bin size = 
4 taxa). We chose this bin size because it was the smallest 
number that allowed analysis of a wide range of values of E 
with large numbers of sites in each bin (i.e., ≥37 sites for 
accuracy and precision estimates and 15 sites for sensitiv-
ity estimates). We measured accuracy as the proportion of 
reference sites in each bin with scores ≥10th percentile of 
reference calibration sites. We measured precision as the 
SD of reference sites in each bin and sensitivity as the 
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proportion of high-activity sites within each bin with 
scores <10th percentile of reference calibration sites. We 
repeated all analyses with scores from indices based on 
null models. 

Unlike accuracy and precision, the sensitivity of an ideal 
index (if measured as described above) may vary with E, 
but only to the extent that stress levels vary with E. How-
ever, how stress levels truly varied with E is unknown be-
cause human activity gradients were used to approximate 
stressor gradients, and direct, quantitative measures of stress 
levels are not possible. Even direct measures of water chem-
istry or habitat-related variables are at best incomplete es-
timates of the stress experienced by stream communities, 
and these data were not available for many sites in our 
data set. Therefore, we supplemented analyses of sensitiv-
ity against E by evaluating the difference in sensitivity be-
tween the pMMI and O/E against E. We calculated the 
difference as the adjusted Wald interval for a difference in 
proportions with matched pairs (Agresti and Min 2005) 
with the PropCIs package in R (Scherer 2013). The differ-
ence between the indices should be constant if E has no 
influence on sensitivity, or if E affects both indices in the 
same way. In the absence of direct measures of stress levels, 
these analyses provide a good measure of the influence of E 
on index sensitivity. 

Establishment of biological condition classes, 
and application to a statewide assessment 

We created 4 condition classes based on the distribu-
tion of scores at reference calibration sites, with a rec-
ommended interpretation for each condition class: likely 
to be intact (>30th percentile of reference calibration site 
CSCI scores), possibly altered (10th –30th percentiles), likely 
to be altered (1st –10th percentile), and very likely to be al-
tered (<1st percentile). We used the qnorm() function in R 
to estimate thresholds from the observed mean and SD of 
reference calibration site CSCI scores. We explored other 
approaches to setting thresholds, such as varying thresh-
olds by ecoregion or setting thresholds from environmen-
tally similar reference sites, but rejected these approaches 
because of their added complexity and minimal benefits 
(Appendix S1). 

We applied thresholds to a subset of sites from proba-
bilistic surveys (n = 1318 sites) to provide weighted esti-
mates of stream condition in California and for each ma-
jor region. We also used the thresholds to make unweighted 
estimates of reference, moderate-activity, and high-activity 
sites for each region of the state. We used unweighted es-
timates because few reference probabilistic samples were 
available in certain regions. For weighted estimates, we cal-
culated site weights by dividing total stream length in each 
stratum by the number of sampled sites in that stratum 
(these strata were defined as the intersections of strata from 
each contributing survey). All weight calculations were con-

ducted using the spsurvey package (Kincaid and Olsen 
2013) in R (version 2.15.2). We used site weights to estimate 
regional distributions for environmental variables using the 
Horvitz–Thompson estimator (Horvitz and Thomson 1952). 
Confidence intervals for estimates of the proportion of Cal-
ifornia’s stream length meeting reference criteria were based 
on local neighborhood variance estimators (Stevens and 
Olsen 2004). 

RESULTS  
Biological and environmental diversity of California 

Biological assemblages varied markedly across natural 
gradients in California, as indicated by cluster analysis. We 
identified 11 groups that contained 13 to 61 sites (Fig. 3). 
A few of these groups were geographically restricted, but 
most were distributed across many regions of the state. For 
example, sites in group 10 were concentrated in the Trans-
verse Ranges of southern California, and sites in group 7 
were entirely within the Sierra Nevada. In contrast, sites in 
groups 1 and 4 were broadly distributed across the north-
ern ⅔ of California. 

Environmental factors differed among several groups. 
Groups 8 through 11, all in the southern portions of the 
state, were generally drier and hotter than other groups, 
whereas groups 1 through 5, predominantly in mountain-
ous and northern regions, were relatively wet and cold. 
Expected number of taxa also varied across groups. For 
example, the highest median E (i.e., sum of capture prob-
abilities > 0.5) (17.2) was observed in group 3, whereas 
the lowest (7) was observed in group 8. The median E 
was <10 for 3 of the 11 groups (groups 8, 10, and 11). 
Sites in low-E groups were preponderantly (but not ex-
clusively) in the southern portions of the state. 

Development of predictive models 
Predicting the number of locally common taxa for the O/E 
index The random-forest model selected to predict as-
semblage composition used 5 predictors: latitude, eleva-
tion, watershed area, mean annual precipitation, and mean 
annual air temperature (Table 1). The model explained 74 
and 64% of the variation in O at calibration and validation 
sites, respectively. Regression slopes (1.05 and 0.99 at cal-
ibration and validation sites, respectively) and intercepts 
(–0.36 and 0.52) were similar to those expected from un-
biased predictions (i.e., slope = 1 and intercept = 0, p > 
0.05). The random-forest model was modestly more pre-
cise (SD = 0.19) than the null model (SD = 0.21) but sub-
stantially less precise than the best model possible (SD = 
0.13). 

