Use of the FlexiGrid system for processing of physical habitat data collected per multiple protocols, including SWAMP

> Revital Katznelson, Ph.D. UC Berkeley Extension (Instructor) revitalk@sbcglobal.net

COPYRIGHT © 2011 Revital Katznelson

The compilation in this document is the property of Revital Katznelson ("Instructor") and may not be used without prior express written permission of Instructor. No license, express or implied, under any copyright or trade secret right is granted or implied by the conveyance of this document. No part of this document, which is not otherwise in the public domain, may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language or computer language, in any form or by any means, without the prior written permission of Instructor.

Today's Topics

Background

Why "FlexiGrid", and how it works

The FlexiGrid System: spreadsheet and associated Templates

- Data Entry
- Endpoint Calculation
- Crosswalk to SWAMP

Upload of raw data to SWAMP

The FlexiGrid is a Concept

It is a way of organizing information about spatial components of complex sampling frames to enable:

- (a) Description and mapping of the Frame and each component within the frame
- (b) Linking each assessment Result to the component in which it was collected.

Some of the protocols I encountered

Fisheries habitat assessments DFG style (Flossi&Reynolds...) Thalweg profile & cross section surveys **Pebble counts** Large Woody Debris assessments **Riparian plots & canopy density** Residual pool volume (V*) Collection of vertical composite samples in water column Sampling storm runoff in outfall & creek networks Bird point-counts in a 50m-radius circle Flow discharge measurements Physical Habitat assessments RBP style Physical Habitat assessments EMAP style Physical Habitat assessments NAWQA style (more)

My 2000s drawings

Transects Transect points Intertransects Transect Plots Riparian plots Stream segments

Lots of "Crosslines", and "Plots" ...and the internal hierarchy gets more and more complicated

© 2011 Revital Katznelson. Subject to title page restrictions

The Challenges:

Multiple Protocols: Identify the common elements and components among diverse protocols and spatial Sampling Frames

Links: Find a universal way to connect each monitoring Result to the specific spatial component it represents, in a flexible data structure

Hierarchy: Find a way to map multi-dimensional sampling frames with internal hierarchy

Endpoints: Find a simple way to generate assessment Endpoints from desirable aggregates of components

Spatial Sampling Frames

Can share the following properties:

- A 'Grid' made of a number of components
- Flexible (variable angles)
- Multi-dimensional
- A structure with internal hierarchy

They can easily be defined in neutral terms: each Frame has

- An origin
- A direction (upstream or downstream)
- A known curvilinear distance.

The **Origin** can be mapped to a Permanent Station and/or Monument

Curvilinear distances can be measured on a tape placed on the thalweg, or the centerline, or the centroid.... Every Frame or grid has a "**backbone**" of sorts

We are talking about "a spatial multi-dimensional flexible sampling frame with a variety of components, some organized with an internal hierarchy" (in short, SMDFAFWVCIH).

I called it "A FlexiGrid"

A FlexiGrid with a unique ID is laid out on a stream channel by one Team in one Station Visit. A Team can lay out one or more FlexiGrids in one Visit, each with its own unique ID.

The FlexiGrid refers to permanent locations, but is not permanent itself (FlexiGrids may be laid out differently at different times).

The FlexiGrid concept can be applied to different scales.

The secret: use of neutral terms

Common Data Elements

(These are added to the 'generic' Station-Visit descriptors: Project, Trip, Team, Date, Time, Station, Station-Visit ID, etc.)

List 1: FlexiGrid Descriptors

FlexiGrid Origin ID
FlexiGrid distance units (m, ft)
FlexiGrid Origin distance from permanent Station [/monument]
FlexiGrid Type (transects&points, right-angle grid, string of hab units, etc.)
FlexiGrid Backbone (Thalweg, midstream, centerline, centroid)
FlexiGrid Positive-distance direction (Upstream, downstream)

List 2: FlexiGrid Component descriptors

FlexiGrid Component ID [naming conventions can reflect hierarchy] FlexiGrid Component Type (e.g., Stream-fragment, Crossline, Plot, Point, Vertical, River-Parallel, Crossline-point, etc.)

