Cadmium shipping, receiving and handling: Comparative bio-dynamics in stream insects.

David B. Buchwalter, Daniel J. Cain & Samuel N. Luoma US Geological Survey, Menlo Park CA, USA

- it is currently difficult to bridge these 2 activities
- demonstrating that biological communities are impaired cannot trigger a TMDL

Why not ???

It is very difficult to infer the causes of biological impairment from bioassessment data.

Aquatic insects as indicators of ?

• Currently lacking stressor-specific bioassessment protocols.....because.....

• Currently lacking stressor-specific tolerance values.

Physiological approaches:

- provide a basis for understanding how species deal with different stressors.
- can reduce ambiguities associated with community-level responses to stressors in nature
- can be used towards the development of stressor-specific tolerance values

Aquatic insects as indicators of metal pollution

- In trace metal-contaminated streams, some insect species are absent while others persist
 - How can we tell if metals are the causal agent?
 - Which species are the best indicators of metal pollution?
 - Why / how are insects differentially sensitive to metals?

Major factors determining metal vulnerability

Bioaccumulation (shipping / receiving)
– accumulated body burden

Detoxification and Storage (handling)
– accumulated dose at target site(s)

Bioaccumulation patterns

- Differ widely among species
- Mechanisms poorly understood in stream insects
- Models have successfully predicted metal body burdens in nature from lab experiments
 - Dissolved accumulation rate constants (k_u)
 - Efflux rate constants (k_e)
 - Dietary accumulation (AE, IR)

DYMBAM Predictions vs. Observed Molluscs, copepods, barnacles

Luoma and Rainbow, in prep.

Metabolic processes

- Sensitivity is determined by a combination of bioaccumulation patterns and other physiological processes
 - Detoxification (Metallothionein-like proteins)
 - Storage (granular storage)
 - e.g. barnacles can be up to 1% zinc

Experimental design

 Field collected species (9) were chosen to represent the major insect orders commonly focused upon in stream bioassessments:

> Mayflies: Ephemeroptera Stoneflies: Plecoptera Caddisflies: Trichoptera

Note: % EPT taxa is a commonly used bioassessment metric

Experimental design

- Larvae were exposed to Cd (~500 ng / l) for 5-6 days (radiotracer experiment).
- At the end of the exposure period, half of the individuals were removed for sub-cellular fractionation studies.
- Remaining individuals were transferred to clean water for 9 days to measure efflux rate constants.

Experimental design

In vivo gamma counting allows us to follow individuals over time

Subcellular Fractionation

Ephemeroptera

There is no relationship between Ku and Ke values

- Drunella grandis
- Ephemerella inermis
- Rhythrogena morrisoni
- Hesperoperla pacifica
- Calineuria californica
- Doroneuria baumani
- Skwala sp.
- Hydropsyche californica
- Rhyacophila sp.

Rate constants provide steady state [Cd] estimates

Rate constants provide steady state [Cd] estimates

Rate constants provide steady state [Cd] estimates

Species	Modelled steady state [Cd] (ug / g)	Proportion of Cd in metal sensitive fractions	Steady state [Cd] in sensitive fractions	
Ephemerella inermis	20.37	.49	9.98	
Rhythrogena morrisoni	27.96	.16	4.47	S C
Drunella grandis	1.14	.51	0.58	ii p
Hydropsyche californica	0.91	.37	0.34	
Calineuria californica	0.57	.41	0.23	
Hesperoperla pacifica	0.23	.50	0.12	
Skwala sp.	0.26	.31	0.08	
Doroneuria baumanni	0.15	.43	0.06	4
Rhyacophila sp	0.14	.33	0.05	

Species accumulate very different concentrations of Cd in whole body burdens and in potentially sensitive sites.

Caveats & poster plugs

Cain et al. PT 144

Buchwalter et al. PH 151

Conclusions

 Influx, efflux and subcellular fractionation vary considerably among species

 By combining these physiological parameters, it is possible to infer Cd vulnerability differences (from dissolved exposures) among species

buchwalt@usgs.gov

Charles !!