Predicting metric values and developing the pMMI Pre-
dictive models explained >20% of variance in 17 of the 
48 metrics evaluated for inclusion in the pMMI (a subset 
of which are shown in Table 3). For 10 metrics, ≥30% of 
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the variance was explained, and for 2 metrics (no. intol-
erant taxa and % intolerant taxa), >50% of the variance 
was explained. Squared correlation coefficients (r2) be-
tween predicted and observed metric values ranged from 
near 0 (e.g., Simpson diversity) to >0.5 (no. and % intol-
erant taxa metrics). Results for validation reference sites 
were consistent with results for calibration sites, but r2 val-
ues differed markedly between calibration and validation 
data sets for some metrics (Table 3). In general, models 
explained the most variance for %-taxa metrics, and the 
least for %-abundance metrics, but this pattern was not 
consistent for all groups of metrics. 

Metrics selected for the pMMI Of the 48 metrics evalu-
ated, 15 met all acceptability criteria (Table 3). The bias 
criterion was the most restrictive and eliminated 21 met-
rics, including all raw metrics and 2 modeled metrics (% 
climber taxa and % predators). The discrimination crite-
rion eliminated 15 metrics, most of which were already 
eliminated by the bias criterion. Other criteria eliminated 
few metrics, all of which were already rejected by other 
criteria. The 15 acceptable metrics yielded 28,886 possi-
ble prototype pMMIs ranging in size from 5 to 10 met-
rics, but only 234 prototype pMMIs contained uncorre-
lated metrics or metrics belonging to unique metric groups 
(data not shown). All of these prototype pMMIs contained 
≤7 metrics. Of these 234 prototypes, only 6 were in the top 
quartile for both discrimination between reference and high-
activity calibration samples and for lowest SDs among ref-
erence calibration samples. 

The final pMMI included 1 metric from each of 6 met-
ric groups (Table 3). Some of the selected metrics (e.g., 
Coleoptera % taxa) were similar to those used in regional 
indices previously developed in California (e.g., Ode et al. 
2005). However, other widely used metrics (e.g., noninsect 
metrics) were not selected because they were highly cor-
related with other metrics that had better performance 
(pairwise correlations not shown). 

Figure 3. Dendrogram and geographic distribution of each 
group identified during cluster analysis. Numbers next to leaves 
are median values for expected number of taxa (E), elevation 
(Elev, m), precipitation (PPT, mm), and air temperature (Temp, 
°C). 

The random-forest models varied in how much of the 
variation in the 6 individual metrics they explained (Pseudo-
R2 range: 0.23–0.39). Regressions of observed on predicted 
values for reference calibration data showed that several 
intercepts were significantly different from 0 and slopes 
were significantly different from 1 (i.e., p < 0.05), but these 
differences were small. The number of predictors used in 
each of the 6 models ranged from 2 (for no. Coleoptera 
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taxa) to 10 (for taxonomic richness) (Table 1). Predictors 
related to location (e.g., latitude, elevation) were widely 
used, with latitude appearing in every model. In contrast, 
predictors related to geology (e.g., soil erodibility) or catch-
ment morphology (e.g., watershed area) were used less of-
ten. In general, the most frequently used predictors also 
had the highest importance in the predictive models, as 
measured by % increase in mean square error. The least 
frequently used predictor (i.e., % P geology) was used in 
1 model (taxonomic richness). 

Performance of predictive models 
Effects of predictive modeling on metrics For most met-
rics, reducing the influence of natural gradients through 
predictive modeling reduced the calculated difference be-
tween high-activity and reference sites, a result suggesting 
that stressor and natural gradients can have similar and 
confounded effects on many metric values (Table 3). For 
example, for 27 of the 48 metrics evaluated, the absolute 
t-statistic was much higher (difference in |t| > 1) for the 
raw metric than for the residuals. In contrast, the absolute 
t-statistic for residuals was higher for only 12 metrics. 

Performance evaluation of the O/E, pMMI, and combined 
indices By all measures, predictive indices (whether 
used alone or combined) performed better than their null 
counterparts, particularly with respect to accuracy/bias 
(Table 5). For example, mean regional differences in null 
index scores at reference sites were large and significant 
(Fig. 4A, C, E), and responses to natural gradients were 

strong (Fig. 5A–O). In contrast, all measures of biases 
were greatly reduced for predictive indices (Fig. 4B, D, F). 

Predictive modeling improved several aspects of preci-
sion. Variability of scores among reference sites was lower 
for all predictive indices than for their null counterparts, 
particularly for the pMMI (Table 5). Regional differences 
in precision were larger for the pMMI than O/E (both 
predictive and null models), and combining these 2 indi-
ces into the CSCI improved regional consistency in preci-
sion (Fig. 4B, D, F). Predictive modeling had a negligible 
effect on within-site variability (Table 5). 

