Constituents of Emerging Concern (CECs) and the Water Boards

An Update on CEC Monitoring and Regulatory Strategies

February 22, 2017

Greg Gearheart, Director
Office of Information Management and Analysis
Contaminants of Emerging Concern

- PFOA/PFOS
- Microplastics
- Flame Retardants
- Pharmaceuticals and Personal Care Products
- Pesticides
- Endocrine Disrupting Compounds
- PBDEs

February 22, 2017
What do we mean by CEC?

- Constituent (or chemicals) of Emerging Concern (CECs) – vast number of chemicals that are generally unregulated in the U.S. or have limited regulation in environmental media
- CECs may include – pharmaceuticals, flame retardants, newly registered contemporary use pesticides, newly developed commercial products, including nanomaterials.
- Generally CECs have likely been present in water bodies, sediments and tissues but at concentrations that were not detectable by commonly used analytical methods
Water Board Functions re: CECs

• Monitoring (direct, indirect)
• Special studies (direct, coordinate)
 – Linkages to thresholds
 – Development of monitoring methods
 – Treatability
• Regulatory interventions
 – Permit requirements
 – New “standards”
Office of Information Management and Analysis (OIMA) Role re: CECs

- With DWQ, coordinate CEC Initiative activities
- Direct pilot monitoring in ambient recommended by expert panel
- Work with DWQ, DDW and Regions to direct special studies
- Track and help evaluate effectiveness of regulatory interventions
CEC Ambient Monitoring Pilot Framework

Biological

Bioassessments

Bioanalytical

Chemical

Targeted

Non-targeted
CECs in a Watershed
Scenario 1 – Inland Freshwater/Effluent Dominated Waters
Scenario 2 – Coastal Embayment

Tracey Saxby, Kate Moore, Jason C. Fisher, Jane Thomas, Jane Hawkey, Integration and Application Network, University of Maryland Center for Environmental Science (ian.umces.edu/imagelibrary/).
Scenario 3 – WWTP Effluent to the Ocean

Tracey Saxby, Kate Moore, Jason C. Fisher, Jane Thomas, Jane Hawkey, Integration and Application Network, University of Maryland Center for Environmental Science (ian.umces.edu/imagelibrary/).
Timeline for CECs

- **2009** – SWRCB convened two panels on CECs, one for recycled water driven human health risks (Science Advisory Panel) and one for ecosystem health risks, funded by the Packard Foundation (Aquatic Ecosystem CEC Panel)

- **2010** – Science Advisory Panel made recommendations for monitoring using a risk-based approach in their final report, SWRCB staff wrote a staff report supporting their recommendation to develop bioanalytical approaches

- **2011** – SWRCB contracted with SCCWRP to convene experts at bioanalytical cellular methods to explore further and they developed a framework still in play today (though only truly piloted by North Coast Region for Russian River)
Timeline for CECs (cont.)

• 2012 – Aquatic Ecosystem CEC Panel released a report summarizing their findings and discussing this framework in more detail; SWRCB contracted with SCCWRP to develop Monitoring Guidance for CECs in Aquatic Ecosystems

• 2013 – SWRCB adopted Recycled Water Policy with monitoring requirements for priority pollutants and CECs for groundwater recharge by surface and subsurface application methods based on the Science Advisory Panel report; SWRCB defers on bioanalytical and ecosystem requirements to pursue “pilot study”

• 2014 – SCCWRP “bioanalytical” team released report; SCCWRP developed Monitoring Guidance for CECs in Aquatic Ecosystems

• 2015 – OIMA begins implementing “pilot study” approach
<table>
<thead>
<tr>
<th>Division of Drinking Water</th>
<th>CECs and Drinking Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Division of Water Quality</td>
<td>CECs and Recycled Water</td>
</tr>
<tr>
<td>North Coast Region</td>
<td>CECs in the Russian River</td>
</tr>
<tr>
<td>San Francisco Bay Region</td>
<td>Ten Years of Monitoring and Intervening on CECs in the San Francisco Bay</td>
</tr>
<tr>
<td>Los Angeles Region</td>
<td>CECs in the Los Angeles Region</td>
</tr>
<tr>
<td>Santa Ana Region</td>
<td>CECs in the Santa Ana River and Orange County Coast</td>
</tr>
<tr>
<td>Office of Information Management and Analysis</td>
<td>Data Visualization of CECs</td>
</tr>
</tbody>
</table>
Division of Drinking Water

Update on Constituents of Emerging Concern

Mark Bartson, P.E., Chief,
Technical Operations Section
CECs and Drinking Water

• What are CECs?

• U.S. EPA Drinking Water Initiatives to Address CECs

• CECs in Recycled Water for Potable Reuse

• Suggested Approaches toward the CEC issue
Contaminants of Emerging Concern

- PFOA/PFOS
- Microplastics
- Flame Retardants
- Pharmaceuticals and Personal Care Products
- Pesticides
- Endocrine Disrupting Compounds
- PBDEs

February 22, 2017
CECs in Drinking Water

- CECs in Drinking Water - Issues
 - What CECs are in the source water?
 - What CECs may be present in the treated water?
 - Disinfection By-Products

- CECs in Recycled Water for Potable Reuse
 - Groundwater Recharge,
 - Surface Water Augmentation
 - Direct Potable Reuse (potentially)
CECs, Maximum Contaminant Levels (MCLs)

• To develop a Maximum Contaminant Level we need to have:
 ✓ Occurrence data (results of monitoring)
 ✓ Health impacts information (Public Health Goals)

• Many chemicals that were originally CECs now have Maximum Contaminant Levels (MCLs)

• Examples: MTBE, perchlorate, hexavalent chromium, 1,2,3-TCP (MCL now being proposed)
1996 Safe Drinking Water Act Initiative (Unregulated Contaminant Monitoring Rule)

• Collect data for contaminants suspected to be present in drinking water, but that do not have health-based standards set under the Safe Drinking Water Act (SDWA).

