Development of a Periphyton IBI for Southern California Streams

Augmenting Southern California's Bioassessment Toolkit

Need for:

 bioassessment tools expanding beyond perennial systems

• more integrative indicators of nutrient impairment

What is periphyton? Why use it?

benthic soft algae

benthic diatoms (unicellular, silicated algae)

- communities stabilize rapidly
- responsive to many perturbations (incl. nutrients)
- periphyton IBIs have been developed elsewhere

can expand current southern California bioassessment scope

Successful Application of PIBIs

Use of Periphyton in California

NAWQA
EMAP Western Pilot
Lahontan Basin
CMAP / SWAMP

Phased Approach to Developing Periphyton Bioassessment Tools

Goal: Develop periphyton as an indicator of stream condition

<u>Phase I</u> – Pilot study

<u>Phase II</u> – Tool development:

- reference dataset
- periphyton IBI

Phase I – Pilot Study:

Is it feasible to develop a periphyton bioindicator for So Cal streams?

Pilot Study – Data Collection

- ambient assessment: spring summer 2005
- 30 random & 6 targeted sites
- periphyton substrata:
 - rock / concrete scrapings
 - sediment / gravel
 - wood
- additional indicators:
 - water chemistry / toxicity
 - BMIs
 - instream habitat

San Gabriel Watershed Diatom Flora

99 species in 42 genera... and counting

Classification of Sites Based on Periphyton Data

3 clusters:

based on dominant diatoms
corroborated by soft algae

Cluster Relationships to Other Indicators

Cluster A Sites

• N = 7

- upper watershed; mostly high-gradient
- low N
- high CRAM, channel alteration, and BMI IBI scores

Diatoms

- moderate diversity
- several taxa intolerant of organicbound N (oligo-/mesotrophic)
- low salinity (< 0.9 ppt)
- high 0₂ requirement

Soft algae

- taxa rich
- multiple divisions represented

Cluster B

Sites

- N = 8
- mostly lower watershed, lowgradient, channelized
- highest N and temperature
- low CRAM, and lowest mean BMI IBI and channel alteration scores

Diatoms

- relatively taxa-poor
- high "Pollution Tolerance" (Lange-Bertalot)
- eutrophic species
- fresh/brackish water (0.9 1.8 ppt)

Soft algae

- taxa-poor
- dominated by cyanobacteria

Cluster C

Sites

- N = 3
- position in watershed highly varied
- diffuse, intermediate scores for most indicators examined, but lowest pH

Soft algae

- taxa-rich
- indicators of large river

Diatoms

- taxa-rich
- moderately tolerant of nutrient enrichment (Bahls)
- fresh/brackish water
- many taxa tolerant of lower 0_2 (< 75 % DO saturation)
- 2 "large-river" taxa

Conclusions from Phase I (Pilot)

- Diversity of periphyton taxa in southern California appears sufficient to support the production of a periphyton IBI
- Diatom and soft algae data are telling consistent "stories" about physical habitat & water quality
- Taxa in southern California are exhibiting ecological indicator / tolerance trends identified in other regions

Phase II:

Development of Multimetric Tools for Setting Numeric Nutrient Targets Including a Periphyton IBI

- Prop. 50 CNPS funded
- 3 years (2007); southern California
- Project team:
 - Southern California Coastal Water Research Project (SCCWRP)
 - California Academy of Sciences
 - CSU San Marcos
- Central Coast partners:
 - CSU Monterey Bay
 - UC Santa Cruz

Major Goals / Products of Phase II

understand relationship between nutrients and stream periphyton

- reference dataset
- periphyton IBI (So Cal & CC)
- protocols / training materials
- flora / online photodatabase for southern California algal taxa
- taxonomic key
- voucher specimens

Immediate Issues for California

- sampling:
 - time of year / inter-year variation
 - substrata
 - -compositing
- analysis:
 - level of intensity
 - counting in lab
 - taxonomic identification
- ephemeral systems: suitability / thresholds

Acknowledgments

Funding / Support: • SCCWRP

- CAS
- CSU SM
- SWRCB Prop 50

Project planning:

- Martha Sutula, Eric Stein
- Lilian Busse
- Pat Kociolek
- Bob Sheath
- Julie Berkman
- Scott Rollins
- Marc Los Huertos

Contact info: Betty Fetscher bettyf@sccwrp.org 714-372-9237