FlexiGrid Component Name in Protocol (e.g., Reach, Transect, Transect-point, BMI Plot, etc.); [these are protocol-specific]

FlexiGrid Component Pre-determined size [/shape, /boundaries] FlexiGrid Component backbone-distance from Origin FlexiGrid Component place in series FlexiGrid Component distance from Local Reference Point Local Reference Point type (e.g., Left-bank) FlexiGrid Component depth from surface

FlexiGrid and FlexiGrid component descriptors

Remember: Any of the spatial components you have defined can be included in the FlexiGrid; you do not HAVE TO snap them to the grid (i.e., to map them) with distances or depth measurements

But if you want to, you CAN!

All you need is ... a spreadsheet.

And I already had a spreadsheet. Actually, I had more than one

The Data Quality Management (DQM) System

Developed for field measurements, 1998-2001, and implemented by the SWRCB Clean Water Team (Citizen Monitoring Program) http://www.waterboards.ca.gov/water_issues/programs/swamp/cwt_toolbox.shtml

	Q	Station Vis	it Informat	ion				Result I	nformatio	n			
Project ID	Team Name	Date	Station Visit ID	Station Visit start time	Permanent Station ID	Instrument ID	Characteristic	Result	Result unit	Accuracy		Precisior	1
WIL03	Rkcrew	6/22/2003	T1V1	10:47	WIL070	TTP-STB01	Temperature, water	14.57	С	-1.44	%	0.06	%, RPD
WIL03	Rkcrew	6/22/2003	T1V1	10:47	WIL070	ECP-STB01	Specific conductance	758.7	uS/cm	-0.14	%	0.40	%, RPD
WIL03	Rkcrew	6/22/2003	T1V1	10:47	WIL070	DOP-STB01	Dissolved oxygen (DO)	11.08	mg/l	-5.00	%	6.92	%, RPD
WIL03	Rkcrew	6/22/2003	T1V1	10:47	WIL070	PHP-STB01	рН	8.34	pН	0.71	%	0.12	%, RPD
SLC95	RD crew	5/3/1995	RD05-v1	10:10	SLC116	EC-2SLC02	Specific conductance	780	uS				
SLC95	RD crew	5/3/1995	RD05-v1	10:10	SLC116	FLO-SLC01	Velocity	0.67	ft/sec				

The Field Result Table is linked to everything else: Location, Instrument, Organization, etc.

The basic Results spreadsheet: a schematic

Everything was simple when the Station was a point.

St	atio	n Visi	it Info	rmati	ion		Fle	xiGrid	Inform	nation				Flex	ciGric	l Compo	nent l	Inform	ation			Res	ult l	nforn	nation	
Project ID	Team Name	Date	Station Visit ID	Station Visit start time	Permanent Station ID	FlexiGrid Origin ID	FlexiGrid distance units	FlexiGrid Origin distance from permanent Station	FlexiGrid type	FlexiGrid backbone	FlexiGrid positive distance Direction	FlexiGrid Component ID	FlexiGrid Component Type	FlexiGrid Component Name in Protocol	PHAB Protocol Used	FlexiGrid Component backbone-distance from Origin	FlexiGrid Component place in series	FlexiGrid Component distance from Local ref point	Local ref point type	Local ref point distance from Backbone	FlexiGrid Components Aggregate	Characteristic	Result	Result unit	Result type	Endpoint type
SYCM09	PW crew	6/15/2010	PW05-v1	9:50	SYC050	FG35	m	23	transects &points	Thalweg	Upstream	FG35-R1	Stream- Fragment	Reach	Jones 2010	0	n/ap	n/ap	n/ap	n/ap	BMI plots	Index of biological integrity (IBI)	67	(none)	Calculated endpoint	Compound endpoint
SYCM09	PW crew	6/15/2010	PW05-v1	9:50	SYC050	FG35	m	23	transects &points	Thalweg	Upstream	FG35-R1	Stream- Fragment	Reach	Jones 2010	0	n/ap	n/ap	n/ap	n/ap	Slope Segments	Average slope	4.5	%	Calculated endpoint	Simple endpoint
SLC95	RD crew	5/3/1995	RD05-v1	10:10	SLC116	FG-RD05	m	35	String of habitat units	Thalweg	Upstream	FG-RD05-P3 CS2	Crossline	Cross- Section	CCRS 1993	20	2	n/ap	n/ap	n/ap	n/ap	Stream width	4.8	m	Individual measurement	n/ap
SLC95	RD crew	5/3/1995	RD05-v1	10:10	SLC116	FG-RD05	m	35	String of habitat units	Thalweg	Upstream	FG-RD05	Stream- Fragment	Reach	CCRS 1993	n/ap	n/ap	n/ap	n/ap	n/ap	Cross Sections	Average Stream Width	5.3	m	Calculated endpoint	Simple endpoint
SYCM09	PW crew	6/15/2009	PW05-v1	9:50	SYC050	FG35	m	23	transects &points	Thalweg	Upstream	FG35-R1- PL08	Plot	BMI Plot	Smith 2003	67	6	5.8	LB	3.9	n/ap	Estimated percent Cobble	10	%	Estimated number or numeric range	n/ap
WL-yr3	MD crew	5/12/2009	MD02-v2	13:50	WL32	FGW32	m	-48	transects &points	midstream	Upstream	FGW32-R1- RP2	Plot	Riparian plot	(EMAP)	18	2	n/ap	n/ap	n/ap	n/ap	Big Tree Canopy cover	10-40	%	Estimated number or numeric range	n/ap

