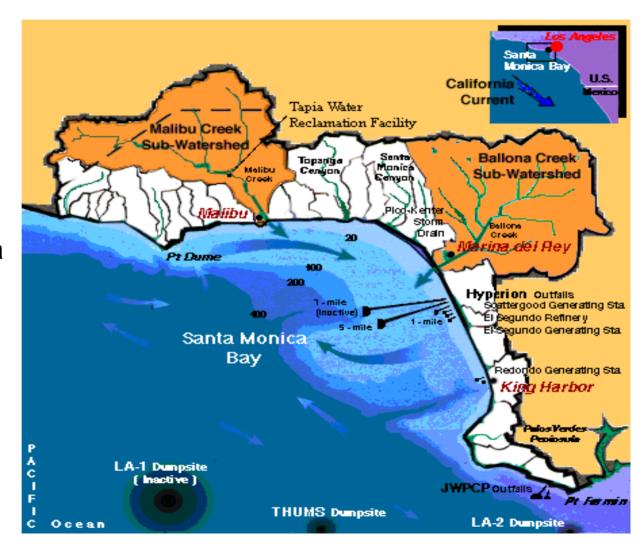
Stream Health Assessment and Index Development in Malibu Creek

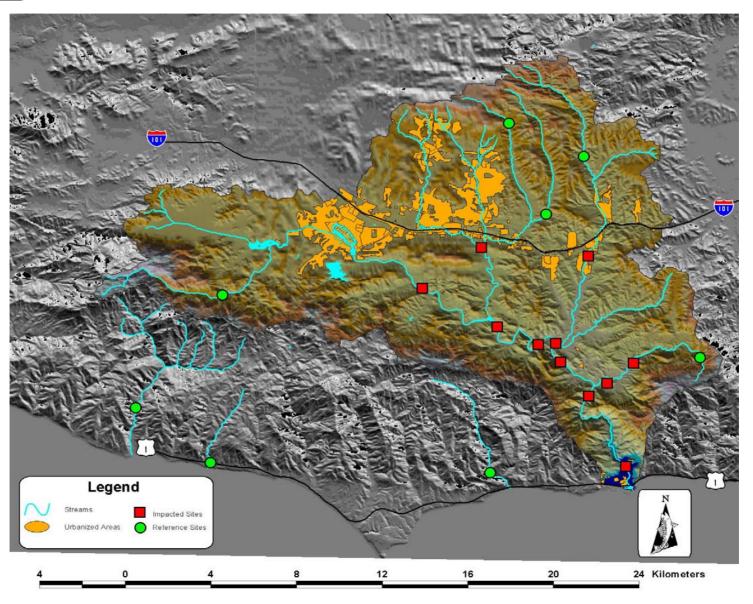

November 30, 2004
Shelley Luce and Mark Abramson
Heal the Bay

Sponsored by the California Coastal Conservancy and the SMBRC

Malibu Creek Watershed

- 35 miles West of Los Angeles
- Second largest watershed draining to the Santa Monica Bay.
- Only 12% of the area has been developed

3-Pronged Program Design


Water Chemistry

Water Chemistry & BMI Sampling

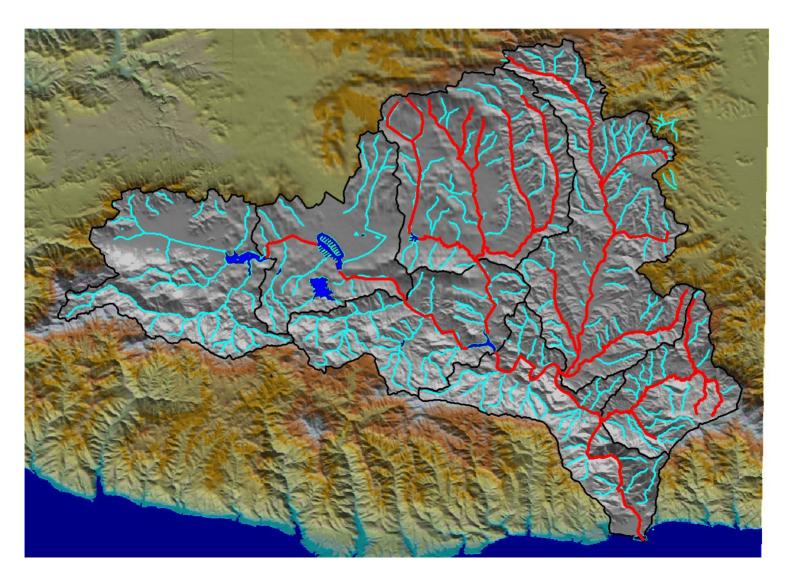
Stream Walk Surveys

- Unstable Stream Banks
- Stream Bank Modifications
- Fish Barriers
- Dump Sites
- Exotic Invasive Vegetation
- Impacting Land Uses
- Discharge Points and Outfalls
- Algae & Fine Sediment
- •In-stream pool habitat (Level 4 CDFG)

