Macroinvertebrate Response to Biotic and Abiotic Stresses in Freshwater Wetlands of the San Francisco Bay Area

Kevin B. Lunde Vincent H. Resh UC Berkeley

Take home messages

- 1. We should examine wetlands
- 2. Stream bioassessment methods can be adapted to wetlands
- Macroinvertebrates are good indicators of endogenous and exogenous factors
- Land managers and restoration scientists will benefit from having pond indicators

Why Ponds?

- Increasing across past century
- Important connectors across terrestrial landscape
- Common within managed properties

Research Questions

- What biotic and abiotic factors influence community structure?
- Can bioassessment metrics be used to evaluate biotic condition?

Site Selection

• 43 sites

- ✓ Reference (18)
- ✓ Urban (19)
- ✓ Test (6)

• 55 sampling events

- ✓ 2007 (5)
 ✓ 2008 (11)
 ✓ 2000 (20)
- ✓ 2009 (39)
- 7 ponds re-sampled to examine seasonal and interannual variability

Field Methods

- Sample littoral zone
- (benthic, water column, surface)
- 500 μm dip net
- 20 sweep composite (6m²)
- Habitat stratified
 - Emergent vegetation
 - Submergent vegetation
 - Surface vegetation
 - o Open
- Environmental variables

Environmental Variables

- <u>Water chemistry</u>: turbidity, conductivity, pH
- <u>Vegetation metrics</u>: % submerged, emergent, floating, and absence of vegetation
- <u>Pond</u>: area, depth, % littoral, littoral slope, seasonal or perennial
- Upland habitat: slope, cattle grazing
- <u>Connectivity</u>: distance to other water bodies
- <u>Biota</u>: Mosquitofish, invasive sport fish

Laboratory Methods

- Fixed count to 500 aquatic organisms
- Composite subsampled (x=9%; range 1 - 35%)
- Identification to genus (EcoAnalysts)

Macroinvertebrate Results

- 123 unique taxa
- Non-insects prevalent and abundant
- Taxa Richness:
 - Median = 19 (7 36)
- Extrapolated Abundance:
 - 3386 individuals/m² (285 - 25,000/m²)

		% Occurrence
Crustacea	Simocephalus	91%
Insecta	Chironominae	81%
Crustacea	Cyprididae	74%
Insecta	Orthocladiinae	72%
Gastropoda	Physa	70%
Insecta	Tanypodinae	65%
Annelida	Tubificidae	53%
Insecta	Callibaetis	53%

Stress=22.7; Instability=0.0053

Stress=22.7; Instability=0.0053

Lentic IBI development

- 37 metrics examined
- 18 selected via ordination

Lentic IBI development

- Range, Redundancy (r<0.7), Discrimination
- Selected 9 final metrics:

% Gastropods	Taxa richness	% Odonata
% Ephemeroptera	Predator richness	Oligochaete richness (neg)
% Amphipods	HBI	% Corixids
		(neg)

• Scale multimetric index from 0 to 100

IBI Results

- Range 14-79, median 49
- Few very poor sites; no excellent sites
- Discrimination (p<0.001)
 - Reference: 58.5
 - Urban: 36.2
- Test IBI against management techniques and natural variables

Management Implications

- Highest IBI scores: more vegetation, lower conductivity, grazed, proximate ponds, (seasonal)
- Artificial ponds have similar condition to natural ponds
- Invasive fish did not lower biotic condition

Management can Management can

Conclusions

Were macroinvertebrates responsive to various stresses?

Yes!

Could bioassessment metrics be used to evaluate biotic condition?
 Yes!

<u>Future efforts</u>: add sampling sites and compare results with other wetland indicators (e.g. CRAM)

Acknowledgements

- Funding:
 - Alameda County Clean Water Program: Arleen Feng
 - National Science Foundation GRFP
- Access:
 - East Bay Regional Parks
 - o City of Novato, Davis, Oakley, and Alameda County
- Field and Lab support:
 - Sahar Osman, Kevin Yao, Jianni Xin Mohammad Aghaee

Coleoptera 195/m²

Hemiptera 2350/m2

Associated with littoral vegetation and pond level vegetation

Odonata 353/m2

Associated with low turbidity, pH, and littoral vegetation

Biting Flies

- Biting flies uncommon
 - o Culicidae 7/43 10.9/500 34/m2
 - Ceratopogonidae 16/43 6.1/500 96m2
 - No Tabanidae, Muscidae, Simulidae