In contrast to precision and accuracy, responsiveness 
was more affected by index type than whether predictive 
or null models were used. Both predictive and null MMIs 
appeared to be slightly more responsive than the com-
bined indices, which in turn were more responsive than 
O/E indices. This pattern was evident in all measures of re-
sponsiveness, such as magnitude of t-statistics, variance ex-
plained by multiple human-activity gradients in a random-
forest model, and steepness of slopes against individual 
gradients  (Table  5,  Fig. 6A–I). 

Analysis of sensitivity indicated stronger sensitivity of 
the pMMI than the O/E, and the combined index had 
intermediate sensitivity. Overall, 47% of nonreference sites 
had scores <10th percentile of reference calibration sites 
for the CSCI, in contrast with 52% of the pMMI and 35% 
of the O/E. Despite the overall difference between the 
pMMI and the O/E, agreement was relatively high (76%) 
when the 10th percentile was used as an impairment thresh-
old (i.e., O/E ≥ 0.76 and pMMI ≥ 0.77). When the 1st per-
centile was used to set thresholds (i.e., O/E ≥ 0.56 and 
pMMI ≥ 0.58), the agreement rate was 90%. 

Table 5. Performance measures to evaluate California State Condition Index (CSCI), MMI = multimetric index, and observed (O)/
expected (E) taxa index at calibration (Cal) and validation (Val) sites. For accuracy tests, only reference sites were used. Ref mean = 
mean score of reference sites (* indicates value is mathematically fixed at 1), F = F-statistic for differences in scores at calibration 
sites among 5 regions (shown in Fig. 1, Central Valley excluded; residual df = 467), Var = variance in index scores explained by 
natural gradients at reference sites, among sites = standard deviation of scores at reference sites, within sites = standard deviation of 
within-site residuals for reference Cal (n = 220 sites) and Val (n = 60) sites with multiple samples, t = t-statistic for difference between 
mean scores at reference and high-activity sites, var = variance in index scores explained by human-activity gradients at all sites. 

Index Type 

Accuracy Precision Responsiveness 

Ref mean F Var Among sites Within sites t Var 

Cal Val Cal Val Cal Val Cal Val Cal Val Cal Val Cal Val 

CSCI Predictive 1.01 1.01 1.3 1.4 −0.08 −0.13 0.16 0.17 0.11 0.1 28.5 13 0.49 0.42 
Null 1* 1 52.9 4.7 0.41 0.12 0.21 0.2 0.11 0.11 28.6 14.8 0.64 0.58 

MMI Predictive 1* 0.98 0.8 1.3 −0.15 −0.09 0.18 0.19 0.12 0.12 30.9 14.4 0.54 0.48 
Null 1* 1 62.2 8.7 0.46 0.2 0.24 0.24 0.12 0.12 29.2 15.3 0.67 0.61 

O/E Predictive 1.02 1.03 1.2 1 0.01 −0.12 0.19 0.2 0.16 0.13 21.0 9.3 0.31 0.25 
Null 1* 1 23.5 0.9 0.23 −0.03 0.21 0.22 0.15 0.13 24.1 11.8 0.48 0.41
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Figure 4. Box-and-whisker plots for distribution of scores for null (A, C, E) and predictive (B, D, F) models for the observed 
(O)/expected (E) taxon index (A, B), multimetric index (MMI) (C, D), and the combined index (CSCI) (E, F) scores by geographic 
region (see Fig. 1 for codes). White boxes indicate scores at calibration sites, and gray boxes indicate scores at validation sites. The 
horizontal dashed lines indicate the expected value at reference sites (= 1). Lines in boxes are medians, box ends are quartiles, 
whiskers are 1.5× the interquartile range, and dots are outliers (i.e., values >1.5× the interquartile range). 

Effect of E on performance By most measures, perfor-
mance was better at high-E than at low-E sites, but pre-
dictive indices were much more consistent than their 
null equivalents. For example, the accuracy of null indices 
was very poor at low-E sites (0.46–0.54 at E = 5; Fig. 7A), 
whereas predictive indices were much more accurate (0.73–
0.86 at E = 5; Fig. 7E. At high-E sites, accuracy was >0.90 
for both predictive and null indices. Precision was better at 
high-E sites for the pMMI and O/E index, but the CSCI 
had better and more consistent precision than the other 
indices at all values of E (Fig. 7B, F). For example, preci-
sion ranged from 0.22 to 0.15 (range = 0.07) for both 
the pMMI and the O/E, whereas it ranged from 0.18 to 
0.14 (range = 0.04) for the CSCI. 

In contrast to the weak associations between E and ac-
curacy and precision, E was very strongly associated with 
sensitivity, as measured by the percentage of high-activity 
sites with scores <10th percentile threshold (Fig. 7C, G). 

