Modeling Biological Stream Condition in Highly Urbanized Southern California

Larry Brown USGS, Jason May USGS, Andy Rehn ABL, Peter Ode SWRCB

Background

- Evolved from a USGS effort to model stream condition (individual metrics)
 - SoCal was one study area
- This talk will
 - Review previous results
 - Present the new model

Objective of Earlier Study

 Can we develop simple, predictive models of biological condition at unsampled sites using land use, land cover and hydrologic infrastructure?

Methods

- Primary approach: simple multiple linear regression models
 - Response variables (invertebrate metrics like EPT richness and %noninsect taxa)
- Land use predictor variables
 - human impact (e.g., population density, %Ag, %Urban)
 - natural gradients (e.g., elevation)

Conceptual Model

Geographic Regions:

- Will-V (96)
- BlueMtns (147)
- SoCal (87)

Southern California Urban Region

Methods - Environmental Variables

- GIS effort
 - Jim Orlando (CA) verified delineated of every watershed
 - calculated 100+ summary statistics
- Invertebrates sampled 2000-2006
- Land use data 2001
- Census data 2000

Methods - Response Variables

- Invertebrate data obtained from
 - Federal programs (NAWQA, EMAP)
 - State programs (Oregon, California)
- Standardize taxonomy
- Calculate 100+ metrics

Methods - Final Data Selection

- Exploratory Analysis
 - -Range tests
 - -Normality
 - Scatter Plots
 - Outlier Analysis
 - Correlations

Lots of Scatter Plots!

SOCAL RICHTOL Observed vs. Predicted

RICHTOL = average EPA defined tolerance (1-10) for all taxa found at a site

SOCAL Richness observed vs. predicted

NABS (www.benthos.org)

SOCAL EPTr observed vs. predicted

Comparison of watershed disturbance predictive models for stream benthic macroinvertebrates for three distinct western ecoregions

Ian R. Waite, Larry R. Brown, Jonathan G. Kennen, Jason T. May, Thomas F. Cuffney, James L. Orlando and Kimberly A. Jones

Submitted to: Ecological Indicators

Southern CA IBI Modeling effort

- Initial effort promising
- Followup: develop additional MLR model of IBI scores (Ode et al 2005)
- Larger data set: 100 development sites and 59 validation sites within the SoCal Chaparral Ecoregion

Southern California development and validation modeling sites

Objectives of SoCal Model

- Develop a simple, predictive model of SoCal-IBI at unsampled sites using land use, land cover and hydrologic infrastructure.
- Such a model could be used to:
 Prioritize sites for sampling
 Identify potential reference sites
 Identify potentially impacted sites

Explanatory Variables Considered Final Selections for Modeling

Variable	Development	Validation	
Watershed Factors			
Elevation (m)	99 (3-1503)	141 (1-1292)	
Population density (persons/km ²)	27 (0-4643)	14 (1-4480)	
Urban (%)	8 (0-99)	7 (0-98)	
Agriculture (%)	0 (0-45)	<1 (0-45)	
Agriculture + urban (%)	9 (0-99)	11 (0-98)	
Forest (%)	9 (0-93)	9 (0-84)	
Shrubland (%)	38 (<1-93)	36 (1-100)	
Road density (km/km ²)	2 (0-12)	2 (0-12)	
Man-made channel density (km/km ²)	0.01 (0-0.61)	0.01 (0-0.35)	
Mean annual precipitation (cm)	65 (31-159)	69 (34-155)	

Explanatory Variables Considered Final Selections for Modeling

Variable	Development	Validation	
Riparian buffer			
Urban (%)	24 (0-100)	29 (0-100)	
Agriculture (%)	0 (0-90)	0 (0-93)	
Agriculture + urban (%)	36 (0-100)	36 (0-100)	
Shrubland (%)	21 (0-98)	23 (0-100)	
Road density (km/km ²)	3 (0-16)	3 (0-12)	
Man-made channel density (km/km ²)	0 (0-6)	0 (0-6)	
Slope (%)	9 (<1-33)	10 (<1-29)	

Final Model

BIBIa = 63.51 - 11.35(logPOPDEN) - 7.09(logRIPAGURB)R² = 0.48

Why Isn't The Model Better?

- Intermittent streams
- GIS/Census data slightly out of date for some sites
- Site specific factors
 - Make low scoring sites worse
 - Make high scoring sites better
- Variability in IBI from individual metrics

Responses of Individual Metrics Model BETTER for B-IBI

Metric	PopDen	RAgUrb	R ²
Coleoptera taxa (#)	-0.42	NS	0.25
EPT taxa (#)	-0.46	NS	0.37
Predator taxa (#)	-0.32	NS	0.16
Collector individuals (%)	NS	0.36	0.14
Intolerant individuals (%)	-0.26	-0.27	0.21
Noninsect taxa (%)	0.60	NS	0.40
Tolerant taxa (%)	0.49	NS	0.23

Development sites (N = 100)

Plots for Individual Metrics Development sites (N = 100)

Improving the Model

- Probably difficult without site visit
 - Remote sensing (cost?)
 - More complex GIS analyses (probably not)
- Assess reasons for misclassifications
 - If mostly due to one factor may be able to correct (unlikely)

Is This a Useful Model?

Validation sites (N = 59)

Initial Objectives Met?

- Identify potential reference sites? YES
 Prioritize for conservation assessment
- Identify potentially impacted sites? YES
 Prioritize for restoration assessment
- Prioritize sites for sampling? YES
 - Stratify new sampling according to specific needs

Is This a Useful Model?

- Correctly classified impaired sites in 25 of 36 cases (69%)
- Correctly classified unimpaired sites in 20 of 23 cases (87%)