• Provides national data on the occurrence of contaminants in drinking water, the population exposed, and levels of that exposure.

• This data can support future regulatory determinations and other actions to protect public health.
Unregulated Contaminant Monitoring Rule (UCMR)

The UCMR was established by US EPA under the Safe Drinking Water Act of 1996.

<table>
<thead>
<tr>
<th>UCMR #</th>
<th>Year</th>
<th>Number of Contaminants</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2001-2005</td>
<td>26 contaminants</td>
</tr>
<tr>
<td>2</td>
<td>2007-2011</td>
<td>25 contaminants</td>
</tr>
<tr>
<td>3</td>
<td>2012-2016</td>
<td>30 contaminants (and two viruses)</td>
</tr>
<tr>
<td>4</td>
<td>2017-2021</td>
<td>30 contaminants</td>
</tr>
</tbody>
</table>
2017 Federal UCMR Contaminant Groups

- Ten Cyanotoxin Chemical Contaminants
- Two Metals
- Eight Pesticides and One Pesticide Manufacturing Byproduct
- Three Brominated Haloacetic Acid (HAA) Groups
- Three Alcohols
- Three Other Semi-volatile Chemicals
Public Water Systems Research initiatives

National Water Research Institute

FINAL PROJECT REPORT

Source, Fate, and Transport of Endocrine Disruptors, Pharmaceuticals, and Personal Care Products in Drinking Water Sources in California

Principal Investigators:
Y. Carrie Guo, Ph.D., and Stuart W. Krasner
Metropolitan Water District of Southern California
Steve Fitzsimmons, Greg Woodside, and Nira Yamachika
Orange County Water District
2010 NWRI Study
Source, Fate, and Transport of Endocrine Disruptors, Pharmaceuticals, and Personal Care Products in Drinking Water Sources in California

Figure ES-1. Map of central and southern California depicting the three watersheds studied for the project.
CECs & Potable Reuse of Recycled Water

1. Development of CEC indicators and surrogates

2. Recommendations on CECs from Direct Potable Reuse Expert Panel:
 - Advanced Source Control to address CECs
 - Research to Assess potential health risks from short-term exposures
 - Research to Identify options for final treatment processes that can reduce potential chemical peaks
 - Research to Develop and Use non-targeted analysis, especially for low molecular weight compounds
1. The state of knowledge regarding CECs is incomplete.

2. There needs to be additional research and development of analytical methods and surrogates to determine potential environmental and public health impacts.
3. Agencies should minimize the likelihood of CECs impacting human health and the environment by means of source control and/or pollution prevention programs.

4. Regulating most CECs will require significant work to develop test methods and more specific determinations as to how and at what level CECs impact public health or our environment.
Order of CEC Stories Today

<table>
<thead>
<tr>
<th>Division of Drinking Water</th>
<th>CECs and Drinking Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Division of Water Quality</td>
<td>CECs and Recycled Water</td>
</tr>
<tr>
<td>North Coast Region</td>
<td>CECs in the Russian River</td>
</tr>
<tr>
<td>San Francisco Bay Region</td>
<td>Ten Years of Monitoring and Intervening on CECs in the San Francisco Bay</td>
</tr>
<tr>
<td>Los Angeles Region</td>
<td>CECs in the Los Angeles Region</td>
</tr>
<tr>
<td>Santa Ana Region</td>
<td>CECs in the Santa Ana River and Orange County Coast</td>
</tr>
<tr>
<td>Office of Information Management and Analysis</td>
<td>Data Visualization of CECs</td>
</tr>
</tbody>
</table>

February 22, 2017
Division of Water Quality

Update on Efforts Related to Constituents of Emerging Concern

Claire Waggoner
Statewide Policies and Planning Unit
Groundwater Protection Section
Presentation Summary

The Division of Water Quality

Developing Monitoring Tools

Recycled Water Research

CECs and...
Non-point Source

Oil Field Produced Water

GAMA Groundwater Assessment

Storm Water

Irrigated Lands Regulatory Program

Mussel Watch

Constituents of Emerging Concern

Recycled Water

Division of Water Quality

February 22, 2017
The State Water Board directed staff to:

- Reconvene CEC Science Advisory Panel
- Update the Recycled Water Policy
- Acknowledged the need to fund research projects to fill critical knowledge gaps
Recycled Water Research Needs

- CECs
- Treatment Byproducts
- Operator Certification
- Oilfield Water for Crop Irrigation
- Pathogens
- Antimicrobial Resistant Bacteria
- Real Time Monitoring
- Bioanalytical Techniques

February 22, 2017
Recycled Water Research Needs: Monitoring and Treatment Performance for CECs

- October 2015 Workshop
- Research themes:
 - performance of treatment technologies
 - chemical testing, bioanalytical screening, and non-targeted analyses
Detecting and Measuring CECs in Recycled Water and the Environment
Tools for CEC Monitoring

Targeted Chemistry

Bioanalytical

Non-targeted Analytical (NTA)

Known Knowns

Known Unknowns

Unknown Unknowns

February 22, 2017
• Some analytical methods are well established
• Some methods need to be developed further (e.g., for “new” CECs)
• We plan on using a portion of research funds to further develop and optimize CEC monitoring tools
• Regional Water Boards are piloting these CEC monitoring techniques