The pMMI classified a larger proportion of sites as in non-
reference condition across nearly all values of E than the 
O/E index did, but the difference was largest at low-E sites 
(Fig. 7D, H). For example, at the lowest values of E ana-
lyzed (5), the pMMI identified 87% of high-activity sites as 
biologically different from reference, whereas O/E identi-
fied only 47% of sites as in nonreference condition. As E 
increased, the difference between the 2 indices in propor-
tion of sites classified as nonreference decreased. Wald’s 
interval test indicated significant differences between the 
indices for values of E up to 13. At low-E sites, the sensi-
tivity of the CSCI was between the 2 indices, but at high-E 
sites, CSCI was more similar to pMMI. All 3 indices showed 
that low-E sites were more pervasively in nonreference 
condition than high-E sites, and the proportion of sites 
with scores <10th percentile of reference calibration sites 
decreased as E increased. In contrast to precision and ac-
curacy, sensitivity was more consistent across settings for 
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null than predictive indices. For all analyses of perfor-
mance relative to E, validation data yielded similar results 
(not shown). 

Figure 5. Relationships between observed (O)/expected (E) taxon index (A–E), multimetric index (MMI) (F–J), and the combined 
index (CSCI) (K–O) scores and slope (A, F, K), % fast water (area of reach with riffle, run, cascade, or rapid microhabitats) (B, G, L), 
% sand and fines (C, H, M), sampling date (D, I, N), and day of the year (E, J, O) at reference sites for predictive (black symbols, solid 
lines) and null (gray symbols, dashed lines) indices. The dotted line indicates a perfect relationship without bias. 

Establishment of biological condition classes 
and application to a statewide assessment 

We established 4 biological condition classes based on 
the distribution of CSCI scores at reference calibration 
sites. Statewide, 52% of streams were likely to be intact (i.e., 
CSCI ≥ 0.92 [30th percentile of reference calibration sites]). 
Another 18% were possibly altered (i.e., CSCI ≥ 0.79 [10th 

percentile]), 11% were likely to be altered (i.e., CSCI ≥ 0.63 
[1st percentile]), and 19% were very likely to be altered (i.e., 
CSCI < 1st percentile) (Table 6). Although many (i.e., 49%) 
high-activity sites were very likely to be altered, this num-
ber varied considerably by region. Few high-activity sites 
were in this condition class in the more forested regions 
(e.g., 24% in the North Coast, 15% in the Sierra Nevada), 
whereas higher numbers were observed in relatively arid re-
gions (e.g., 100% in the Desert/Modoc region and 68% in 

the Central Valley). In contrast, the percentage of refer-
ence sites in the top 2 classes varied much less across 
regions, from a low of ∼85% in the South Coast and Des-
ert/Modoc regions to a high of 98% in the North Coast 
(Table 6). 

DISCUSSION  
Our evaluation of index performance across different 

environmental settings demonstrates that, to the greatest 
extent possible with existing data, we have designed an 
index with scores that have comparable meanings for dif-
ferent stream types in an environmentally heterogeneous 
region of the USA. Each site is benchmarked against ap-
propriate biological expectations anchored by a large and 
consistently defined reference data set, and deviations 
from these expectations reflect site condition in a consis-
tent way across environmental settings. Thus, the index 
can be used to evaluate the condition of nearly all peren-
nial streams in California, despite the region’s consider-
able environmental and biological complexity. Three ele-
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ments of the design process contributed to the utility of 
this index in an environmentally complex region: a robust 
reference data set, predictive modeling, and the combina-
tion of multiple endpoints into a single index. 

Figure 6. Relationships between observed (O)/expected (E) taxon index (A–C), multimetric index (MMI) (D–F), and the combined 
index (CSCI) (G–I) scores and % developed area of the watershed (WS) (A, D, G), riparian activity (B, E, H), and % sand and fines 
(C, F, I) for predictive (black symbols, solid lines) and null indices (gray symbols, dashed lines). The dotted line indicates the reference 
expectation of 1. 

Large, representative reference data sets 
The 1st element was the large, representative, and rig-

orously evaluated reference data set (Ode et al. 2016). Nat-
ural factors that influence biological assemblages must 
be adequately accounted for to create an assessment tool 
that performs well across environmental settings (Cao et al. 
2007, Schoolmaster et al. 2013). The strength of relation-
ship between natural factors and biology varies with geo-
graphic scale (Mykrä et al. 2008, Ode et al. 2008), and 
representing locally important factors (such as unusual ge-
ology types with limited geographic extent, e.g., Campbell 
et al. 2009) contributes to the ability of the index to distin-
guish natural from anthropogenic biological variability in 
these environmental settings. Our reference data set was 
spatially representative and encompassed >10 y of sam-
pling. Long-term temporal coverage improves the repre-

sentation of climatic variability, including El Niño-related 
storms and droughts. The spatial and temporal breadth of 
sampling at reference sites provides confidence in the ap-
plicability of the CSCI for the vast majority of wadeable 
perennial streams in California. 