Discharge Points and Outfalls

Unstable Stream Banks

Data are recorded with a Global Positioning System, field sheets and digital images


Stream Walker mapping unstable stream bank and associated field sheet.

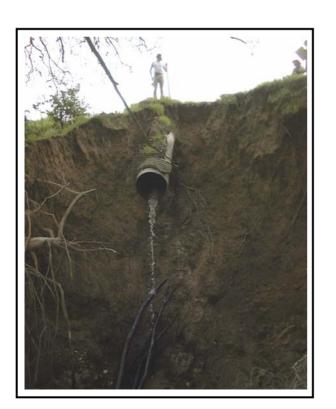
Date: 10 NON 2000 Stream Name: COLO CREEK						
Time: 12 30 PM Recorder: Awaham						
(GPS) Location Latitude: 32°41'40' Longitude: 118"18' 27"						
Side of Stream (left or right looking downstream) Lf Rt						
Photo #(s) 17, 18						
Streambanks Description						
Streambanks Type Left: Right:						
A: shallow slope B: steeply sloped C: undercut banks						
I Wante of the						
H						
% Vegetative Cover of Streambanks Left: 25 %Right 50 %						
0-25% 25-50% 50-75% 75-100%						
Landuse Associated with Unstabe Bank (if identifiable):						
SFR MFR AG OV AH EQ IND COM V						
SFR = houses $MFR = condos$, apartments, townhouses						
AG = agriculture OV or chards/vineyards						
AH = livestock EQ = horses IND = manufacturing						
COM = retail/shopping V = undeveloped open space						
Conditions of Streambanks(circle A if apparent, B if severe)						
A B loss of vegetative cover						
A B collapsing vegetation						
A B stream banks collapsed						
A (B) stream banks eroding						
Stream Conditions (circle Aif apparent, Bif severe)						
B mud/silt/sand entering the stream						
AB vegetation collapsing into stream						
A B slope collasping into stream						
Describe Area on Backside of this Field Sheet						

70 Miles Mapped

Unstable stream banks: 18.7 (27%) linear miles of eroding stream banks

Streambank Modifications: 19.8 (28%) linear stream miles are armored

171 separate fish barriers



636 illegal dump sites

- Invasive Vegetation: 16.9 (24%) linear miles of riparian zone impaired
- •20 different types of invasive veg

• 736 discharge points mapped, many causing bank erosion

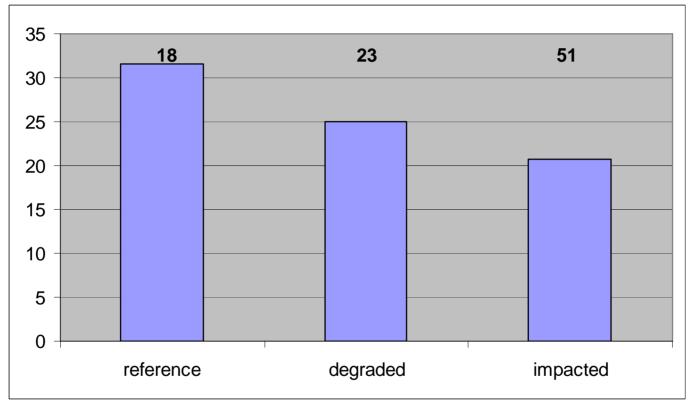
- 21.7 linear miles (30.8%) of streams impaired by algae
- 22.1 linear miles (31.3 %) of streams impaired by sediment

