Adapting Physical Habitat Protocols for Diagnosing Aquatic Life Impairment Related to Sediment

David Herbst and Jeff Kane Sierra Nevada Aquatic Research Laboratory (SNARL)

Issues for detecting sediment supply effects on stream habitat and benthos

- sediment transport is a natural process of streams, characterized by high temporal and spatial variability
- anthropogenic influence is often diffuse (non-point), and complex to characterize and link to stream responses
- stream hydrology is coupled to sediment dynamics, and land use changes are likely to influence both
- sediment supplies and responses may be acute and/or chronic and vary in duration, frequency, seasonality, and severity
- effects of sediment transport vs. deposition vary as a function of stream gradient, delivery source, and timing of flux/resuspension
- other effects from landscape disturbance may be difficult to separate from sedimentation (nutrients, riparian....)

Questions and Study Objectives

- What is the relationship of the macroinvertebrate community and metrics to both reach-scale and local-scale variation in sediment deposition?
- What is the natural background sediment contribution relative to excess due to human disturbance, and how is biological integrity degraded over this range?
- What is the dose-response relation of added sediment and deposition to changes in the structure of benthic communities?
- Can we use this information to develop general guidance on biological targets for sediment TMDLs?

Reach survey: Samples are taken from randomized locations (within riffles OR at multi-habitats along a typical 150 m reach length) and then combined as a composite collection representing <u>the reach</u>

- Physical habitat surveys are conducted at repeated transects along the reach such that measures of substrate particle size distribution or percent fines-sand-gravel are <u>reach-wide average values</u>
- >> Associating the biological collections with the physical measures are therefore "fuzzy" – they are limited by the lack of exact correspondence between the habitats from which bugs are collected, and where habitat is measured

But samples from reach-level surveys can still show clear relationships between particle size distributions and biological signal: Lahontan Riffle-based samples and %FSG

LOCAL-SCALE SEDIMENT

PUMP-CORE SAMPLER: core-pipe isolates sample area along shallow depositional margins, fine fraction and benthic fauna removed with bilge pump and fine net (constant volume pumped)

Collect fraction <1 mm through sieve

Settle in Imhoff cone and measure volume

Remove all associated invertebrates from sieved and settled fractions for IDs

Local-scale relation of fine deposition to benthic fauna

Sediment TMDL study program: 2006-2009

Three phases on a continuum of spatial scale, temporal scale, representation, integration, and applicability:

Site Selection and Watershed Analysis:

- GIS analysis of watershed disturbance related to erosion potential from both natural and human sources
- Survey ~100 sites to represent broad region and adequately model variability – Sierra Nevada and Central Coast Range
- Site selection criteria to optimize between-site comparability and potential for detection of sediment supply effects, and to limit confounding influences
 - 3rd 4th order streams or similar watershed size
 - 3,000-8,000 ft elevation (lower in Coast Range)
 - <2% slope, with riffle-pool MB-type geomorphology</p>
 - unconfined sinuous channel, potential for bar formation
 - no dams and few lakes upstream
 - exclude or minimize other stressor sources
- Half of sites in least-disturbed basins (reference sites)
- Half of sites in basins with variable degrees of disturbance (roads, logging, development, etc.)
- Physical habitat measures of sediment deposition features>

Experimental sediment-dosing studies will utilize stream mesocosm channels at SNARL

but the studies outlined here today relate to field surveys of physical habitat for sediment deposition...

Physical Habitat Surveys

- Particle size distribution and D-50
- Embeddedness
- Residual pool depths
- Extent and mapping of depositional bar formations (area and clast class distributions, photographs for automated particle size analysis)
- Thalweg profile (2-m intervals over 150-200 m reach lengths)
- Lateral bankfull profiles (20 equal-space points at 10 transects)
- Excess sediment calculation (relative bed stability of EMAP)
- Fines and sand composition on depositional bars using 20 x 20 cm quadrat frames of 25-point grid at 20 random locations (500 points per reach) at fixed depth

Biological sampling

- Multi-Habitat reachwide composite (reflects geomorphic character of reach)
- Quadrat samples selected over full range of %FS 5/reach (500 total) and associated inverts and organic matter content

Idealized cross-section profile of transport and deposition: surveys of depositional margin zones under moderate to base flow conditions

In reality, flows swing side-to-side, and forms drop-zones where the gradient falls from steeper to flat, or riffles into pools

<u>Reach-Scale</u>: Deposition within active bankfull channel

- Measure dimensions of point bars, lateral bars and islands below bankfull
- Map particle clast facies over each bar (sand-fine, gravel, cobble, mixed)
- Photograph random facies for auto-analysis of particle size distribution

Thalweg and Cross-Section Profiles

How would we expect these features to change with increase in sediment deposition? > decreased variance measures (as in filled symbols)

Bartley and Rutherford 2005 Riv. Res. Appl. 21:39-59 demonstrate utility in measuring reach-scale geomorphic and habitat diversity as affected by sediment

Depositional bar data set:

- Extent and area of active channel occupied by depositional features
- Particle size distribution on bar formations (from drawn maps and autoanalysis of digital photos of facies represented)
- 20 randomly placed quadrat frames along bar forms, 25-point grids each (20x20 cm at fixed depth of 5-10 cm on bar margins) to determine percent fines & sand at <u>local patch-scale</u>

Macroinvertebrate sampling at 5 quadrats each site: Selected to cover low to high range of F&S local-scale deposition

%FS & organic matter content vs. invertebrates present >> 500 data points

thanks to State Board TMDL program, SWAMP, EPA

- Jeff Kane, in graduate school at University of British Columbia, full-time project collaborator, co-conspirator
- fine work by the SNARL team: Mike Bogan, Sandi Roll, Rob Lusardi
- for planning, support, and feedback: Tom Suk and Lahontan staff, Karen Worchester and Mary Adams of the Central Coast Board

stay tuned.....