• Pilot results will inform future CEC monitoring programs

• Let’s continue to coordinate and collaborate
Order of CEC Stories Today

<table>
<thead>
<tr>
<th>Division of Drinking Water</th>
<th>CECs and Drinking Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Division of Water Quality</td>
<td>CECs and Recycled Water</td>
</tr>
<tr>
<td>North Coast Region</td>
<td>CECs in the Russian River</td>
</tr>
<tr>
<td>San Francisco Bay Region</td>
<td>Ten Years of Monitoring and Intervening on CECs in the San Francisco Bay</td>
</tr>
<tr>
<td>Central Coast Region</td>
<td>CECs in the Central Coast</td>
</tr>
<tr>
<td>Los Angeles Region</td>
<td>CECs in the Los Angeles Region</td>
</tr>
<tr>
<td>Santa Ana Region</td>
<td>CECs in the Santa Ana River and Orange County Coast</td>
</tr>
<tr>
<td>Office of Information Management and Analysis</td>
<td>Data Visualization of CECs</td>
</tr>
</tbody>
</table>
Russian River CECs Monitoring

Shin-Roei Lee
North Coast Regional Water Board
INITIAL FINDINGS

• Preliminary results for water and fish tissue suggest minimal concern for impact due to CECs
 – Fish tissue concentrations well below available human consumption thresholds

• Bioscreening of endocrine disrupting CECs agrees with conventional monitoring results in effluent and river water samples
RATIONALE & OBJECTIVES

• OBJECTIVE
 – Are CECs impacting beneficial uses in the Russian River watershed?

• STUDY QUESTIONS
 – What is the occurrence of CECs in water, sediment and fish tissue?
 – Can bioanalytical tools effectively screen for CECs?
 – What pesticides deserve monitoring?

• TASKS
 – Measure CECs in water, sediment and fish tissue
 – Compare bioanalytical results to chemical results of targeted CECs
 – Prioritize pesticides monitoring based on usage, toxicity and persistence
TASK 1 – OCCURRENCE

• **CECs in water**
 – Samples collected in March 2016
 – Most targeted CECs were detectable in effluent at ng/L concentrations
 – Fewer CECs detected in river water, levels 1-100X lower than effluent
 – *Preliminary comparison to monitoring trigger levels show minimal concern*

• **CECs in fish tissue**
 – Samples collected in Summer 2015
 – *Polybrominated diphenyl ether flame retardants (PBDEs) and perfluorochemicals (PFOs) were detected but at levels below available thresholds of concern for human consumption*

• **CECs in sediment**
 – Samples collected in Sept/October 2016
 – *Results should be available in April 2017*
TASK 1 – OCCURRENCE (supplemental)

• CECs in fish tissue
 – Fish collected in August 2015 in 5 sections of the River
 – Tissue composited by species and location analyzed for PBDEs, PFOs
 – PBDEs, PFOs levels were < available human health thresholds

- lowest human health threshold: 100 ppb ww (3 meals/week)
- lowest human health threshold: 40 ppb ww (1 meal/week)
River water, WWTP effluent samples were screened for endocrine disrupting chemicals (EDCs):
- estrogens
- glucocorticoid steroids (a.k.a. GCS, anti-inflammatory drugs)

EDCs were detected at low levels in one WWTP effluent and not detected in the other WWTP effluent and river water samples

Bioanalytical results are in agreement with the targeted chemistry results

Bioscreening results for sediment expected in April 2017
TASK 3 – PESTICIDE USAGE & OCCURRENCE

• **Used DPR Tool to prioritize pesticides for monitoring**
 - Pesticides prioritized based on likelihood of impact (e.g., use volume, toxicity, use trend, application timing and method)
 - 153 pesticides analyzed based on method availability and prioritization results
 - Analysis by USGS Sacramento

• **River water and sediment collected**
 - September - October 2016
 - 5 sites along the Russian River and its tributaries draining lands with expected pesticide application
 - Results are expected in April 2017
Summary

• Outstanding tasks scheduled for completion by April 2017
 – bioscreening of sediment samples will target different CECs

• All results and interpretations finalized by June 30, 2017
 – which CECs, if any, should be monitored in the future

• Reduced role for non-targeted analysis if samples continue to show little potential for impact
 – dry weather levels of non-pesticide CECs are still a data gap
PILOT MONITORING OF CECS IN RUSSIAN RIVER WATERSHED

• Project Lead: Keith Maruya, SCCWRP

• Project Team:
 – Rich Fadness (North Coast Water Board)
 – Alvine Mehinto, Wayne Lao (SCCWRP)
 – Rebecca Sutton, Jennifer Sun, Thomas Jabusch (SFEI)
Order of CEC Stories Today

<table>
<thead>
<tr>
<th>Division of Drinking Water</th>
<th>CECs and Drinking Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Division of Water Quality</td>
<td>CECs and Recycled Water</td>
</tr>
<tr>
<td>North Coast Region</td>
<td>CECs in the Russian River</td>
</tr>
<tr>
<td>San Francisco Bay Region</td>
<td>Ten Years of Monitoring and Intervening on CECs in the San Francisco Bay</td>
</tr>
<tr>
<td>Los Angeles Region</td>
<td>CECs in the Los Angeles Region</td>
</tr>
<tr>
<td>Santa Ana Region</td>
<td>CECs in the Santa Ana River and Orange County Coast</td>
</tr>
<tr>
<td>Office of Information Management and Analysis</td>
<td>Data Visualization of CECs</td>
</tr>
</tbody>
</table>
San Francisco Bay CEC Program

Naomi Feger
Planning Division Chief
San Francisco Bay Regional Water Board
Contaminants of Emerging Concern