A Typical Day's Data

Benthic Macroinvertebrates

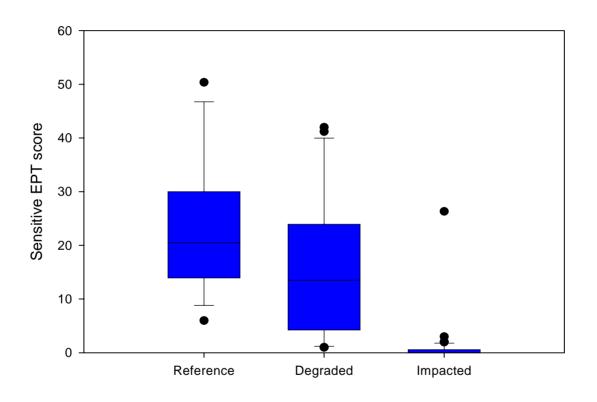
Benthic Index of Biotic Integrity

- Developed by CDFG
- Southern coastal California specific
- Monterey to Mexico, to eastern edge of the southern coast ranges
- 72 reference sites, based on land use and local conditions
- 166 test sites
- Divided into development and test sites



Benthic Index of Biotic Integrity

- Percent collector-gatherer + collectorfilterer taxa
- Percent tolerant taxa
- Percent intolerant taxa
- Percent non-insect taxa
- EPT richness
- Coleoptera richness
- Predator richness


Average IBI Scores

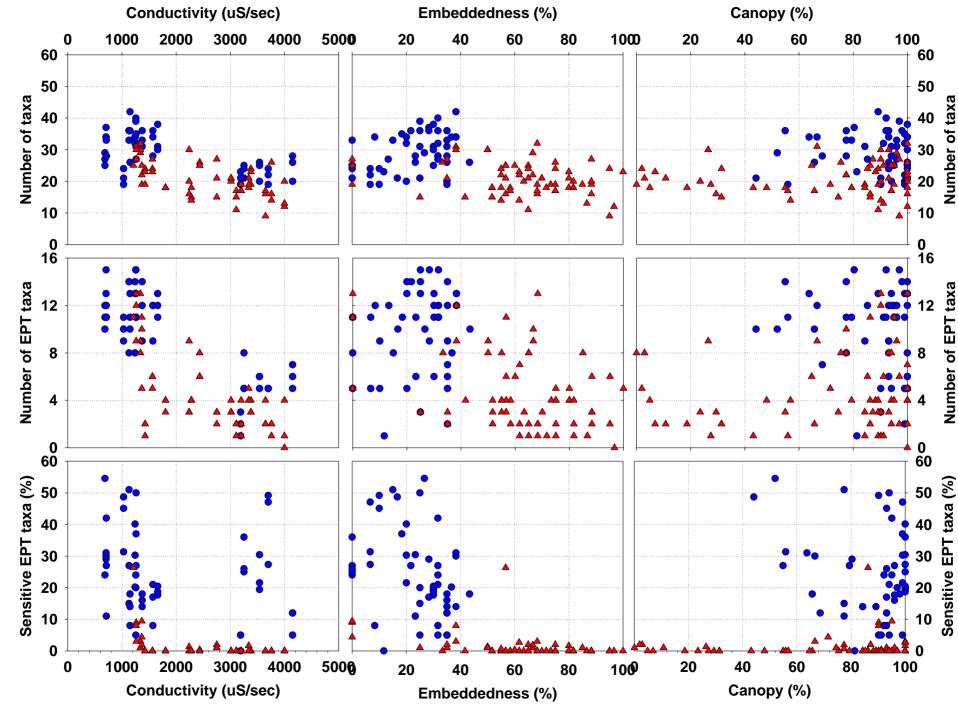
	SE	min	max
reference	9.25	54	92
degraded	11.38	26	72
impacted	11.44	4	73

Benthic Index of Biotic Integrity

Sensitive EPT index was one of the most sensitive metrics in the Malibu watershed.

Also taxa richness, percent intolerant species and percent shredders.

Which aspects of urbanization degraded the BMI community?


Standardized coefficients of multiple regressions (p<0.1):

	Canopy Cover	Embeddedness	Conductivity	r- squared
TAXA RICHNESS	0.196	-0.287	-0.574	0.673
EPT RICHNESS	0.296	-0.310	-0.656	0.805
SENSITIVE EPT INDEX	0.162	-0.577	-0.173	0.536

Also:

- diatom cover
- velocity
- nutrients
- algal cover
- % fines

Making Connections

- Impervious surfaces: GIS analysis of upstream percent impervious cover
- Algae, sediment and other habitat measurements: relation to IBI scores
- Recommendations: restoration and protection
- Stream Health Index

Building a Stream Health Index

Stream
Assessment:

Habitat metrics, exotic veg., land use, impairments, etc.