Project ID	Team	Date	Station Visit	Station	Permanent	
	Name		ID	Visit start	Station ID	
				time		

SYCM09	PW crew	6/15/2010	PW05-v1	9:50	SYC050
SYCM09	PW crew	6/15/2010	PW05-v1	9:50	SYC050
SLC95	RD crew	5/3/1995	RD05-v1	10:10	SLC116
SLC95	RD crew	5/3/1995	RD05-v1	10:10	SLC116
SYCM09	PW crew	6/15/2009	PW05-v1	9:50	SYC050
WL-yr3	MD crew	5/12/2009	MD02-v2	13:50	WL32
SUIS06	LM crew	4/7/2009	LM21-v1	13:40	SUI085
WL-yr3	MD crew	5/12/2009	MD02-v2	13:50	WL32
WL-yr3	MD crew	5/12/2009	MD02-v2	13:50	WL32

everything you need to know about them FlexiGrid ID, Component ID, and

Characteristic	Result	Result unit	Result type	Endpoint type

Index of biological integrity (IBI)	67	(none)	Calculated endpoint	Compound endpoint
Average slope	4.5	%	Calculated endpoint	Simple endpoint
Stream width	4.8	m	Individual measurement	n/ap
Average Stream Width	5.3	m	Calculated endpoint	Simple endpoint
Estimated percent Cobble	10	%	Estimated number or numeric range	n/ap
Big Tree Canopy cover	10-40	%	Estimated number or numeric range	n/ap
Particle d50	34	mm	Calculated endpoint	Quantile
Stream width	13.5	m	Individual measurement	n/ap
Water depth	0.43	m	Individual measurement	n/ap

© 2011 Revital Katznelson. Subject to title page restrictions

The FlexiGrid Results spreadsheet, Part 1 (Data Entry Template)

This spreadsheet has been customized several times. Each version served as a **data entry template** for a specific SOP **Assessment Endpoints**

Descriptive statistics (Average, Frequency), Metrics, Indices, and any other Endpoint calculated for an aggregate of raw data.

Examples: Average wetted channel width, Percent cobble, Landfill/Trash Human Influence Index

Trip start date		Permanent Station ID	FlexiGrid Compone nt place in series	Characteristic	Result	Result unit	Processe d Result (Formula e!)	[Result Endpoint]	Unit	Characteristic [Endpoint]		Number of observations in aggregate (n)
4/13/2005	8:45	201EAS050	1	Boulders cover	1	(code)	5		11	%	Average Boulders cover	Habitat Plots	11
4/13/2005	8:45	201EAS050	2	Boulders cover	1	(code)	5						
4/13/2005	8:45	201EAS050	3	Boulders cover	0	(code)	0						
4/13/2005	8:45	201EAS050	4	Boulders cover	1	(code)	5						
4/13/2005	8:45	201EAS050	5	Boulders cover	0	(code)	0	1					
4/13/2005	8:45	201EAS050	6	Boulders cover	1	(code)	5						
4/13/2005	8:45	201EAS050	7	Boulders cover	2	(code)	25						
4/13/2005	8:45	201EAS050	8	Boulders cover	0	(code)	0						
4/13/2005	8:45	201EAS050	9	Boulders cover	2	(code)	25						
4/13/2005	8:45	201EAS050	10	Boulders cover	2	(code)	25						
4/13/2005	8:45	201EAS050	11	Boulders cover	2	(code)	25						

