

Why Wetlands?

- Diverse aquatic habitats, suffered historic declines
- National Wetland Condition Assessment (EPA)
- No established invertebrate monitoring program

Research Goals

- Develop field sampling procedures for wetland habitats
- 2. Develop an index of biotic integrity (IBI) based on urban gradient

Site Selection

Targeted selection 40 ponds/wetlands

- □ Reference: natural, stockponds
- Urban: stormwater, flood control, natural

Size: 0.1 – 1 hectares

Index period

☐ May 5 – July 13

Collected 2007-2009

Field Methods

- Sample littoral zone (benthic, water column, surface)
- 500 μm dip net
- 20 sweep composite (6m²)
- Habitat stratified
 - Emergent vegetation
 - Submergent vegetation
 - Floating vegetation
 - o Open
- 2.5 5 hrs per site

Laboratory Methods

- Subsampled a fixed count of 500 aquatic organisms
- Percent subsampled 9% (range 1 - 35%)
- Identification to SAFIT Level I: Insecta to genus; Chironomidae to subfamily; include Copepoda, Cladocera & Ostracoda, Oligochaeta

Macroinvertebrate Results

- 123 unique taxa
- Non-insects prevalent and abundant
- Taxa Richness:Median = 19 (7 36)
- Extrapolated Abundance:
 3386 individuals/m²

 (285 25,000/m²)
- Mosquitoes (7/40) and biting midges were uncommon (14/40) and low-abundance (<0.4%)

		% Occurrence
Crustacea	Simocephalus	91%
Insecta	Chironominae	81%
Crustacea	Cyprididae	74%
Insecta	Orthocladiinae	72%
Gastropoda	Physa	70%
Insecta	Tanypodinae	65%
Annelida	Tubificidae	53%
Insecta	Callibaetis	53%

IBI Development

 Assigned sites to reference category (<11% urban-1km)

Divided dataset into development (65%) and validation pools (35%)
 (MRPP: T = -0.91, p = 0.17)

Metric Selection and Scoring

Screened 56 metrics:

- Range
- Responsiveness to urbanization $(R^2 > 0.1)$
- Lack of redundancy (r < 0.7)

Lentic IBI Components

EOT richness	% EOT	Predator richness
Oligochaeta richness (pos)	% Coleoptera	Scraper richness
% 3 Dominant (pos)	% Tanypodinae/ Chironomidae	

- Scaled multimetric index from 0 to 100
- IBI score range: 4 86, median 48

Discrimination and Responsiveness

- Discrimination:Reference (68) vsUrban (30)
- Significant negative relationship with urbanization

Measurement Precision

IBI Variability:

Field duplicates: SD 6.2

Lab replicates: SD 3.2

MDD: 27.2 IBI points

Robustness and Bias

- No effect of environmental gradients on IBI: pond area, ecoregion, precipitation, elevation, pond size, hydroperiod, artificial vs. natural, or sample date
- Seasonal effects observed at a non-perennial pond

Indicator for Vertebrates?

 $R^2=0.34$, p < 0.001

Conclusions

- Field methods reliably surveyed the invertebrate population
- 2. IBI validated and robust
- 3. Applications: ambient assessments, compensatory mitigation, restoration

Future Steps

- Identify additional anthropogenic stressors
- Metric improvement:
 - Tolerance data, FFG for wetland species lacking
- Index period
- Compare with other wetland indicators (e.g. CRAM)

Acknowledgements

- Committee: Adina Merenlender, Matt Kondolf
- Funding:
 - o Alameda County Clean Water Program: Arleen Feng
 - Environmental Protection Agency STAR Fellowship
 - National Science Foundation GRFP
- Resh Lab: Patina Mendez, Matt Cover, Raphael Mazor, Joanie Ball
- Field and Lab support:
 Sahar Osman, Kevin Yao,
 Jianni Xin, Annie Strother,
 Mohammad Aghaee

E-mail: klunde@berkeley.edu

Stressor Comparison

Maximizing Conservation Value

- -No effect of managing for wildlife (p = 0.66)
- -Best scoring stormwater ponds:
 - Local buffer, low conductivity, near rural

Effects of Grazing

- NMS community shift
- Increased mayflies, dragonflies, damselflies
- n.s.: % snails or total density
- IBI scores no different: Grazed (63) Ungrazed (63)
- Increase amphibian richness

Effects of Introduced Fish

Sport fishing & Recreation

Possible shift in community

No change in density

 Slight but NS decrease amphibian richness Mosquito/vector control

Key Environmental Variables at all Ponds

Key Environmental Variables at Rural Ponds

NMS Stress=20.63 Instability=0.0059 R2 = 68.4%

MRPP T = -5.0 p = 0.0001

Effects of Introduced Fish

NMS Stress=20.63 Instability=0.0059 R2 = 68.4%

MRPP T = -5.0 p = 0.0001

Maximizing Conservation Value

Artificial ponds are slightly different:

MRPP *T*=-2.9, *p*=0.011, n=22

IBI: Nat. 61 vs. Art. 64 *n.s*

Urban natural ponds

Rural-residential, buffer

Potential Factors

	Abiotic	Biotic
In-pond	Size, depth, slope, % littoral pH, conductivity, turbidity, nutrients (TP, TN), heavy metals (Cr, Pb)	Fish (presence) Vegetation (% cover)
Landscape	% urban (1k, 50m) Stream length (1k, 50m); # ponds (1k), upland slope	Upland vegetation quality

Effects of Grazing at Rural Ponds

