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Presenter
Presentation Notes
Upslope activities, sediment supply to stream channels, channel conditions, and biological responses.  In this study we attempted to develop these quantitative linkages in order to inform a modeling approach.



Klamath National 
Forest

Presenter
Presentation Notes
This study took place in the KNF in Northwestern California.  The Klamath River basin is an upside-down watershed.  Whereas the upper basin has relatively flat topography (the site of the Klamath Lakes National Wildlife Refuge), the middle reaches of the river flow through…



Presenter
Presentation Notes
The KNF was selected as the study area because of existing work done by KNF geologist Juan de la Fuente, who has done extensive mapping and study of landslides throughout the forest. Landslides are the primary sediment sources in this steep terrain.



Effects of Forestry Management 
Practices (CWE) on BMI 

Fine sediment
1. Coarse: Regional scale

CA RivPACS model vs. KNF Sed supply model



Methods
1. Assembled several sets of biological data

– UC Berkeley
– Utah BugLab (all sites in Siskiyou County)
– CMAP/EMAP programs (DFG ABL)

2. Matched taxa names from Klamath NF 
samples with OTU’s (operational 
taxonomic units)

3. Subsampled each site to 300 individuals



Methods continued…
4. Delineated catchments upstream of each 

sampling site (using GIS)
– 141 unique catchments delineated
– 310 samples (some sites sampled multiple 

times)

5. Calculated environmental parameters within 
each delineated catchment 

(i.e. temperature, precipitation, watershed area, 
% sedimentary rock) to determine submodel









(Oregon Climate Center PRISM  GIS layers)
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Then calculate predictor variables 
for sub-models (midges to subfamily)

Submodel 1
Watershed Area

Temperature
Latitude

Submodel 2
Longitude

% Sedimentary 
Geology

Precipitation

Submodel 3
Watershed Area

Temperature

=% sedimentary geology 
(summarized from USGS maps, 

John Olsen, Utah State University) Source: Chuck 
Hawkins



Presenter
Presentation Notes
Delineated catchments with mean annual precip in the background (high precip=blue, low precip=brown)



O/E vs Mass Wasting

Presenter
Presentation Notes
O/E50 and O/E100 are different capture probabilities. That is, when you use p >0.0, E is calculated for all taxa expected to  occur at a site, as long as the probability is greater than 0. For p >=0.5 (yes, it's inclusive), E is calucalted only for those taxa expected to occur with a probability greater than or equal to 0.5.  In general, people calculate both, but there seems to be greater support for scores based on p>=0.5. 

– email explanation from Rafi





O/E vs USLE Surface Erosion

Presenter
Presentation Notes
O/E50 and O/E100 are different capture probabilities. That is, when you use p >0.0, E is calculated for all taxa expected to  occur at a site, as long as the probability is greater than 0. For p >=0.5 (yes, it's inclusive), E is calucalted only for those taxa expected to occur with a probability greater than or equal to 0.5.  In general, people calculate both, but there seems to be greater support for scores based on p>=0.5. 

– email explanation from Rafi





Effects of Forestry Management 
Practices (CWE) on BMI 

Fine sediment
1. Coarse: Regional scale

CA RivPACS model vs. sed supply model

2. Medium: Watershed scale
Granitic watersheds w/ high sed. supply
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Sediment supply from USLE modeling (m3/km2/yr) / stream power index
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Sediment supply from USLE modeling (m3/km2/yr) / stream power index
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Sediment supply from USLE modeling (m3/km2/yr) / stream power index
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Fine Sediment

Simple Linear 
Regression

Partial Correlation

Metrics and Taxa                
(Predicted Response to Fine 
Sediment)

r12 Sig. 
Prob. 

r12.345678 Sig. 
Prob.