The FlexiGrid Results spreadsheet, Part 2

(with Endpoint Template pasted on the right)

The Endpoint Calculation Template has been customized to calculate an array of Endpoint, mostly per the EMAP protocol (Kaufmann et al 1999)

Years 4&5 data, plotted in 2007

^{© 2011} Revital Katznelson. Subject to title page restrictions

Implementation of the FlexiGrid system

Data Entry and Endpoint Derivation completed:

SWAMP RB2 years 4&5 - Physical habitat (PHAB) data [interim protocol, the customized FlexiGrid is the only data entry option]

SWAMP RB2 Year 8 - PHAB and algae cover data

[4 version of the SWAMP data sheets were accommodated as they kept changing; some data capture in the field, using FlexiGrid template on a field computer]

SWAMP RB2 Year 9 - PHAB and algae cover data
[all data capture in the field, using FlexiGrid template on a field
 computer]

SWAMP RB2 Year 10 - PHAB and algae cover data (6 visits)

Alameda County Clean Water Program - PHAB pilot 2008 (4 visits)

© 2011 Revital Katznelson. Subject to title page restrictions

Implementation, Part 2

Transfer of raw PHAB data to SWAMP:

FlexiGrid-to-SWAMP Crosswalk developed and tested

All SWAMP RB2 Years 8&9 data have been transferred via the SWAMP/CEDEN template (Thanks, Marco!)

Year 10 data are in the works

The FlexiGrid Results spreadsheet, Part 3 (With SWAMP Crosswalk pasted or Built-in)

This spreadsheet has been used as a Data Entry Template in 2010., and can be used (in the office or in the Field) for future work Summary Part 1: The FlexiGrid concept supports a data structure that can do the following:

-- Connect each monitoring Result to the exact spatial component it was measured in (or to aggregate thereof);

-- Stage the raw data for easy, streamlined derivation of descriptive statistics, metrics, indices, and any other Endpoint;

-- Place every spatial component on a 'virtual map' as an independent entity while preserving the internal hierarchy and its order in a series;

-- Enable reconstruction of the Frame from the virtual map that is stored in database cells; and allow information transfer into a GIS system;

Summary Part 2: More good things FG can do

-- Integrate physical habitat (PHAB) results and descriptors with results and descriptors from any other area of inquiry (e.g., chemistry, toxicity, bioassessment, etc.);

-- Enable reporting of any type of Result and Endpoint, generated for any Characteristic in any spatial component and at any scale, on the 'same page'; and

-- Accommodate data generated by any Protocol that has multiple spatial components, including PHAB protocols used by different Agencies and Programs (e.g., NAWQA, EMAP, EPA RBP), DFG Fisheries habitat, etc.

Currently available: All FG templates for SWAMP, plus all SOPs for streamlined data processing and transfer

Summary Part 3: Drawbacks

-- Tailoring the FlexiGrid spreadsheet to a given protocol requires real understanding of that protocol

-- Development and customizing of the templates requires focused thinking and advanced Excel skills

-- Although data entry and streamlined endpoint derivation can be done by anyone, the Excel Data Entry Template cannot support as many 'fool-proof' safeguards against erroneous entries as some other database systems, and it is harder to protect

-- Users need training and technical support

Thanks for Listening!