- PFOA/ PFOS
- Microplastics
- Flame Retardants
- Pharmaceuticals and Personal Care Products
- Pesticides
- Endocrine Disrupting Compounds
- PBDEs

February 22, 2017
SF Bay Regional Monitoring Program
Emerging Contaminants

❖ Over 10 years of monitoring and studies
 › Primarily ambient water, sediment, and biota
 › Some wastewater and stormwater

❖ 2013 data synthesis and strategy document
 › Added non-targeted monitoring and development of bioanalytical tools

❖ 2017 update of synthesis and strategy
SF Bay Regional Monitoring Program
CECs Strategy

- Tiered risk and management action framework
- Recurring review scientific literature and other CECs monitoring programs
- Emerging Contaminants Workgroup
 - Stakeholders and scientific advisors
SF Bay Regional Monitoring Program
Science Advisors

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bill Arnold</td>
<td>Univ. of Minnesota</td>
</tr>
<tr>
<td>Lee Ferguson</td>
<td>Duke University</td>
</tr>
<tr>
<td>Phil Gschwend</td>
<td>MIT</td>
</tr>
<tr>
<td>Kelly Moran</td>
<td>TDC Environmental</td>
</tr>
<tr>
<td>Derek Muir</td>
<td>Environment Canada</td>
</tr>
<tr>
<td>Daniel Schlenk</td>
<td>UC Riverside</td>
</tr>
<tr>
<td>Heather Stapleton</td>
<td>Duke University</td>
</tr>
</tbody>
</table>
Risk Tiers

High probability of moderate or high level effect on Bay wildlife

High probability of low level effect on Bay wildlife

High probability of no effect on Bay wildlife

Uncertainty in Bay levels or toxic thresholds
Monitoring Strategy

Studies to support Total Maximum Daily Load (TMDL) or alternatives

Trends monitoring and/or fate, effects, and sources and loadings studies

Periodic ambient and/or source trend screening

Ambient and source screening
Management Strategy

303(d) list → TMDL or alternative(s)

Action plan or strategy

– Aggressive pollution prevention
– Seek product or chemical alternatives

Track product use and market trends
Easy, low-cost source identification and pollution prevention actions

Identify and prioritize potential CECs
Develop bio and chemistry methods
Chemicals

None currently in Bay

- PFOS (stain repellant)
- Fipronil (insecticide)
- Nonylphenol (surfactant)
- PBDEs (flame retardants)

HBCD (flame retardant)

- Pyrethroids (insecticides)

Pharmaceuticals

Personal Care Product Ingredients

Polybrominated Dioxins and Furans

Alternative Flame Retardants

Perfluorinated Chemicals

Pesticides

Plastic Additives (Bisphenol A, Phthalates)

Many, many others
Candidate Actions

- Source identification
- Source control identification and evaluation
- Referral to other regulatory authority(s)
- Track product use and market trends
- Communication and outreach
- Monitoring/study strategy
Flame Retardants

PBDEs
Shiner Surfperch

February 22, 2017
PFOS in the Bay

South Bay
Harbor seals
PFOS in Serum

February 22, 2017
PFOS in the Bay

Predicted no effect concentration

<table>
<thead>
<tr>
<th>Location</th>
<th>2006</th>
<th>2009</th>
<th>2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheeler Island</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Richmond Bridge</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Don Edwards</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fipronil

Concern
- Aquatic toxicity

Uses
- Flea, tick, lice control
- Structural pest control (ants, termites)
- No ag uses

Actions
- SF Bay Region Urban Creeks Pesticides Toxicity TMDL (2005)
- US EPA registration review (2011)
- Develop action plan with CA DPR (2014)
- Wastewater study (2015)

February 22, 2017
Next Steps: Additional Special Studies

- Microplastics in the Bay and sources
- PFOS/PFAS synthesis and strategy
- Additional monitoring
 - Bisphenols in Bay waters
 - Triclosan and methyl triclosan in small fish
 - Alt. flame retardants in Bay and sources
 - Imidacloprid, degradates, other neonicotinoids in Bay and sources
- Non-targeted analysis of water-soluble compounds
- Test developed bioanalytical tool and use of passive sampler(s)
Order of CEC Stories Today

<table>
<thead>
<tr>
<th>Division of Drinking Water</th>
<th>CECs and Drinking Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Division of Water Quality</td>
<td>CECs and Recycled Water</td>
</tr>
<tr>
<td>North Coast Region</td>
<td>CECs in the Russian River</td>
</tr>
<tr>
<td>San Francisco Bay Region</td>
<td>Ten Years of Monitoring and Intervening on CECs in the San Francisco Bay</td>
</tr>
<tr>
<td>Los Angeles Region</td>
<td>CECs in the Los Angeles Region</td>
</tr>
<tr>
<td>Santa Ana Region</td>
<td>CECs in the Santa Ana River and Orange County Coast</td>
</tr>
<tr>
<td>Office of Information Management and Analysis</td>
<td>Data Visualization of CECs</td>
</tr>
</tbody>
</table>
Types of CEC Monitoring