WQ monitoring:

NO₃, NH₄, PO₄, DO, temp, pH, bacteria Biological monitoring:

BMI

Data compilation and analyses (GIS-based) and model refinement

Malibu Creek

Stream Health Index

Stream Health Index

- Water chemistry: nitrate, phosphate, conductivity
- Habitat:
 - Riparian: canopy cover, invasive species
 - Instream: overhanging vegetation, undercut banks
 - Sediment size
- Hydrology: flow velocity
- Biological: BMI, algal cover

What should we do now?

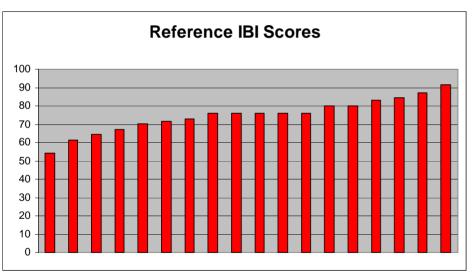
- Stream ordinance: No development within 100 feet of riparian canopy.
- New developments need storm water controls (BMPs) to capture, treat, and infiltrate run off – no excess discharge leaves the site.
- Control nutrient levels in creeks.
- Strategically acquire property, focus on streams.
- Implement Stream Team programs in other watersheds.

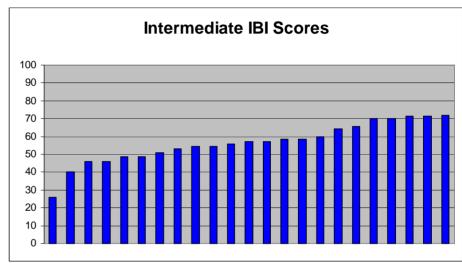
CStream or eating

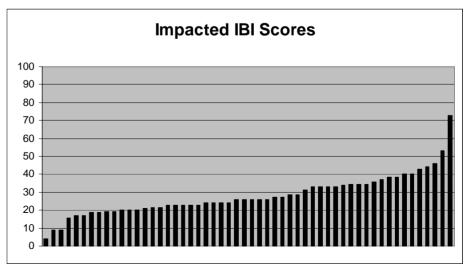
Malibu Cree

m Manager

Email: streamt


Website: www.


Benthic Index of Biotic Integrity Scores


Site	Spring 2000	Fall 2000	Spring 2001	Fall 2001	Spring 2002	Fall 2002	Spring 2003	Fall 2003
Solstice Creek SC14				87	76	76	67	70
CC3	80	76	92	76	83	80	84	64
Lachusa Creek LCH18				73	72	76	54	61
Arroyo Sequit AS19				70	72	66	72	70
Cheeseboro Creek CH6			59	57	64		49	
Cold Creek								
CC11	54	46	56	54	49		40	
Las Virgenes Creek								
LV9			72	53	59	26	46	
Palo Comado Canyon PC16			60					
W. Carlysle Creek WC10			57				51	
Stokes Creek STC16					34			
CC2	36		46	73	53		44	
LV13			21	40	26	24	21	27
LV5	29	34	33	33	39	26	20	29
MC1	16	24	26	39	19		26	23
MC12		23	20	37	33	27	21	31
MC15	33	17	24	43	40	24	34	23
Medea Creek MD7	23	26	19	34	23	17	9	9
Triunfo Creek TR17	20		19		19		4	

IBI Scores

	Sensitive EPT	% intolerant species	% tolerant species	% shredders
Reference sites				
3	35	41	4	30.6
14	17.8	21.3	2.7	11
18	16.4	14.3	2.5	9.9
Degraded sites				
6	27.4	25.6	12	27.5
8	0.6	0.5	0.3	0.4
9	16.1	16.1	17.6	16.5
10	3	2.6	9.9	0
11	6.2	10	4.7	3.5
19	22.8	28.7	4.7	5.4
Impacted sites				
1	0.3	0.8	34.1	0.2
2	8.2	8.3	9	2.7
5	0.1	0.2	23.8	0.5
7	0	0	13.5	0
12	0.3	1.4	6.5	0.3
13	0	0	24.7	0.6
15	0.7	1	15	0.1
17	0	0	7.7	0