Predictive modeling 
The 2nd element of the CSCI’s design, predictive mod-

eling, enabled the creation of site-specific expectations 
for 2 indices, and these models created indices superior 
to those created by null models in nearly every aspect, 
particularly with respect to bias in certain settings. These 
results are consistent with a large body of literature show-
ing similar results for indices that measure changes in 
taxonomic composition (e.g., Reynoldson et al. 1997, Haw-
kins et al. 2000, Van Sickle et al. 2005, Hawkins 2006, 
Mazor et al. 2006). However, few studies to date showed 
that the benefits extend to MMIs (e.g., Bates Prins and 
Smith 2007, Pont et al. 2009, Hawkins et al. 2010b, School-
master et al. 2013, Vander Laan and Hawkins 2014). 
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Figure 7. Effect of expected number of taxa (E) on accuracy 
(A, E), precision (B, F), sensitivity (C, G), and difference in 
sensitivity between the predictive multimetric index (pMMI) 
and the observed (O)/expected (E) taxa indices (D, H) for null 
(A–D) and predictive (E–H) index performance. The gray bands 
in the bottom panels C and G indicate the 95% confidence 
interval around the difference. Accuracy = proportion of refer-
ence calibration sites in reference condition (i.e., score >10th per-
centile of reference calibration sites) for each index. Precision = 
standard deviation of reference calibration sites for each index. 
Sensitivity = proportion of high-activity sites not in reference 
condition. 

Our preference for predictive over traditional MMIs is 
not based only on the superior performance the pMMI 
relative to its null counterpart. The null MMI evaluated in 
our study was simplistic and did not reflect typical typo-
logical approaches to MMI development, which include 
regionalization in metric selection (e.g., Stoddard et al. 
2008), regionalization in scoring (e.g., Ode et al. 2005), or 
normalization to watershed area (e.g., Klemm et al. 2003) 
to account for variability across reference sites. However, 
traditional MMIs based on regionalization usually lack 
metric and scoring standardization, which complicates in-
terregional comparisons. Even if typological approaches 
provided equivalent performance to predictive indices, the 
latter would be preferred because of their ability to set 
site-specific management goals because predictive indices 
can better match the true potential of individual sites 
(Hawkins et al. 2010b). Thus, a watershed manager could 
take action to maintain a level of diversity a stream can 

truly support, rather than a level typical of potentially dis-
similar reference sites. 

Combining multiple indices 
The 3rd element of the CSCI’s design that contributed 

to its utility in different stream types was inclusion of both 
the pMMI and the O/E index. Regulatory agencies ex-
pressed a strong preference for a single index to support 
biocriteria implementation, and we thought that the 
CSCI was preferable to either the pMMI or O/E index. 
The different sensitivities of the 2 components should 
enhance the utility of the CSCI across a broad range of 
disturbances and settings. Together, they provide multiple 
lines of evidence about the condition of a stream and 
provide greater confidence in the results than a single 
index that might be biased in certain settings. Use of both 
metric and multivariate indices is widespread in assess-
ments of coastal condition (e.g., the M-AMBI index; Mu-
xika et al. 2007) specifically because the combination takes 
advantage of the unique sensitivities of each index in dif-
ferent habitat types (Sigovini et al. 2013). Applications of 
a multiple-index approach in stream assessment pro-
grams are uncommon, but the need has been suggested 
(e.g., Reynoldson et al. 1997, Mykrä et al. 2008, Collier 
2009). 

The decision to use both the pMMI and O/E index was 
based, at least partly, on observations that they had dif-
ferent sensitivities in different settings, particularly at low-
E sites. The difference between the 2 indices might mean 
that the O/E index correctly indicates a greater resilience 
to stress at certain stream types or that the pMMI is more 
finely tuned to lower levels of stress simply because it was 
specifically calibrated against high-activity sites in similar 
settings. Mechanistically, the difference probably occurred 
because O/E index scores are mainly affected by the loss 
of common taxa. For example, in low-E sites (which were 
common in dry, low-elevation environments in southern 
and central coastal California), the O/E index predicted 
occurrence of only a small number of highly tolerant 
taxa (e.g., baetid mayflies) because only these tolerant  taxa  
occur with high probability in these naturally stressful en-
vironments. Sensitive taxa also occur at reference sites in 
drier, low-elevation settings, but they were typically too 
rare to affect the O/E index (Appendix S2). 

The interpretive value of rare, sensitive taxa in estima-
tion of biological integrity of an individual site is unclear, 
but the ability of a site to support these taxa may be im-
portant to the health of a dynamic metacommunity, where 
rare taxa occupy only a small subset of suitable sites at 
any one time. Although several investigators have shown 
that exclusion of rare taxa usually enhances precision of 
O/E indices (e.g., Ostermiller and Hawkins 2004, Van 
Sickle et al. 2007), our results suggest that in certain set-
tings, this exclusion may obscure an important response to 
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stress. Including rare taxa in certain environmental set-
tings while excluding them in others may improve the 
consistency of an O/E index in complex regions, but we 
did not explore this option. The observation that sensitivity 
of all indices was lowest where E was highest was unex-

pected, and may be attributed to several potential causes. 
Most probably, anthropogenic stress was less severe at 
high-E than at low-E sites. High-activity sites were identi-
fied via indirect measures based on stressor sources (e.g., 
development in the watershed) rather than direct measures 

Table 6. Percentage of sites in different condition classes by region and site status. Percentiles refer to the distribution of scores at 
reference calibration (Cal) sites. Overall estimates are based on sites from probabilistic surveys and are not split into Cal or validation 
(Val) sets. For reference, moderate-, and high-activity sites, numbers in the last 6 columns are percentage of sites. For overall assessments, 
these numbers are percentage of stream miles. Dashes indicate that no sites were analyzed. 