1. Wastewater Effluents

2. Freshwater Streams and Estuaries
 - Water column
 - Sediment
 - Fish tissue

3. Bioanalytical Screening and Non-targeted Analyses
 - Water column
 - Sediment

4. Biological Responses
Wastewater Effluents
CEC Effluent Monitoring

<table>
<thead>
<tr>
<th>Waterbody</th>
<th>POTWs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ocean</td>
<td>Hyperion, JWPCP, Oxnard, Avalon, San Clemente</td>
</tr>
<tr>
<td>Los Angeles Harbor</td>
<td>Terminal Island</td>
</tr>
<tr>
<td>Santa Clara River Estuary</td>
<td>Ventura</td>
</tr>
<tr>
<td>Santa Clara River</td>
<td>Saugus, Valencia, Camarillo, Camrosa, Simi Valley, Thousand Oaks</td>
</tr>
<tr>
<td>San Gabriel River</td>
<td>San Jose Creek, Long Beach, Pomona, Los Coyotes, Whittier Narrows</td>
</tr>
<tr>
<td>Los Angeles River</td>
<td>Tillman, LA-Glendale, Burbank</td>
</tr>
<tr>
<td>Ventura River</td>
<td>Ojai</td>
</tr>
<tr>
<td>Malibu Creek</td>
<td>Tapia</td>
</tr>
</tbody>
</table>
Assessment Thresholds

State Board’s CEC Expert Panel

– “Monitoring Trigger Levels” (MTLs) for some CECs

• Effluent dominated freshwater systems – 11 MTLs for water, 1 MTL for sediment, 3 MTLs for fish tissue

• Coastal embayments – 8 MTLs for water, 5 MTLs for sediment, 3 MTLs for fish tissue

• Ocean waters – 5 MTLs for sediment, 3 MTLs for fish tissue
Exceedances of MTLs

<table>
<thead>
<tr>
<th>Compound</th>
<th>MTL (ng/L)</th>
<th># POTWs exceeding MTL</th>
<th>Concentration range (ng/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Galaxolide (fragrance)</td>
<td>700 (Freshwater) 70 (Embayments)</td>
<td>14/15 (93 %)</td>
<td><20 – 10,000</td>
</tr>
<tr>
<td>Fipronil (pesticide)</td>
<td>42 (Freshwater) 5 (Embayments)</td>
<td>9/15 (60 %)</td>
<td><2 – 190</td>
</tr>
<tr>
<td>Diclofenac (anti-inflammatory)</td>
<td>100 (Freshwater)</td>
<td>5/15 (33%)</td>
<td><5-331</td>
</tr>
<tr>
<td>Estrone (hormone)</td>
<td>6 (Freshwater) 0.6 (Embayments)</td>
<td>3/14 (21 %)</td>
<td><0.2 – 8.3</td>
</tr>
<tr>
<td>Chlorpyrifos (pesticide)</td>
<td>5 (Freshwater) 1 (Embayment)</td>
<td>2/14 (14 %)</td>
<td><1 – 10</td>
</tr>
<tr>
<td>Bisphenol A (plasticizer)</td>
<td>60 (Freshwater) 6 (Embayments)</td>
<td>2/16 (12.5 %)</td>
<td><10 – 87</td>
</tr>
<tr>
<td>17-Beta Estradiol (hormone)</td>
<td>2 (Freshwater) 0.2 (Embayments)</td>
<td>1/16 (6 %)</td>
<td><0.31 – 1.2</td>
</tr>
</tbody>
</table>
No Exceedances of MTLs

<table>
<thead>
<tr>
<th>Compound</th>
<th>MTL (ng/L)</th>
<th># POTWs exceeding MTL</th>
<th>Concentration range (ng/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ibuprofen (anti-inflammatory)</td>
<td>100 (Freshwater)</td>
<td>0/14 (0%)</td>
<td><10 – 56.5</td>
</tr>
<tr>
<td>Triclosan (anti-bacterial)</td>
<td>250 (Freshwater)</td>
<td>0/14 (0%)</td>
<td><10 - 64</td>
</tr>
</tbody>
</table>
Uncertainty About Exceedances of MTLs

<table>
<thead>
<tr>
<th>Compound</th>
<th>MTL (ng/L)</th>
<th># POTWs exceeding MTL</th>
<th>Concentration range (ng/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bifenthrin</td>
<td>0.4 (Freshwater)</td>
<td>2/2 (100%)</td>
<td><2 – 5.2</td>
</tr>
<tr>
<td>(pesticide)</td>
<td>0.04 (Embayments)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Permethrin</td>
<td>1 (Freshwater)</td>
<td>1/2 (50%)</td>
<td><5 – 16</td>
</tr>
<tr>
<td>(pesticide)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Detection Limits > MTLs for Most Facilities (Unable to Determine # Exceedances)
2011 LA Regional Board Study

- Quantify occurrence of CECs above and below POTW discharges
- Characterize in-stream fate and transport
- Water samples at 7-9 stations (upper watershed to mouth of river)
- @ 60-70 CECs analyzed
Los Angeles/San Gabriel River CEC Study

Los Angeles River Watershed

San Gabriel River Watershed

February 22, 2017

CEC Initiative
CECs in waters of LA and San Gabriel Rivers

- 52% of targeted CECs were detectable at stations downstream of wastewater discharges
- Natural and synthetic hormones not detectable
- Chlorinated flame retardants averaged 2.4 – 3.4 µg/L (no MTL available)
- Galaxolide & bisphenol A averaged 2.4 and 0.28 µg/L (exceeds MTLs)
- Fipronil and degradates up to 29 ng/L (less than MTL of 42, but literature suggests possible toxicity to estuarine invertebrates)
Los Angeles/San Gabriel River CEC Study

• Fate and Transport in Los Angeles River
 – Primary input of targeted CECs occurred between Tillman and LA-Glendale wastewater discharges (river mile 45 to 31)

• Attenuation of target CECs not observed downstream of POTW discharges
 – Short residence time in river (1-2 days) compared to time required for many CECs to degrade in sunlit waters (weeks to months)
Los Angeles/San Gabriel River CEC Study

