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Presenter
Presentation Notes
Upslope activities, sediment supply to stream channels, channel conditions, and biological responses.  In this study we attempted to develop these quantitative linkages in order to inform a modeling approach.
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Presenter
Presentation Notes
This study took place in the KNF in Northwestern California.  The Klamath River basin is an upside-down watershed.  Whereas the upper basin has relatively flat topography (the site of the Klamath Lakes National Wildlife Refuge), the middle reaches of the river flow through…
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Presenter
Presentation Notes
The KNF was selected as the study area because of existing work done by KNF geologist Juan de la Fuente, who has done extensive mapping and study of landslides throughout the forest. Landslides are the primary sediment sources in this steep terrain.


Effects of Forestry Management
Practices (CWE) on BMI

Fine sediment
1. Coarse: Regional scale
CA RIivVPACS model vs. KNF Sed supply model



Methods

1. Assembled several sets of biological data

— UC Berkeley
— Utah BugLab (all sites in Siskiyou County)

— CMAP/EMAP programs (DFG ABL)

2. Matched taxa names from Klamath NF
samples with OTU’s (operational
taxonomic units)

3. Subsampled each site to 300 individuals



Methods continued...

4. Delineated catchments upstream of each
sampling site (using GIS)
— 141 unique catchments delineated

— 310 samples (some sites sampled multiple
times)

5. Calculated environmental parameters within
each delineated catchment

(l.e. temperature, precipitation, watershed area,
% sedimentary rock) to determine submodel
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Assigning sites to appropriate submodel
(Oregon Climate Center PRISM GIS Iayers)

If mean monthly If mean monthly
Temperature < 9.9°C Temperature > 9.9°C

Maximum Temperature: Annual Climatology (1971=2000)

If log mean annual If log mean annual
Precipitation >2.952 Precipitation <2.952

Submodel 3 ﬂ ﬂ
Submodel 2

Submodel 1

Source: Chuck
Hawkins



Then calculate predictor variables
for sub-models (midges to subfamily)

Submodel 1 '\'\‘}

Temperature
Latitude

Submodel 2
Longitude

Precipitation

Submodel 3 =% sedimentary geology >
(summarized from USGS maps,
Temperature John Olsen, Utah State University)
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Presenter
Presentation Notes
Delineated catchments with mean annual precip in the background (high precip=blue, low precip=brown)
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Presenter
Presentation Notes
O/E50 and O/E100 are different capture probabilities. That is, when you use p >0.0, E is calculated for all taxa expected to  occur at a site, as long as the probability is greater than 0. For p >=0.5 (yes, it's inclusive), E is calucalted only for those taxa expected to occur with a probability greater than or equal to 0.5.  In general, people calculate both, but there seems to be greater support for scores based on p>=0.5. 

– email explanation from Rafi
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Presentation Notes
O/E50 and O/E100 are different capture probabilities. That is, when you use p >0.0, E is calculated for all taxa expected to  occur at a site, as long as the probability is greater than 0. For p >=0.5 (yes, it's inclusive), E is calucalted only for those taxa expected to occur with a probability greater than or equal to 0.5.  In general, people calculate both, but there seems to be greater support for scores based on p>=0.5. 

– email explanation from Rafi




Effects of Forestry Management
Practices (CWE) on BMI

Fine sediment
1. Coarse: Regional scale
CA RIivVPACS model vs. sed supply model

2. Medium: Watershed scale
Granitic watersheds w/ high sed. supply
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Median permeability rate (cm/hr)
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Fine Sediment

Simple Linear

&)

Partial Correlation

Regression

Metrics and Taxa I Sig. V15 245678 Sig.