Region 

Total sites 

Likely to be 
intact ≥30th 

percentile 
(CSCI ≥ 0.92) 

Possibly 
altered 30th–
10th percentile 
(CSCI ≥ 0.79) 

Likely to be 
altered 1st–10th 

percentile 
(CSCI ≥ 0.63) 

Very likely to 
be altered <1st 

percentile 
(CSCI < 0.63) 

Cal Val Cal Val Cal Val Cal Val Cal Val 

Statewide 
Reference 473 117 75 74 15 16 8 8 1 3 
Moderate activity 626 156 53 56 20 20 18 17 8 7 
High activity 497 122 13 18 13 14 25 22 49 46 
Overall 919 52 18 11 19 

North Coast 
Reference 60 16 85 63 13 31 0 6 2 0 
Moderate activity 88 26 58 50 26 15 9 27 7 8 
High activity 45 9 29 67 33 33 13 0 24 0 
Overall 162 58 23 10 9 

Chaparral 
Reference 74 19 68 63 20 26 9 0 3 11 
Moderate activity 146 34 47 65 18 15 29 15 6 6 
High activity 126 28 18 21 13 7 18 11 50 61 
Overall 147 34 16 17 33 

South Coast 
Reference 96 23 70 70 16 9 14 22 1 0 
Moderate activity 202 52 49 52 22 23 19 17 9 8 
High activity 241 60 5 10 12 13 32 27 52 50 
Overall 387 44 16 16 24 

Sierra Nevada 
Reference 221 55 77 82 14 11 7 5 1 2 
Moderate activity 148 35 68 60 20 29 8 9 5 3 
High activity 27 8 56 25 11 38 19 13 15 25 
Overall 106 70 19 6 5 

Central Valley 
Reference 1 0 100 – 0 – 0 – 0 – 
Moderate activity 8 1 0 0 0 0 38 100 63 0 
High activity 47 13 0 0 4 8 28 38 68 54 
Overall 60 2 8 18 71 

Desert/Modoc 
Reference 21 4 71 75 14 25 14 0 0 0 
Moderate activity 34 8 44 63 9 0 29 13 18 25 
High activity 5 4 0 50 0 0 0 50 100 0 
Overall 57 48 14 9 30 
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of water or habitat quality, so we could not ensure homog-
enous levels of disturbance among this set of sites. Alter-
natively, high-E settings might be more resilient to stress, 
perhaps because of their greater diversity (Lake 2000). 
Thus, the indices may have different responses to the 
same level of stress in different settings, depending on E. 

Despite the lower sensitivity of the O/E index at low-E 
sites, we think that including it in a combined index was 
preferable to using the more sensitive pMMI by itself. 
Combining the 2 indices was a simple way to retain high 
sensitivity at low-E sites, while retaining the advantages of 
the O/E as a measure of biodiversity (Moss et al. 1987, Haw-
kins et al. 2000). The ability of the O/E index to measure 
taxonomic completeness has direct applications to con-
servation of biodiversity and makes it particularly sensitive 
to replacement of native fauna by invasive species. Fur-
thermore, because it is calibrated with only reference sites, 
the O/E index is not influenced by the distribution or qual-
ity of high-activity sites. In contrast, we used the pMMI 
under the assumption that the set of high-activity sites ad-
equately represented the types of stressors that might be 
encountered in the future. Inclusion of the O/E index in 
the CSCI provides a degree of insurance against faulty as-
sumptions about the suitability of the high-activity site set 
for pMMI calibration. 

We combined the 2 indices as an unweighted mean for 
several technical reasons, but primarily because this was 
the simplest approach to take without stronger support 
for more complicated methods. As we demonstrated, the 
CSCI has less variable performance across stream types 
than its 2 components. Approaches that let the lowest (or 
highest) score prevail are more appropriate when the com-
ponents have similar sensitivity, but in our case would be 
tantamount to using the pMMI alone and muting the in-
fluence of the O/E index. Approaches that weight the 2 com-
ponents based on site-specific factors (e.g., weighting the 
pMMI more heavily than the O/E index at low-E sites) are 
worthy of future exploration. Evaluating the pMMI and O/
E indices independently to assess biological condition at a 
site might be useful, particularly at low-E sites, but the com-
bined index is preferred for applications where statewide 
consistency is important, such as designation of impaired 
waterbodies. 

Unexplained variability 
In our study, predictive models were able to explain only 

a portion of the variability observed at reference sites—
sometimes a fairly small portion. For example, the SD of 
the predictive O/E was only slightly lower than the SD of 
the null O/E (0.19 vs 0.21) and much larger than that 
associated with replicate samples (0.13). None of the se-
lected random-forest models explained >39% (for the no. 
shredder taxa metric) of the variability at reference cali-
bration sites. The unexplained variability may be related 
to the additional effects of environmental factors that are 

unsuitable for predicting reference condition (e.g., alter-
able factors, like substrate composition or canopy cover), 
environmental factors unrelated to those used for model-
ing (e.g., temporal gradients, weather antecedent to sam-
pling), field and laboratory sampling error, metacommu-
nity dynamics (Leibold et al. 2004, Heino 2013), or neutral 
processes in community assembly that are inherently un-
predictable (Hubbell 2001, Rader et al. 2012). The relative 
contribution of these factors is likely to be a fruitful area 
of bioassessment research. Given the number and breadth 
of environmental gradients evaluated for modeling, we think 
it unlikely that additional data or advanced statistical meth-
ods will change the performance of these indices. 