SWAMP & FlexiGrid PHAB Entry Only

- Software
 - SWAMP = MS Access
 - FlexiGrid = MS Excel
- Data Entry
 - SWAMP = PHAB, Water Quality
 - Automated and manual data entry checks against erroneous entries
 - FlexiGrid = PHAB, Water Quality
 - Only manual data entry checks
 - Both field and desktop entry available
 - FlexiGrid allows data entry between/among sheets; SWAMP requires completion of each sheet before proceeding
 - FlexiGrid allows immediate corrections; SWAMP requires use of queries for corrections
- Data Output
 - Both require exporting data to MS Excel Template Upload file
 - SWAMP uses MS Access application to automatically create upload file
 - FlexiGrid uses crosswalk to create upload file with minor tweaking
- Metric Calculations
 - SWAMP = PHAB Reporting Module
 - Time lag between data entry and metric calculations
 - Process multiple samples across projects
 - FlexiGrid = PHAB metrics
 - Potentially instant output with minor processing of individual samples/visits
 - Both = Metrics are organized in database ready format as well as in tabular format for reporting and plotting
- Technical Support
 - CEDEN = Help Desk including some IT support, tutorials, supporting documentation; no costs (currently)
 - FlexiGrid = Initial training, data processing SOPs, and ongoing support by Revital; associated minimal costs

Three mapping scenarios: different relationships between the permanent Station and the FlexiGrid Origin

Permanent Station is downstream of Origin

Permanent Station is Upstream of Origin and the entire FlexiGrid

Permanent Station is upstream of Origin and within the FlexiGrid

FlexiGrid Origin. FlexiGrid direction = upstream
 Distances within FlexiGrid (e.g., to T4)
 Permanent Station (USGS Reference Location; EMAP X-site)
 Distance Origin to Permanent Station
 Flow direction

Snap FlexiGrid to the globe, then map components onto it

You can measure the Frame Origin's backbone-distance from the Permanent Station, 🛑 and snap the entire Frame to the globe You can measure the backbone-distance from a Frame component (e.g., Crossline) to the Origin, Then add a Local Reference Point (e.g., Left Bank), O And map any point within the Frame.

You can have many types of components: Crosslines, Points, Plots, etc; all can be snapped to the same grid.

2. FlexiGrid Endpoints Template pasted on the right

3. FlexiGrid Data Entry Template with SWAMP Crosswalk

USGS - NAWQA - data setup

Descriptors and Results --->

Reach Sample ID	STAID		Reach Collection Date	Sample Type	REFLOC	Collector	STAGE	DISCH		REACH LEN
29302	04062085	А	5/27/1994 9:15	REACH		(Sullivan, E			100	227
29304	04063700	А	6/16/1993 8:30	REACH	upstream s	s (Fitzpatrick				210
29306	04063700	А	5/24/1995 9:30	REACH		(Stewart, Ja				334
161206	04063700	А	8/29/2006 13:00	REACH	Bridge at N	Lutz, Stens	1.38	56	Gage	300
110625	04063700	В	9/13/2002 9:00	REACH	Bridge at N	(J. Stewart)	1.34	61	Gage	290
110771	04063700	С	9/12/2002 13:00	REACH	Bridge at N	(J.Stewart)	1.35	62	Gage	300

Transect

Reach

Descriptors and Results --->

	Reach	STAID	Reach	Tran	Collectio	Sample Type	Review	CHWIDTH	LBANGL	RBANGL
S	Sampl			Num	n Date		Status		E	E
C	elD									
e e	29301	04062085	Α	1	6/15/1993	TRANSECT	R	14.5	50	90
č	29301	04062085	А	2	6/15/1993	TRANSECT	R	16.1	90	40
Гa	29301	04062085	А	3	6/15/1993	TRANSECT	R	11	35	45
F.	29302	04062085	А	1	5/27/1994	TRANSECT	R	14.3	45	90
	29302	04062085	А	2	5/27/1994	TRANSECT	R	17.6	65	45
v.	29302	04062085	А	3	5/27/1994	TRANSECT	R	11.6	35	90

Transect-Points

Channel Features

Geomorphic Channel Units (flow-habitat units)