• Fate and Transport in San Gabriel River
 – Primary loading of CECs originated from Los Coyotes and Long Beach wastewater discharges in lower river (river mile 10 to 5)
 – Comparatively short window of time (@ 1 day or less) for in-stream attenuation of CECs
 – Mass loading estimates to estuary for highest occurring CECs are @ 100 kilograms per year
Santa Clara River CEC Study

• 2013 LA Regional Board Study
 – Quantify occurrence of CECs above and below POTW discharges
 – Characterize in-stream fate and transport
 – Water samples at 10 stations (upper watershed to mouth of river)
 – @ 60 CECs analyzed
Santa Clara River CEC Study

Santa Clara River Watershed
Santa Clara River CEC Study

• CECs in waters of Santa Clara River
 – Several targeted CECs were detectable at stations downstream of wastewater discharges
 – Natural and synthetic hormones not detectable
 – Chlorinated flame retardants found in low parts per billion range
 – Pharmaceuticals (eg. Meprobamate) found in high parts per trillion range
Santa Clara River CEC Study

• Fate and transport in Santa Clara River

 – Highest concentrations measured in proximity of wastewater discharges in upper watershed and in the estuary
 – Concentrations in upper watershed were rapidly diluted (probably due to rising groundwater, sorption to natural sediments/riparian vegetation and degradation)
Sediment Studies

• Sediment collected from Santa Clara River and Estuary (LA Regional Board study)
• Sediment collected from 21 coastal embayments and marinas in Southern California (Bight’13 Study)
Sediment Studies

Coastal embayments/marinas in SoCal

• high parts per billion concentrations of nonylphenol, bisphenol A, pyrethroid pesticides, chlorinated flame retardants and triclocarban
• highest in more highly urbanized coastal systems (eg., LA River estuary, Ballona Creek estuary, Marina del Rey)
• lower in Santa Clara River estuary
 – Sediment exceeded MTLs for bifenthrin, permethrin, PBDE-47, PBDE-99, and fipronil
 – Chlorinated flame retardants and perfluorinated compounds seemed low (no MTLs available)
Fish Tissue Studies

• Fish collected in Santa Clara River and Estuary (LA Regional Board study)
• Fish collected in southern California embayments (Bight’13)
• Fish tissue concentrations in both studies:
 – Exceeded MTLs for PBDE-47 and PBDE-99
 – Pyrethroid pesticides and fipronil seemed high (no MTLs available)
 – Chlorinated flame retardants and perfluorinated compounds seemed low (no MTLs available)
Bioanalytical Screening and Non-Targeted Analyses for CECs
Bioanalytical Screening and Non-Targeted Analyses for CECs

- Ongoing study in Los Angeles and San Gabriel Rivers
 - Screening tool for biological impacts of CECs
 - Water and sediment samples
 - 3 sites per river x 2 sampling events
 (all samples were collected in August and October 2016)
 - 4 or 5 in-vitro bioassays per sample (water and sediment assay results should be available by mid-2017)
Biological Responses to CECs
Field Fish Toxicity Study in Los Angeles River

Overall goal: Conduct field-based fathead minnow exposures to assess the water quality of urban-impacted waters

- Two sites with different sources of contamination
 - Urban runoff (Sepulveda Basin above Tillman WRP)
 - Treated wastewater effluent discharges (below LA-Glendale WRP)

- Fathead minnows will be held in mobile exposure units under real-time flow-through conditions while maintaining other parameters under control (e.g. flow rate, oxygen…)

- Linkage between chemical occurrence (targeted chemicals), bioanalytical tests, and fish biological changes will be investigated

Self-contained battery-operated exposure unit placed on the bank of the river for field exposure of adult fathead minnows.
Objective is to improve our ability to interpret bioanalytical screening results and develop response thresholds of concern

Approach:

- Bioscreening of water samples from study sites using endocrine related endpoints
- Analysis of endocrine related changes in fish (incl. plasma hormone levels, male sex characteristics)
- Comparisons between bioactivity measured in water samples and the number/severity of biological changes observed in fish

For more information: Dr. Alvina Mehinto and Steve Bay @ SCCWRP
Research to Date

• Occurrence of CECs in wastewater effluents

• Degree of attenuation

• Accumulation in coastal sediments

• Accumulation in fish tissue
Ongoing Studies/Next Steps

• Complete study for bioanalytical screening and non-targeted analysis of CECs

• Complete study on biological response to CECs

• Integrate results and determine objectives for future studies
Order of CEC Stories Today

<table>
<thead>
<tr>
<th>Division of Drinking Water</th>
<th>CECs and Drinking Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Division of Water Quality</td>
<td>CECs and Recycled Water</td>
</tr>
<tr>
<td>North Coast Region</td>
<td>CECs in the Russian River</td>
</tr>
<tr>
<td>San Francisco Bay Region</td>
<td>Ten Years of Monitoring and Intervening on CECs in the San Francisco Bay</td>
</tr>
<tr>
<td>Los Angeles Region</td>
<td>CECs in the Los Angeles Region</td>
</tr>
<tr>
<td>Santa Ana Region</td>
<td>CECs in the Santa Ana River and Orange County Coast</td>
</tr>
<tr>
<td>Office of Information Management and Analysis</td>
<td>Data Visualization of CECs</td>
</tr>
</tbody>
</table>
Overview of
Santa Ana Watershed Project Authority (SAWPA)

Emerging Constituents Program Task Force

Hope Smythe
Assistant Executive Officer
February 22, 2017
Emerging Constituents Task Force

• Convened by Santa Ana Watershed Project Authority (SAWPA) in 2008; participation voluntary

• Task Force deliberate identification of “Emerging Constituents” (ECs) and not “Constituents of Emerging Concern” (CEC)

• Task Force Goals:
 – To undertake a proactive approach to investigating “emerging constituents”
 – Evaluate potential human health EC effects from all water sources in the watershed
 – To determine which emerging constituents may be important in the Santa Ana River Watershed
 – To inform SWRCB’s Recycled Water Policy development/Science Advisory Panel Efforts
Emerging Constituents Task Force (cont.)