Setting thresholds 
Some investigators have suggested that thresholds for 

identifying impairment in environmentally complex re-
gions may require different thresholds in different settings 
based on the variability of reference streams in each set-
ting. For example, Yuan et al. (2008) proposed ecoregional 
thresholds for an O/E index for the USA based on the 
observation that index scores at reference sites were twice 
as variable in some ecoregions as in others. Alternatively, 
site-specific thresholds could be established based on the 
variability of a subset of environmentally similar reference 
sites. We rejected both of these approaches in favor of 
uniform thresholds based on the variability of all reference 
calibration sites. We rejected ecoregional thresholds or 
other typological approaches because the validity of eco-
regional classifications may be questionable for sites near 
boundaries. We rejected site-specific thresholds based on en-
vironmentally similar reference sites because they did not 
improve accuracy or sensitivity relative to a single statewide 
threshold when predictive indices are used (Appendix S1). 
These results are consistent with those of Linke et al. 
(2005), who showed that indices calibrated with environ-
mentally similar reference sites had similar performance 
to indices based on predictive models that were calibrated 
with all available reference sites. Other approaches, such 
as direct modeling of the SD of index scores as a function 
of natural factors, also might improve comparability of 
scores across settings (R. Bailey, Cape Breton University, 
personal communication). 

Conclusions and recommended applications 
Many recent technical advances in bioassessment have 

centered on improving the performance of tools used to 
score the ecological condition of water bodies. Much of 
the progress in this area has come from regional, national, 
and international efforts to produce overall condition assess-
ments of streams in particular regions (e.g., Simpson and 
Norris 2000, Van Sickle et al. 2005, Hawkins 2006, Hering 
et al. 2006, Stoddard et al. 2006, Paulsen et al. 2008). A key 
challenge in completing these projects has been incompat-
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ibility among scoring tools designed to assess streams in 
multiple regions, each calibrated for unique and locally im-
portant environmental gradients (Cao and Hawkins 2011). 
This issue has been well documented for large-scale pro-
grams in which investigators have attempted to integrate 
scores from a patchwork of assessment tools built for smaller 
subregions (Heinz Center 2002, Hawkins 2006, Meador 
et al. 2008, Pont et al. 2009), but far less attention has 
been paid to the meaning of index scores at individual 
stream reaches (Herlihy et al. 2008, Ode et al. 2008). As-
sessment of CSCI performance across the range of envi-
ronmental settings in California was essential because the 
CSCI is intended for use in regulatory applications that 
affect the management of individual reaches, and consis-
tent meaning of a score was a key requirement of regu-
latory agencies and stakeholders. We attempted to maximize 
consistency of the CSCI by using a large and representative 
reference set and by integrating multiple indices based on 
predictive models. Consistent accuracy was attained through 
the use of predictive models, whereas the consistency of 
precision and sensitivity was improved through the use of 
multiple endpoints. 

The CSCI was designed for condition assessments, but 
we think it has broad application to many aspects of stream 
management. For example, it could be used to select com-
parator sites with similar biological expectations to test sites 
for use in causal assessments (e.g., CADDIS; USEPA 2010) 
or to prioritize streams that can support rare or threatened 
assemblages for restoration or conservation (Linke et al. 
2011). The predictions generated by the index can inform 
management decisions about streams for which no biolog-
ical data are available. Predictive indices, such as the CSCI, 
are powerful additions to the stream manager’s tool kit, 
especially in environmentally complex areas. We recognize 
the challenges in enabling the general public to calculate 
an index as complex as the one presented here. Fortunately, 
online automation of many of the steps is possible. For ex-
ample, much of the GIS analysis can be simplified by using 
publicly available resources like StreamStats (US Geolog-
ical Survey 2012). An automated tool is in development, 
but people who are interested in using the CSCI or examin-
ing its component models are encouraged to contact the 
authors. 
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Appendix S1. Nearest-neighbor thresholds do not improve performance of predictive indices. 

Variable impairment thresholds may be useful when the precision of an index varies 

greatly across settings (Death and Winterbourn 1994). For example, Yuan et al. (2008) observed 

2-fold differences in variability at reference sites across ecoregions in an observed (O)/expected 

(E) taxa index for the USA, results that justified different thresholds for each region. In such 

circumstances, a uniform threshold may increase the frequency of errors in the more variable 

settings. Reference sites with scores below a uniform threshold may be disproportionately 

common in settings where the index is less precise. A variable threshold that is lower in more 

variable settings may reduce this error rate (i.e., the reference error rate). 

