The Plankton O/E Index for the National Lakes Assessment

Charles P. Hawkins

Western Center for Monitoring & Assessment of Freshwater Ecosystems

Department of Watershed Sciences

Utah State University

The grand challenge: quantifying the biological condition of complex ecosystems with a single number.

Figure from S. Dodson, 2005. Introduction to Limnology. McGraw Hill, Boston.

The O/E Index

Reference Sites

The Plankton (359 taxa)

Zooplankton

(95 taxa)

28 Brachionidae

4 Notommatidae

9 Daphniidae

3 Sididae

Phytoplankton

(264 taxa)

96 Chrysophyta

(66 diatoms)

89 Chlorophyta

54 Cyanophyta

What is the NLA Plankton?

Plankton tows catch euplankton + epibenthic + some benthic organisms

Predictors

Western Mountains	Plains & Lowlands	Eastern Highlands
Soil WHC	Temperature	Depth to H2O
Longitude	Nat/Man	Rock Depth
Calcium	Perimeter	Bulk Density
Soil Perm	Precipitation	Soil WHC
Depth to H2O	Basin Size	
	Lake Size	
	Macrophytes	

Model Performance?

909 lakes: 59% natural, 41% constructed

Plankton O/E

Taxa loss

< 20%

20-40%40%

Regional Variation in O/E

Relative Risk and Attributable Risk AR = percent of poor biology sites associated with a specific stressor

Biggest Losers/Winners

West	Plains/Low	East
Coliothecidae	Keratella tau.	D. longiremi
Chromulina	Holopedilum	Holopedium
Keratella hiemalis	Gloeotila	Dictyosphaerium
Holopedium	Trichtridae	Quadrigula
Ploesoma	Temoridae	D. calawba/pulex
Pompholyx	B. caudatus	Fragilaria
Ceratium	B. angularis	Mallomonas
Ceriodaphnia	B. havanaensis	Euglena
Trachelomonas	Pediastrum	Synura
Scenedesmus	Aulacoseira	Ceriodaphnia

Caveats/Feedback/Questions?

- Caveat Observed macrophyte cover is not an ideal predictor – need a surrogate.
 - -Some plains lakes may look too good.
- Does the assessment make sense?
 - Yes, but lot of questions re: natural controls on lake plankton communities.
- Would I use the models at state or site level?
 - -Maybe.