© 2011 Revital Katznelson. Subject to title page restrictions

Calculated Endpoints

33

Other systems: Western EMAP: OCR and SAS

1476

RAPID	HABI	TAT ASS	ESS	MENT	FOR	RM:	GLI	DE/	20	OL (co	ontinu	ied) -	STR	EAI	MS		
SITE ID:	WX.	x P99-	99	99	_			D	ATE	.07	10	21	2.0	0.	4		
HABITAT	-		in the second			0	ATE	GORY	,								(all all all all all all all all all all
		OPTI	MAL		1	SUB-	OPTIM	AL		MA	RGINAL			PO	OR		
7. Channel Sinuosity		increase the st 4 times longer a straight line. braiding is con in coastal plair low-lying areas	ncrease the stream length 3 to increase the stream length 2 to increase the stream length 3 times longer than if it was in a straight line. (Note channel raiding is considered normal no coastal plains and other well-ying areas. This ararmeter is not easily rated in hese areas.)									has be	Channel straight; waterway has been channelized for a long distance.				
Score:	13	20 19	18 1	17 16	15	14	(13)	12	11	10	9 8	7 6	5	3	2	1	0
8. Bank Stability (score each ba	ank)	Banks stable; erosion or ban or minimal; litt future problem of bank affecte	k failun le poter is. Less	e absent ntial for	nt small areas of erosion mostly 30-60% of bank in reach areas; "raw bealed over. 5-30% of bank in has areas of erosion; along straig bigh erosion potential bends; obvi							"raw" straigh obvio ing; 6	60-100% of bank				
Left Bank Score:	9	Left Bank:	10	۹	8		7	6		5	4	3	2		1	0	
Right Bank Score:	10	Right Bank:	1	9	8		7	6	1	5	4	3	2		1	0	
9. Vegetative Protection (score each ba	ank)	More than 90% streambank su immediate rips covered by nai including trees shrubs, or non macrophytes; disruption thre mowing minim evident; almost allowed to gro	arian zo tive veg s, under woody vegetat ough gri aal or no st all pla	ne jetation, rstory ive azing or ot ants	surface vegetat plants disrupt affectir potenti more ti	tion; t is not is not is not is not is not al full al to a han or al pla	e stream vered by sut one o well rep vident b plant g any grea ne-half o nt stubb	native class of present ut not rowth at exten of the	ed; t;	50-70% c surfaces vegetatic obvious; soil or cl vegetatic than one potential height re	covered n; disrup patches osely cro n comm -half of the plant students	by of bare opped on; less	stream covere disrup vegeta vegeta remov	tion of tion is tion h ed to 5 avera	% of the surface egetatic stream very hi as been i centim ge stub	s ban; bank gh; eters	
Left Bank Score:	4	Left Bank	c 10	9	8	1	7	6		5	4	3	1	2	1		0
Right Bank Score:	6	Right Bank	c 10	9	8	1	7	6)	5	4	3	1	2	1		0
10. Riparian Vege Zone Width (score each ba		Width of ripari than 18 meters activities (i.e., roadbeds, clea crops) have no zone.	s; huma parking ir-cuts,	n lots, lawns, or	meters	; hum	arian zor an activ ne only	ities ha	ve	Width of 6-12 met activities zone a g	ers; hum have im	an pacted	Width of riparian zone less than 6 meters; little or no riparian vegetation due to human activities.				
Left Bank Score:	5	Left Bank	10	9	8		7	6		5	4	3	2		1	0	1
Right Bank Score:	7	Right Bank	10	9	8			6		5	4	3	2		1	0	1

Data Sheets are filled out by the field operators and then scanned by an OCR machine that 'reads' the numbers and puts them in a data file.

The data file is fed into SAS, which calculated Endpoints.

