

Tiered Aquatic Life Uses (TALU) in Southern California: Challenges and Implementation Strategies

November 30, 2004 CABW, UC Davis

Jerry Diamond Tetra Tech, Inc.

Purpose of TALU

A tool for:

- > Deriving scientifically defensible, bioassessment-based benchmarks for biological condition
- > Integrating the benchmarks and biocriteria into WQS
- > Setting designated aquatic life uses that factor in levels and types of human disturbances (tiering)
- > Achievable goals for incremental restoration
- > Better protection for excellent quality waters, more appropriate objectives for others
- > Common bioassessment-based framework for communication & evaluation public, stakeholders, across political boundaries

Why Focus on TALU for Coastal Arid Streams

- Highly urbanized streams feeding into sensitive coastal estuaries and lagoons
- Southern CA streams flashy flow variable
- Urban arid coastal streams not examined in arid west research project
- Need appropriate protection and uses for urban reaches while still protecting downstream coastal habitats

New CA-EPA Project

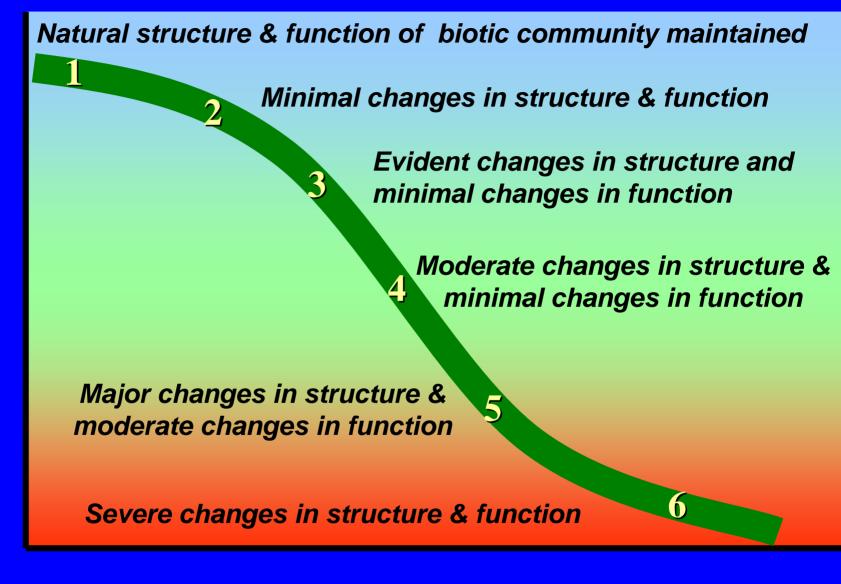
- Examine Los Angeles as a case study
- Evaluate applicability of the TALU conceptual model
- Recommend appropriate tiered aquatic life uses
- Evaluate potential reference conditions for each tier
- Develop appropriate biocriteria for each tier.

Benefits of Project

- Los Angeles Region case example would be a prototype for TALU determinations in arid and semi-arid states
- Provide an opportunity to identify unique characteristics of arid coastal streams in TALU determinations
- Help facilitate acceptance of the TALU approach and ultimately its implementation in these types of waterbodies
- Builds upon existing work conducted by the SWRCB to develop a statewide framework for conducting UAAs related to aquatic life uses.
- Builds upon existing bioassessment work conducted by CFG

What's Wrong with Having an Aquatic Life Use Category Like "WARM"?

- **Too broadly defined -** How can we compare two streams designated WARM with the current definition?
- Difficult to determine if unachievable or impaired setting numeric goals to evaluate success in TMDL implementation
- **Tends to favor more and unfocused (contentious) UAAs**
- **Difficult to set reasonable remediation goals**
- How to determine the highest attainable use for degraded waters?


