Benthic Index of Biotic Integrity (B-IBI) for San Francisco Bay Area Creeks

Project Update October 28, 2009

Lucy Buchan Senior Scientist EOA, Inc. <u>buchan@eoainc.com</u> Kevin LundeODoctoral StudentNU.C. BerkeleyEklunde@nature.berkeley.eduO

Chris Sommers Managing Scientist EOA, Inc. <u>csommers@eoainc.com</u>

Background

Goal: develop an assessment tool that will provide an initial evaluation of the status of aquatic life uses in San Francisco Bay Area creeks, and help inform and direct our use of benthic macroinvertebrate communities as water quality indicators in this region.

Potential Users:

- Stormwater Programs
- Flood Control Agencies
- Water Districts
- Regional Water Board
- Local Watershed Groups
- Resource Agencies
- Southern, Northern & Central Valley California IBIs have been developed
- > BAMBI IBI Work Plan developed in 2004

B-IBI Workplan

Task	Status
Acquire and Compile Existing Data	\checkmark
Standardize and Import into Central Database	\checkmark
Screen Metrics used in Southern & Northern CA B-IBIs	\checkmark
Reference Site Pilot Study – Contra Costa County	\checkmark
Establish Reference Conditions for Bay Area Creeks (least disturbed sites)	\checkmark
Examine Natural Variability of Reference Sites	\checkmark
Select Metrics (test data set)	
Score Metrics (test data set)	
Confirm Metrics (validation data set)	

Compilation Existing Data

Data from:

- Stormwater Programs
- SWAMP
- Friends of Napa River
- Sonoma Ecology Center
- Contra Costa Citizen's
 Monitoring Program
- > Spring 2000-2006
 - 2007 for Contra Costa
- > Total of 722 Data Points from 467 Sites
 - Greatest number of sampling events at a single site = 5
- > Data Quality Criteria:
 - Must have used Targeted Riffle Field Methods (e.g., CSBP)
 - Professional Identification to Standard Taxonomic Effort (SAFIT)
- Data Standardized to 500 organisms
 - Monte-Carlo of old CSBP method (e.g., 900 organisms)

Collaborating Programs/Organizations

Program/ Organization	# of Events	# of Sites
Alameda Stormwater (ACCWP)	78	43
Contra Costa Citizens (CCCBMI)	88	50
Contra Costa Stormwater (CCCWP)	164	71
Napa River (ICARE)	66	57
Marin Stormwater (MCSTOPPP)	86	37
San Francisco Water Board	167	146
Santa Clara Stormwater (SCVURPPP)	72	34
Sonoma County (SEC)	27	10
San Mateo Stormwater (STOPPP)	24	19
Total	722	467

Establish Reference Conditions for Bay Area Creeks

Bay Area Approach

 Similar to those used in North, South, Central Valley, California

3-Step Screen

- 1. GIS: land use/cover and road density at two spatial scales:
 - A. Entire upstream watershed (watershed scale)
 - B. 1 km upstream area (local scale)
- 2. Physical Habitat (Phab data) Reach Scale
- 3. Best Professional Judgement

GIS - Screen #1

Data Sources:
 Land Use/Land Cover:
 NLCD 2001
 Road Density:
 BTS atlas 2003

Result:

 Reduced # potential reference sites from 467 to 146.

GIS Attribute	Elimination Thresholds
% Urban	> 3%
% Agriculture	> 5%
% Natural	≤ 95%
Road Density	> 2km/km ²

Physical Habitat - Screen #2

- ➢ Eliminated sites with Poor or Marginal Phab scores (≤ 10) for Channel modification
 - This parameter also used in the N & S CA B-IBIs, and identified by BAMBI IBI workgroup as good indicator of disturbance.
 - Total Phab score not used for screen due to inherent subjectivity and uncertainty in available data set about factors driving total score.

Result:

 Reduced # potential reference sites from 146 to 141.

Best Professional Judgement -Screen #3

- Requested input from representatives of programs/agencies that collected BMI data.
- Criteria to screen local site impacts
- > Preliminary Result:
 - Reduced # potential reference sites from 141 to 74.

Criteria Water Quantity Water Quality Water Extraction Channelization at Site Channelization shortly upstream Dams **Historic Mines Current Mines** Agriculture Other

Reference Site Screen Summary

Steps	# Sites
Cal EDAS query	467
GIS screen #1	146
Physical Habitat screen #2	141
BPJ screen #3	74

Preliminary Reference Sites

 74 sites that passed 3 screens
 Good Spatial Representation

Preliminary Exploration of Natural Variability

- > Precipitation
- Flow Status
- Pacific Ocean vs. SF Bay Drainages
- Ecoregion Analysis (4 categories)
- > Elevation
- > Drainage Area
- Monitoring Program
- Sample Year
- Collection Method (900 vs. 500 organisms)
- Stream Order

Natural Variability in Reference Pool

Non-metric multidimensional scaling using Bray-Curtis as measure of distance.

- Environmental variables associated with macroinvertebrate community composition
 - Annual average precipitation
 - Flow status (perennial vs. nonperennial)
 - Drainage (Pacific Ocean vs. SF Bay)
- > Non-significant variables
 - Elevation, drainage area, ecoregion, Monitoring Program, sample year, collection method, stream order

Natural Variability Implications

Categorize sites by flow status (P/NP) to develop the most accurate B-IBI

- Pro: Determine if different biological metrics respond to urban stressors or if same metrics require different scaling
- Con: Flow status is not known for many of the 467 sites

Next Steps

Step	Description	Method
 Collect data on flow status? 	Collect data on flow status from management agencies. Split the entire dataset into perennial and non-perennial categories.	
2. Split Data	Randomly divide sites into development (3/4) and validation (1/4) data sets. Stratify by flow status and reference and non-reference.	Ode et al. 2005
3. Test, Select Metrics	 Range Redundancy (Pearson Coefficients) Responsiveness (to disturbance gradients Discriminatory power (reference vs. non-reference sites 	 Ode et al. 2005, 2008 " " Stribling et al. 1998, Ode et al. 2008

Next Steps – continued...

Steps	Description	Method
4. Score Metrics	 Score sites on scale 1 to 10 using raw metric values (establish floor & ceiling, divide equally between) Test for differences between physical strata 	Hughes et al. 1998, Ode et al. 2005, 2008
5. Validate Metric Selection	 Compare distributions of scores between development and test data sets. 	McCormick et al. 2001; Ode et al. 2005, 2008
6. Compare to CA B-IBIs	 Compare site scores between CA B- IBIs 	Correlation Coefficients
7. Re-evaluate over Time	 Consider new data on reference sites being sampled (SWAMP) Integrate with larger geographical areas in CA Re-evaluate prior to Biocriteria development 	Coordinate with SWAMP and at Statewide level

Our thanks to

- > ACCWP: Arleen Feng
- CCCWP/Co Co County: Michelle Luebke and Jamison Crosby
- Institute for Conservation Advocacy Research and Education: Chris Malan
- MCSTOPPP: Howard Bunce and Terri Fashing
- SMCWPPP: Paul Randall and Jon Konnan
- SCVURPPP: Paul Randall
- Sonoma Ecology Center: Becca Lawton
- SF Bay Regional Water Board: Matt Cover, Karen Taberski and SWAMP Team
- CDFG Aquatic Bioassessment Lab: Andy Rehn & Pete Ode

...QUESTIONS?