Taxa Richness (-) 0.50 0.012 0.18 0.49
Total Abundance (-) -0.29 0.18 -0.28 0.26
EPT Richness (-) 0.46 0.023 0.07 0.80
EPT Abundance (-) -0.18 0.39 -0.08 0.78
% Burrowing (+) -0.32 0.13 0.40 0.097
% Vulnerable (-) 0.23 0.27 0.30 0.23

3

* Angradi 1999
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Response Size 
(mm)

Availability 
Score*

Chironominae - 2-8 70.5
Epeorus (E) - 7-18 63.6
Cinygmula (E) - 7-18 63.6
Arctopsyche  (T) - 10-28 51.6

Oligochaeta + 2-20 10.0
Attenella delantala (E) + 5-9 22.5
Zapada columbiana (P) + 5-10 52.6

*Radar 1997
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Conclusions
• No relationship between fine sediment and 

benthic macroinvertebrate metrics

• A few taxa show potential for being useful 
bioindicators of fine sediment



Effects of Forestry Management 
Practices (CWE) on BMI 

Fine sediment
1. Coarse: Regional scale

CA RivPACS model vs. sed supply model

2. Medium: Watershed scale
Granitic watersheds w/ high sed. supply

3.  Very Fine: Cobble scale
Large predators and embeddedness
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Odds Ratios (95% Confidence Intervals)

Variable Either Predator O. crespusculus C. californica

Creek 3.45  (1.22 - 9.76) 5.27  (1.08 - 25.78) 2.19  (0.61 - 7.81)

Median Diameter* 1.14  (0.99 - 1.32) 1.08  (0.89 - 1.30) 1.12  (0.94 - 1.35)

Finger Crevice 4.49  (1.65 - 12.13) 2.91  (0.82 - 10.37) 5.33  (1.47 - 19.35)

Pick 5.49  (1.98 - 15.20) 4.14  (1.14 - 14.99) 3.40  (0.99 - 11.71)

Pry 0.03  (0.003 - 0.21) 0.08  (0.01 - 0.64) N/A1

Embeddedness* 0.66  (0.50 - 0.85) 0.72  (0.52 - 0.99) 0.67  (0.48 - 0.94)

Subsurface Fines* 0.43  (0.76 - 2.41) 1.42  (0.14 - 14.57) 0.13  (0.01 - 1.21)

Silty Biofilm 1.9  (0.62 - 5.70) 2.8  (0.73 - 10.85) 0.84  (0.17 - 4.2)

Flow Habitat 2.6  (0.55 - 12.2) 0.99  (0.19 - 5.01) N/A2



Effects of Forestry Management 
Practices (CWE) on BMI 

Fine sediment
1. Coarse: Regional scale

CA RivPACS model vs. sed supply model

2. Medium: Watershed scale
Granitic watersheds w/ high sed. supply

3.  Very Fine: Cobble scale
Large predators and embeddedness



What is a debris flow?

Presenter
Presentation Notes
Concentrated mixtures of poorly sorted sediment and water. Significant natural hazard. Occur throughout world in mountainous regions.



Debris flows are catastrophic 
disturbances in mountain 

streams

Hillslopes  steeper than 100% (45°)

Presenter
Presentation Notes
Debris flows originate high on headwater hillslopes as shallow landslides.  As landslides enter the channel network they can transform into exteremely high velocity flows of water, sediment, and wood.



Debris flows are catastrophic 
disturbances in mountain 

streams

Scour headwater channels >10%

Presenter
Presentation Notes
In steep streams, usually greater than 10% slope, these water sediment mixtures can scour the stream channel to bedrock.  In steep streams in the OCR, Christine May has showed how these channels undergo long-term cycles of sediment accumulation and removal.  Following debris flow scour, sediment doesn’t begin to accumulate until LWD is recruited into the channel.  Sediment accumulates until another debris flow scours to bedrock once again.



Debris flows are catastrophic 
disturbances in mountain 

streams

Presenter
Presentation Notes
Further downstream, debris flows can strip vegetation, rearrange channels and valley bottoms, and deposit large amounts of sediment.  The geomorphic effects of debris flows have been well described.  However, less is known about the effects of these disturbances on stream biota.
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Years since debris flow
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Coarse benthic organic matter

Years since debris flow
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Invertebrate Shredders
1997 DF Older DF

Yoraperla (m-2) 3 169

Malenka (m-2) 36 131

Zapada columbiana (m-2) 5 152



Canopy Cover

Years since debris flow
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Primary Productivity- Dissolved 
Oxygen

Up to 5x greater in 1997 
debris flow streams!
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Invertebrate Grazers

1997 DF Older DF

Glossosma (m-2) 325 40

Epeorus (m-2) 44 226



Conclusions

• In steep mountains streams, even high 
sediment supply does not result in 
wholesale changes to the BMI 
assemblage

• A few taxa may show responses
• Rare, catastrophic geomorphic 

processes may have more significant 
and persistent impacts on stream 
communities
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