Extremely rigid

34

Other systems: SWAMP: MS Access

Site Code:				Si	te Nar	ne:										Dat	0:	1		1		
Wetted Wid	10h (m):					full Wi	dth (m):				Ba	nkfull H	leight	(m):				ran	sect	F	
То	ANSECT	SUBS	TRATE	s	-		oble		HUMA	NIN		ICE	0 = No	t Prese	nt B-	On Be	ank C	- Bebye	en Bank :	and 10 m	from Ch	anne
Position	Dist from LB (cm)	Depth (cm)	mm/ si class	ze /	POM	Emb dedi (S	ness		[circle	only ti	he clos	est	P=>1		Bank	an Cha		annel	nel (recol	rd Yes or Right	1.000	
Left Bank	Co (citi)	fent	Cialde	-	PA				Wals/			-	P	С	в	0	Y	N	0	В	C	P
Left					PA	2			Building	js	-		P	С	В	0	Y	N	0	в	С	P
Center Center					PA				Pavern	ent/ Ck	eared L	ot	Р	С	в	0			0	в	С	P
Right Center	0		-		PA	1			Road/ F	Rairoa	d		Р	С	В	0	Y	N	0	в	С	P
Right Bank					PA				Pipes (niet/ C	utlet)		Ρ	С	в	0	Y	Ν	0	в	С	Р
	IN STAR	ITY (no		. 6.m		d Sea	-	f I	Landfil	Trash			Р	С	В	0	Y	N	0	в	С	Р
	IK STABI						ith)		Park/ L	awn	1		P	С	В	0		-	0	в	С	P
Left Bank	eroc	had	vuiner	mbelie		stab			Row Cr	оре			Р	С	В	0			0	в	С	P
Len Bank	eroc	80	vuiner	8018		5180	16		Pasture	e/ Rang)a		Ρ	С	В	0			0	в	С	Ρ
Right	erod	led	vuiner	able		stabl	le		Logging	g Open	ations		Ρ	С	В	0			0	В	С	Ρ
Bank	51.50					- 10-97			Mining				P	С	В	0	Y	N	0	В	С	P
									Vegeta Bridges			ent	P	C C	B	0	Y	N	0	B	C	P
									Orchan			-	P	c	B	0	1	IN	0	B	c	P
22220	(lacing downsilearil)			ft B	ank	(10-40	-		ile one It Bank		A	lamer quatic	MPLE Itous A Macro	lgae phytes	0	0 - Scenter (0%) DENSIONET 1 - Scenter (<15%) Castron 2 - Moderate (10 40%) READINGS (1 (<10.75%) Count covered 0 - 1 - 2 - 3 - 4 Canter Left 0 - 1 - 2 - 3 - 4 Center Left						dofz
	and sapling i m high	0.0000	0 1		3 4		0	1	2 3	4	1.0	merge ouider	nt Veg 13	ecation	0	1	2	34		Center Upstrear		
		Lower C	anopy	(0.5	m-5 m	high)					W	loody	Debris	>0.3 n	n (1	2	34		Center		
	regetation m to 5 m		0 1	2	3 4	•	0	1	2 3	4	w	body	Debris	<0.3 n	n C	1	2	34		enter Ri		_
		Groun	d Cove	r (<0	.5 m h	nigh)					U	nderc	ut Bank	ks	0	1	2	3 4	IĽ	enter ru	an	
	:0.6 m	plings	0 1	2	3 4	-	0	1	2 3				ng. Vej				2	3 4		Left Ban (optiona		
Herb	s/ grasses	100	0 1	2	3 4	-	0	1	2 3	4	U	ve Tre	e Roo	ts	0	1	2	3 4		Right Ba	nk	_
Barren,	bare soil/ o	luff	0 1	2	3 4		0	1	2 3	4	A	tificia	Struct	lures	0	1	2	34		(optiona		
		Inter	tran	se	ct:	FG			a starting		Wette	d Wie	ith (m)	:								
(% bet	w HABIT tween tran otal=100%	sects.							UBSTR. size cla			En	Cobble	ed-				if tak	en and			
Chanr	nel Type	%	P	ositi	on	Dist fre LB (cn		Depth (cm)	size class		РОМ	"	ess (%		Downs	stream	n (req	<u> 1</u> 1 2	ode)		1.29	
Casca	de/ Falls		L	eft Ba	ank					P	A											
R	apid		Le	en Ce	nter					P	A											
R	iffle		1	Centr	er					F	A			ľ	Upstre	am (r	equir	ed)				
F	tun		Rig	ght Ce	anter					P	A											
G	lide		R	ight B	ank					P	A											
	aol				1.00			C-74.5.5	121.111		12/19/75	15550	1220122	0.000	2.255	10.00	113			icle or or		23.

Data Sheets are filled out by the field operators; the data is then entered into a set of MS Access Data Entry Forms which look very much like the field data sheets.

An Endpoint Calculation module will be developed in the future.