To determine if variable impairment thresholds based on site-specific characteristics 

could lead to an unbiased distribution of errors across regions, we evaluated 2 approaches to 

establishing thresholds: 1) a traditional approach, where a single number (based on variability in 

scores at all reference calibration sites) was used as a threshold, and 2) a site-specific approach, 

where thresholds were based on only a subset of the most environmentally similar reference 

calibration sites. In both cases, we considered sites to be in reference condition if their index 

score was >10th percentile of the relevant set of reference calibration site values. We measured 

environmental similarity as standard Euclidean distances along all environmental gradients used 

in predictive models (Table 1). We evaluated several different sizes of reference-site subsets (25, 

50, 75, 100, and 200, and the full set of 473). We calculated the error rate for all regions (except 

for the Central Valley, which had only 1 reference site) as the proportion of sites with scores 

below the threshold. We plotted these regional error rates against the number of reference sites 

used to calculate the threshold (Fig. S1) and transformed scores at test sites into percentiles 

relative to each of these distributions. We used the predictive California Stream Condition Index 



 

  

 

 

 

 

  

  

 

  

 

 

 

 

 

(CSCI) and its null equivalent in this analysis. 

Variable thresholds greatly reduced the regional bias of the error rate of the null index, 

but had a negligible effect on the predictive index. For example, the null index had a very high 

error rate (0.30) in the South Coast when a uniform threshold was used, but this error rate 

dropped to 0.10 when variable thresholds based on 25 or 50 reference sites were used. In 

contrast, the regional error rate of the predictive index was always <0.15 and was not highly 

influenced by the number of reference sites used to establish thresholds. 

We recommend a uniform threshold used in conjunction with a predictive index because 

of the added complexity and minimal benefits provided by the variable, site-specific thresholds. 
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Fig. S1. Effects of nearest neighbor thresholds on error rates, calculated as the proportion of 

reference calibration sites below the threshold for null (A) and predictive (B) indices. Each point 

represents a different region. The highest number of reference sites is equivalent to the uniform 

threshold used in the main study. 



    

 

  

 

 

 

 

  

  

 

   

 

   

 

  

 

 

 

  

  

Appendix S2. Index responsiveness as a function of predicted % sensitive taxa: a comparison of 

a predictive metric approach and the observed (O)/expected (E) taxa index. 

The responsiveness of a bioassessment index depends on its ability to change in response 

to stress, and the loss of sensitive taxa is typically one of the strongest responses to stress 

(Rosenberg and Resh 1993, Statzner et al. 2004). To see if the ability to detect the loss of 

sensitive taxa depends on number of common taxa (E), we compared the proportion of sensitive 

taxa expected by an O/E index and a predictive multimetric index (pMMI) under different values 

of E. For the pMMI, this proportion was calculated as the predicted % intolerant taxa metric, as 

described in the accompanying manuscript. For the O/E, this proportion was calculated as the % 

of expected operational taxonomic units (OTUs) that are sensitive (OTUs with tolerance value < 

3. For OTUs consisting of multiple taxa with different tolerance values, we used the median 

tolerance value). CAMLnet (2003) was the source of tolerance values. Estimates from both the 

O/E and pMMI were plotted against E to see whether the 2 indices allowed consistent ranges of 

response across values of E. These predictions were compared with the observed % intolerant 

taxa at reference sites to confirm the validity of these estimates. 

At high-E sites (E > 14), both the pMMI and O/E had a consistent capacity to detect loss 

of sensitive taxa (Fig. S2A, C). Furthermore, both indices estimated similar proportions of 

sensitive taxa (~40%), suggesting that the 2 indices have similar sensitivity in these settings. 

Both indices also predicted a decline in the proportion of sensitive taxa at low-E sites, indicating 

that E affects the sensitivity of the pMMI and O/E. However, at the lowest levels of E, the O/E 

had no capacity to detect loss of sensitive taxa, whereas the pMMI predicted ~20% sensitive taxa 

at these sites, preserving a limited capacity to respond to loss of sensitive taxa. This capacity 

explains why the pMMI was more sensitive than the O/E at low-E sites. 



   

 

  

 

 

 

  

 

  

  

 

 

 

 

Inspection of the data at reference sites indicates that sensitive taxa were truly present at 

these low-E sites (Fig. S2B, D) and that modeling the metric directly sets more accurate 

expectations for sensitive taxa in these settings (metric prediction vs observed R2 = 0.80; O/E 

prediction vs observed R2 = 0.55). However, these taxa were excluded from the index because of 

the minimum capture probability (i.e., 50%). Therefore, the predictive metric and not the O/E 

will be able respond to the loss of sensitive taxa at low-E sites. 
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Fig. S2. Proportion of sensitive taxa predicted by a predictive multimetric index (pMMI) (A, B) 

and an observed (O)/expected (E) taxa index (C, D) at all sites (A, C), or observed at reference 

calibration (B, D) sites. Dark triangles represent sites with high (>15) numbers of expected taxa, 

gray circles represent sites with moderate (10–15) numbers of expected taxa, and white squares 

represent sites with low (<10) numbers of expected taxa. The solid line represents a smoothed fit 

from a generalized additive model. 
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