Task Force Administrator: Mark Norton, SAWPA
Task Force Consultant: Tim Moore, Risk Sciences

<table>
<thead>
<tr>
<th>Water Supply Agencies</th>
<th>Water Supply AND Wastewater Agencies</th>
<th>Wastewater Agencies</th>
<th>Advisory Agencies/Organizations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orange County Water District</td>
<td>Eastern MWD</td>
<td>City of Beaumont</td>
<td>Regional Board</td>
</tr>
<tr>
<td>San Bernardino Valley MWD</td>
<td>Inland Empire Utilities Agency</td>
<td>City of Redlands</td>
<td>CA Dept. of Health</td>
</tr>
<tr>
<td>Chino Basin Watermaster</td>
<td>Irvine Ranch Water District</td>
<td>City of Corona</td>
<td>US Geological Survey</td>
</tr>
<tr>
<td>Western MWD</td>
<td>Elsinore Valley MWD</td>
<td>City of Rialto</td>
<td>Analytical Labs</td>
</tr>
<tr>
<td>Metropolitan Water District of So. Calif.</td>
<td>Yucaipa Valley Water District</td>
<td>City of Riverside</td>
<td>National Water Resource Institute</td>
</tr>
<tr>
<td>San Gorgonio Pass Water Agency</td>
<td></td>
<td>Lee Lake Water District</td>
<td>Environmental NGOs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jurupa CSD</td>
<td>Jörg Drewes (Co. School of Mines)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Colton/San Bernardino RIX</td>
<td>David Sedlack (UC Berkeley)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Western Riverside County Regional Wastewater Authority</td>
<td>Shane Snyder (So. NV Water Authority)</td>
</tr>
</tbody>
</table>
Emerging Constituents Task Force (cont.)

Task Force Sub-committees

1. Public Relations Sub-committee
 - Developed Communication Plan
 - Created to focus on unified messaging to the public to address water quality concerns
 - Coordinates with media outlets
 - Maintains water blog, Facebook, Twitter accounts
 https://yoursocaltapwater.org/

2. Laboratory Sub-committee
 - Provided QA/QC protocols and analytical methods standardization expertise
EC Task Force Sampling Program (cont.)

Analytes (from among the following list)

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Analyte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caffeine</td>
<td>Ibuprofen</td>
</tr>
<tr>
<td>DEET</td>
<td>Carbamazepine</td>
</tr>
<tr>
<td>Gemfibrozil</td>
<td>Acetaminophen</td>
</tr>
<tr>
<td>Iopromide</td>
<td>Bisphenol A (BPA)</td>
</tr>
<tr>
<td>Triclosan</td>
<td>Naproxen</td>
</tr>
<tr>
<td>NDMA</td>
<td>Sulfamethoxazole</td>
</tr>
<tr>
<td>Sucralose</td>
<td>TCEP</td>
</tr>
<tr>
<td>17β Estradiol</td>
<td>Diuron</td>
</tr>
<tr>
<td>17α Ethinyl Estradiol</td>
<td></td>
</tr>
</tbody>
</table>
Summary of Results

• QA/QC results: variability b/t labs
• ECs detected at many sites → low concentrations
• EC concentrations below Blue Ribbon Panel identified thresholds
• 100+ samples → no hormones detected
• Over 4 year sampling period – no increasing or decreasing EC trends
• Subsurface recharge effective in transforming EC concentrations
• Wastewater treatment process affected EC concentrations
2012 Summary of Results (all sites)

<table>
<thead>
<tr>
<th>Compound</th>
<th>Primary Use</th>
<th>Frequency of Detection</th>
<th>Reported Range</th>
<th>Common Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetaminophen (Tylenol)</td>
<td>Analgesic</td>
<td>12% (3 of 26)</td>
<td>ND – 0.000030 mg/L</td>
<td>500 mg</td>
</tr>
<tr>
<td>Bisphenol A (BPA)</td>
<td>Plastic Coating</td>
<td>12% (3 of 26)</td>
<td>ND – 0.000045 mg/L</td>
<td>n/a</td>
</tr>
<tr>
<td>Caffeine</td>
<td>Food Additive</td>
<td>73% (19 of 26)</td>
<td>ND – 0.000210 mg/L</td>
<td>100 mg</td>
</tr>
<tr>
<td>Carbamazepine</td>
<td>Anti-Convulsant</td>
<td>88% (23 of 26)</td>
<td>ND – 0.000390 mg/L</td>
<td>200 mg</td>
</tr>
<tr>
<td>DEET</td>
<td>Insecticide</td>
<td>92% (24 of 26)</td>
<td>ND – 0.001300 mg/L</td>
<td>270 mg</td>
</tr>
<tr>
<td>Diuron</td>
<td>Herbicide</td>
<td>81% (21 of 26)</td>
<td>ND – 0.000220 mg/L</td>
<td>n/a</td>
</tr>
<tr>
<td>17α Ethinyl Estradiol</td>
<td>Synthetic Hormone</td>
<td>0% (0 of 26)</td>
<td>Never Detected</td>
<td>1 mg</td>
</tr>
<tr>
<td>17β Estradiol</td>
<td>Natural Hormone</td>
<td>0% (0 of 26)</td>
<td>Never Detected</td>
<td>1 mg</td>
</tr>
<tr>
<td>Gemfibrozil</td>
<td>Anti-cholesterol</td>
<td>77% (20 of 26)</td>
<td>ND – 0.000970 mg/L</td>
<td>600 mg</td>
</tr>
<tr>
<td>Ibuprofen (Advil)</td>
<td>Analgesic</td>
<td>46% (12 of 26)</td>
<td>ND – 0.000110 mg/L</td>
<td>300 mg</td>
</tr>
<tr>
<td>Iopromide</td>
<td>X-ray Contrast Agent</td>
<td>65% (17 of 26)</td>
<td>ND – 0.000860 mg/L</td>
<td>500 mg</td>
</tr>
<tr>
<td>Naproxen (Aleve)</td>
<td>Analgesic</td>
<td>23% (6 of 26)</td>
<td>ND – 0.000140 mg/L</td>
<td>200 mg</td>
</tr>
<tr>
<td>Sulfamethoxazole</td>
<td>Antibiotic</td>
<td>69% (18 of 26)</td>
<td>ND – 0.002900 mg/L</td>
<td>800 mg</td>
</tr>
<tr>
<td>TCEP</td>
<td>Flame Retardant</td>
<td>92% (24 of 26)</td>
<td>ND – 0.000930 mg/L</td>
<td>n/a</td>
</tr>
<tr>
<td>Triclosan</td>
<td>Antiseptic</td>
<td>58% (15 of 26)</td>
<td>ND – 0.001000 mg/L</td>
<td>1 mg</td>
</tr>
</tbody>
</table>