(TALU) integrates:

- 1. Biological Condition Gradient (BCG)
- 2. Human Disturbance Gradient (HDG)

Biological Condition Gradient (BCG)

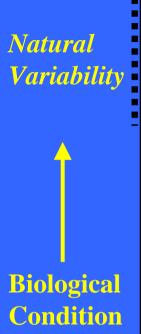
- A conceptual model or framework details are specific to a given region or ecotype
- Specifies what is least impaired and minimally impaired biological conditions for a given region or ecotype
- Specifies a set of measurable biological attributes that define condition of an assemblage as stressors increase in frequency, magnitude, duration

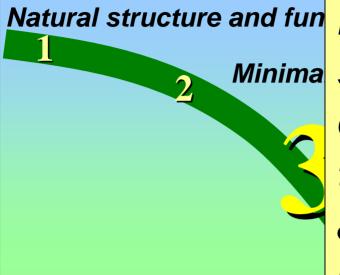
The Biological Condition Gradient - Concept

Increasing Effect of Human Activity ————

The Biological Condition Gradient

Natural structural, functional, and taxonomic integrity is preserved.


Moderate changes in structure & minimal changes in function


Major changes in structure & moderate changes in function

Severe changes in structure & function

6

The Biological Condition Gradient

Major changes in stru moderate changes in

Natural structure and fun Evident changes in Minima structure due to loss of some rare native taxa; shifts in relative abundance; ecosystem level functions fully maintained through redundant attributes of Severe changes in st. the system.

The Biological Condition Gradient

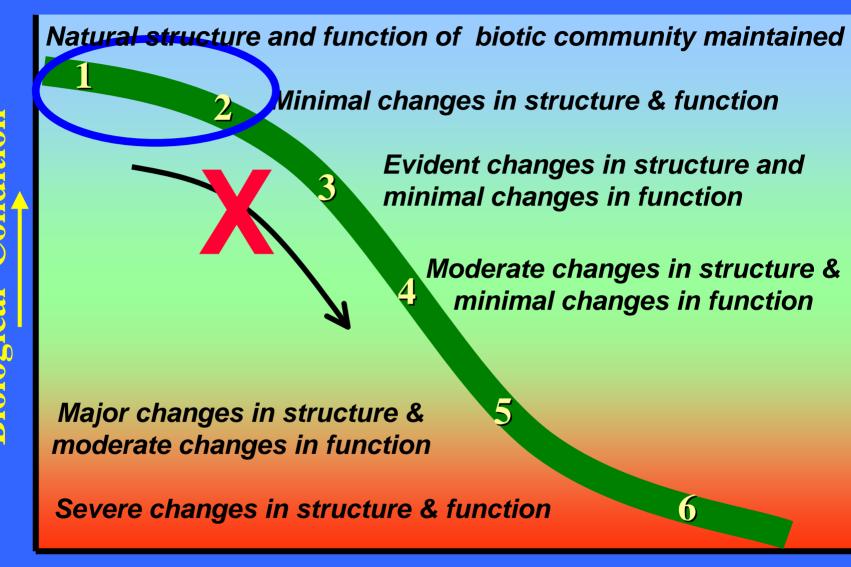
Natural Variability

Biological Condition Natural structure and function of biotic community maintained

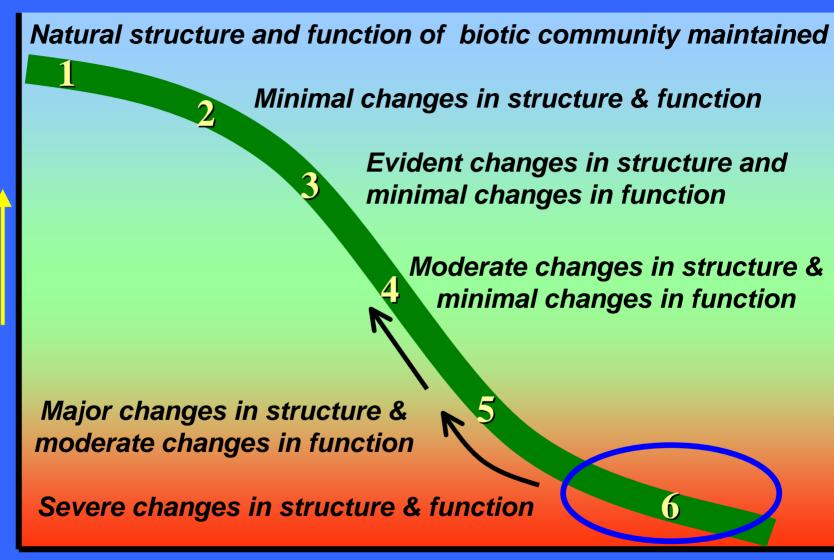
Minimal changes in structure & function

Evident changes in structure and minimal changes in function

Moderate changes in structure &


Extreme changes in structure; wholesale changes in taxonomic composition; extreme alterations from normal densities; organism condition is often poor; anomalies may be frequent; ecosystem functions are extremely altered.