(Predicted Response to Fine Prob. Prob.
Sediment)

Taxa Richness (-) 0.50 0.012 0.18 0.49
Total Abundance (-) -0.29 0.18 -0.28 0.26
EPT Richness (-) 0.46 0.023 0.07 0.80
EPT Abundance (-) -0.18 0.39 -0.08 0.78
% Burrowing (+) -0.32 0.13 0.40 0.097
% Vulnerable (-) 0.23 0.27 0.30 0.23
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O

Response Size | Availability
(mm) Score*
Chironominae - 2-8 70.5
Epeorus (E) - 7-18 63.6
Cinygmula (E) - 7-18 63.6
Arctopsyche (T) - 10-28 51.6
Oligochaeta + 2-20 10.0
Attenella delantala (E) + 5-9 22.5
Zapada columbiana (P) + 5-10 52.6

*Radar 1997




Conclusions

* No relationship between fine sediment and
benthic macroinvertebrate metrics

« A few taxa show potential for being useful
bioindicators of fine sediment



Effects of Forestry Management
Practices (CWE) on BMI

Fine sediment
1. Coarse: Regional scale
CA RIivVPACS model vs. sed supply model

2. Medium: Watershed scale
Granitic watersheds w/ high sed. supply

3. Very Fine: Cobble scale

Large predators and embeddedness






Frequency of Occurrence
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Variable

Odds Ratios (95% Confidence Intervals)

Either Predator O. crespusculus C. californica

Creek

Median Diameter*
Finger Crevice
Pick

Pry
Embeddedness*
Subsurface Fines*
Silty Biofilm

Flow Habitat

3.45 (1.22-9.76) 527 (1.08-25.78) 2.19 (0.61- 7.81)
1.14 (0.99-1.32) 1.08 (0.89-1.30) 1.12 (0.94 - 1.35)
4.49 (1.65-12.13) 2.91 (0.82-10.37) 5.33 (1.47-19.35)
5.49 (1.98-15.20) 4.14 (1.14-14.99) 3.40 (0.99 - 11.71)
0.03 (0.003-0.21) 0.08 (0.01 - 0.64) N/AL

0.66 (0.50-0.85) 0.72 (0.52-0.99) 0.67 (0.48 - 0.94)
043 (0.76-2.41)  1.42 (0.14-14.57) 0.13 (0.01-1.21)
1.9 (0.62-570) 2.8 (0.73-10.85)  0.84 (0.17 - 4.2)

26 (0.55-12.2)  0.99 (0.19 - 5.01) N/A2




Effects of Forestry Management
Practices (CWE) on BMI

Fine sediment
1. Coarse: Regional scale
CA RIivVPACS model vs. sed supply model

2. Medium: Watershed scale
Granitic watersheds w/ high sed. supply

3. Very Fine: Cobble scale

Large predators and embeddedness



What is a debris flow?



Presenter
Presentation Notes
Concentrated mixtures of poorly sorted sediment and water. Significant natural hazard. Occur throughout world in mountainous regions.


- DeDbris 1lows are catastrophnic
disturbances in mountain

Hillslopes steeper than 100%b (45°)


Presenter
Presentation Notes
Debris flows originate high on headwater hillslopes as shallow landslides.  As landslides enter the channel network they can transform into exteremely high velocity flows of water, sediment, and wood.


- DeDbris 1lows are catastrophnic
disturbances in mountain

Scour headwater channels >10%


Presenter
Presentation Notes
In steep streams, usually greater than 10% slope, these water sediment mixtures can scour the stream channel to bedrock.  In steep streams in the OCR, Christine May has showed how these channels undergo long-term cycles of sediment accumulation and removal.  Following debris flow scour, sediment doesn’t begin to accumulate until LWD is recruited into the channel.  Sediment accumulates until another debris flow scours to bedrock once again.
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Presenter
Presentation Notes
Further downstream, debris flows can strip vegetation, rearrange channels and valley bottoms, and deposit large amounts of sediment.  The geomorphic effects of debris flows have been well described.  However, less is known about the effects of these disturbances on stream biota.
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Invertebrate Shredders

1997 DF Older DF
Yoraperla (m-2) 3 169

Malenka (m-2) 36 131
Zapada columbiana (m-2) 5 152




Canopy Cover (%)
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Invertebrate Grazers

1997 DF Older DF
Glossosma (m-2) 325 40
Epeorus (m3) 44 226




Conclusions

e In steep mountains streams, even high

sediment supply does not result in
wholesale changes to the BMI

assemblage
« A few taxa may show responses

* Rare, catastrophic geomorphic
processes may have more significant
and persistent impacts on stream

communities
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