Source: SAWPA, 2013

February 22, 2017
Ongoing Stakeholder/Regional Board Activities and Next Steps

• EC sampling incorporated into recycled water recharge projects - waste discharge requirements
 – Surface spreading and injection projects (e.g., seawater intrusion)

• EC sampling not (yet) required for
 – Incidental recharge discharges
 – Stormwater discharges
 – Aquatic life protection ECs (note: EC TF sampling included analytes relevant to aquatic life)

• EC Task Force status
 – Continue to meet annually (or as needed)
 – Track SWRCB recycled water policy updates
 – Individual TF agencies continue EC sampling
<table>
<thead>
<tr>
<th>Division of Drinking Water</th>
<th>CECs and Drinking Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Division of Water Quality</td>
<td>CECs and Recycled Water</td>
</tr>
<tr>
<td>North Coast Region</td>
<td>CECs in the Russian River</td>
</tr>
<tr>
<td>San Francisco Bay Region</td>
<td>Ten Years of Monitoring and Intervening on CECs in the San Francisco Bay</td>
</tr>
<tr>
<td>Los Angeles Region</td>
<td>CECs in the Los Angeles Region</td>
</tr>
<tr>
<td>Santa Ana Region</td>
<td>CECs in the Santa Ana River and Orange County Coast</td>
</tr>
<tr>
<td>Office of Information Management and Analysis</td>
<td>Data Visualization of CECs</td>
</tr>
</tbody>
</table>
Additional CEC Stories

• Other Regional Boards (Central Coast, Central Valley, and San Diego)

• Statewide datasets / stories
 – CECs being monitored, driven by permits
 • https://rpubs.com/daltare/cec_npdes
 – CECs being monitored and reported in ambient datasets (SWAMP / CEDEN and GAMA / GeoTracker)
 • https://daltare.shinyapps.io/CECapp/
CECs in NPDES Permits

- CEC data is present in the California Integrated Water Quality System (CIWQS) due to permittees submitting the data.
- We analyzed this dataset to see what type and frequency of CEC data is present.
- The dataset summarized here was filtered to include monitoring data from 2008 through 2015.
- In the eSMR data, there were:
 - 12 unique CECs
 - 344 facilities associated with CEC monitoring data
Table 1. Number of facilities that sampled for each constituent and total number of samples across the entire dataset

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Number of Facilities</th>
<th>Total Number of Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bis (2-Ethylhexyl) Phthalate</td>
<td>333</td>
<td>14,731</td>
</tr>
<tr>
<td>Di-n-butyl Phthalate</td>
<td>305</td>
<td>6,013</td>
</tr>
<tr>
<td>N-Nitrosodimethylamine</td>
<td>302</td>
<td>9,098</td>
</tr>
<tr>
<td>Butylbenzyl Phthalate</td>
<td>266</td>
<td>4,631</td>
</tr>
<tr>
<td>Diazinon</td>
<td>96</td>
<td>2,423</td>
</tr>
<tr>
<td>Chlorpyrifos</td>
<td>81</td>
<td>1,109</td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>79</td>
<td>2,491</td>
</tr>
<tr>
<td>1,2,3-Trichloropropane</td>
<td>57</td>
<td>937</td>
</tr>
<tr>
<td>Atrazine</td>
<td>43</td>
<td>266</td>
</tr>
<tr>
<td>Tert-Butyl Alcohol (TBA)</td>
<td>39</td>
<td>637</td>
</tr>
<tr>
<td>Tert-Amyl Methyl Ether (TAME)</td>
<td>35</td>
<td>449</td>
</tr>
<tr>
<td>Ethyl-Tert Butyl Ether (ETBE)</td>
<td>34</td>
<td>329</td>
</tr>
</tbody>
</table>

February 22, 2017
Ambient Surface Water CEC Data
CEC Initiative – Next Steps

• OIMA, DWQ, DDW and RBs will:
 – continue to coordinate the studies, monitoring, management interventions and science regarding CECs for all Water Board elements
 – build more data science and information sharing tools to better inform management decisions
 – identify and coordinate internal resources, partnerships (e.g., SWAMP CEC advisory team), and external experts (e.g., expert panels, academic partnerships, conferences, etc.)
Thank you for your time