unction


ance

Biological Condition Gradient-Protect HQ Waters

Increasing Effect of Human Activity

Biological Condition Gradient – Incremental Goals

Increasing Effect of Human Activity

Biological Condition

Southern California and the BCG

- What represents least or minimally impaired conditions in Los Angeles? highly modified; major urban land uses; water quantity
- Some specific attributes of the BCG may not apply to these systems (sensitive taxa?)
- BCG needs robust and sensitive bioassessment indicators— do they exist for arid, urban streams?
- How to reconcile less sensitive mid-watershed biological assemblages with more sensitive biology in estuarine areas.

Human Disturbance Gradient (HDG)

Human Activities or Land Use (Disturbance - Source) **Stressors** (Habitat Responses) **Biological Responses**

Rationale for HDG

- Conceptual framework like BCG details are region or ecotype-specific
- Essential for determining reference sites & minimal disturbance category minimal disturbance?
- Necessary for metric & index development & evaluation
- Easier to implement than large suite of stressors
- Assists in diagnosing stressors
- Source of most-manageable stressors
- Critical for stream protection, BMPs & restoration

HDG Layout

- Six tiers (A F)
- Six major stressor classes
 - > Habitat structure
 - >Flow regime
 - **≻**Water Quality
 - >Toxics and engineered chemicals
 - **➤** Water Quality
 - >Energy Sources
 - **▶**Biotic Interactions

HDG Layout

Six major disturbance classes:

- > Riparian corridor
- > Landscape character
- **Barriers**
- > Atmospheric deposition
- **>** Biotic interactions
- > Channel Morphology (map scale)

Increasing Disturbance

	Industrial Mines Dominant Urban Dominant	Extreme Flows Only Inter-basin Transfers	F
Irrigated Rowcrops CAFOs; Crop Processors	Suburban Mines Common	Regulated Flows Only Intra-basin Transfers	E
Intense Riparian Grazing Irrigated Forage	Small Cities Industrial Mines Present	Dammed Local Transfers	D
Constant Grazing Dryland Agriculture	Large Lot Residential Small Metal/Aggregate Mines	Slightly Flashier	С
Light/Rotated Grazing	Rural Residential Hand Mines	Natural Flow	В
Natural Vegetation	Transients	Natural Flow	Α
<u>Agriculture</u>	Urbanization/Mining	<u>Flow</u>	<u>Tier</u>

TALU Integrates the BCG and HDG

- Relate biological condition to measures of HDG
- Helps define what might be attainable given specific human disturbance conditions and what is restorable.
- Separate natural from anthropogenic limiting factors

Southern CA and the HDG

- May be difficult to define more than a very few categories in the HDG due to past modifications and arid conditions
- Difficult to identify least disturbed condition on HDG
- HDG factors probably different between the coastal areas and more inland areas.

Could tiers be implemented as biocriteria rather than new use designations?

- --"waters designated WARM in hydrologic unit X.XX shall (insert biocriteria here)"
- Would not require Regional Boards to completely rework the Basin Plans
- Would not be subject to UAAs
- What about the tributary rule if we have an unnamed A level tributary to a C level river?

Next Steps

- Convene a Technical Advisory Committee and a Stakeholder Advisory Committee
- Evaluate the applicability of the BCG and HDG conceptual models
- Recommend appropriate tiers of aquatic life
- Evaluate potential reference conditions for each tier
- Identify and address potential concerns
- Outline a preliminary framework for evaluating appropriate biocriteria and other water quality objectives for each tiered aquatic life use